xref: /linux/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 
14 #include "display/intel_frontbuffer.h"
15 
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23 
24 #include "pxp/intel_pxp.h"
25 
26 #include "i915_cmd_parser.h"
27 #include "i915_drv.h"
28 #include "i915_gem_clflush.h"
29 #include "i915_gem_context.h"
30 #include "i915_gem_evict.h"
31 #include "i915_gem_ioctls.h"
32 #include "i915_trace.h"
33 #include "i915_user_extensions.h"
34 #include "i915_vma_snapshot.h"
35 
36 struct eb_vma {
37 	struct i915_vma *vma;
38 	unsigned int flags;
39 
40 	/** This vma's place in the execbuf reservation list */
41 	struct drm_i915_gem_exec_object2 *exec;
42 	struct list_head bind_link;
43 	struct list_head reloc_link;
44 
45 	struct hlist_node node;
46 	u32 handle;
47 };
48 
49 enum {
50 	FORCE_CPU_RELOC = 1,
51 	FORCE_GTT_RELOC,
52 	FORCE_GPU_RELOC,
53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
54 };
55 
56 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
57 #define __EXEC_OBJECT_HAS_PIN		BIT(30)
58 #define __EXEC_OBJECT_HAS_FENCE		BIT(29)
59 #define __EXEC_OBJECT_USERPTR_INIT	BIT(28)
60 #define __EXEC_OBJECT_NEEDS_MAP		BIT(27)
61 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(26)
62 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 26) /* all of the above + */
63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
64 
65 #define __EXEC_HAS_RELOC	BIT(31)
66 #define __EXEC_ENGINE_PINNED	BIT(30)
67 #define __EXEC_USERPTR_USED	BIT(29)
68 #define __EXEC_INTERNAL_FLAGS	(~0u << 29)
69 #define UPDATE			PIN_OFFSET_FIXED
70 
71 #define BATCH_OFFSET_BIAS (256*1024)
72 
73 #define __I915_EXEC_ILLEGAL_FLAGS \
74 	(__I915_EXEC_UNKNOWN_FLAGS | \
75 	 I915_EXEC_CONSTANTS_MASK  | \
76 	 I915_EXEC_RESOURCE_STREAMER)
77 
78 /* Catch emission of unexpected errors for CI! */
79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
80 #undef EINVAL
81 #define EINVAL ({ \
82 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
83 	22; \
84 })
85 #endif
86 
87 /**
88  * DOC: User command execution
89  *
90  * Userspace submits commands to be executed on the GPU as an instruction
91  * stream within a GEM object we call a batchbuffer. This instructions may
92  * refer to other GEM objects containing auxiliary state such as kernels,
93  * samplers, render targets and even secondary batchbuffers. Userspace does
94  * not know where in the GPU memory these objects reside and so before the
95  * batchbuffer is passed to the GPU for execution, those addresses in the
96  * batchbuffer and auxiliary objects are updated. This is known as relocation,
97  * or patching. To try and avoid having to relocate each object on the next
98  * execution, userspace is told the location of those objects in this pass,
99  * but this remains just a hint as the kernel may choose a new location for
100  * any object in the future.
101  *
102  * At the level of talking to the hardware, submitting a batchbuffer for the
103  * GPU to execute is to add content to a buffer from which the HW
104  * command streamer is reading.
105  *
106  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
107  *    Execlists, this command is not placed on the same buffer as the
108  *    remaining items.
109  *
110  * 2. Add a command to invalidate caches to the buffer.
111  *
112  * 3. Add a batchbuffer start command to the buffer; the start command is
113  *    essentially a token together with the GPU address of the batchbuffer
114  *    to be executed.
115  *
116  * 4. Add a pipeline flush to the buffer.
117  *
118  * 5. Add a memory write command to the buffer to record when the GPU
119  *    is done executing the batchbuffer. The memory write writes the
120  *    global sequence number of the request, ``i915_request::global_seqno``;
121  *    the i915 driver uses the current value in the register to determine
122  *    if the GPU has completed the batchbuffer.
123  *
124  * 6. Add a user interrupt command to the buffer. This command instructs
125  *    the GPU to issue an interrupt when the command, pipeline flush and
126  *    memory write are completed.
127  *
128  * 7. Inform the hardware of the additional commands added to the buffer
129  *    (by updating the tail pointer).
130  *
131  * Processing an execbuf ioctl is conceptually split up into a few phases.
132  *
133  * 1. Validation - Ensure all the pointers, handles and flags are valid.
134  * 2. Reservation - Assign GPU address space for every object
135  * 3. Relocation - Update any addresses to point to the final locations
136  * 4. Serialisation - Order the request with respect to its dependencies
137  * 5. Construction - Construct a request to execute the batchbuffer
138  * 6. Submission (at some point in the future execution)
139  *
140  * Reserving resources for the execbuf is the most complicated phase. We
141  * neither want to have to migrate the object in the address space, nor do
142  * we want to have to update any relocations pointing to this object. Ideally,
143  * we want to leave the object where it is and for all the existing relocations
144  * to match. If the object is given a new address, or if userspace thinks the
145  * object is elsewhere, we have to parse all the relocation entries and update
146  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
147  * all the target addresses in all of its objects match the value in the
148  * relocation entries and that they all match the presumed offsets given by the
149  * list of execbuffer objects. Using this knowledge, we know that if we haven't
150  * moved any buffers, all the relocation entries are valid and we can skip
151  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
152  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
153  *
154  *      The addresses written in the objects must match the corresponding
155  *      reloc.presumed_offset which in turn must match the corresponding
156  *      execobject.offset.
157  *
158  *      Any render targets written to in the batch must be flagged with
159  *      EXEC_OBJECT_WRITE.
160  *
161  *      To avoid stalling, execobject.offset should match the current
162  *      address of that object within the active context.
163  *
164  * The reservation is done is multiple phases. First we try and keep any
165  * object already bound in its current location - so as long as meets the
166  * constraints imposed by the new execbuffer. Any object left unbound after the
167  * first pass is then fitted into any available idle space. If an object does
168  * not fit, all objects are removed from the reservation and the process rerun
169  * after sorting the objects into a priority order (more difficult to fit
170  * objects are tried first). Failing that, the entire VM is cleared and we try
171  * to fit the execbuf once last time before concluding that it simply will not
172  * fit.
173  *
174  * A small complication to all of this is that we allow userspace not only to
175  * specify an alignment and a size for the object in the address space, but
176  * we also allow userspace to specify the exact offset. This objects are
177  * simpler to place (the location is known a priori) all we have to do is make
178  * sure the space is available.
179  *
180  * Once all the objects are in place, patching up the buried pointers to point
181  * to the final locations is a fairly simple job of walking over the relocation
182  * entry arrays, looking up the right address and rewriting the value into
183  * the object. Simple! ... The relocation entries are stored in user memory
184  * and so to access them we have to copy them into a local buffer. That copy
185  * has to avoid taking any pagefaults as they may lead back to a GEM object
186  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
187  * the relocation into multiple passes. First we try to do everything within an
188  * atomic context (avoid the pagefaults) which requires that we never wait. If
189  * we detect that we may wait, or if we need to fault, then we have to fallback
190  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
191  * bells yet?) Dropping the mutex means that we lose all the state we have
192  * built up so far for the execbuf and we must reset any global data. However,
193  * we do leave the objects pinned in their final locations - which is a
194  * potential issue for concurrent execbufs. Once we have left the mutex, we can
195  * allocate and copy all the relocation entries into a large array at our
196  * leisure, reacquire the mutex, reclaim all the objects and other state and
197  * then proceed to update any incorrect addresses with the objects.
