1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/intel-iommu.h> 8 #include <linux/dma-resv.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include "display/intel_frontbuffer.h" 15 16 #include "gem/i915_gem_ioctls.h" 17 #include "gt/intel_context.h" 18 #include "gt/intel_gpu_commands.h" 19 #include "gt/intel_gt.h" 20 #include "gt/intel_gt_buffer_pool.h" 21 #include "gt/intel_gt_pm.h" 22 #include "gt/intel_ring.h" 23 24 #include "pxp/intel_pxp.h" 25 26 #include "i915_cmd_parser.h" 27 #include "i915_drv.h" 28 #include "i915_gem_clflush.h" 29 #include "i915_gem_context.h" 30 #include "i915_gem_evict.h" 31 #include "i915_gem_ioctls.h" 32 #include "i915_trace.h" 33 #include "i915_user_extensions.h" 34 #include "i915_vma_snapshot.h" 35 36 struct eb_vma { 37 struct i915_vma *vma; 38 unsigned int flags; 39 40 /** This vma's place in the execbuf reservation list */ 41 struct drm_i915_gem_exec_object2 *exec; 42 struct list_head bind_link; 43 struct list_head reloc_link; 44 45 struct hlist_node node; 46 u32 handle; 47 }; 48 49 enum { 50 FORCE_CPU_RELOC = 1, 51 FORCE_GTT_RELOC, 52 FORCE_GPU_RELOC, 53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 54 }; 55 56 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */ 57 #define __EXEC_OBJECT_HAS_PIN BIT(30) 58 #define __EXEC_OBJECT_HAS_FENCE BIT(29) 59 #define __EXEC_OBJECT_USERPTR_INIT BIT(28) 60 #define __EXEC_OBJECT_NEEDS_MAP BIT(27) 61 #define __EXEC_OBJECT_NEEDS_BIAS BIT(26) 62 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */ 63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 64 65 #define __EXEC_HAS_RELOC BIT(31) 66 #define __EXEC_ENGINE_PINNED BIT(30) 67 #define __EXEC_USERPTR_USED BIT(29) 68 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 69 #define UPDATE PIN_OFFSET_FIXED 70 71 #define BATCH_OFFSET_BIAS (256*1024) 72 73 #define __I915_EXEC_ILLEGAL_FLAGS \ 74 (__I915_EXEC_UNKNOWN_FLAGS | \ 75 I915_EXEC_CONSTANTS_MASK | \ 76 I915_EXEC_RESOURCE_STREAMER) 77 78 /* Catch emission of unexpected errors for CI! */ 79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 80 #undef EINVAL 81 #define EINVAL ({ \ 82 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 83 22; \ 84 }) 85 #endif 86 87 /** 88 * DOC: User command execution 89 * 90 * Userspace submits commands to be executed on the GPU as an instruction 91 * stream within a GEM object we call a batchbuffer. This instructions may 92 * refer to other GEM objects containing auxiliary state such as kernels, 93 * samplers, render targets and even secondary batchbuffers. Userspace does 94 * not know where in the GPU memory these objects reside and so before the 95 * batchbuffer is passed to the GPU for execution, those addresses in the 96 * batchbuffer and auxiliary objects are updated. This is known as relocation, 97 * or patching. To try and avoid having to relocate each object on the next 98 * execution, userspace is told the location of those objects in this pass, 99 * but this remains just a hint as the kernel may choose a new location for 100 * any object in the future. 101 * 102 * At the level of talking to the hardware, submitting a batchbuffer for the 103 * GPU to execute is to add content to a buffer from which the HW 104 * command streamer is reading. 105 * 106 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 107 * Execlists, this command is not placed on the same buffer as the 108 * remaining items. 109 * 110 * 2. Add a command to invalidate caches to the buffer. 111 * 112 * 3. Add a batchbuffer start command to the buffer; the start command is 113 * essentially a token together with the GPU address of the batchbuffer 114 * to be executed. 115 * 116 * 4. Add a pipeline flush to the buffer. 117 * 118 * 5. Add a memory write command to the buffer to record when the GPU 119 * is done executing the batchbuffer. The memory write writes the 120 * global sequence number of the request, ``i915_request::global_seqno``; 121 * the i915 driver uses the current value in the register to determine 122 * if the GPU has completed the batchbuffer. 123 * 124 * 6. Add a user interrupt command to the buffer. This command instructs 125 * the GPU to issue an interrupt when the command, pipeline flush and 126 * memory write are completed. 127 * 128 * 7. Inform the hardware of the additional commands added to the buffer 129 * (by updating the tail pointer). 130 * 131 * Processing an execbuf ioctl is conceptually split up into a few phases. 132 * 133 * 1. Validation - Ensure all the pointers, handles and flags are valid. 134 * 2. Reservation - Assign GPU address space for every object 135 * 3. Relocation - Update any addresses to point to the final locations 136 * 4. Serialisation - Order the request with respect to its dependencies 137 * 5. Construction - Construct a request to execute the batchbuffer 138 * 6. Submission (at some point in the future execution) 139 * 140 * Reserving resources for the execbuf is the most complicated phase. We 141 * neither want to have to migrate the object in the address space, nor do 142 * we want to have to update any relocations pointing to this object. Ideally, 143 * we want to leave the object where it is and for all the existing relocations 144 * to match. If the object is given a new address, or if userspace thinks the 145 * object is elsewhere, we have to parse all the relocation entries and update 146 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 147 * all the target addresses in all of its objects match the value in the 148 * relocation entries and that they all match the presumed offsets given by the 149 * list of execbuffer objects. Using this knowledge, we know that if we haven't 150 * moved any buffers, all the relocation entries are valid and we can skip 151 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 152 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 153 * 154 * The addresses written in the objects must match the corresponding 155 * reloc.presumed_offset which in turn must match the corresponding 156 * execobject.offset. 157 * 158 * Any render targets written to in the batch must be flagged with 159 * EXEC_OBJECT_WRITE. 160 * 161 * To avoid stalling, execobject.offset should match the current 162 * address of that object within the active context. 163 * 164 * The reservation is done is multiple phases. First we try and keep any 165 * object already bound in its current location - so as long as meets the 166 * constraints imposed by the new execbuffer. Any object left unbound after the 167 * first pass is then fitted into any available idle space. If an object does 168 * not fit, all objects are removed from the reservation and the process rerun 169 * after sorting the objects into a priority order (more difficult to fit 170 * objects are tried first). Failing that, the entire VM is cleared and we try 171 * to fit the execbuf once last time before concluding that it simply will not 172 * fit. 173 * 174 * A small complication to all of this is that we allow userspace not only to 175 * specify an alignment and a size for the object in the address space, but 176 * we also allow userspace to specify the exact offset. This objects are 177 * simpler to place (the location is known a priori) all we have to do is make 178 * sure the space is available. 179 * 180 * Once all the objects are in place, patching up the buried pointers to point 181 * to the final locations is a fairly simple job of walking over the relocation 182 * entry arrays, looking up the right address and rewriting the value into 183 * the object. Simple! ... The relocation entries are stored in user memory 184 * and so to access them we have to copy them into a local buffer. That copy 185 * has to avoid taking any pagefaults as they may lead back to a GEM object 186 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 187 * the relocation into multiple passes. First we try to do everything within an 188 * atomic context (avoid the pagefaults) which requires that we never wait. If 189 * we detect that we may wait, or if we need to fault, then we have to fallback 190 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 191 * bells yet?) Dropping the mutex means that we lose all the state we have 192 * built up so far for the execbuf and we must reset any global data. However, 193 * we do leave the objects pinned in their final locations - which is a 194 * potential issue for concurrent execbufs. Once we have left the mutex, we can 195 * allocate and copy all the relocation entries into a large array at our 196 * leisure, reacquire the mutex, reclaim all the objects and other state and 197 * then proceed to update any incorrect addresses with the objects. 198 * 199 * As we process the relocation entries, we maintain a record of whether the 200 * object is being written to. Using NORELOC, we expect userspace to provide 201 * this information instead. We also check whether we can skip the relocation 202 * by comparing the expected value inside the relocation entry with the target's 203 * final address. If they differ, we have to map the current object and rewrite 204 * the 4 or 8 byte pointer within. 205 * 206 * Serialising an execbuf is quite simple according to the rules of the GEM 207 * ABI. Execution within each context is ordered by the order of submission. 208 * Writes to any GEM object are in order of submission and are exclusive. Reads 209 * from a GEM object are unordered with respect to other reads, but ordered by 210 * writes. A write submitted after a read cannot occur before the read, and 211 * similarly any read submitted after a write cannot occur before the write. 212 * Writes are ordered between engines such that only one write occurs at any 213 * time (completing any reads beforehand) - using semaphores where available 214 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 215 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 216 * reads before starting, and any read (either using set-domain or pread) must 217 * flush all GPU writes before starting. (Note we only employ a barrier before, 218 * we currently rely on userspace not concurrently starting a new execution 219 * whilst reading or writing to an object. This may be an advantage or not 220 * depending on how much you trust userspace not to shoot themselves in the 221 * foot.) Serialisation may just result in the request being inserted into 222 * a DAG awaiting its turn, but most simple is to wait on the CPU until 223 * all dependencies are resolved. 224 * 225 * After all of that, is just a matter of closing the request and handing it to 226 * the hardware (well, leaving it in a queue to be executed). However, we also 227 * offer the ability for batchbuffers to be run with elevated privileges so 228 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 229 * Before any batch is given extra privileges we first must check that it 230 * contains no nefarious instructions, we check that each instruction is from 231 * our whitelist and all registers are also from an allowed list. We first 232 * copy the user's batchbuffer to a shadow (so that the user doesn't have 233 * access to it, either by the CPU or GPU as we scan it) and then parse each 234 * instruction. If everything is ok, we set a flag telling the hardware to run 235 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 236 */ 237 238 struct eb_fence { 239 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 240 struct dma_fence *dma_fence; 241 u64 value; 242 struct dma_fence_chain *chain_fence; 243 }; 244 245 struct i915_execbuffer { 246 struct drm_i915_private *i915; /** i915 backpointer */ 247 struct drm_file *file; /** per-file lookup tables and limits */ 248 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 249 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 250 struct eb_vma *vma; 251 252 struct intel_gt *gt; /* gt for the execbuf */ 253 struct intel_context *context; /* logical state for the request */ 254 struct i915_gem_context *gem_context; /** caller's context */ 255 256 /** our requests to build */ 257 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; 258 /** identity of the batch obj/vma */ 259 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; 260 struct i915_vma *trampoline; /** trampoline used for chaining */ 261 262 /** used for excl fence in dma_resv objects when > 1 BB submitted */ 263 struct dma_fence *composite_fence; 264 265 /** actual size of execobj[] as we may extend it for the cmdparser */ 266 unsigned int buffer_count; 267 268 /* number of batches in execbuf IOCTL */ 269 unsigned int num_batches; 270 271 /** list of vma not yet bound during reservation phase */ 272 struct list_head unbound; 273 274 /** list of vma that have execobj.relocation_count */ 275 struct list_head relocs; 276 277 struct i915_gem_ww_ctx ww; 278 279 /** 280 * Track the most recently used object for relocations, as we 281 * frequently have to perform multiple relocations within the same 282 * obj/page 283 */ 284 struct reloc_cache { 285 struct drm_mm_node node; /** temporary GTT binding */ 286 unsigned long vaddr; /** Current kmap address */ 287 unsigned long page; /** Currently mapped page index */ 288 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 289 bool use_64bit_reloc : 1; 290 bool has_llc : 1; 291 bool has_fence : 1; 292 bool needs_unfenced : 1; 293 } reloc_cache; 294 295 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 296 297 /** Length of batch within object */ 298 u64 batch_len[MAX_ENGINE_INSTANCE + 1]; 299 u32 batch_start_offset; /** Location within object of batch */ 300 u32 batch_flags; /** Flags composed for emit_bb_start() */ 301 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 302 303 /** 304 * Indicate either the size of the hastable used to resolve 305 * relocation handles, or if negative that we are using a direct 306 * index into the execobj[]. 