198  *
199  * As we process the relocation entries, we maintain a record of whether the
200  * object is being written to. Using NORELOC, we expect userspace to provide
201  * this information instead. We also check whether we can skip the relocation
202  * by comparing the expected value inside the relocation entry with the target's
203  * final address. If they differ, we have to map the current object and rewrite
204  * the 4 or 8 byte pointer within.
205  *
206  * Serialising an execbuf is quite simple according to the rules of the GEM
207  * ABI. Execution within each context is ordered by the order of submission.
208  * Writes to any GEM object are in order of submission and are exclusive. Reads
209  * from a GEM object are unordered with respect to other reads, but ordered by
210  * writes. A write submitted after a read cannot occur before the read, and
211  * similarly any read submitted after a write cannot occur before the write.
212  * Writes are ordered between engines such that only one write occurs at any
213  * time (completing any reads beforehand) - using semaphores where available
214  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
215  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
216  * reads before starting, and any read (either using set-domain or pread) must
217  * flush all GPU writes before starting. (Note we only employ a barrier before,
218  * we currently rely on userspace not concurrently starting a new execution
219  * whilst reading or writing to an object. This may be an advantage or not
220  * depending on how much you trust userspace not to shoot themselves in the
221  * foot.) Serialisation may just result in the request being inserted into
222  * a DAG awaiting its turn, but most simple is to wait on the CPU until
223  * all dependencies are resolved.
224  *
225  * After all of that, is just a matter of closing the request and handing it to
226  * the hardware (well, leaving it in a queue to be executed). However, we also
227  * offer the ability for batchbuffers to be run with elevated privileges so
228  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
229  * Before any batch is given extra privileges we first must check that it
230  * contains no nefarious instructions, we check that each instruction is from
231  * our whitelist and all registers are also from an allowed list. We first
232  * copy the user's batchbuffer to a shadow (so that the user doesn't have
233  * access to it, either by the CPU or GPU as we scan it) and then parse each
234  * instruction. If everything is ok, we set a flag telling the hardware to run
235  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
236  */
237 
238 struct eb_fence {
239 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
240 	struct dma_fence *dma_fence;
241 	u64 value;
242 	struct dma_fence_chain *chain_fence;
243 };
244 
245 struct i915_execbuffer {
246 	struct drm_i915_private *i915; /** i915 backpointer */
247 	struct drm_file *file; /** per-file lookup tables and limits */
248 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
249 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
250 	struct eb_vma *vma;
251 
252 	struct intel_gt *gt; /* gt for the execbuf */
253 	struct intel_context *context; /* logical state for the request */
254 	struct i915_gem_context *gem_context; /** caller's context */
255 
256 	/** our requests to build */
257 	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
258 	/** identity of the batch obj/vma */
259 	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
260 	struct i915_vma *trampoline; /** trampoline used for chaining */
261 
262 	/** used for excl fence in dma_resv objects when > 1 BB submitted */
263 	struct dma_fence *composite_fence;
264 
265 	/** actual size of execobj[] as we may extend it for the cmdparser */
266 	unsigned int buffer_count;
267 
268 	/* number of batches in execbuf IOCTL */
269 	unsigned int num_batches;
270 
271 	/** list of vma not yet bound during reservation phase */
272 	struct list_head unbound;
273 
274 	/** list of vma that have execobj.relocation_count */
275 	struct list_head relocs;
276 
277 	struct i915_gem_ww_ctx ww;
278 
279 	/**
280 	 * Track the most recently used object for relocations, as we
281 	 * frequently have to perform multiple relocations within the same
282 	 * obj/page
283 	 */
284 	struct reloc_cache {
285 		struct drm_mm_node node; /** temporary GTT binding */
286 		unsigned long vaddr; /** Current kmap address */
287 		unsigned long page; /** Currently mapped page index */
288 		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
289 		bool use_64bit_reloc : 1;
290 		bool has_llc : 1;
291 		bool has_fence : 1;
292 		bool needs_unfenced : 1;
293 	} reloc_cache;
294 
295 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
296 
297 	/** Length of batch within object */
298 	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
299 	u32 batch_start_offset; /** Location within object of batch */
300 	u32 batch_flags; /** Flags composed for emit_bb_start() */
301 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
302 
303 	/**
304 	 * Indicate either the size of the hastable used to resolve
305 	 * relocation handles, or if negative that we are using a direct
306 	 * index into the execobj[].
307 	 */
308 	int lut_size;
309 	struct hlist_head *buckets; /** ht for relocation handles */
310 
311 	struct eb_fence *fences;
312 	unsigned long num_fences;
313 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
314 	struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
315 #endif
316 };
317 
318 static int eb_parse(struct i915_execbuffer *eb);
319 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
320 static void eb_unpin_engine(struct i915_execbuffer *eb);
321 static void eb_capture_release(struct i915_execbuffer *eb);
322 
323 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
324 {
325 	return intel_engine_requires_cmd_parser(eb->context->engine) ||
326 		(intel_engine_using_cmd_parser(eb->context->engine) &&
327 		 eb->args->batch_len);
328 }
329 
330 static int eb_create(struct i915_execbuffer *eb)
331 {
332 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
333 		unsigned int size = 1 + ilog2(eb->buffer_count);
334 
335 		/*
336 		 * Without a 1:1 association between relocation handles and
337 		 * the execobject[] index, we instead create a hashtable.
338 		 * We size it dynamically based on available memory, starting
339 		 * first with 1:1 assocative hash and scaling back until
340 		 * the allocation succeeds.
341 		 *
342 		 * Later on we use a positive lut_size to indicate we are
343 		 * using this hashtable, and a negative value to indicate a
344 		 * direct lookup.
345 		 */
346 		do {
347 			gfp_t flags;
348 
349 			/* While we can still reduce the allocation size, don't
350 			 * raise a warning and allow the allocation to fail.
351 			 * On the last pass though, we want to try as hard
352 			 * as possible to perform the allocation and warn
353 			 * if it fails.
354 			 */
355 			flags = GFP_KERNEL;
356 			if (size > 1)
357 				flags |= __GFP_NORETRY | __GFP_NOWARN;
358 
359 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
360 					      flags);
361 			if (eb->buckets)
362 				break;
363 		} while (--size);
364 
365 		if (unlikely(!size))
366 			return -ENOMEM;
367 
368 		eb->lut_size = size;
369 	} else {
370 		eb->lut_size = -eb->buffer_count;
371 	}
372 
373 	return 0;
374 }
375 
376 static bool
377 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
378 		 const struct i915_vma *vma,
379 		 unsigned int flags)
380 {
381 	if (vma->node.size < entry->pad_to_size)
382 		return true;
383 
384 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
385 		return true;
386 
387 	if (flags & EXEC_OBJECT_PINNED &&
388 	    vma->node.start != entry->offset)
389 		return true;
390 
391 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
392 	    vma->node.start < BATCH_OFFSET_BIAS)
393 		return true;
394 
395 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
396 	    (vma->node.start + vma->node.size + 4095) >> 32)
397 		return true;
398 
399 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
400 	    !i915_vma_is_map_and_fenceable(vma))
401 		return true;
402 
403 	return false;
404 }
405 
406 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
407 			unsigned int exec_flags)
408 {
409 	u64 pin_flags = 0;
410 
411 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
412 		pin_flags |= PIN_GLOBAL;
413 
414 	/*
415 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
416 	 * limit address to the first 4GBs for unflagged objects.