307 */ 308 int lut_size; 309 struct hlist_head *buckets; /** ht for relocation handles */ 310 311 struct eb_fence *fences; 312 unsigned long num_fences; 313 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 314 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; 315 #endif 316 }; 317 318 static int eb_parse(struct i915_execbuffer *eb); 319 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); 320 static void eb_unpin_engine(struct i915_execbuffer *eb); 321 static void eb_capture_release(struct i915_execbuffer *eb); 322 323 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 324 { 325 return intel_engine_requires_cmd_parser(eb->context->engine) || 326 (intel_engine_using_cmd_parser(eb->context->engine) && 327 eb->args->batch_len); 328 } 329 330 static int eb_create(struct i915_execbuffer *eb) 331 { 332 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 333 unsigned int size = 1 + ilog2(eb->buffer_count); 334 335 /* 336 * Without a 1:1 association between relocation handles and 337 * the execobject[] index, we instead create a hashtable. 338 * We size it dynamically based on available memory, starting 339 * first with 1:1 assocative hash and scaling back until 340 * the allocation succeeds. 341 * 342 * Later on we use a positive lut_size to indicate we are 343 * using this hashtable, and a negative value to indicate a 344 * direct lookup. 345 */ 346 do { 347 gfp_t flags; 348 349 /* While we can still reduce the allocation size, don't 350 * raise a warning and allow the allocation to fail. 351 * On the last pass though, we want to try as hard 352 * as possible to perform the allocation and warn 353 * if it fails. 354 */ 355 flags = GFP_KERNEL; 356 if (size > 1) 357 flags |= __GFP_NORETRY | __GFP_NOWARN; 358 359 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 360 flags); 361 if (eb->buckets) 362 break; 363 } while (--size); 364 365 if (unlikely(!size)) 366 return -ENOMEM; 367 368 eb->lut_size = size; 369 } else { 370 eb->lut_size = -eb->buffer_count; 371 } 372 373 return 0; 374 } 375 376 static bool 377 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 378 const struct i915_vma *vma, 379 unsigned int flags) 380 { 381 if (vma->node.size < entry->pad_to_size) 382 return true; 383 384 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 385 return true; 386 387 if (flags & EXEC_OBJECT_PINNED && 388 vma->node.start != entry->offset) 389 return true; 390 391 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 392 vma->node.start < BATCH_OFFSET_BIAS) 393 return true; 394 395 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 396 (vma->node.start + vma->node.size + 4095) >> 32) 397 return true; 398 399 if (flags & __EXEC_OBJECT_NEEDS_MAP && 400 !i915_vma_is_map_and_fenceable(vma)) 401 return true; 402 403 return false; 404 } 405 406 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 407 unsigned int exec_flags) 408 { 409 u64 pin_flags = 0; 410 411 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 412 pin_flags |= PIN_GLOBAL; 413 414 /* 415 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 416 * limit address to the first 4GBs for unflagged objects. 417 */ 418 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 419 pin_flags |= PIN_ZONE_4G; 420 421 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 422 pin_flags |= PIN_MAPPABLE; 423 424 if (exec_flags & EXEC_OBJECT_PINNED) 425 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 426 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 427 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 428 429 return pin_flags; 430 } 431 432 static inline int 433 eb_pin_vma(struct i915_execbuffer *eb, 434 const struct drm_i915_gem_exec_object2 *entry, 435 struct eb_vma *ev) 436 { 437 struct i915_vma *vma = ev->vma; 438 u64 pin_flags; 439 int err; 440 441 if (vma->node.size) 442 pin_flags = vma->node.start; 443 else 444 pin_flags = entry->offset & PIN_OFFSET_MASK; 445 446 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; 447 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 448 pin_flags |= PIN_GLOBAL; 449 450 /* Attempt to reuse the current location if available */ 451 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 452 if (err == -EDEADLK) 453 return err; 454 455 if (unlikely(err)) { 456 if (entry->flags & EXEC_OBJECT_PINNED) 457 return err; 458 459 /* Failing that pick any _free_ space if suitable */ 460 err = i915_vma_pin_ww(vma, &eb->ww, 461 entry->pad_to_size, 462 entry->alignment, 463 eb_pin_flags(entry, ev->flags) | 464 PIN_USER | PIN_NOEVICT); 465 if (unlikely(err)) 466 return err; 467 } 468 469 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 470 err = i915_vma_pin_fence(vma); 471 if (unlikely(err)) { 472 i915_vma_unpin(vma); 473 return err; 474 } 475 476 if (vma->fence) 477 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 478 } 479 480 ev->flags |= __EXEC_OBJECT_HAS_PIN; 481 if (eb_vma_misplaced(entry, vma, ev->flags)) 482 return -EBADSLT; 483 484 return 0; 485 } 486 487 static inline void 488 eb_unreserve_vma(struct eb_vma *ev) 489 { 490 if (!(ev->flags & __EXEC_OBJECT_HAS_PIN)) 491 return; 492 493 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 494 __i915_vma_unpin_fence(ev->vma); 495 496 __i915_vma_unpin(ev->vma); 497 ev->flags &= ~__EXEC_OBJECT_RESERVED; 498 } 499 500 static int 501 eb_validate_vma(struct i915_execbuffer *eb, 502 struct drm_i915_gem_exec_object2 *entry, 503 struct i915_vma *vma) 504 { 505 /* Relocations are disallowed for all platforms after TGL-LP. This 506 * also covers all platforms with local memory. 507 */ 508 if (entry->relocation_count && 509 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 510 return -EINVAL; 511 512 if (unlikely(entry->flags & eb->invalid_flags)) 513 return -EINVAL; 514 515 if (unlikely(entry->alignment && 516 !is_power_of_2_u64(entry->alignment))) 517 return -EINVAL; 518 519 /* 520 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 521 * any non-page-aligned or non-canonical addresses. 522 */ 523 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 524 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 525 return -EINVAL; 526 527 /* pad_to_size was once a reserved field, so sanitize it */ 528 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 529 if (unlikely(offset_in_page(entry->pad_to_size))) 530 return -EINVAL; 531 } else { 532 entry->pad_to_size = 0; 533 } 534 /* 535 * From drm_mm perspective address space is continuous, 536 * so from this point we're always using non-canonical 537 * form internally. 538 */ 539 entry->offset = gen8_noncanonical_addr(entry->offset); 540 541 if (!eb->reloc_cache.has_fence) { 542 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 543 } else { 544 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 545 eb->reloc_cache.needs_unfenced) && 546 i915_gem_object_is_tiled(vma->obj)) 547 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 548 } 549 550 return 0; 551 } 552 553 static inline bool 554 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) 555 { 556 return eb->args->flags & I915_EXEC_BATCH_FIRST ? 557 buffer_idx < eb->num_batches : 558 buffer_idx >= eb->args->buffer_count - eb->num_batches; 559 } 560 561 static int 562 eb_add_vma(struct i915_execbuffer *eb, 563 unsigned int *current_batch, 564 unsigned int i, 565 struct i915_vma *vma) 566 { 567 struct drm_i915_private *i915 = eb->i915; 568 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 569 struct eb_vma *ev = &eb->vma[i]; 570 571 ev->vma = vma; 572 ev->exec = entry; 573 ev->flags = entry->flags; 574 575 if (eb->lut_size > 0) { 576 ev->handle = entry->handle; 577 hlist_add_head(&ev->node, 578 &eb->buckets[hash_32(entry->handle, 579 eb->lut_size)]); 580 } 581 582 if (entry->relocation_count) 583 list_add_tail(&ev->reloc_link, &eb->relocs); 584 585 /* 586 * SNA is doing fancy tricks with compressing batch buffers, which leads 587 * to negative relocation deltas. Usually that works out ok since the 588 * relocate address is still positive, except when the batch is placed 589 * very low in the GTT. Ensure this doesn't happen. 590 * 591 * Note that actual hangs have only been observed on gen7, but for 592 * paranoia do it everywhere. 593 */ 594 if (is_batch_buffer(eb, i)) { 595 if (entry->relocation_count && 596 !(ev->flags & EXEC_OBJECT_PINNED)) 597 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 598 if (eb->reloc_cache.has_fence) 599 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 600 601 eb->batches[*current_batch] = ev; 602 603 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { 604 drm_dbg(&i915->drm, 605 "Attempting to use self-modifying batch buffer\n"); 606 return -EINVAL; 607 } 608 609 if (range_overflows_t(u64, 610 eb->batch_start_offset, 611 eb->args->batch_len, 612 ev->vma->size)) { 613 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 614 return -EINVAL; 615 } 616 617 if (eb->args->batch_len == 0) 618 eb->batch_len[*current_batch] = ev->vma->size - 619 eb->batch_start_offset; 620 else 621 eb->batch_len[*current_batch] = eb->args->batch_len; 622 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ 623 drm_dbg(&i915->drm, "Invalid batch length\n"); 624 return -EINVAL; 625 } 626 627 ++*current_batch; 628 } 629 630 return 0; 631 } 632 633 static inline int use_cpu_reloc(const struct reloc_cache *cache, 634 const struct drm_i915_gem_object *obj) 635 { 636 if (!i915_gem_object_has_struct_page(obj)) 637 return false; 638 639 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 640 return true; 641 642 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 643 return false; 644 645 return (cache->has_llc || 646 obj->cache_dirty || 647 obj->cache_level != I915_CACHE_NONE); 648 } 649 650 static int eb_reserve_vma(struct i915_execbuffer *eb, 651 struct eb_vma *ev, 652 u64 pin_flags) 653 { 654 struct drm_i915_gem_exec_object2 *entry = ev->exec; 655 struct i915_vma *vma = ev->vma; 656 int err; 657 658 if (drm_mm_node_allocated(&vma->node) && 659 eb_vma_misplaced(entry, vma, ev->flags)) { 660 err = i915_vma_unbind(vma); 661 if (err) 662 return err; 663 } 664 665 err = i915_vma_pin_ww(vma, &eb->ww, 666 entry->pad_to_size, entry->alignment, 667 eb_pin_flags(entry, ev->flags) | pin_flags); 668 if (err) 669 return err; 670 671 if (entry->offset != vma->node.start) { 672 entry->offset = vma->node.start | UPDATE; 673 eb->args->flags |= __EXEC_HAS_RELOC; 674 } 675 676 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 677 err = i915_vma_pin_fence(vma); 678 if (unlikely(err)) { 679 i915_vma_unpin(vma); 680 return err; 681 } 682 683 if (vma->fence) 684 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 685 } 686 687 ev->flags |= __EXEC_OBJECT_HAS_PIN; 688 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 689 690 return 0; 691 } 692 693 static int eb_reserve(struct i915_execbuffer *eb) 694 { 695 const unsigned int count = eb->buffer_count; 696 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK; 697 struct list_head last; 698 struct eb_vma *ev; 699 unsigned int i, pass; 700 int err = 0; 701 702 /* 703 * Attempt to pin all of the buffers into the GTT. 704 * This is done in 3 phases: 705 * 706 * 1a. Unbind all objects that do not match the GTT constraints for 707 * the execbuffer (fenceable, mappable, alignment etc). 708 * 1b. Increment pin count for already bound objects. 709 * 2. Bind new objects. 710 * 3. Decrement pin count. 711 * 712 * This avoid unnecessary unbinding of later objects in order to make 713 * room for the earlier objects *unless* we need to defragment. 714 */ 715 pass = 0; 716 do { 717 list_for_each_entry(ev, &eb->unbound, bind_link) { 718 err = eb_reserve_vma(eb, ev, pin_flags); 719 if (err) 720 break; 721 } 722 if (err != -ENOSPC) 723 return err; 724 725 /* Resort *all* the objects into priority order */ 726 INIT_LIST_HEAD(&eb->unbound); 727 INIT_LIST_HEAD(&last); 728 for (i = 0; i < count; i++) { 729 unsigned int flags; 730 731 ev = &eb->vma[i]; 732 flags = ev->flags; 733 if (flags & EXEC_OBJECT_PINNED && 734 flags & __EXEC_OBJECT_HAS_PIN) 735 continue; 736 737 eb_unreserve_vma(ev); 738 739 if (flags & EXEC_OBJECT_PINNED) 740 /* Pinned must have their slot */ 741 list_add(&ev->bind_link, &eb->unbound); 742 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 743 /* Map require the lowest 256MiB (aperture) */ 744 list_add_tail(&ev->bind_link, &eb->unbound); 745 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 746 /* Prioritise 4GiB region for restricted bo */ 747 list_add(&ev->bind_link, &last); 748 else 749 list_add_tail(&ev->bind_link, &last); 750 } 751 list_splice_tail(&last, &eb->unbound); 752 753 switch (pass++) { 754 case 0: 755 break; 756 757 case 1: 758 /* Too fragmented, unbind everything and retry */ 759 mutex_lock(&eb->context->vm->mutex); 760 err = i915_gem_evict_vm(eb->context->vm); 761 mutex_unlock(&eb->context->vm->mutex); 762 if (err) 763 return err; 764 break; 765 766 default: 767 return -ENOSPC; 768 } 769 770 pin_flags = PIN_USER; 771 } while (1); 772 } 773 774 static int eb_select_context(struct i915_execbuffer *eb) 775 { 776 struct i915_gem_context *ctx; 777 778 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 779 if (unlikely(IS_ERR(ctx))) 780 return PTR_ERR(ctx); 781 782 eb->gem_context = ctx; 783 if (i915_gem_context_has_full_ppgtt(ctx)) 784 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 785 786 return 0; 787 } 788 789 static int __eb_add_lut(struct i915_execbuffer *eb, 790 u32 handle, struct i915_vma *vma) 791 { 792 struct i915_gem_context *ctx = eb->gem_context; 793 struct i915_lut_handle *lut; 794 int err; 795 796 lut = i915_lut_handle_alloc(); 797 if (unlikely(!lut)) 798 return -ENOMEM; 799 800 i915_vma_get(vma); 801 if (!atomic_fetch_inc(&vma->open_count)) 802 i915_vma_reopen(vma); 803 lut->handle = handle; 804 lut->ctx = ctx; 805 806 /* Check that the context hasn't been closed in the meantime */ 807 err = -EINTR; 808 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 809 if (likely(!i915_gem_context_is_closed(ctx))) 810 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 811 else 812 err = -ENOENT; 813 if (err == 0) { /* And nor has this handle */ 814 struct drm_i915_gem_object *obj = vma->obj; 815 816 spin_lock(&obj->lut_lock); 817 if (idr_find(&eb->file->object_idr, handle) == obj) { 818 list_add(&lut->obj_link, &obj->lut_list); 819 } else { 820 radix_tree_delete(&ctx->handles_vma, handle); 821 err = -ENOENT; 822 } 823 spin_unlock(&obj->lut_lock); 824 } 825 mutex_unlock(&ctx->lut_mutex); 826 } 827 if (unlikely(err)) 828 goto err; 829 830 return 0; 831 832 err: 833 i915_vma_close(vma); 834 i915_vma_put(vma); 835 i915_lut_handle_free(lut); 836 return err; 837 } 838 839 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 840 { 841 struct i915_address_space *vm = eb->context->vm; 842 843 do { 844 struct drm_i915_gem_object *obj; 845 struct i915_vma *vma; 846 int err; 847 848 rcu_read_lock(); 849 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 850 if (likely(vma && vma->vm == vm)) 851 vma = i915_vma_tryget(vma); 852 rcu_read_unlock(); 853 if (likely(vma)) 854 return vma; 855 856 obj = i915_gem_object_lookup(eb->file, handle); 857 if (unlikely(!obj)) 858 return ERR_PTR(-ENOENT); 859 860 /* 861 * If the user has opted-in for protected-object tracking, make 862 * sure the object encryption can be used. 863 * We only need to do this when the object is first used with 864 * this context, because the context itself will be banned when 865 * the protected objects become invalid. 866 */ 867 if (i915_gem_context_uses_protected_content(eb->gem_context) && 868 i915_gem_object_is_protected(obj)) { 869 err = intel_pxp_key_check(&vm->gt->pxp, obj, true); 870 if (err) { 871 i915_gem_object_put(obj); 872 return ERR_PTR(err); 873 } 874 } 875 876 vma = i915_vma_instance(obj, vm, NULL); 877 if (IS_ERR(vma)) { 878 i915_gem_object_put(obj); 879 return vma; 880 } 881 882 err = __eb_add_lut(eb, handle, vma); 883 if (likely(!err)) 884 return vma; 885 886 i915_gem_object_put(obj); 887 if (err != -EEXIST) 888 return ERR_PTR(err); 889 } while (1); 890 } 891 892 static int eb_lookup_vmas(struct i915_execbuffer *eb) 893 { 894 unsigned int i, current_batch = 0; 895 int err = 0; 896 897 INIT_LIST_HEAD(&eb->relocs); 898 899 for (i = 0; i < eb->buffer_count; i++) { 900 struct i915_vma *vma; 901 902 vma = eb_lookup_vma(eb, eb->exec[i].handle); 903 if (IS_ERR(vma)) { 904 err = PTR_ERR(vma); 905 goto err; 906 } 907 908 err = eb_validate_vma(eb, &eb->exec[i], vma); 909 if (unlikely(err)) { 910 i915_vma_put(vma); 911 goto err; 912 } 913 914 err = eb_add_vma(eb, ¤t_batch, i, vma); 915 if (err) 916 return err; 917 918 if (i915_gem_object_is_userptr(vma->obj)) { 919 err = i915_gem_object_userptr_submit_init(vma->obj); 920 if (err) { 921 if (i + 1 < eb->buffer_count) { 922 /* 923 * Execbuffer code expects last vma entry to be NULL, 924 * since we already initialized this entry, 925 * set the next value to NULL or we mess up 926 * cleanup handling. 927 */ 928 eb->vma[i + 1].vma = NULL; 929 } 930 931 return err; 932 } 933 934 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 935 eb->args->flags |= __EXEC_USERPTR_USED; 936 } 937 } 938 939 return 0; 940 941 err: 942 eb->vma[i].vma = NULL; 943 return err; 944 } 945 946 static int eb_lock_vmas(struct i915_execbuffer *eb) 947 { 948 unsigned int i; 949 int err; 950 951 for (i = 0; i < eb->buffer_count; i++) { 952 struct eb_vma *ev = &eb->vma[i]; 953 struct i915_vma *vma = ev->vma; 954 955 err = i915_gem_object_lock(vma->obj, &eb->ww); 956 if (err) 957 return err; 958 } 959 960 return 0; 961 } 962 963 static int eb_validate_vmas(struct i915_execbuffer *eb) 964 { 965 unsigned int i; 966 int err; 967 968 INIT_LIST_HEAD(&eb->unbound); 969 970 err = eb_lock_vmas(eb); 971 if (err) 972 return err; 973 974 for (i = 0; i < eb->buffer_count; i++) { 975 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 976 struct eb_vma *ev = &eb->vma[i]; 977 struct i915_vma *vma = ev->vma; 978 979 err = eb_pin_vma(eb, entry, ev); 980 if (err == -EDEADLK) 981 return err; 982 983 if (!err) { 984 if (entry->offset != vma->node.start) { 985 entry->offset = vma->node.start | UPDATE; 986 eb->args->flags |= __EXEC_HAS_RELOC; 987 } 988 } else { 989 eb_unreserve_vma(ev); 990 991 list_add_tail(&ev->bind_link, &eb->unbound); 992 if (drm_mm_node_allocated(&vma->node)) { 993 err = i915_vma_unbind(vma); 994 if (err) 995 return err; 996 } 997 } 998 999 if (!(ev->flags & EXEC_OBJECT_WRITE)) { 1000 err = dma_resv_reserve_shared(vma->obj->base.resv, 1); 1001 if (err) 1002 return err; 1003 } 1004 1005 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 1006 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 1007 } 1008 1009 if (!list_empty(&eb->unbound)) 1010 return eb_reserve(eb); 1011 1012 return 0; 1013 } 1014 1015 static struct eb_vma * 1016 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 1017 { 1018 if (eb->lut_size < 0) { 1019 if (handle >= -eb->lut_size) 1020 return NULL; 1021 return &eb->vma[handle]; 1022 } else { 1023 struct hlist_head *head; 1024 struct eb_vma *ev; 1025 1026 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 1027 hlist_for_each_entry(ev, head, node) { 1028 if (ev->handle == handle) 1029 return ev; 1030 } 1031 return NULL; 1032 } 1033 } 1034 1035 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1036 { 1037 const unsigned int count = eb->buffer_count; 1038 unsigned int i; 1039 1040 for (i = 0; i < count; i++) { 1041 struct eb_vma *ev = &eb->vma[i]; 1042 struct i915_vma *vma = ev->vma; 1043 1044 if (!vma) 1045 break; 1046 1047 eb_unreserve_vma(ev); 1048 1049 if (final) 1050 i915_vma_put(vma); 1051 } 1052 1053 eb_capture_release(eb); 1054 eb_unpin_engine(eb); 1055 } 1056 1057 static void eb_destroy(const struct i915_execbuffer *eb) 1058 { 1059 if (eb->lut_size > 0) 1060 kfree(eb->buckets); 1061 } 1062 1063 static inline u64 1064 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1065 const struct i915_vma *target) 1066 { 1067 return gen8_canonical_addr((int)reloc->delta + target->node.start); 1068 } 1069 1070 static void reloc_cache_init(struct reloc_cache *cache, 1071 struct drm_i915_private *i915) 1072 { 1073 cache->page = -1; 1074 cache->vaddr = 0; 1075 /* Must be a variable in the struct to allow GCC to unroll. */ 1076 cache->graphics_ver = GRAPHICS_VER(i915); 1077 cache->has_llc = HAS_LLC(i915); 1078 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1079 cache->has_fence = cache->graphics_ver < 4; 1080 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1081 cache->node.flags = 0; 1082 } 1083 1084 static inline void *unmask_page(unsigned long p) 1085 { 1086 return (void *)(uintptr_t)(p & PAGE_MASK); 1087 } 1088 1089 static inline unsigned int unmask_flags(unsigned long p) 1090 { 1091 return p & ~PAGE_MASK; 1092 } 1093 1094 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1095 1096 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1097 { 1098 struct drm_i915_private *i915 = 1099 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1100 return &i915->ggtt; 1101 } 1102 1103 static void reloc_cache_unmap(struct reloc_cache *cache) 1104 { 1105 void *vaddr; 1106 1107 if (!cache->vaddr) 1108 return; 1109 1110 vaddr = unmask_page(cache->vaddr); 1111 if (cache->vaddr & KMAP) 1112 kunmap_atomic(vaddr); 1113 else 1114 io_mapping_unmap_atomic((void __iomem *)vaddr); 1115 } 1116 1117 static void reloc_cache_remap(struct reloc_cache *cache, 1118 struct drm_i915_gem_object *obj) 1119 { 1120 void *vaddr; 1121 1122 if (!cache->vaddr) 1123 return; 1124 1125 if (cache->vaddr & KMAP) { 1126 struct page *page = i915_gem_object_get_page(obj, cache->page); 1127 1128 vaddr = kmap_atomic(page); 1129 cache->vaddr = unmask_flags(cache->vaddr) | 1130 (unsigned long)vaddr; 1131 } else { 1132 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1133 unsigned long offset; 1134 1135 offset = cache->node.start; 1136 if (!drm_mm_node_allocated(&cache->node)) 1137 offset += cache->page << PAGE_SHIFT; 1138 1139 cache->vaddr = (unsigned long) 1140 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1141 } 1142 } 1143 1144 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1145 { 1146 void *vaddr; 1147 1148 if (!cache->vaddr) 1149 return; 1150 1151 vaddr = unmask_page(cache->vaddr); 1152 if (cache->vaddr & KMAP) { 1153 struct drm_i915_gem_object *obj = 1154 (struct drm_i915_gem_object *)cache->node.mm; 1155 if (cache->vaddr & CLFLUSH_AFTER) 1156 mb(); 1157 1158 kunmap_atomic(vaddr); 1159 i915_gem_object_finish_access(obj); 1160 } else { 1161 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1162 1163 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1164 io_mapping_unmap_atomic((void __iomem *)vaddr); 1165 1166 if (drm_mm_node_allocated(&cache->node)) { 1167 ggtt->vm.clear_range(&ggtt->vm, 1168 cache->node.start, 1169 cache->node.size); 1170 mutex_lock(&ggtt->vm.mutex); 1171 drm_mm_remove_node(&cache->node); 1172 mutex_unlock(&ggtt->vm.mutex); 1173 } else { 1174 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1175 } 1176 } 1177 1178 cache->vaddr = 0; 1179 cache->page = -1; 1180 } 1181 1182 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1183 struct reloc_cache *cache, 1184 unsigned long pageno) 1185 { 1186 void *vaddr; 1187 struct page *page; 1188 1189 if (cache->vaddr) { 1190 kunmap_atomic(unmask_page(cache->vaddr)); 1191 } else { 1192 unsigned int flushes; 1193 int err; 1194 1195 err = i915_gem_object_prepare_write(obj, &flushes); 1196 if (err) 1197 return ERR_PTR(err); 1198 1199 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1200 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1201 1202 cache->vaddr = flushes | KMAP; 1203 cache->node.mm = (void *)obj; 1204 if (flushes) 1205 mb(); 1206 } 1207 1208 page = i915_gem_object_get_page(obj, pageno); 1209 if (!obj->mm.dirty) 1210 set_page_dirty(page); 1211 1212 vaddr = kmap_atomic(page); 1213 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1214 cache->page = pageno; 1215 1216 return vaddr; 1217 } 1218 1219 static void *reloc_iomap(struct drm_i915_gem_object *obj, 1220 struct i915_execbuffer *eb, 1221 unsigned long page) 1222 { 1223 struct reloc_cache *cache = &eb->reloc_cache; 1224 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1225 unsigned long offset; 1226 void *vaddr; 1227 1228 if (cache->vaddr) { 1229 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1230 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1231 } else { 1232 struct i915_vma *vma; 1233 int err; 1234 1235 