417 	 */
418 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
419 		pin_flags |= PIN_ZONE_4G;
420 
421 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
422 		pin_flags |= PIN_MAPPABLE;
423 
424 	if (exec_flags & EXEC_OBJECT_PINNED)
425 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
426 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
427 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
428 
429 	return pin_flags;
430 }
431 
432 static inline int
433 eb_pin_vma(struct i915_execbuffer *eb,
434 	   const struct drm_i915_gem_exec_object2 *entry,
435 	   struct eb_vma *ev)
436 {
437 	struct i915_vma *vma = ev->vma;
438 	u64 pin_flags;
439 	int err;
440 
441 	if (vma->node.size)
442 		pin_flags = vma->node.start;
443 	else
444 		pin_flags = entry->offset & PIN_OFFSET_MASK;
445 
446 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
447 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
448 		pin_flags |= PIN_GLOBAL;
449 
450 	/* Attempt to reuse the current location if available */
451 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
452 	if (err == -EDEADLK)
453 		return err;
454 
455 	if (unlikely(err)) {
456 		if (entry->flags & EXEC_OBJECT_PINNED)
457 			return err;
458 
459 		/* Failing that pick any _free_ space if suitable */
460 		err = i915_vma_pin_ww(vma, &eb->ww,
461 					     entry->pad_to_size,
462 					     entry->alignment,
463 					     eb_pin_flags(entry, ev->flags) |
464 					     PIN_USER | PIN_NOEVICT);
465 		if (unlikely(err))
466 			return err;
467 	}
468 
469 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
470 		err = i915_vma_pin_fence(vma);
471 		if (unlikely(err)) {
472 			i915_vma_unpin(vma);
473 			return err;
474 		}
475 
476 		if (vma->fence)
477 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
478 	}
479 
480 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
481 	if (eb_vma_misplaced(entry, vma, ev->flags))
482 		return -EBADSLT;
483 
484 	return 0;
485 }
486 
487 static inline void
488 eb_unreserve_vma(struct eb_vma *ev)
489 {
490 	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
491 		return;
492 
493 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
494 		__i915_vma_unpin_fence(ev->vma);
495 
496 	__i915_vma_unpin(ev->vma);
497 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
498 }
499 
500 static int
501 eb_validate_vma(struct i915_execbuffer *eb,
502 		struct drm_i915_gem_exec_object2 *entry,
503 		struct i915_vma *vma)
504 {
505 	/* Relocations are disallowed for all platforms after TGL-LP.  This
506 	 * also covers all platforms with local memory.
507 	 */
508 	if (entry->relocation_count &&
509 	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
510 		return -EINVAL;
511 
512 	if (unlikely(entry->flags & eb->invalid_flags))
513 		return -EINVAL;
514 
515 	if (unlikely(entry->alignment &&
516 		     !is_power_of_2_u64(entry->alignment)))
517 		return -EINVAL;
518 
519 	/*
520 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
521 	 * any non-page-aligned or non-canonical addresses.
522 	 */
523 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
524 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
525 		return -EINVAL;
526 
527 	/* pad_to_size was once a reserved field, so sanitize it */
528 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
529 		if (unlikely(offset_in_page(entry->pad_to_size)))
530 			return -EINVAL;
531 	} else {
532 		entry->pad_to_size = 0;
533 	}
534 	/*
535 	 * From drm_mm perspective address space is continuous,
536 	 * so from this point we're always using non-canonical
537 	 * form internally.
538 	 */
539 	entry->offset = gen8_noncanonical_addr(entry->offset);
540 
541 	if (!eb->reloc_cache.has_fence) {
542 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
543 	} else {
544 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
545 		     eb->reloc_cache.needs_unfenced) &&
546 		    i915_gem_object_is_tiled(vma->obj))
547 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
548 	}
549 
550 	return 0;
551 }
552 
553 static inline bool
554 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
555 {
556 	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
557 		buffer_idx < eb->num_batches :
558 		buffer_idx >= eb->args->buffer_count - eb->num_batches;
559 }
560 
561 static int
562 eb_add_vma(struct i915_execbuffer *eb,
563 	   unsigned int *current_batch,
564 	   unsigned int i,
565 	   struct i915_vma *vma)
566 {
567 	struct drm_i915_private *i915 = eb->i915;
568 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
569 	struct eb_vma *ev = &eb->vma[i];
570 
571 	ev->vma = vma;
572 	ev->exec = entry;
573 	ev->flags = entry->flags;
574 
575 	if (eb->lut_size > 0) {
576 		ev->handle = entry->handle;
577 		hlist_add_head(&ev->node,
578 			       &eb->buckets[hash_32(entry->handle,
579 						    eb->lut_size)]);
580 	}
581 
582 	if (entry->relocation_count)
583 		list_add_tail(&ev->reloc_link, &eb->relocs);
584 
585 	/*
586 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
587 	 * to negative relocation deltas. Usually that works out ok since the
588 	 * relocate address is still positive, except when the batch is placed
589 	 * very low in the GTT. Ensure this doesn't happen.
590 	 *
591 	 * Note that actual hangs have only been observed on gen7, but for
592 	 * paranoia do it everywhere.
593 	 */
594 	if (is_batch_buffer(eb, i)) {
595 		if (entry->relocation_count &&
596 		    !(ev->flags & EXEC_OBJECT_PINNED))
597 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
598 		if (eb->reloc_cache.has_fence)
599 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
600 
601 		eb->batches[*current_batch] = ev;
602 
603 		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
604 			drm_dbg(&i915->drm,
605 				"Attempting to use self-modifying batch buffer\n");
606 			return -EINVAL;
607 		}
608 
609 		if (range_overflows_t(u64,
610 				      eb->batch_start_offset,
611 				      eb->args->batch_len,
612 				      ev->vma->size)) {
613 			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
614 			return -EINVAL;
615 		}
616 
617 		if (eb->args->batch_len == 0)
618 			eb->batch_len[*current_batch] = ev->vma->size -
619 				eb->batch_start_offset;
620 		else
621 			eb->batch_len[*current_batch] = eb->args->batch_len;
622 		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
623 			drm_dbg(&i915->drm, "Invalid batch length\n");
624 			return -EINVAL;
625 		}
626 
627 		++*current_batch;
628 	}
629 
630 	return 0;
631 }
632 
633 static inline int use_cpu_reloc(const struct reloc_cache *cache,
634 				const struct drm_i915_gem_object *obj)
635 {
636 	if (!i915_gem_object_has_struct_page(obj))
637 		return false;
638 
639 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
640 		return true;
641 
642 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
643 		return false;
644 
645 	return (cache->has_llc ||
646 		obj->cache_dirty ||
647 		obj->cache_level != I915_CACHE_NONE);
648 }
649 
650 static int eb_reserve_vma(struct i915_execbuffer *eb,
651 			  struct eb_vma *ev,
652 			  u64 pin_flags)
653 {
654 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
655 	struct i915_vma *vma = ev->vma;
656 	int err;
657 
658 	if (drm_mm_node_allocated(&vma->node) &&
659 	    eb_vma_misplaced(entry, vma, ev->flags)) {
660 		err = i915_vma_unbind(vma);
661 		if (err)
662 			return err;
663 	}
664 
665 	err = i915_vma_pin_ww(vma, &eb->ww,
666 			   entry->pad_to_size, entry->alignment,
667 			   eb_pin_flags(entry, ev->flags) | pin_flags);
668 	if (err)
669 		return err;
670 
671 	if (entry->offset != vma->node.start) {
672 		entry->offset = vma->node.start | UPDATE;
673 		eb->args->flags |= __EXEC_HAS_RELOC;
674 	}
675 
676 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
677 		err = i915_vma_pin_fence(vma);
678 		if (unlikely(err)) {
679 			i915_vma_unpin(vma);
680 			return err;
681 		}
682 
683 		if (vma->fence)
684 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
685 	}
686 
687 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
688 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
689 
690 	return 0;
691 }
692 
693 static int eb_reserve(struct i915_execbuffer *eb)
694 {
695 	const unsigned int count = eb->buffer_count;
696 	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
697 	struct list_head last;
698 	struct eb_vma *ev;
699 	unsigned int i, pass;
700 	int err = 0;
701 
702 	/*
703 	 * Attempt to pin all of the buffers into the GTT.