if (i915_gem_object_is_tiled(obj)) 1236 return ERR_PTR(-EINVAL); 1237 1238 if (use_cpu_reloc(cache, obj)) 1239 return NULL; 1240 1241 err = i915_gem_object_set_to_gtt_domain(obj, true); 1242 if (err) 1243 return ERR_PTR(err); 1244 1245 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1246 PIN_MAPPABLE | 1247 PIN_NONBLOCK /* NOWARN */ | 1248 PIN_NOEVICT); 1249 if (vma == ERR_PTR(-EDEADLK)) 1250 return vma; 1251 1252 if (IS_ERR(vma)) { 1253 memset(&cache->node, 0, sizeof(cache->node)); 1254 mutex_lock(&ggtt->vm.mutex); 1255 err = drm_mm_insert_node_in_range 1256 (&ggtt->vm.mm, &cache->node, 1257 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1258 0, ggtt->mappable_end, 1259 DRM_MM_INSERT_LOW); 1260 mutex_unlock(&ggtt->vm.mutex); 1261 if (err) /* no inactive aperture space, use cpu reloc */ 1262 return NULL; 1263 } else { 1264 cache->node.start = vma->node.start; 1265 cache->node.mm = (void *)vma; 1266 } 1267 } 1268 1269 offset = cache->node.start; 1270 if (drm_mm_node_allocated(&cache->node)) { 1271 ggtt->vm.insert_page(&ggtt->vm, 1272 i915_gem_object_get_dma_address(obj, page), 1273 offset, I915_CACHE_NONE, 0); 1274 } else { 1275 offset += page << PAGE_SHIFT; 1276 } 1277 1278 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1279 offset); 1280 cache->page = page; 1281 cache->vaddr = (unsigned long)vaddr; 1282 1283 return vaddr; 1284 } 1285 1286 static void *reloc_vaddr(struct drm_i915_gem_object *obj, 1287 struct i915_execbuffer *eb, 1288 unsigned long page) 1289 { 1290 struct reloc_cache *cache = &eb->reloc_cache; 1291 void *vaddr; 1292 1293 if (cache->page == page) { 1294 vaddr = unmask_page(cache->vaddr); 1295 } else { 1296 vaddr = NULL; 1297 if ((cache->vaddr & KMAP) == 0) 1298 vaddr = reloc_iomap(obj, eb, page); 1299 if (!vaddr) 1300 vaddr = reloc_kmap(obj, cache, page); 1301 } 1302 1303 return vaddr; 1304 } 1305 1306 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1307 { 1308 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1309 if (flushes & CLFLUSH_BEFORE) { 1310 clflushopt(addr); 1311 mb(); 1312 } 1313 1314 *addr = value; 1315 1316 /* 1317 * Writes to the same cacheline are serialised by the CPU 1318 * (including clflush). On the write path, we only require 1319 * that it hits memory in an orderly fashion and place 1320 * mb barriers at the start and end of the relocation phase 1321 * to ensure ordering of clflush wrt to the system. 1322 */ 1323 if (flushes & CLFLUSH_AFTER) 1324 clflushopt(addr); 1325 } else 1326 *addr = value; 1327 } 1328 1329 static u64 1330 relocate_entry(struct i915_vma *vma, 1331 const struct drm_i915_gem_relocation_entry *reloc, 1332 struct i915_execbuffer *eb, 1333 const struct i915_vma *target) 1334 { 1335 u64 target_addr = relocation_target(reloc, target); 1336 u64 offset = reloc->offset; 1337 bool wide = eb->reloc_cache.use_64bit_reloc; 1338 void *vaddr; 1339 1340 repeat: 1341 vaddr = reloc_vaddr(vma->obj, eb, 1342 offset >> PAGE_SHIFT); 1343 if (IS_ERR(vaddr)) 1344 return PTR_ERR(vaddr); 1345 1346 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1347 clflush_write32(vaddr + offset_in_page(offset), 1348 lower_32_bits(target_addr), 1349 eb->reloc_cache.vaddr); 1350 1351 if (wide) { 1352 offset += sizeof(u32); 1353 target_addr >>= 32; 1354 wide = false; 1355 goto repeat; 1356 } 1357 1358 return target->node.start | UPDATE; 1359 } 1360 1361 static u64 1362 eb_relocate_entry(struct i915_execbuffer *eb, 1363 struct eb_vma *ev, 1364 const struct drm_i915_gem_relocation_entry *reloc) 1365 { 1366 struct drm_i915_private *i915 = eb->i915; 1367 struct eb_vma *target; 1368 int err; 1369 1370 /* we've already hold a reference to all valid objects */ 1371 target = eb_get_vma(eb, reloc->target_handle); 1372 if (unlikely(!target)) 1373 return -ENOENT; 1374 1375 /* Validate that the target is in a valid r/w GPU domain */ 1376 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1377 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1378 "target %d offset %d " 1379 "read %08x write %08x", 1380 reloc->target_handle, 1381 (int) reloc->offset, 1382 reloc->read_domains, 1383 reloc->write_domain); 1384 return -EINVAL; 1385 } 1386 if (unlikely((reloc->write_domain | reloc->read_domains) 1387 & ~I915_GEM_GPU_DOMAINS)) { 1388 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1389 "target %d offset %d " 1390 "read %08x write %08x", 1391 reloc->target_handle, 1392 (int) reloc->offset, 1393 reloc->read_domains, 1394 reloc->write_domain); 1395 return -EINVAL; 1396 } 1397 1398 if (reloc->write_domain) { 1399 target->flags |= EXEC_OBJECT_WRITE; 1400 1401 /* 1402 * Sandybridge PPGTT errata: We need a global gtt mapping 1403 * for MI and pipe_control writes because the gpu doesn't 1404 * properly redirect them through the ppgtt for non_secure 1405 * batchbuffers. 1406 */ 1407 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1408 GRAPHICS_VER(eb->i915) == 6 && 1409 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1410 struct i915_vma *vma = target->vma; 1411 1412 reloc_cache_unmap(&eb->reloc_cache); 1413 mutex_lock(&vma->vm->mutex); 1414 err = i915_vma_bind(target->vma, 1415 target->vma->obj->cache_level, 1416 PIN_GLOBAL, NULL); 1417 mutex_unlock(&vma->vm->mutex); 1418 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1419 if (err) 1420 return err; 1421 } 1422 } 1423 1424 /* 1425 * If the relocation already has the right value in it, no 1426 * more work needs to be done. 1427 */ 1428 if (!DBG_FORCE_RELOC && 1429 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1430 return 0; 1431 1432 /* Check that the relocation address is valid... */ 1433 if (unlikely(reloc->offset > 1434 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1435 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1436 "target %d offset %d size %d.\n", 1437 reloc->target_handle, 1438 (int)reloc->offset, 1439 (int)ev->vma->size); 1440 return -EINVAL; 1441 } 1442 if (unlikely(reloc->offset & 3)) { 1443 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1444 "target %d offset %d.\n", 1445 reloc->target_handle, 1446 (int)reloc->offset); 1447 return -EINVAL; 1448 } 1449 1450 /* 1451 * If we write into the object, we need to force the synchronisation 1452 * barrier, either with an asynchronous clflush or if we executed the 1453 * patching using the GPU (though that should be serialised by the 1454 * timeline). To be completely sure, and since we are required to 1455 * do relocations we are already stalling, disable the user's opt 1456 * out of our synchronisation. 1457 */ 1458 ev->flags &= ~EXEC_OBJECT_ASYNC; 1459 1460 /* and update the user's relocation entry */ 1461 return relocate_entry(ev->vma, reloc, eb, target->vma); 1462 } 1463 1464 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1465 { 1466 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1467 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1468 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1469 struct drm_i915_gem_relocation_entry __user *urelocs = 1470 u64_to_user_ptr(entry->relocs_ptr); 1471 unsigned long remain = entry->relocation_count; 1472 1473 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1474 return -EINVAL; 1475 1476 /* 1477 * We must check that the entire relocation array is safe 1478 * to read. However, if the array is not writable the user loses 1479 * the updated relocation values. 1480 */ 1481 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1482 return -EFAULT; 1483 1484 do { 1485 struct drm_i915_gem_relocation_entry *r = stack; 1486 unsigned int count = 1487 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1488 unsigned int copied; 1489 1490 /* 1491 * This is the fast path and we cannot handle a pagefault 1492 * whilst holding the struct mutex lest the user pass in the 1493 * relocations contained within a mmaped bo. For in such a case 1494 * we, the page fault handler would call i915_gem_fault() and 1495 * we would try to acquire the struct mutex again. Obviously 1496 * this is bad and so lockdep complains vehemently. 1497 */ 1498 pagefault_disable(); 1499 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1500 pagefault_enable(); 1501 if (unlikely(copied)) { 1502 remain = -EFAULT; 1503 goto out; 1504 } 1505 1506 remain -= count; 1507 do { 1508 u64 offset = eb_relocate_entry(eb, ev, r); 1509 1510 if (likely(offset == 0)) { 1511 } else if ((s64)offset < 0) { 1512 remain = (int)offset; 1513 goto out; 1514 } else { 1515 /* 1516 * Note that reporting an error now 1517 * leaves everything in an inconsistent 1518 * state as we have *already* changed 1519 * the relocation value inside the 1520 * object. As we have not changed the 1521 * reloc.presumed_offset or will not 1522 * change the execobject.offset, on the 1523 * call we may not rewrite the value 1524 * inside the object, leaving it 1525 * dangling and causing a GPU hang. Unless 1526 * userspace dynamically rebuilds the 1527 * relocations on each execbuf rather than 1528 * presume a static tree. 1529 * 1530 * We did previously check if the relocations 1531 * were writable (access_ok), an error now 1532 * would be a strange race with mprotect, 1533 * having already demonstrated that we 1534 * can read from this userspace address. 1535 */ 1536 offset = gen8_canonical_addr(offset & ~UPDATE); 1537 __put_user(offset, 1538 &urelocs[r - stack].presumed_offset); 1539 } 1540 } while (r++, --count); 1541 urelocs += ARRAY_SIZE(stack); 1542 } while (remain); 1543 out: 1544 reloc_cache_reset(&eb->reloc_cache, eb); 1545 return remain; 1546 } 1547 1548 static int 1549 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1550 { 1551 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1552 struct drm_i915_gem_relocation_entry *relocs = 1553 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1554 unsigned int i; 1555 int err; 1556 1557 for (i = 0; i < entry->relocation_count; i++) { 1558 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1559 1560 if ((s64)offset < 0) { 1561 err = (int)offset; 1562 goto err; 1563 } 1564 } 1565 err = 0; 1566 err: 1567 reloc_cache_reset(&eb->reloc_cache, eb); 1568 return err; 1569 } 1570 1571 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1572 { 1573 const char __user *addr, *end; 1574 unsigned long size; 1575 char __maybe_unused c; 1576 1577 size = entry->relocation_count; 1578 if (size == 0) 1579 return 0; 1580 1581 if (size > N_RELOC(ULONG_MAX)) 1582 return -EINVAL; 1583 1584 addr = u64_to_user_ptr(entry->relocs_ptr); 1585 size *= sizeof(struct drm_i915_gem_relocation_entry); 1586 if (!access_ok(addr, size)) 1587 return -EFAULT; 1588 1589 end = addr + size; 1590 for (; addr < end; addr += PAGE_SIZE) { 1591 int err = __get_user(c, addr); 1592 if (err) 1593 return err; 1594 } 1595 return __get_user(c, end - 1); 1596 } 1597 1598 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1599 { 1600 struct drm_i915_gem_relocation_entry *relocs; 1601 const unsigned int count = eb->buffer_count; 1602 unsigned int i; 1603 int err; 1604 1605 for (i = 0; i < count; i++) { 1606 const unsigned int nreloc = eb->exec[i].relocation_count; 1607 struct drm_i915_gem_relocation_entry __user *urelocs; 1608 unsigned long size; 1609 unsigned long copied; 1610 1611 if (nreloc == 0) 1612 continue; 1613 1614 err = check_relocations(&eb->exec[i]); 1615 if (err) 1616 goto err; 1617 1618 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1619 size = nreloc * sizeof(*relocs); 1620 1621 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1622 if (!relocs) { 1623 err = -ENOMEM; 1624 goto err; 1625 } 1626 1627 /* copy_from_user is limited to < 4GiB */ 1628 copied = 0; 1629 do { 1630 unsigned int len = 1631 min_t(u64, BIT_ULL(31), size - copied); 1632 1633 if (__copy_from_user((char *)relocs + copied, 1634 (char __user *)urelocs + copied, 1635 len)) 1636 goto end; 1637 1638 copied += len; 1639 } while (copied < size); 1640 1641 /* 1642 * As we do not update the known relocation offsets after 1643 * relocating (due to the complexities in lock handling), 1644 * we need to mark them as invalid now so that we force the 1645 * relocation processing next time. Just in case the target 1646 * object is evicted and then rebound into its old 1647 * presumed_offset before the next execbuffer - if that 1648 * happened we would make the mistake of assuming that the 1649 * relocations were valid. 