704 	 * This is done in 3 phases:
705 	 *
706 	 * 1a. Unbind all objects that do not match the GTT constraints for
707 	 *     the execbuffer (fenceable, mappable, alignment etc).
708 	 * 1b. Increment pin count for already bound objects.
709 	 * 2.  Bind new objects.
710 	 * 3.  Decrement pin count.
711 	 *
712 	 * This avoid unnecessary unbinding of later objects in order to make
713 	 * room for the earlier objects *unless* we need to defragment.
714 	 */
715 	pass = 0;
716 	do {
717 		list_for_each_entry(ev, &eb->unbound, bind_link) {
718 			err = eb_reserve_vma(eb, ev, pin_flags);
719 			if (err)
720 				break;
721 		}
722 		if (err != -ENOSPC)
723 			return err;
724 
725 		/* Resort *all* the objects into priority order */
726 		INIT_LIST_HEAD(&eb->unbound);
727 		INIT_LIST_HEAD(&last);
728 		for (i = 0; i < count; i++) {
729 			unsigned int flags;
730 
731 			ev = &eb->vma[i];
732 			flags = ev->flags;
733 			if (flags & EXEC_OBJECT_PINNED &&
734 			    flags & __EXEC_OBJECT_HAS_PIN)
735 				continue;
736 
737 			eb_unreserve_vma(ev);
738 
739 			if (flags & EXEC_OBJECT_PINNED)
740 				/* Pinned must have their slot */
741 				list_add(&ev->bind_link, &eb->unbound);
742 			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
743 				/* Map require the lowest 256MiB (aperture) */
744 				list_add_tail(&ev->bind_link, &eb->unbound);
745 			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
746 				/* Prioritise 4GiB region for restricted bo */
747 				list_add(&ev->bind_link, &last);
748 			else
749 				list_add_tail(&ev->bind_link, &last);
750 		}
751 		list_splice_tail(&last, &eb->unbound);
752 
753 		switch (pass++) {
754 		case 0:
755 			break;
756 
757 		case 1:
758 			/* Too fragmented, unbind everything and retry */
759 			mutex_lock(&eb->context->vm->mutex);
760 			err = i915_gem_evict_vm(eb->context->vm);
761 			mutex_unlock(&eb->context->vm->mutex);
762 			if (err)
763 				return err;
764 			break;
765 
766 		default:
767 			return -ENOSPC;
768 		}
769 
770 		pin_flags = PIN_USER;
771 	} while (1);
772 }
773 
774 static int eb_select_context(struct i915_execbuffer *eb)
775 {
776 	struct i915_gem_context *ctx;
777 
778 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
779 	if (unlikely(IS_ERR(ctx)))
780 		return PTR_ERR(ctx);
781 
782 	eb->gem_context = ctx;
783 	if (i915_gem_context_has_full_ppgtt(ctx))
784 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
785 
786 	return 0;
787 }
788 
789 static int __eb_add_lut(struct i915_execbuffer *eb,
790 			u32 handle, struct i915_vma *vma)
791 {
792 	struct i915_gem_context *ctx = eb->gem_context;
793 	struct i915_lut_handle *lut;
794 	int err;
795 
796 	lut = i915_lut_handle_alloc();
797 	if (unlikely(!lut))
798 		return -ENOMEM;
799 
800 	i915_vma_get(vma);
801 	if (!atomic_fetch_inc(&vma->open_count))
802 		i915_vma_reopen(vma);
803 	lut->handle = handle;
804 	lut->ctx = ctx;
805 
806 	/* Check that the context hasn't been closed in the meantime */
807 	err = -EINTR;
808 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
809 		if (likely(!i915_gem_context_is_closed(ctx)))
810 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
811 		else
812 			err = -ENOENT;
813 		if (err == 0) { /* And nor has this handle */
814 			struct drm_i915_gem_object *obj = vma->obj;
815 
816 			spin_lock(&obj->lut_lock);
817 			if (idr_find(&eb->file->object_idr, handle) == obj) {
818 				list_add(&lut->obj_link, &obj->lut_list);
819 			} else {
820 				radix_tree_delete(&ctx->handles_vma, handle);
821 				err = -ENOENT;
822 			}
823 			spin_unlock(&obj->lut_lock);
824 		}
825 		mutex_unlock(&ctx->lut_mutex);
826 	}
827 	if (unlikely(err))
828 		goto err;
829 
830 	return 0;
831 
832 err:
833 	i915_vma_close(vma);
834 	i915_vma_put(vma);
835 	i915_lut_handle_free(lut);
836 	return err;
837 }
838 
839 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
840 {
841 	struct i915_address_space *vm = eb->context->vm;
842 
843 	do {
844 		struct drm_i915_gem_object *obj;
845 		struct i915_vma *vma;
846 		int err;
847 
848 		rcu_read_lock();
849 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
850 		if (likely(vma && vma->vm == vm))
851 			vma = i915_vma_tryget(vma);
852 		rcu_read_unlock();
853 		if (likely(vma))
854 			return vma;
855 
856 		obj = i915_gem_object_lookup(eb->file, handle);
857 		if (unlikely(!obj))
858 			return ERR_PTR(-ENOENT);
859 
860 		/*
861 		 * If the user has opted-in for protected-object tracking, make
862 		 * sure the object encryption can be used.
863 		 * We only need to do this when the object is first used with
864 		 * this context, because the context itself will be banned when
865 		 * the protected objects become invalid.
866 		 */
867 		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
868 		    i915_gem_object_is_protected(obj)) {
869 			err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
870 			if (err) {
871 				i915_gem_object_put(obj);
872 				return ERR_PTR(err);
873 			}
874 		}
875 
876 		vma = i915_vma_instance(obj, vm, NULL);
877 		if (IS_ERR(vma)) {
878 			i915_gem_object_put(obj);
879 			return vma;
880 		}
881 
882 		err = __eb_add_lut(eb, handle, vma);
883 		if (likely(!err))
884 			return vma;
885 
886 		i915_gem_object_put(obj);
887 		if (err != -EEXIST)
888 			return ERR_PTR(err);
889 	} while (1);
890 }
891 
892 static int eb_lookup_vmas(struct i915_execbuffer *eb)
893 {
894 	unsigned int i, current_batch = 0;
895 	int err = 0;
896 
897 	INIT_LIST_HEAD(&eb->relocs);
898 
899 	for (i = 0; i < eb->buffer_count; i++) {
900 		struct i915_vma *vma;
901 
902 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
903 		if (IS_ERR(vma)) {
904 			err = PTR_ERR(vma);
905 			goto err;
906 		}
907 
908 		err = eb_validate_vma(eb, &eb->exec[i], vma);
909 		if (unlikely(err)) {
910 			i915_vma_put(vma);
911 			goto err;
912 		}
913 
914 		err = eb_add_vma(eb, &current_batch, i, vma);
915 		if (err)
916 			return err;
917 
918 		if (i915_gem_object_is_userptr(vma->obj)) {
919 			err = i915_gem_object_userptr_submit_init(vma->obj);
920 			if (err) {
921 				if (i + 1 < eb->buffer_count) {
922 					/*
923 					 * Execbuffer code expects last vma entry to be NULL,
924 					 * since we already initialized this entry,
925 					 * set the next value to NULL or we mess up
926 					 * cleanup handling.