1650 */ 1651 if (!user_access_begin(urelocs, size)) 1652 goto end; 1653 1654 for (copied = 0; copied < nreloc; copied++) 1655 unsafe_put_user(-1, 1656 &urelocs[copied].presumed_offset, 1657 end_user); 1658 user_access_end(); 1659 1660 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1661 } 1662 1663 return 0; 1664 1665 end_user: 1666 user_access_end(); 1667 end: 1668 kvfree(relocs); 1669 err = -EFAULT; 1670 err: 1671 while (i--) { 1672 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1673 if (eb->exec[i].relocation_count) 1674 kvfree(relocs); 1675 } 1676 return err; 1677 } 1678 1679 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1680 { 1681 const unsigned int count = eb->buffer_count; 1682 unsigned int i; 1683 1684 for (i = 0; i < count; i++) { 1685 int err; 1686 1687 err = check_relocations(&eb->exec[i]); 1688 if (err) 1689 return err; 1690 } 1691 1692 return 0; 1693 } 1694 1695 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1696 { 1697 const unsigned int count = eb->buffer_count; 1698 unsigned int i; 1699 int ret; 1700 1701 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1702 return 0; 1703 1704 for (i = 0; i < count; i++) { 1705 struct eb_vma *ev = &eb->vma[i]; 1706 1707 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1708 continue; 1709 1710 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1711 if (ret) 1712 return ret; 1713 1714 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1715 } 1716 1717 return 0; 1718 } 1719 1720 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) 1721 { 1722 bool have_copy = false; 1723 struct eb_vma *ev; 1724 int err = 0; 1725 1726 repeat: 1727 if (signal_pending(current)) { 1728 err = -ERESTARTSYS; 1729 goto out; 1730 } 1731 1732 /* We may process another execbuffer during the unlock... */ 1733 eb_release_vmas(eb, false); 1734 i915_gem_ww_ctx_fini(&eb->ww); 1735 1736 /* 1737 * We take 3 passes through the slowpatch. 1738 * 1739 * 1 - we try to just prefault all the user relocation entries and 1740 * then attempt to reuse the atomic pagefault disabled fast path again. 1741 * 1742 * 2 - we copy the user entries to a local buffer here outside of the 1743 * local and allow ourselves to wait upon any rendering before 1744 * relocations 1745 * 1746 * 3 - we already have a local copy of the relocation entries, but 1747 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1748 */ 1749 if (!err) { 1750 err = eb_prefault_relocations(eb); 1751 } else if (!have_copy) { 1752 err = eb_copy_relocations(eb); 1753 have_copy = err == 0; 1754 } else { 1755 cond_resched(); 1756 err = 0; 1757 } 1758 1759 if (!err) 1760 err = eb_reinit_userptr(eb); 1761 1762 i915_gem_ww_ctx_init(&eb->ww, true); 1763 if (err) 1764 goto out; 1765 1766 /* reacquire the objects */ 1767 repeat_validate: 1768 err = eb_pin_engine(eb, false); 1769 if (err) 1770 goto err; 1771 1772 err = eb_validate_vmas(eb); 1773 if (err) 1774 goto err; 1775 1776 GEM_BUG_ON(!eb->batches[0]); 1777 1778 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1779 if (!have_copy) { 1780 err = eb_relocate_vma(eb, ev); 1781 if (err) 1782 break; 1783 } else { 1784 err = eb_relocate_vma_slow(eb, ev); 1785 if (err) 1786 break; 1787 } 1788 } 1789 1790 if (err == -EDEADLK) 1791 goto err; 1792 1793 if (err && !have_copy) 1794 goto repeat; 1795 1796 if (err) 1797 goto err; 1798 1799 /* as last step, parse the command buffer */ 1800 err = eb_parse(eb); 1801 if (err) 1802 goto err; 1803 1804 /* 1805 * Leave the user relocations as are, this is the painfully slow path, 1806 * and we want to avoid the complication of dropping the lock whilst 1807 * having buffers reserved in the aperture and so causing spurious 1808 * ENOSPC for random operations. 1809 */ 1810 1811 err: 1812 if (err == -EDEADLK) { 1813 eb_release_vmas(eb, false); 1814 err = i915_gem_ww_ctx_backoff(&eb->ww); 1815 if (!err) 1816 goto repeat_validate; 1817 } 1818 1819 if (err == -EAGAIN) 1820 goto repeat; 1821 1822 out: 1823 if (have_copy) { 1824 const unsigned int count = eb->buffer_count; 1825 unsigned int i; 1826 1827 for (i = 0; i < count; i++) { 1828 const struct drm_i915_gem_exec_object2 *entry = 1829 &eb->exec[i]; 1830 struct drm_i915_gem_relocation_entry *relocs; 1831 1832 if (!entry->relocation_count) 1833 continue; 1834 1835 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1836 kvfree(relocs); 1837 } 1838 } 1839 1840 return err; 1841 } 1842 1843 static int eb_relocate_parse(struct i915_execbuffer *eb) 1844 { 1845 int err; 1846 bool throttle = true; 1847 1848 retry: 1849 err = eb_pin_engine(eb, throttle); 1850 if (err) { 1851 if (err != -EDEADLK) 1852 return err; 1853 1854 goto err; 1855 } 1856 1857 /* only throttle once, even if we didn't need to throttle */ 1858 throttle = false; 1859 1860 err = eb_validate_vmas(eb); 1861 if (err == -EAGAIN) 1862 goto slow; 1863 else if (err) 1864 goto err; 1865 1866 /* The objects are in their final locations, apply the relocations. */ 1867 if (eb->args->flags & __EXEC_HAS_RELOC) { 1868 struct eb_vma *ev; 1869 1870 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1871 err = eb_relocate_vma(eb, ev); 1872 if (err) 1873 break; 1874 } 1875 1876 if (err == -EDEADLK) 1877 goto err; 1878 else if (err) 1879 goto slow; 1880 } 1881 1882 if (!err) 1883 err = eb_parse(eb); 1884 1885 err: 1886 if (err == -EDEADLK) { 1887 eb_release_vmas(eb, false); 1888 err = i915_gem_ww_ctx_backoff(&eb->ww); 1889 if (!err) 1890 goto retry; 1891 } 1892 1893 return err; 1894 1895 slow: 1896 err = eb_relocate_parse_slow(eb); 1897 if (err) 1898 /* 1899 * If the user expects the execobject.offset and 1900 * reloc.presumed_offset to be an exact match, 1901 * as for using NO_RELOC, then we cannot update 1902 * the execobject.offset until we have completed 1903 * relocation. 1904 */ 1905 eb->args->flags &= ~__EXEC_HAS_RELOC; 1906 1907 return err; 1908 } 1909 1910 /* 1911 * Using two helper loops for the order of which requests / batches are created 1912 * and added the to backend. Requests are created in order from the parent to 1913 * the last child. Requests are added in the reverse order, from the last child 1914 * to parent. This is done for locking reasons as the timeline lock is acquired 1915 * during request creation and released when the request is added to the 1916 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be 1917 * the ordering. 1918 */ 1919 #define for_each_batch_create_order(_eb, _i) \ 1920 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) 1921 #define for_each_batch_add_order(_eb, _i) \ 1922 BUILD_BUG_ON(!typecheck(int, _i)); \ 1923 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) 1924 1925 static struct i915_request * 1926 eb_find_first_request_added(struct i915_execbuffer *eb) 1927 { 1928 int i; 1929 1930 for_each_batch_add_order(eb, i) 1931 if (eb->requests[i]) 1932 return eb->requests[i]; 1933 1934 GEM_BUG_ON("Request not found"); 1935 1936 return NULL; 1937 } 1938 1939 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 1940 1941 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ 1942 static void eb_capture_stage(struct i915_execbuffer *eb) 1943 { 1944 const unsigned int count = eb->buffer_count; 1945 unsigned int i = count, j; 1946 struct i915_vma_snapshot *vsnap; 1947 1948 while (i--) { 1949 struct eb_vma *ev = &eb->vma[i]; 1950 struct i915_vma *vma = ev->vma; 1951 unsigned int flags = ev->flags; 1952 1953 if (!(flags & EXEC_OBJECT_CAPTURE)) 1954 continue; 1955 1956 vsnap = i915_vma_snapshot_alloc(GFP_KERNEL); 1957 if (!vsnap) 1958 continue; 1959 1960 i915_vma_snapshot_init(vsnap, vma, "user"); 1961 for_each_batch_create_order(eb, j) { 1962 struct i915_capture_list *capture; 1963 1964 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1965 if (!capture) 1966 continue; 1967 1968 capture->next = eb->capture_lists[j]; 1969 capture->vma_snapshot = i915_vma_snapshot_get(vsnap); 1970 eb->capture_lists[j] = capture; 1971 } 1972 i915_vma_snapshot_put(vsnap); 1973 } 1974 } 1975 1976 /* Commit once we're in the critical path */ 1977 static void eb_capture_commit(struct i915_execbuffer *eb) 1978 { 1979 unsigned int j; 1980 1981 for_each_batch_create_order(eb, j) { 1982 struct i915_request *rq = eb->requests[j]; 1983 1984 if (!rq) 1985 break; 1986 1987 rq->capture_list = eb->capture_lists[j]; 1988 eb->capture_lists[j] = NULL; 1989 } 1990 } 1991 1992 /* 1993 * Release anything that didn't get committed due to errors. 1994 * The capture_list will otherwise be freed at request retire. 1995 */ 1996 static void eb_capture_release(struct i915_execbuffer *eb) 1997 { 1998 unsigned int j; 1999 2000 for_each_batch_create_order(eb, j) { 2001 if (eb->capture_lists[j]) { 2002 i915_request_free_capture_list(eb->capture_lists[j]); 2003 eb->capture_lists[j] = NULL; 2004 } 2005 } 2006 } 2007 2008 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2009 { 2010 memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); 2011 } 2012 2013 #else 2014 2015 static void eb_capture_stage(struct i915_execbuffer *eb) 2016 { 2017 } 2018 2019 static void eb_capture_commit(struct i915_execbuffer *eb) 2020 { 2021 } 2022 2023 static void eb_capture_release(struct i915_execbuffer *eb) 2024 { 2025 } 2026 2027 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2028 { 2029 } 2030 2031 #endif 2032 2033 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2034 { 2035 const unsigned int count = eb->buffer_count; 2036 unsigned int i = count; 2037 int err = 0, j; 2038 2039 while (i--) { 2040 struct eb_vma *ev = &eb->vma[i]; 2041 struct i915_vma *vma = ev->vma; 2042 unsigned int flags = ev->flags; 2043 struct drm_i915_gem_object *obj = vma->obj; 2044 2045 assert_vma_held(vma); 2046 2047 /* 2048 * If the GPU is not _reading_ through the CPU cache, we need 2049 * to make sure that any writes (both previous GPU writes from 2050 * before a change in snooping levels and normal CPU writes) 2051 * caught in that cache are flushed to main memory. 2052 * 2053 * We want to say 2054 * obj->cache_dirty && 2055 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2056 * but gcc's optimiser doesn't handle that as well and emits 2057 * two jumps instead of one. Maybe one day... 2058 * 2059 * FIXME: There is also sync flushing in set_pages(), which 2060 * serves a different purpose(some of the time at least). 2061 * 2062 * We should consider: 2063 * 2064 * 1. Rip out the async flush code. 2065 * 2066 * 2. Or make the sync flushing use the async clflush path 2067 * using mandatory fences underneath. Currently the below 2068 * async flush happens after we bind the object. 2069 */ 2070 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2071 if (i915_gem_clflush_object(obj, 0)) 2072 flags &= ~EXEC_OBJECT_ASYNC; 2073 } 2074 2075 /* We only need to await on the first request */ 2076 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2077 err = i915_request_await_object 2078 (eb_find_first_request_added(eb), obj, 2079 flags & EXEC_OBJECT_WRITE); 2080 } 2081 2082 for_each_batch_add_order(eb, j) { 2083 if (err) 2084 break; 2085 if (!eb->requests[j]) 2086 continue; 2087 2088 err = _i915_vma_move_to_active(vma, eb->requests[j], 2089 j ? NULL : 2090 eb->composite_fence ? 2091 eb->composite_fence : 2092 &eb->requests[j]->fence, 2093 flags | __EXEC_OBJECT_NO_RESERVE); 2094 } 2095 } 2096 2097 #ifdef CONFIG_MMU_NOTIFIER 2098 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2099 read_lock(&eb->i915->mm.notifier_lock); 2100 2101 /* 2102 * count is always at least 1, otherwise __EXEC_USERPTR_USED 2103 * could not have been set 2104 */ 2105 for (i = 0; i < count; i++) { 2106 struct eb_vma *ev = &eb->vma[i]; 2107 struct drm_i915_gem_object *obj = ev->vma->obj; 2108 2109 if (!i915_gem_object_is_userptr(obj)) 2110 continue; 2111 2112 err = i915_gem_object_userptr_submit_done(obj); 2113 if (err) 2114 break; 2115 } 2116 2117 read_unlock(&eb->i915->mm.notifier_lock); 2118 } 2119 #endif 2120 2121 if (unlikely(err)) 2122 goto err_skip; 2123 2124 /* Unconditionally flush any chipset caches (for streaming writes). */ 2125 intel_gt_chipset_flush(eb->gt); 2126 eb_capture_commit(eb); 2127 2128 return 0; 2129 2130 err_skip: 2131 for_each_batch_create_order(eb, j) { 2132 if (!eb->requests[j]) 2133 break; 2134 2135 i915_request_set_error_once(eb->requests[j], err); 2136 } 2137 return err; 2138 } 2139 2140 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 2141 { 2142 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2143 return -EINVAL; 2144 2145 /* Kernel clipping was a DRI1 misfeature */ 2146 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2147 I915_EXEC_USE_EXTENSIONS))) { 2148 if (exec->num_cliprects || exec->cliprects_ptr) 2149 return -EINVAL; 2150 } 2151 2152 if (exec->DR4 == 0xffffffff) { 2153 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 2154 exec->DR4 = 0; 2155 } 2156 if (exec->DR1 || exec->DR4) 2157 return -EINVAL; 2158 2159 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2160 return -EINVAL; 2161 2162 return 0; 2163 } 2164 2165 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2166 { 2167 u32 *cs; 2168 int i; 2169 2170 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) { 2171 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2172 return -EINVAL; 2173 } 2174 2175 cs = intel_ring_begin(rq, 4 * 2 + 2); 2176 if (IS_ERR(cs)) 2177 return PTR_ERR(cs); 2178 2179 *cs++ = MI_LOAD_REGISTER_IMM(4); 2180 for (i = 0; i < 4; i++) { 2181 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2182 *cs++ = 0; 2183 } 2184 *cs++ = MI_NOOP; 2185 intel_ring_advance(rq, cs); 2186 2187 return 0; 2188 } 2189 2190 static struct i915_vma * 2191 shadow_batch_pin(struct i915_execbuffer *eb, 2192 struct drm_i915_gem_object *obj, 2193 struct i915_address_space *vm, 2194 unsigned int flags) 2195 { 2196 struct i915_vma *vma; 2197 int err; 2198 2199 vma = i915_vma_instance(obj, vm, NULL); 2200 if (IS_ERR(vma)) 2201 return vma; 2202 2203 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags); 2204 if (err) 2205 return ERR_PTR(err); 2206 2207 return vma; 2208 } 2209 2210 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2211 { 2212 /* 2213 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2214 * batch" bit. Hence we need to pin secure batches into the global gtt. 2215 * hsw should have this fixed, but bdw mucks it up again. */ 2216 if (eb->batch_flags & I915_DISPATCH_SECURE) 2217 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0); 2218 2219 return NULL; 2220 } 2221 2222 static int eb_parse(struct i915_execbuffer *eb) 2223 { 2224 struct drm_i915_private *i915 = eb->i915; 2225 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2226 struct i915_vma *shadow, *trampoline, *batch; 2227 unsigned long len; 2228 int err; 2229 2230 if (!eb_use_cmdparser(eb)) { 2231 batch = eb_dispatch_secure(eb, eb->batches[0]->vma); 2232 if (IS_ERR(batch)) 2233 return PTR_ERR(batch); 2234 2235 goto secure_batch; 2236 } 2237 2238 if (intel_context_is_parallel(eb->context)) 2239 return -EINVAL; 2240 2241 len = eb->batch_len[0]; 2242 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2243 /* 2244 * ppGTT backed shadow buffers must be mapped RO, to prevent 2245 * post-scan tampering 2246 */ 2247 if (!eb->context->vm->has_read_only) { 2248 drm_dbg(&i915->drm, 2249 "Cannot prevent post-scan tampering without RO capable vm\n"); 2250 return -EINVAL; 2251 } 2252 } else { 2253 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2254 } 2255 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ 2256 return -EINVAL; 2257 2258 if (!pool) { 2259 pool = intel_gt_get_buffer_pool(eb->gt, len, 2260 I915_MAP_WB); 2261 if (IS_ERR(pool)) 2262 return PTR_ERR(pool); 2263 eb->batch_pool = pool; 2264 } 2265 2266 err = i915_gem_object_lock(pool->obj, &eb->ww); 2267 if (err) 2268 goto err; 2269 2270 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2271 if (IS_ERR(shadow)) { 2272 err = PTR_ERR(shadow); 2273 goto err; 2274 } 2275 intel_gt_buffer_pool_mark_used(pool); 2276 i915_gem_object_set_readonly(shadow->obj); 2277 shadow->private = pool; 2278 2279 trampoline = NULL; 2280 if (CMDPARSER_USES_GGTT(eb->i915)) { 2281 trampoline = shadow; 2282 2283 shadow = shadow_batch_pin(eb, pool->obj, 2284 &eb->gt->ggtt->vm, 2285 PIN_GLOBAL); 2286 if (IS_ERR(shadow)) { 2287 err = PTR_ERR(shadow); 2288 shadow = trampoline; 2289 goto err_shadow; 2290 } 2291 shadow->private = pool; 2292 2293 eb->batch_flags |= I915_DISPATCH_SECURE; 2294 } 2295 2296 batch = eb_dispatch_secure(eb, shadow); 2297 if (IS_ERR(batch)) { 2298 err = PTR_ERR(batch); 2299 goto err_trampoline; 2300 } 2301 2302 err = dma_resv_reserve_shared(shadow->obj->base.resv, 1); 2303 if (err) 2304 goto err_trampoline; 2305 2306 err = intel_engine_cmd_parser(eb->context->engine, 2307 eb->batches[0]->vma, 2308 eb->batch_start_offset, 2309 eb->batch_len[0], 2310 shadow, trampoline); 2311 if (err) 2312 goto err_unpin_batch; 2313 2314 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2315 eb->batches[0]->vma = i915_vma_get(shadow); 2316 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2317 2318 eb->trampoline = trampoline; 2319 eb->batch_start_offset = 0; 2320 2321 secure_batch: 2322 if (batch) { 2323 if (intel_context_is_parallel(eb->context)) 2324 return -EINVAL; 2325 2326 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2327 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2328 eb->batches[0]->vma = i915_vma_get(batch); 2329 } 2330 return 0; 2331 2332 err_unpin_batch: 2333 if (batch) 2334 i915_vma_unpin(batch); 2335 err_trampoline: 2336 if (trampoline) 2337 i915_vma_unpin(trampoline); 2338 err_shadow: 2339 i915_vma_unpin(shadow); 2340 err: 2341 return err; 2342 } 2343 2344 static int eb_request_submit(struct i915_execbuffer *eb, 2345 struct i915_request *rq, 2346 struct i915_vma *batch, 2347 u64 batch_len) 2348 { 2349 int err; 2350 2351 if (intel_context_nopreempt(rq->context)) 2352 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); 2353 2354 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2355 err = i915_reset_gen7_sol_offsets(rq); 2356 if (err) 2357 return err; 2358 } 2359 2360 /* 2361 * After we completed waiting for other engines (using HW semaphores) 2362 * then we can signal that this request/batch is ready to run. This 2363 * allows us to determine if the batch is still waiting on the GPU 2364 * or actually running by checking the breadcrumb. 2365 */ 2366 if (rq->context->engine->emit_init_breadcrumb) { 2367 err = rq->context->engine->emit_init_breadcrumb(rq); 2368 if (err) 2369 return err; 2370 } 2371 2372 err = rq->context->engine->emit_bb_start(rq, 2373 batch->node.start + 2374 eb->batch_start_offset, 2375 batch_len, 2376 eb->batch_flags); 2377 if (err) 2378 return err; 2379 2380 if (eb->trampoline) { 2381 GEM_BUG_ON(intel_context_is_parallel(rq->context)); 2382 GEM_BUG_ON(eb->batch_start_offset); 2383 err = rq->context->engine->emit_bb_start(rq, 2384 eb->trampoline->node.start + 2385 batch_len, 0, 0); 2386 if (err) 2387 return err; 2388 } 2389 2390 return 0; 2391 } 2392 2393 static int eb_submit(struct i915_execbuffer *eb) 2394 { 2395 unsigned int i; 2396 int err; 2397 2398 err = eb_move_to_gpu(eb); 2399 2400 for_each_batch_create_order(eb, i) { 2401 if (!eb->requests[i]) 2402 break; 2403 2404 trace_i915_request_queue(eb->requests[i], eb->batch_flags); 2405 if (!err) 2406 err = eb_request_submit(eb, eb->requests[i], 2407 eb->batches[i]->vma, 2408 eb->batch_len[i]); 2409 } 2410 2411 return err; 2412 } 2413 2414 static int num_vcs_engines(struct drm_i915_private *i915) 2415 { 2416 return hweight_long(VDBOX_MASK(to_gt(i915))); 2417 } 2418 2419 /* 2420 * Find one BSD ring to dispatch the corresponding BSD command. 2421 * The engine index is returned. 2422 */ 2423 static unsigned int 2424 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2425 struct drm_file *file) 2426 { 2427 struct drm_i915_file_private *file_priv = file->driver_priv; 2428 2429 /* Check whether the file_priv has already selected one ring. */ 2430 if ((int)file_priv->bsd_engine < 0) 2431 file_priv->bsd_engine = 2432 get_random_int() % num_vcs_engines(dev_priv); 2433 2434 return file_priv->bsd_engine; 2435 } 2436 2437 static const enum intel_engine_id user_ring_map[] = { 2438 [I915_EXEC_DEFAULT] = RCS0, 2439 [I915_EXEC_RENDER] = RCS0, 2440 [I915_EXEC_BLT] = BCS0, 2441 [I915_EXEC_BSD] = VCS0, 2442 [I915_EXEC_VEBOX] = VECS0 2443 }; 2444 2445 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2446 { 2447 struct intel_ring *ring = ce->ring; 2448 struct intel_timeline *tl = ce->timeline; 2449 struct i915_request *rq; 2450 2451 /* 2452 * Completely unscientific finger-in-the-air estimates for suitable 2453 * maximum user request size (to avoid blocking) and then backoff. 2454 */ 2455 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2456 return NULL; 2457 2458 /* 2459 * Find a request that after waiting upon, there will be at least half 2460 * the ring available. The hysteresis allows us to compete for the 2461 * shared ring and should mean that we sleep less often prior to 2462 * claiming our resources, but not so long that the ring completely 2463 * drains before we can submit our next request. 2464 */ 2465 list_for_each_entry(rq, &tl->requests, link) { 2466 if (rq->ring != ring) 2467 continue; 2468 2469 if (__intel_ring_space(rq->postfix, 2470 ring->emit, ring->size) > ring->size / 2) 2471 break; 2472 } 2473 if (&rq->link == &tl->requests) 2474 return NULL; /* weird, we will check again later for real */ 2475 2476 return i915_request_get(rq); 2477 } 2478 2479 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, 2480 bool throttle) 2481 { 2482 struct intel_timeline *tl; 2483 struct i915_request *rq = NULL; 2484 2485 /* 2486 * Take a local wakeref for preparing to dispatch the execbuf as 2487 * we expect to access the hardware fairly frequently in the 2488 * process, and require the engine to be kept awake between accesses. 2489 * Upon dispatch, we acquire another prolonged wakeref that we hold 2490 * until the timeline is idle, which in turn releases the wakeref 2491 * taken on the engine, and the parent device. 2492 */ 2493 tl = intel_context_timeline_lock(ce); 2494 if (IS_ERR(tl)) 2495 return PTR_ERR(tl); 2496 2497 intel_context_enter(ce); 2498 if (throttle) 2499 rq = eb_throttle(eb, ce); 2500 intel_context_timeline_unlock(tl); 2501 2502 if (rq) { 2503 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2504 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; 2505 2506 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 2507 timeout) < 0) { 2508 i915_request_put(rq); 2509 2510 /* 2511 * Error path, cannot use intel_context_timeline_lock as 2512 * that is user interruptable and this clean up step 2513 * must be done. 2514 */ 2515 mutex_lock(&ce->timeline->mutex); 2516 intel_context_exit(ce); 2517 mutex_unlock(&ce->timeline->mutex); 2518 2519 if (nonblock) 2520 return -EWOULDBLOCK; 2521 else 2522 return -EINTR; 2523 } 2524 i915_request_put(rq); 2525 } 2526 2527 return 0; 2528 } 2529 2530 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2531 { 2532 struct intel_context *ce = eb->context, *child; 2533 int err; 2534 int i = 0, j = 0; 2535 2536 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2537 2538 if (unlikely(intel_context_is_banned(ce))) 2539 return -EIO; 2540 2541 /* 2542 * Pinning the contexts may generate requests in order to acquire 2543 * GGTT space, so do this first before we reserve a seqno for 2544 * ourselves. 2545 */ 2546 err = intel_context_pin_ww(ce, &eb->ww); 2547 if (err) 2548 return err; 2549 for_each_child(ce, child) { 2550 err = intel_context_pin_ww(child, &eb->ww); 2551 GEM_BUG_ON(err); /* perma-pinned should incr a counter */ 2552 } 2553 2554 for_each_child(ce, child) { 2555 err = eb_pin_timeline(eb, child, throttle); 2556 if (err) 2557 goto unwind; 2558 ++i; 2559 } 2560 err = eb_pin_timeline(eb, ce, throttle); 2561 if (err) 2562 goto unwind; 2563 2564 eb->args->flags |= __EXEC_ENGINE_PINNED; 2565 return 0; 2566 2567 unwind: 2568 for_each_child(ce, child) { 2569 if (j++ < i) { 2570 mutex_lock(&child->timeline->mutex); 2571 intel_context_exit(child); 2572 mutex_unlock(&child->timeline->mutex); 2573 } 2574 } 2575 for_each_child(ce, child) 2576 intel_context_unpin(child); 2577 intel_context_unpin(ce); 2578 return err; 2579 } 2580 2581 static void eb_unpin_engine(struct i915_execbuffer *eb) 2582 { 2583 struct intel_context *ce = eb->context, *child; 2584 2585 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2586 return; 2587 2588 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2589 2590 for_each_child(ce, child) { 2591 mutex_lock(&child->timeline->mutex); 2592 intel_context_exit(child); 2593 mutex_unlock(&child->timeline->mutex); 2594 2595 intel_context_unpin(child); 2596 } 2597 2598 mutex_lock(&ce->timeline->mutex); 2599 intel_context_exit(ce); 2600 mutex_unlock(&ce->timeline->mutex); 2601 2602 intel_context_unpin(ce); 2603 } 2604 2605 static unsigned int 2606 eb_select_legacy_ring(struct i915_execbuffer *eb) 2607 { 2608 struct drm_i915_private *i915 = eb->i915; 2609 struct drm_i915_gem_execbuffer2 *args = eb->args; 2610 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2611 2612 if (user_ring_id != I915_EXEC_BSD && 2613 (args->flags & I915_EXEC_BSD_MASK)) { 2614 drm_dbg(&i915->drm, 2615 "execbuf with non bsd ring but with invalid " 2616 "bsd dispatch flags: %d\n", (int)(args->flags)); 2617 return -1; 2618 } 2619 2620 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2621 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2622 2623 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2624 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2625 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2626 bsd_idx <= I915_EXEC_BSD_RING2) { 2627 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2628 bsd_idx--; 2629 } else { 2630 drm_dbg(&i915->drm, 2631 "execbuf with unknown bsd ring: %u\n", 2632 bsd_idx); 2633 return -1; 2634 } 2635 2636 return _VCS(bsd_idx); 2637 } 2638 2639 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2640 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2641 user_ring_id); 2642 return -1; 2643 } 2644 2645 return user_ring_map[user_ring_id]; 2646 } 2647 2648 static int 2649 eb_select_engine(struct i915_execbuffer *eb) 2650 { 2651 struct intel_context *ce, *child; 2652 unsigned int idx; 2653 int err; 2654 2655 if (i915_gem_context_user_engines(eb->gem_context)) 2656 idx = eb->args->flags & I915_EXEC_RING_MASK; 2657 else 2658 idx = eb_select_legacy_ring(eb); 2659 2660 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2661 if (IS_ERR(ce)) 2662 return PTR_ERR(ce); 2663 2664 if (intel_context_is_parallel(ce)) { 2665 if (eb->buffer_count < ce->parallel.number_children + 1) { 2666 intel_context_put(ce); 2667 return -EINVAL; 2668 } 2669 if (eb->batch_start_offset || eb->args->batch_len) { 2670 intel_context_put(ce); 2671 return -EINVAL; 2672 } 2673 } 2674 eb->num_batches = ce->parallel.number_children + 1; 2675 2676 for_each_child(ce, child) 2677 intel_context_get(child); 2678 intel_gt_pm_get(ce->engine->gt); 2679 2680 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2681 err = intel_context_alloc_state(ce); 2682 if (err) 2683 goto err; 2684 } 2685 for_each_child(ce, child) { 2686 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { 2687 err = intel_context_alloc_state(child); 2688 if (err) 2689 goto err; 2690 } 2691 } 2692 2693 /* 2694 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2695 * EIO if the GPU is already wedged. 