927 					 */
928 					eb->vma[i + 1].vma = NULL;
929 				}
930 
931 				return err;
932 			}
933 
934 			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
935 			eb->args->flags |= __EXEC_USERPTR_USED;
936 		}
937 	}
938 
939 	return 0;
940 
941 err:
942 	eb->vma[i].vma = NULL;
943 	return err;
944 }
945 
946 static int eb_lock_vmas(struct i915_execbuffer *eb)
947 {
948 	unsigned int i;
949 	int err;
950 
951 	for (i = 0; i < eb->buffer_count; i++) {
952 		struct eb_vma *ev = &eb->vma[i];
953 		struct i915_vma *vma = ev->vma;
954 
955 		err = i915_gem_object_lock(vma->obj, &eb->ww);
956 		if (err)
957 			return err;
958 	}
959 
960 	return 0;
961 }
962 
963 static int eb_validate_vmas(struct i915_execbuffer *eb)
964 {
965 	unsigned int i;
966 	int err;
967 
968 	INIT_LIST_HEAD(&eb->unbound);
969 
970 	err = eb_lock_vmas(eb);
971 	if (err)
972 		return err;
973 
974 	for (i = 0; i < eb->buffer_count; i++) {
975 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
976 		struct eb_vma *ev = &eb->vma[i];
977 		struct i915_vma *vma = ev->vma;
978 
979 		err = eb_pin_vma(eb, entry, ev);
980 		if (err == -EDEADLK)
981 			return err;
982 
983 		if (!err) {
984 			if (entry->offset != vma->node.start) {
985 				entry->offset = vma->node.start | UPDATE;
986 				eb->args->flags |= __EXEC_HAS_RELOC;
987 			}
988 		} else {
989 			eb_unreserve_vma(ev);
990 
991 			list_add_tail(&ev->bind_link, &eb->unbound);
992 			if (drm_mm_node_allocated(&vma->node)) {
993 				err = i915_vma_unbind(vma);
994 				if (err)
995 					return err;
996 			}
997 		}
998 
999 		if (!(ev->flags & EXEC_OBJECT_WRITE)) {
1000 			err = dma_resv_reserve_shared(vma->obj->base.resv, 1);
1001 			if (err)
1002 				return err;
1003 		}
1004 
1005 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1006 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1007 	}
1008 
1009 	if (!list_empty(&eb->unbound))
1010 		return eb_reserve(eb);
1011 
1012 	return 0;
1013 }
1014 
1015 static struct eb_vma *
1016 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1017 {
1018 	if (eb->lut_size < 0) {
1019 		if (handle >= -eb->lut_size)
1020 			return NULL;
1021 		return &eb->vma[handle];
1022 	} else {
1023 		struct hlist_head *head;
1024 		struct eb_vma *ev;
1025 
1026 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
1027 		hlist_for_each_entry(ev, head, node) {
1028 			if (ev->handle == handle)
1029 				return ev;
1030 		}
1031 		return NULL;
1032 	}
1033 }
1034 
1035 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1036 {
1037 	const unsigned int count = eb->buffer_count;
1038 	unsigned int i;
1039 
1040 	for (i = 0; i < count; i++) {
1041 		struct eb_vma *ev = &eb->vma[i];
1042 		struct i915_vma *vma = ev->vma;
1043 
1044 		if (!vma)
1045 			break;
1046 
1047 		eb_unreserve_vma(ev);
1048 
1049 		if (final)
1050 			i915_vma_put(vma);
1051 	}
1052 
1053 	eb_capture_release(eb);
1054 	eb_unpin_engine(eb);
1055 }
1056 
1057 static void eb_destroy(const struct i915_execbuffer *eb)
1058 {
1059 	if (eb->lut_size > 0)
1060 		kfree(eb->buckets);
1061 }
1062 
1063 static inline u64
1064 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1065 		  const struct i915_vma *target)
1066 {
1067 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
1068 }
1069 
1070 static void reloc_cache_init(struct reloc_cache *cache,
1071 			     struct drm_i915_private *i915)
1072 {
1073 	cache->page = -1;
1074 	cache->vaddr = 0;
1075 	/* Must be a variable in the struct to allow GCC to unroll. */
1076 	cache->graphics_ver = GRAPHICS_VER(i915);
1077 	cache->has_llc = HAS_LLC(i915);
1078 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1079 	cache->has_fence = cache->graphics_ver < 4;
1080 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1081 	cache->node.flags = 0;
1082 }
1083 
1084 static inline void *unmask_page(unsigned long p)
1085 {
1086 	return (void *)(uintptr_t)(p & PAGE_MASK);
1087 }
1088 
1089 static inline unsigned int unmask_flags(unsigned long p)
1090 {
1091 	return p & ~PAGE_MASK;
1092 }
1093 
1094 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1095 
1096 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1097 {
1098 	struct drm_i915_private *i915 =
1099 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1100 	return &i915->ggtt;
1101 }
1102 
1103 static void reloc_cache_unmap(struct reloc_cache *cache)
1104 {
1105 	void *vaddr;
1106 
1107 	if (!cache->vaddr)
1108 		return;
1109 
1110 	vaddr = unmask_page(cache->vaddr);
1111 	if (cache->vaddr & KMAP)
1112 		kunmap_atomic(vaddr);
1113 	else
1114 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1115 }
1116 
1117 static void reloc_cache_remap(struct reloc_cache *cache,
1118 			      struct drm_i915_gem_object *obj)
1119 {
1120 	void *vaddr;
1121 
1122 	if (!cache->vaddr)
1123 		return;
1124 
1125 	if (cache->vaddr & KMAP) {
1126 		struct page *page = i915_gem_object_get_page(obj, cache->page);
1127 
1128 		vaddr = kmap_atomic(page);
1129 		cache->vaddr = unmask_flags(cache->vaddr) |
1130 			(unsigned long)vaddr;
1131 	} else {
1132 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1133 		unsigned long offset;
1134 
1135 		offset = cache->node.start;
1136 		if (!drm_mm_node_allocated(&cache->node))
1137 			offset += cache->page << PAGE_SHIFT;
1138 
1139 		cache->vaddr = (unsigned long)
1140 			io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1141 	}
1142 }
1143 
1144 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1145 {
1146 	void *vaddr;
1147 
1148 	if (!cache->vaddr)
1149 		return;
1150 
1151 	vaddr = unmask_page(cache->vaddr);
1152 	if (cache->vaddr & KMAP) {
1153 		struct drm_i915_gem_object *obj =
1154 			(struct drm_i915_gem_object *)cache->node.mm;
1155 		if (cache->vaddr & CLFLUSH_AFTER)
1156 			mb();
1157 
1158 		kunmap_atomic(vaddr);
1159 		i915_gem_object_finish_access(obj);
1160 	} else {
1161 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1162 
1163 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1164 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1165 
1166 		if (drm_mm_node_allocated(&cache->node)) {
1167 			ggtt->vm.clear_range(&ggtt->vm,
1168 					     cache->node.start,
1169 					     cache->node.size);
1170 			mutex_lock(&ggtt->vm.mutex);
1171 			drm_mm_remove_node(&cache->node);
1172 			mutex_unlock(&ggtt->vm.mutex);
1173 		} else {
1174 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1175 		}
1176 	}
1177 
1178 	cache->vaddr = 0;
1179 	cache->page = -1;
1180 }
1181 
1182 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1183 			struct reloc_cache *cache,