2696 */ 2697 err = intel_gt_terminally_wedged(ce->engine->gt); 2698 if (err) 2699 goto err; 2700 2701 eb->context = ce; 2702 eb->gt = ce->engine->gt; 2703 2704 /* 2705 * Make sure engine pool stays alive even if we call intel_context_put 2706 * during ww handling. The pool is destroyed when last pm reference 2707 * is dropped, which breaks our -EDEADLK handling. 2708 */ 2709 return err; 2710 2711 err: 2712 intel_gt_pm_put(ce->engine->gt); 2713 for_each_child(ce, child) 2714 intel_context_put(child); 2715 intel_context_put(ce); 2716 return err; 2717 } 2718 2719 static void 2720 eb_put_engine(struct i915_execbuffer *eb) 2721 { 2722 struct intel_context *child; 2723 2724 intel_gt_pm_put(eb->gt); 2725 for_each_child(eb->context, child) 2726 intel_context_put(child); 2727 intel_context_put(eb->context); 2728 } 2729 2730 static void 2731 __free_fence_array(struct eb_fence *fences, unsigned int n) 2732 { 2733 while (n--) { 2734 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2735 dma_fence_put(fences[n].dma_fence); 2736 dma_fence_chain_free(fences[n].chain_fence); 2737 } 2738 kvfree(fences); 2739 } 2740 2741 static int 2742 add_timeline_fence_array(struct i915_execbuffer *eb, 2743 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2744 { 2745 struct drm_i915_gem_exec_fence __user *user_fences; 2746 u64 __user *user_values; 2747 struct eb_fence *f; 2748 u64 nfences; 2749 int err = 0; 2750 2751 nfences = timeline_fences->fence_count; 2752 if (!nfences) 2753 return 0; 2754 2755 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2756 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2757 if (nfences > min_t(unsigned long, 2758 ULONG_MAX / sizeof(*user_fences), 2759 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2760 return -EINVAL; 2761 2762 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2763 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2764 return -EFAULT; 2765 2766 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2767 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2768 return -EFAULT; 2769 2770 f = krealloc(eb->fences, 2771 (eb->num_fences + nfences) * sizeof(*f), 2772 __GFP_NOWARN | GFP_KERNEL); 2773 if (!f) 2774 return -ENOMEM; 2775 2776 eb->fences = f; 2777 f += eb->num_fences; 2778 2779 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2780 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2781 2782 while (nfences--) { 2783 struct drm_i915_gem_exec_fence user_fence; 2784 struct drm_syncobj *syncobj; 2785 struct dma_fence *fence = NULL; 2786 u64 point; 2787 2788 if (__copy_from_user(&user_fence, 2789 user_fences++, 2790 sizeof(user_fence))) 2791 return -EFAULT; 2792 2793 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2794 return -EINVAL; 2795 2796 if (__get_user(point, user_values++)) 2797 return -EFAULT; 2798 2799 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2800 if (!syncobj) { 2801 DRM_DEBUG("Invalid syncobj handle provided\n"); 2802 return -ENOENT; 2803 } 2804 2805 fence = drm_syncobj_fence_get(syncobj); 2806 2807 if (!fence && user_fence.flags && 2808 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2809 DRM_DEBUG("Syncobj handle has no fence\n"); 2810 drm_syncobj_put(syncobj); 2811 return -EINVAL; 2812 } 2813 2814 if (fence) 2815 err = dma_fence_chain_find_seqno(&fence, point); 2816 2817 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2818 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); 2819 dma_fence_put(fence); 2820 drm_syncobj_put(syncobj); 2821 return err; 2822 } 2823 2824 /* 2825 * A point might have been signaled already and 2826 * garbage collected from the timeline. In this case 2827 * just ignore the point and carry on. 2828 */ 2829 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2830 drm_syncobj_put(syncobj); 2831 continue; 2832 } 2833 2834 /* 2835 * For timeline syncobjs we need to preallocate chains for 2836 * later signaling. 2837 */ 2838 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2839 /* 2840 * Waiting and signaling the same point (when point != 2841 * 0) would break the timeline. 2842 */ 2843 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2844 DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); 2845 dma_fence_put(fence); 2846 drm_syncobj_put(syncobj); 2847 return -EINVAL; 2848 } 2849 2850 f->chain_fence = dma_fence_chain_alloc(); 2851 if (!f->chain_fence) { 2852 drm_syncobj_put(syncobj); 2853 dma_fence_put(fence); 2854 return -ENOMEM; 2855 } 2856 } else { 2857 f->chain_fence = NULL; 2858 } 2859 2860 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2861 f->dma_fence = fence; 2862 f->value = point; 2863 f++; 2864 eb->num_fences++; 2865 } 2866 2867 return 0; 2868 } 2869 2870 static int add_fence_array(struct i915_execbuffer *eb) 2871 { 2872 struct drm_i915_gem_execbuffer2 *args = eb->args; 2873 struct drm_i915_gem_exec_fence __user *user; 2874 unsigned long num_fences = args->num_cliprects; 2875 struct eb_fence *f; 2876 2877 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2878 return 0; 2879 2880 if (!num_fences) 2881 return 0; 2882 2883 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2884 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2885 if (num_fences > min_t(unsigned long, 2886 ULONG_MAX / sizeof(*user), 2887 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2888 return -EINVAL; 2889 2890 user = u64_to_user_ptr(args->cliprects_ptr); 2891 if (!access_ok(user, num_fences * sizeof(*user))) 2892 return -EFAULT; 2893 2894 f = krealloc(eb->fences, 2895 (eb->num_fences + num_fences) * sizeof(*f), 2896 __GFP_NOWARN | GFP_KERNEL); 2897 if (!f) 2898 return -ENOMEM; 2899 2900 eb->fences = f; 2901 f += eb->num_fences; 2902 while (num_fences--) { 2903 struct drm_i915_gem_exec_fence user_fence; 2904 struct drm_syncobj *syncobj; 2905 struct dma_fence *fence = NULL; 2906 2907 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2908 return -EFAULT; 2909 2910 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2911 return -EINVAL; 2912 2913 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2914 if (!syncobj) { 2915 DRM_DEBUG("Invalid syncobj handle provided\n"); 2916 return -ENOENT; 2917 } 2918 2919 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2920 fence = drm_syncobj_fence_get(syncobj); 2921 if (!fence) { 2922 DRM_DEBUG("Syncobj handle has no fence\n"); 2923 drm_syncobj_put(syncobj); 2924 return -EINVAL; 2925 } 2926 } 2927 2928 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2929 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2930 2931 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2932 f->dma_fence = fence; 2933 f->value = 0; 2934 f->chain_fence = NULL; 2935 f++; 2936 eb->num_fences++; 2937 } 2938 2939 return 0; 2940 } 2941 2942 static void put_fence_array(struct eb_fence *fences, int num_fences) 2943 { 2944 if (fences) 2945 __free_fence_array(fences, num_fences); 2946 } 2947 2948 static int 2949 await_fence_array(struct i915_execbuffer *eb, 2950 struct i915_request *rq) 2951 { 2952 unsigned int n; 2953 int err; 2954 2955 for (n = 0; n < eb->num_fences; n++) { 2956 struct drm_syncobj *syncobj; 2957 unsigned int flags; 2958 2959 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2960 2961 if (!eb->fences[n].dma_fence) 2962 continue; 2963 2964 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); 2965 if (err < 0) 2966 return err; 2967 } 2968 2969 return 0; 2970 } 2971 2972 static void signal_fence_array(const struct i915_execbuffer *eb, 2973 struct dma_fence * const fence) 2974 { 2975 unsigned int n; 2976 2977 for (n = 0; n < eb->num_fences; n++) { 2978 struct drm_syncobj *syncobj; 2979 unsigned int flags; 2980 2981 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2982 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2983 continue; 2984 2985 if (eb->fences[n].chain_fence) { 2986 drm_syncobj_add_point(syncobj, 2987 eb->fences[n].chain_fence, 2988 fence, 2989 eb->fences[n].value); 2990 /* 2991 * The chain's ownership is transferred to the 2992 * timeline. 2993 */ 2994 eb->fences[n].chain_fence = NULL; 2995 } else { 2996 drm_syncobj_replace_fence(syncobj, fence); 2997 } 2998 } 2999 } 3000 3001 static int 3002 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 3003 { 3004 struct i915_execbuffer *eb = data; 3005 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 3006 3007 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3008 return -EFAULT; 3009 3010 return add_timeline_fence_array(eb, &timeline_fences); 3011 } 3012 3013 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3014 { 3015 struct i915_request *rq, *rn; 3016 3017 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3018 if (rq == end || !i915_request_retire(rq)) 3019 break; 3020 } 3021 3022 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, 3023 int err, bool last_parallel) 3024 { 3025 struct intel_timeline * const tl = i915_request_timeline(rq); 3026 struct i915_sched_attr attr = {}; 3027 struct i915_request *prev; 3028 3029 lockdep_assert_held(&tl->mutex); 3030 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3031 3032 trace_i915_request_add(rq); 3033 3034 prev = __i915_request_commit(rq); 3035 3036 /* Check that the context wasn't destroyed before submission */ 3037 if (likely(!intel_context_is_closed(eb->context))) { 3038 attr = eb->gem_context->sched; 3039 } else { 3040 /* Serialise with context_close via the add_to_timeline */ 3041 i915_request_set_error_once(rq, -ENOENT); 3042 __i915_request_skip(rq); 3043 err = -ENOENT; /* override any transient errors */ 3044 } 3045 3046 if (intel_context_is_parallel(eb->context)) { 3047 if (err) { 3048 __i915_request_skip(rq); 3049 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, 3050 &rq->fence.flags); 3051 } 3052 if (last_parallel) 3053 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, 3054 &rq->fence.flags); 3055 } 3056 3057 __i915_request_queue(rq, &attr); 3058 3059 /* Try to clean up the client's timeline after submitting the request */ 3060 if (prev) 3061 retire_requests(tl, prev); 3062 3063 mutex_unlock(&tl->mutex); 3064 3065 return err; 3066 } 3067 3068 static int eb_requests_add(struct i915_execbuffer *eb, int err) 3069 { 3070 int i; 3071 3072 /* 3073 * We iterate in reverse order of creation to release timeline mutexes in 3074 * same order. 