1184 			unsigned long pageno)
1185 {
1186 	void *vaddr;
1187 	struct page *page;
1188 
1189 	if (cache->vaddr) {
1190 		kunmap_atomic(unmask_page(cache->vaddr));
1191 	} else {
1192 		unsigned int flushes;
1193 		int err;
1194 
1195 		err = i915_gem_object_prepare_write(obj, &flushes);
1196 		if (err)
1197 			return ERR_PTR(err);
1198 
1199 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1200 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1201 
1202 		cache->vaddr = flushes | KMAP;
1203 		cache->node.mm = (void *)obj;
1204 		if (flushes)
1205 			mb();
1206 	}
1207 
1208 	page = i915_gem_object_get_page(obj, pageno);
1209 	if (!obj->mm.dirty)
1210 		set_page_dirty(page);
1211 
1212 	vaddr = kmap_atomic(page);
1213 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1214 	cache->page = pageno;
1215 
1216 	return vaddr;
1217 }
1218 
1219 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1220 			 struct i915_execbuffer *eb,
1221 			 unsigned long page)
1222 {
1223 	struct reloc_cache *cache = &eb->reloc_cache;
1224 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1225 	unsigned long offset;
1226 	void *vaddr;
1227 
1228 	if (cache->vaddr) {
1229 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1230 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1231 	} else {
1232 		struct i915_vma *vma;
1233 		int err;
1234 
1235 		if (i915_gem_object_is_tiled(obj))
1236 			return ERR_PTR(-EINVAL);
1237 
1238 		if (use_cpu_reloc(cache, obj))
1239 			return NULL;
1240 
1241 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1242 		if (err)
1243 			return ERR_PTR(err);
1244 
1245 		vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1246 						  PIN_MAPPABLE |
1247 						  PIN_NONBLOCK /* NOWARN */ |
1248 						  PIN_NOEVICT);
1249 		if (vma == ERR_PTR(-EDEADLK))
1250 			return vma;
1251 
1252 		if (IS_ERR(vma)) {
1253 			memset(&cache->node, 0, sizeof(cache->node));
1254 			mutex_lock(&ggtt->vm.mutex);
1255 			err = drm_mm_insert_node_in_range
1256 				(&ggtt->vm.mm, &cache->node,
1257 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1258 				 0, ggtt->mappable_end,
1259 				 DRM_MM_INSERT_LOW);
1260 			mutex_unlock(&ggtt->vm.mutex);
1261 			if (err) /* no inactive aperture space, use cpu reloc */
1262 				return NULL;
1263 		} else {
1264 			cache->node.start = vma->node.start;
1265 			cache->node.mm = (void *)vma;
1266 		}
1267 	}
1268 
1269 	offset = cache->node.start;
1270 	if (drm_mm_node_allocated(&cache->node)) {
1271 		ggtt->vm.insert_page(&ggtt->vm,
1272 				     i915_gem_object_get_dma_address(obj, page),
1273 				     offset, I915_CACHE_NONE, 0);
1274 	} else {
1275 		offset += page << PAGE_SHIFT;
1276 	}
1277 
1278 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1279 							 offset);
1280 	cache->page = page;
1281 	cache->vaddr = (unsigned long)vaddr;
1282 
1283 	return vaddr;
1284 }
1285 
1286 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1287 			 struct i915_execbuffer *eb,
1288 			 unsigned long page)
1289 {
1290 	struct reloc_cache *cache = &eb->reloc_cache;
1291 	void *vaddr;
1292 
1293 	if (cache->page == page) {
1294 		vaddr = unmask_page(cache->vaddr);
1295 	} else {
1296 		vaddr = NULL;
1297 		if ((cache->vaddr & KMAP) == 0)
1298 			vaddr = reloc_iomap(obj, eb, page);
1299 		if (!vaddr)
1300 			vaddr = reloc_kmap(obj, cache, page);
1301 	}
1302 
1303 	return vaddr;
1304 }
1305 
1306 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1307 {
1308 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1309 		if (flushes & CLFLUSH_BEFORE) {
1310 			clflushopt(addr);
1311 			mb();
1312 		}
1313 
1314 		*addr = value;
1315 
1316 		/*
1317 		 * Writes to the same cacheline are serialised by the CPU
1318 		 * (including clflush). On the write path, we only require
1319 		 * that it hits memory in an orderly fashion and place
1320 		 * mb barriers at the start and end of the relocation phase
1321 		 * to ensure ordering of clflush wrt to the system.
1322 		 */
1323 		if (flushes & CLFLUSH_AFTER)
1324 			clflushopt(addr);
1325 	} else
1326 		*addr = value;
1327 }
1328 
1329 static u64
1330 relocate_entry(struct i915_vma *vma,
1331 	       const struct drm_i915_gem_relocation_entry *reloc,
1332 	       struct i915_execbuffer *eb,
1333 	       const struct i915_vma *target)
1334 {
1335 	u64 target_addr = relocation_target(reloc, target);
1336 	u64 offset = reloc->offset;
1337 	bool wide = eb->reloc_cache.use_64bit_reloc;
1338 	void *vaddr;
1339 
1340 repeat:
1341 	vaddr = reloc_vaddr(vma->obj, eb,
1342 			    offset >> PAGE_SHIFT);
1343 	if (IS_ERR(vaddr))
1344 		return PTR_ERR(vaddr);
1345 
1346 	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1347 	clflush_write32(vaddr + offset_in_page(offset),
1348 			lower_32_bits(target_addr),
1349 			eb->reloc_cache.vaddr);
1350 
1351 	if (wide) {
1352 		offset += sizeof(u32);
1353 		target_addr >>= 32;
1354 		wide = false;
1355 		goto repeat;
1356 	}
1357 
1358 	return target->node.start | UPDATE;
1359 }
1360 
1361 static u64
1362 eb_relocate_entry(struct i915_execbuffer *eb,
1363 		  struct eb_vma *ev,
1364 		  const struct drm_i915_gem_relocation_entry *reloc)
1365 {
1366 	struct drm_i915_private *i915 = eb->i915;
1367 	struct eb_vma *target;
1368 	int err;
1369 
1370 	/* we've already hold a reference to all valid objects */
1371 	target = eb_get_vma(eb, reloc->target_handle);
1372 	if (unlikely(!target))
1373 		return -ENOENT;
1374 
1375 	/* Validate that the target is in a valid r/w GPU domain */
1376 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1377 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1378 			  "target %d offset %d "
1379 			  "read %08x write %08x",
1380 			  reloc->target_handle,
1381 			  (int) reloc->offset,
1382 			  reloc->read_domains,
1383 			  reloc->write_domain);
1384 		return -EINVAL;
1385 	}
1386 	if (unlikely((reloc->write_domain | reloc->read_domains)
1387 		     & ~I915_GEM_GPU_DOMAINS)) {
1388 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1389 			  "target %d offset %d "
1390 			  "read %08x write %08x",
1391 			  reloc->target_handle,
1392 			  (int) reloc->offset,
1393 			  reloc->read_domains,
1394 			  reloc->write_domain);
1395 		return -EINVAL;
1396 	}
1397 
1398 	if (reloc->write_domain) {
1399 		target->flags |= EXEC_OBJECT_WRITE;
1400 
1401 		/*
1402 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1403 		 * for MI and pipe_control writes because the gpu doesn't
1404 		 * properly redirect them through the ppgtt for non_secure
1405 		 * batchbuffers.