3075 */ 3076 for_each_batch_add_order(eb, i) { 3077 struct i915_request *rq = eb->requests[i]; 3078 3079 if (!rq) 3080 continue; 3081 err |= eb_request_add(eb, rq, err, i == 0); 3082 } 3083 3084 return err; 3085 } 3086 3087 static const i915_user_extension_fn execbuf_extensions[] = { 3088 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3089 }; 3090 3091 static int 3092 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3093 struct i915_execbuffer *eb) 3094 { 3095 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3096 return 0; 3097 3098 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3099 * have another flag also using it at the same time. 3100 */ 3101 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3102 return -EINVAL; 3103 3104 if (args->num_cliprects != 0) 3105 return -EINVAL; 3106 3107 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3108 execbuf_extensions, 3109 ARRAY_SIZE(execbuf_extensions), 3110 eb); 3111 } 3112 3113 static void eb_requests_get(struct i915_execbuffer *eb) 3114 { 3115 unsigned int i; 3116 3117 for_each_batch_create_order(eb, i) { 3118 if (!eb->requests[i]) 3119 break; 3120 3121 i915_request_get(eb->requests[i]); 3122 } 3123 } 3124 3125 static void eb_requests_put(struct i915_execbuffer *eb) 3126 { 3127 unsigned int i; 3128 3129 for_each_batch_create_order(eb, i) { 3130 if (!eb->requests[i]) 3131 break; 3132 3133 i915_request_put(eb->requests[i]); 3134 } 3135 } 3136 3137 static struct sync_file * 3138 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) 3139 { 3140 struct sync_file *out_fence = NULL; 3141 struct dma_fence_array *fence_array; 3142 struct dma_fence **fences; 3143 unsigned int i; 3144 3145 GEM_BUG_ON(!intel_context_is_parent(eb->context)); 3146 3147 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); 3148 if (!fences) 3149 return ERR_PTR(-ENOMEM); 3150 3151 for_each_batch_create_order(eb, i) { 3152 fences[i] = &eb->requests[i]->fence; 3153 __set_bit(I915_FENCE_FLAG_COMPOSITE, 3154 &eb->requests[i]->fence.flags); 3155 } 3156 3157 fence_array = dma_fence_array_create(eb->num_batches, 3158 fences, 3159 eb->context->parallel.fence_context, 3160 eb->context->parallel.seqno++, 3161 false); 3162 if (!fence_array) { 3163 kfree(fences); 3164 return ERR_PTR(-ENOMEM); 3165 } 3166 3167 /* Move ownership to the dma_fence_array created above */ 3168 for_each_batch_create_order(eb, i) 3169 dma_fence_get(fences[i]); 3170 3171 if (out_fence_fd != -1) { 3172 out_fence = sync_file_create(&fence_array->base); 3173 /* sync_file now owns fence_arry, drop creation ref */ 3174 dma_fence_put(&fence_array->base); 3175 if (!out_fence) 3176 return ERR_PTR(-ENOMEM); 3177 } 3178 3179 eb->composite_fence = &fence_array->base; 3180 3181 return out_fence; 3182 } 3183 3184 static struct sync_file * 3185 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, 3186 struct dma_fence *in_fence, int out_fence_fd) 3187 { 3188 struct sync_file *out_fence = NULL; 3189 int err; 3190 3191 if (unlikely(eb->gem_context->syncobj)) { 3192 struct dma_fence *fence; 3193 3194 fence = drm_syncobj_fence_get(eb->gem_context->syncobj); 3195 err = i915_request_await_dma_fence(rq, fence); 3196 dma_fence_put(fence); 3197 if (err) 3198 return ERR_PTR(err); 3199 } 3200 3201 if (in_fence) { 3202 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) 3203 err = i915_request_await_execution(rq, in_fence); 3204 else 3205 err = i915_request_await_dma_fence(rq, in_fence); 3206 if (err < 0) 3207 return ERR_PTR(err); 3208 } 3209 3210 if (eb->fences) { 3211 err = await_fence_array(eb, rq); 3212 if (err) 3213 return ERR_PTR(err); 3214 } 3215 3216 if (intel_context_is_parallel(eb->context)) { 3217 out_fence = eb_composite_fence_create(eb, out_fence_fd); 3218 if (IS_ERR(out_fence)) 3219 return ERR_PTR(-ENOMEM); 3220 } else if (out_fence_fd != -1) { 3221 out_fence = sync_file_create(&rq->fence); 3222 if (!out_fence) 3223 return ERR_PTR(-ENOMEM); 3224 } 3225 3226 return out_fence; 3227 } 3228 3229 static struct intel_context * 3230 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) 3231 { 3232 struct intel_context *child; 3233 3234 if (likely(context_number == 0)) 3235 return eb->context; 3236 3237 for_each_child(eb->context, child) 3238 if (!--context_number) 3239 return child; 3240 3241 GEM_BUG_ON("Context not found"); 3242 3243 return NULL; 3244 } 3245 3246 static struct sync_file * 3247 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, 3248 int out_fence_fd) 3249 { 3250 struct sync_file *out_fence = NULL; 3251 unsigned int i; 3252 3253 for_each_batch_create_order(eb, i) { 3254 /* Allocate a request for this batch buffer nice and early. */ 3255 eb->requests[i] = i915_request_create(eb_find_context(eb, i)); 3256 if (IS_ERR(eb->requests[i])) { 3257 out_fence = ERR_CAST(eb->requests[i]); 3258 eb->requests[i] = NULL; 3259 return out_fence; 3260 } 3261 3262 /* 3263 * Only the first request added (committed to backend) has to 3264 * take the in fences into account as all subsequent requests 3265 * will have fences inserted inbetween them. 3266 */ 3267 if (i + 1 == eb->num_batches) { 3268 out_fence = eb_fences_add(eb, eb->requests[i], 3269 in_fence, out_fence_fd); 3270 if (IS_ERR(out_fence)) 3271 return out_fence; 3272 } 3273 3274 /* 3275 * Not really on stack, but we don't want to call 3276 * kfree on the batch_snapshot when we put it, so use the 3277 * _onstack interface. 3278 */ 3279 if (eb->batches[i]->vma) 3280 i915_vma_snapshot_init_onstack(&eb->requests[i]->batch_snapshot, 3281 eb->batches[i]->vma, 3282 "batch"); 3283 if (eb->batch_pool) { 3284 GEM_BUG_ON(intel_context_is_parallel(eb->context)); 3285 intel_gt_buffer_pool_mark_active(eb->batch_pool, 3286 eb->requests[i]); 3287 } 3288 } 3289 3290 return out_fence; 3291 } 3292 3293 static int 3294 i915_gem_do_execbuffer(struct drm_device *dev, 3295 struct drm_file *file, 3296 struct drm_i915_gem_execbuffer2 *args, 3297 struct drm_i915_gem_exec_object2 *exec) 3298 { 3299 struct drm_i915_private *i915 = to_i915(dev); 3300 struct i915_execbuffer eb; 3301 struct dma_fence *in_fence = NULL; 3302 struct sync_file *out_fence = NULL; 3303 int out_fence_fd = -1; 3304 int err; 3305 3306 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3307 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3308 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3309 3310 eb.i915 = i915; 3311 eb.file = file; 3312 eb.args = args; 3313 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3314 args->flags |= __EXEC_HAS_RELOC; 3315 3316 eb.exec = exec; 3317 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3318 eb.vma[0].vma = NULL; 3319 eb.batch_pool = NULL; 3320 3321 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3322 reloc_cache_init(&eb.reloc_cache, eb.i915); 3323 3324 eb.buffer_count = args->buffer_count; 3325 eb.batch_start_offset = args->batch_start_offset; 3326 eb.trampoline = NULL; 3327 3328 eb.fences = NULL; 3329 eb.num_fences = 0; 3330 3331 eb_capture_list_clear(&eb); 3332 3333 memset(eb.requests, 0, sizeof(struct i915_request *) * 3334 ARRAY_SIZE(eb.requests)); 3335 eb.composite_fence = NULL; 3336 3337 eb.batch_flags = 0; 3338 if (args->flags & I915_EXEC_SECURE) { 3339 if (GRAPHICS_VER(i915) >= 11) 3340 return -ENODEV; 3341 3342 /* Return -EPERM to trigger fallback code on old binaries. */ 3343 if (!HAS_SECURE_BATCHES(i915)) 3344 return -EPERM; 3345 3346 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3347 return -EPERM; 3348 3349 eb.batch_flags |= I915_DISPATCH_SECURE; 3350 } 3351 if (args->flags & I915_EXEC_IS_PINNED) 3352 eb.batch_flags |= I915_DISPATCH_PINNED; 3353 3354 err = parse_execbuf2_extensions(args, &eb); 3355 if (err) 3356 goto err_ext; 3357 3358 err = add_fence_array(&eb); 3359 if (err) 3360 goto err_ext; 3361 3362 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3363 if (args->flags & IN_FENCES) { 3364 if ((args->flags & IN_FENCES) == IN_FENCES) 3365 return -EINVAL; 3366 3367 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3368 if (!in_fence) { 3369 err = -EINVAL; 3370 goto err_ext; 3371 } 3372 } 3373 #undef IN_FENCES 3374 3375 if (args->flags & I915_EXEC_FENCE_OUT) { 3376 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3377 if (out_fence_fd < 0) { 3378 err = out_fence_fd; 3379 goto err_in_fence; 3380 } 3381 } 3382 3383 err = eb_create(&eb); 3384 if (err) 3385 goto err_out_fence; 3386 3387 GEM_BUG_ON(!eb.lut_size); 3388 3389 err = eb_select_context(&eb); 3390 if (unlikely(err)) 3391 goto err_destroy; 3392 3393 err = eb_select_engine(&eb); 3394 if (unlikely(err)) 3395 goto err_context; 3396 3397 err = eb_lookup_vmas(&eb); 3398 if (err) { 3399 eb_release_vmas(&eb, true); 3400 goto err_engine; 3401 } 3402 3403 i915_gem_ww_ctx_init(&eb.ww, true); 3404 3405 err = eb_relocate_parse(&eb); 3406 if (err) { 3407 /* 3408 * If the user expects the execobject.offset and 3409 * reloc.presumed_offset to be an exact match, 3410 * as for using NO_RELOC, then we cannot update 3411 * the execobject.offset until we have completed 3412 * relocation. 3413 */ 3414 args->flags &= ~__EXEC_HAS_RELOC; 3415 goto err_vma; 3416 } 3417 3418 ww_acquire_done(&eb.ww.ctx); 3419 eb_capture_stage(&eb); 3420 3421 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); 3422 if (IS_ERR(out_fence)) { 3423 err = PTR_ERR(out_fence); 3424 out_fence = NULL; 3425 if (eb.requests[0]) 3426 goto err_request; 3427 else 3428 goto err_vma; 3429 } 3430 3431 err = eb_submit(&eb); 3432 3433 err_request: 3434 eb_requests_get(&eb); 3435 err = eb_requests_add(&eb, err); 3436 3437 if (eb.fences) 3438 signal_fence_array(&eb, eb.composite_fence ? 3439 eb.composite_fence : 3440 &eb.requests[0]->fence); 3441 3442 if (out_fence) { 3443 if (err == 0) { 3444 fd_install(out_fence_fd, out_fence->file); 3445 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3446 args->rsvd2 |= (u64)out_fence_fd << 32; 3447 out_fence_fd = -1; 3448 } else { 3449 fput(out_fence->file); 3450 } 3451 } 3452 3453 if (unlikely(eb.gem_context->syncobj)) { 3454 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3455 eb.composite_fence ? 3456 eb.composite_fence : 3457 &eb.requests[0]->fence); 3458 } 3459 3460 if (!out_fence && eb.composite_fence) 3461 dma_fence_put(eb.composite_fence); 3462 3463 eb_requests_put(&eb); 3464 3465 err_vma: 3466 eb_release_vmas(&eb, true); 3467 if (eb.trampoline) 3468 i915_vma_unpin(eb.trampoline); 3469 WARN_ON(err == -EDEADLK); 3470 i915_gem_ww_ctx_fini(&eb.ww); 3471 3472 if (eb.batch_pool) 3473 intel_gt_buffer_pool_put(eb.batch_pool); 3474 err_engine: 3475 eb_put_engine(&eb); 3476 err_context: 3477 i915_gem_context_put(eb.gem_context); 3478 err_destroy: 3479 eb_destroy(&eb); 3480 err_out_fence: 3481 if (out_fence_fd != -1) 3482 put_unused_fd(out_fence_fd); 3483 err_in_fence: 3484 dma_fence_put(in_fence); 3485 err_ext: 3486 put_fence_array(eb.fences, eb.num_fences); 3487 return err; 3488 } 3489 3490 static size_t eb_element_size(void) 3491 { 3492 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3493 } 3494 3495 static bool check_buffer_count(size_t count) 3496 { 3497 const size_t sz = eb_element_size(); 3498 3499 /* 3500 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3501 * array size (see eb_create()). Otherwise, we can accept an array as 3502 * large as can be addressed (though use large arrays at your peril)! 3503 */ 3504 3505 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3506 } 3507 3508 int 3509 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3510 struct drm_file *file) 3511 { 3512 struct drm_i915_private *i915 = to_i915(dev); 3513 struct drm_i915_gem_execbuffer2 *args = data; 3514 struct drm_i915_gem_exec_object2 *exec2_list; 3515 const size_t count = args->buffer_count; 3516 int err; 3517 3518 if (!check_buffer_count(count)) { 3519 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3520 return -EINVAL; 3521 } 3522 3523 err = i915_gem_check_execbuffer(args); 3524 if (err) 3525 return err; 3526 3527 /* Allocate extra slots for use by the command parser */ 3528 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3529 __GFP_NOWARN | GFP_KERNEL); 3530 if (exec2_list == NULL) { 3531 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3532 count); 3533 return -ENOMEM; 3534 } 3535 if (copy_from_user(exec2_list, 3536 u64_to_user_ptr(args->buffers_ptr), 3537 sizeof(*exec2_list) * count)) { 3538 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3539 kvfree(exec2_list); 3540 return -EFAULT; 3541 } 3542 3543 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3544 3545 /* 3546 * Now that we have begun execution of the batchbuffer, we ignore 3547 * any new error after this point. Also given that we have already 3548 * updated the associated relocations, we try to write out the current 3549 * object locations irrespective of any error. 3550 */ 3551 if (args->flags & __EXEC_HAS_RELOC) { 3552 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3553 u64_to_user_ptr(args->buffers_ptr); 3554 unsigned int i; 3555 3556 /* Copy the new buffer offsets back to the user's exec list. */ 3557 /* 3558 * Note: count * sizeof(*user_exec_list) does not overflow, 3559 * because we checked 'count' in check_buffer_count(). 3560 * 3561 * And this range already got effectively checked earlier 3562 * when we did the "copy_from_user()" above. 3563 */ 3564 if (!user_write_access_begin(user_exec_list, 3565 count * sizeof(*user_exec_list))) 3566 goto end; 3567 3568 for (i = 0; i < args->buffer_count; i++) { 3569 if (!(exec2_list[i].offset & UPDATE)) 3570 continue; 3571 3572 exec2_list[i].offset = 3573 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3574 unsafe_put_user(exec2_list[i].offset, 3575 &user_exec_list[i].offset, 3576 end_user); 3577 } 3578 end_user: 3579 user_write_access_end(); 3580 end:; 3581 } 3582 3583 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3584 kvfree(exec2_list); 3585 return err; 3586 } 3587