1406 		 */
1407 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1408 		    GRAPHICS_VER(eb->i915) == 6 &&
1409 		    !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1410 			struct i915_vma *vma = target->vma;
1411 
1412 			reloc_cache_unmap(&eb->reloc_cache);
1413 			mutex_lock(&vma->vm->mutex);
1414 			err = i915_vma_bind(target->vma,
1415 					    target->vma->obj->cache_level,
1416 					    PIN_GLOBAL, NULL);
1417 			mutex_unlock(&vma->vm->mutex);
1418 			reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1419 			if (err)
1420 				return err;
1421 		}
1422 	}
1423 
1424 	/*
1425 	 * If the relocation already has the right value in it, no
1426 	 * more work needs to be done.
1427 	 */
1428 	if (!DBG_FORCE_RELOC &&
1429 	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1430 		return 0;
1431 
1432 	/* Check that the relocation address is valid... */
1433 	if (unlikely(reloc->offset >
1434 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1435 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1436 			  "target %d offset %d size %d.\n",
1437 			  reloc->target_handle,
1438 			  (int)reloc->offset,
1439 			  (int)ev->vma->size);
1440 		return -EINVAL;
1441 	}
1442 	if (unlikely(reloc->offset & 3)) {
1443 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1444 			  "target %d offset %d.\n",
1445 			  reloc->target_handle,
1446 			  (int)reloc->offset);
1447 		return -EINVAL;
1448 	}
1449 
1450 	/*
1451 	 * If we write into the object, we need to force the synchronisation
1452 	 * barrier, either with an asynchronous clflush or if we executed the
1453 	 * patching using the GPU (though that should be serialised by the
1454 	 * timeline). To be completely sure, and since we are required to
1455 	 * do relocations we are already stalling, disable the user's opt
1456 	 * out of our synchronisation.
1457 	 */
1458 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1459 
1460 	/* and update the user's relocation entry */
1461 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1462 }
1463 
1464 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1465 {
1466 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1467 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1468 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1469 	struct drm_i915_gem_relocation_entry __user *urelocs =
1470 		u64_to_user_ptr(entry->relocs_ptr);
1471 	unsigned long remain = entry->relocation_count;
1472 
1473 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1474 		return -EINVAL;
1475 
1476 	/*
1477 	 * We must check that the entire relocation array is safe
1478 	 * to read. However, if the array is not writable the user loses
1479 	 * the updated relocation values.
1480 	 */
1481 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1482 		return -EFAULT;
1483 
1484 	do {
1485 		struct drm_i915_gem_relocation_entry *r = stack;
1486 		unsigned int count =
1487 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1488 		unsigned int copied;
1489 
1490 		/*
1491 		 * This is the fast path and we cannot handle a pagefault
1492 		 * whilst holding the struct mutex lest the user pass in the
1493 		 * relocations contained within a mmaped bo. For in such a case
1494 		 * we, the page fault handler would call i915_gem_fault() and
1495 		 * we would try to acquire the struct mutex again. Obviously
1496 		 * this is bad and so lockdep complains vehemently.
1497 		 */
1498 		pagefault_disable();
1499 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1500 		pagefault_enable();
1501 		if (unlikely(copied)) {
1502 			remain = -EFAULT;
1503 			goto out;
1504 		}
1505 
1506 		remain -= count;
1507 		do {
1508 			u64 offset = eb_relocate_entry(eb, ev, r);
1509 
1510 			if (likely(offset == 0)) {
1511 			} else if ((s64)offset < 0) {
1512 				remain = (int)offset;
1513 				goto out;
1514 			} else {
1515 				/*
1516 				 * Note that reporting an error now
1517 				 * leaves everything in an inconsistent
1518 				 * state as we have *already* changed
1519 				 * the relocation value inside the
1520 				 * object. As we have not changed the
1521 				 * reloc.presumed_offset or will not
1522 				 * change the execobject.offset, on the
1523 				 * call we may not rewrite the value
1524 				 * inside the object, leaving it
1525 				 * dangling and causing a GPU hang. Unless
1526 				 * userspace dynamically rebuilds the
1527 				 * relocations on each execbuf rather than
1528 				 * presume a static tree.
1529 				 *
1530 				 * We did previously check if the relocations
1531 				 * were writable (access_ok), an error now
1532 				 * would be a strange race with mprotect,
1533 				 * having already demonstrated that we
1534 				 * can read from this userspace address.
1535 				 */
1536 				offset = gen8_canonical_addr(offset & ~UPDATE);
1537 				__put_user(offset,
1538 					   &urelocs[r - stack].presumed_offset);
1539 			}
1540 		} while (r++, --count);
1541 		urelocs += ARRAY_SIZE(stack);
1542 	} while (remain);
1543 out:
1544 	reloc_cache_reset(&eb->reloc_cache, eb);
1545 	return remain;
1546 }
1547 
1548 static int
1549 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1550 {
1551 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1552 	struct drm_i915_gem_relocation_entry *relocs =
1553 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1554 	unsigned int i;
1555 	int err;
1556 
1557 	for (i = 0; i < entry->relocation_count; i++) {
1558 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1559 
1560 		if ((s64)offset < 0) {
1561 			err = (int)offset;
1562 			goto err;
1563 		}
1564 	}
1565 	err = 0;
1566 err:
1567 	reloc_cache_reset(&eb->reloc_cache, eb);
1568 	return err;
1569 }
1570 
1571 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1572 {
1573 	const char __user *addr, *end;
1574 	unsigned long size;
1575 	char __maybe_unused c;
1576 
1577 	size = entry->relocation_count;
1578 	if (size == 0)
1579 		return 0;
1580 
1581 	if (size > N_RELOC(ULONG_MAX))
1582 		return -EINVAL;
1583 
1584 	addr = u64_to_user_ptr(entry->relocs_ptr);
1585 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1586 	if (!access_ok(addr, size))
1587 		return -EFAULT;
1588 
1589 	end = addr + size;
1590 	for (; addr < end; addr += PAGE_SIZE) {
1591 		int err = __get_user(c, addr);
1592 		if (err)
1593 			return err;
1594 	}
1595 	return __get_user(c, end - 1);
1596 }
1597 
1598 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1599 {
1600 	struct drm_i915_gem_relocation_entry *relocs;
1601 	const unsigned int count = eb->buffer_count;
1602 	unsigned int i;
1603 	int err;
1604 
1605 	for (i = 0; i < count; i++) {
1606 		const unsigned int nreloc = eb->exec[i].relocation_count;
1607 		struct drm_i915_gem_relocation_entry __user *urelocs;
1608 		unsigned long size;
1609 		unsigned long copied;
1610 
1611 		if (nreloc == 0)
1612 			continue;
1613 
1614 		err = check_relocations(&eb->exec[i]);
1615 		if (err)
1616 			goto err;
1617 
1618 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1619 		size = nreloc * sizeof(*relocs);
1620 
1621 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1622 		if (!relocs) {
1623 			err = -ENOMEM;
1624 			goto err;
1625 		}
1626 
1627 		/* copy_from_user is limited to < 4GiB */
1628 		copied = 0;
1629 		do {
1630 			unsigned int len =
1631 				min_t(u64, BIT_ULL(31), size - copied);
1632 
1633 			if (__copy_from_user((char *)relocs + copied,
1634 					     (char __user *)urelocs + copied,
1635 					     len))
1636 				goto end;
1637 
1638 			copied += len;
1639 		} while (copied < size);
1640 
1641 		/*
1642 		 * As we do not update the known relocation offsets after
1643 		 * relocating (due to the complexities in lock handling),
1644 		 * we need to mark them as invalid now so that we force the
1645 		 * relocation processing next time. Just in case the target
1646 		 * object is evicted and then rebound into its old
1647 		 * presumed_offset before the next execbuffer - if that
1648 		 * happened we would make the mistake of assuming that the
1649 		 * relocations were valid.
1650 		 */
1651 		if (!user_access_begin(urelocs, size))
1652 			goto end;
1653 
1654 		for (copied = 0; copied < nreloc; copied++)
1655 			unsafe_put_user(-1,
1656 					&urelocs[copied].presumed_offset,
1657 					end_user);
1658 		user_access_end();
1659 
1660 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1661 	}
1662 
1663 	return 0;
1664 
1665 end_user:
1666 	user_access_end();
1667 end:
1668 	kvfree(relocs);
1669 	err = -EFAULT;
1670 err:
1671 	while (i--) {
1672 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1673 		if (eb->exec[i].relocation_count)
1674 			kvfree(relocs);
1675 	}
1676 	return err;
1677 }
1678 
1679 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1680 {
1681 	const unsigned int count = eb->buffer_count;
1682 	unsigned int i;
1683 
1684 	for (i = 0; i < count; i++) {
1685 		int err;
1686 
1687 		err = check_relocations(&eb->exec[i]);
1688 		if (err)
1689 			return err;
1690 	}
1691 
1692 	return 0;
1693 }
1694 
1695 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1696 {
1697 	const unsigned int count = eb->buffer_count;
1698 	unsigned int i;
1699 	int ret;
1700 
1701 	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1702 		return 0;
1703 
1704 	for (i = 0; i < count; i++) {
1705 		struct eb_vma *ev = &eb->vma[i];
1706 
1707 		if (!i915_gem_object_is_userptr(ev->vma->obj))
1708 			continue;
1709 
1710 		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1711 		if (ret)
1712 			return ret;
1713 
1714 		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1715 	}
1716 
1717 	return 0;
1718 }
1719 
1720 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1721 {
1722 	bool have_copy = false;
1723 	struct eb_vma *ev;
1724 	int err = 0;
1725 
1726 repeat:
1727 	if (signal_pending(current)) {
1728 		err = -ERESTARTSYS;
1729 		goto out;
1730 	}
1731 
1732 	/* We may process another execbuffer during the unlock... */
1733 	eb_release_vmas(eb, false);
1734 	i915_gem_ww_ctx_fini(&eb->ww);
1735 
1736 	/*
1737 	 * We take 3 passes through the slowpatch.
1738 	 *
1739 	 * 1 - we try to just prefault all the user relocation entries and
1740 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1741 	 *
1742 	 * 2 - we copy the user entries to a local buffer here outside of the
1743 	 * local and allow ourselves to wait upon any rendering before
1744 	 * relocations
1745 	 *
1746 	 * 3 - we already have a local copy of the relocation entries, but
1747 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1748 	 */
1749 	if (!err) {
1750 		err = eb_prefault_relocations(eb);
1751 	} else if (!have_copy) {
1752 		err = eb_copy_relocations(eb);
1753 		have_copy = err == 0;
1754 	} else {
1755 		cond_resched();
1756 		err = 0;
1757 	}
1758 
1759 	if (!err)
1760 		err = eb_reinit_userptr(eb);
1761 
1762 	i915_gem_ww_ctx_init(&eb->ww, true);
1763 	if (err)
1764 		goto out;
1765 
1766 	/* reacquire the objects */
1767 repeat_validate:
1768 	err = eb_pin_engine(eb, false);
1769 	if (err)
1770 		goto err;
1771 
1772 	err = eb_validate_vmas(eb);
1773 	if (err)
1774 		goto err;
1775 
1776 	GEM_BUG_ON(!eb->batches[0]);
1777 
1778 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1779 		if (!have_copy) {
1780 			err = eb_relocate_vma(eb, ev);
1781 			if (err)
1782 				break;
1783 		} else {
1784 			err = eb_relocate_vma_slow(eb, ev);
1785 			if (err)
1786 				break;
1787 		}
1788 	}
1789 
1790 	if (err == -EDEADLK)
1791 		goto err;
1792 
1793 	if (err && !have_copy)
1794 		goto repeat;
1795 
1796 	if (err)
1797 		goto err;
1798 
1799 	/* as last step, parse the command buffer */
1800 	err = eb_parse(eb);
1801 	if (err)
1802 		goto err;
1803 
1804 	/*
1805 	 * Leave the user relocations as are, this is the painfully slow path,
1806 	 * and we want to avoid the complication of dropping the lock whilst
1807 	 * having buffers reserved in the aperture and so causing spurious
1808 	 * ENOSPC for random operations.
1809 	 */
1810 
1811 err:
1812 	if (err == -EDEADLK) {
1813 		eb_release_vmas(eb, false);
1814 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1815 		if (!err)
1816 			goto repeat_validate;
1817 	}
1818 
1819 	if (err == -EAGAIN)
1820 		goto repeat;
1821 
1822 out:
1823 	if (have_copy) {
1824 		const unsigned int count = eb->buffer_count;
1825 		unsigned int i;
1826 
1827 		for (i = 0; i < count; i++) {
1828 			const struct drm_i915_gem_exec_object2 *entry =
1829 				&eb->exec[i];
1830 			struct drm_i915_gem_relocation_entry *relocs;
1831 
1832 			if (!entry->relocation_count)
1833 				continue;
1834 
1835 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1836 			kvfree(relocs);
1837 		}
1838 	}
1839 
1840 	return err;
1841 }
1842 
1843 static int eb_relocate_parse(struct i915_execbuffer *eb)
1844 {
1845 	int err;
1846 	bool throttle = true;
1847 
1848 retry:
1849 	err = eb_pin_engine(eb, throttle);
1850 	if (err) {
1851 		if (err != -EDEADLK)
1852 			return err;
1853 
1854 		goto err;
1855 	}
1856 
1857 	/* only throttle once, even if we didn't need to throttle */
1858 	throttle = false;
1859 
1860 	err = eb_validate_vmas(eb);
1861 	if (err == -EAGAIN)
1862 		goto slow;
1863 	else if (err)
1864 		goto err;
1865 
1866 	/* The objects are in their final locations, apply the relocations. */
1867 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1868 		struct eb_vma *ev;
1869 
1870 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1871 			err = eb_relocate_vma(eb, ev);
1872 			if (err)
1873 				break;
1874 		}
1875 
1876 		if (err == -EDEADLK)
1877 			goto err;
1878 		else if (err)
1879 			goto slow;
1880 	}
1881 
1882 	if (!err)
1883 		err = eb_parse(eb);
1884 
1885 err:
1886 	if (err == -EDEADLK) {
1887 		eb_release_vmas(eb, false);
1888 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1889 		if (!err)
1890 			goto retry;
1891 	}
1892 
1893 	return err;
1894 
1895 slow:
1896 	err = eb_relocate_parse_slow(eb);
1897 	if (err)
1898 		/*
1899 		 * If the user expects the execobject.offset and
1900 		 * reloc.presumed_offset to be an exact match,
1901 		 * as for using NO_RELOC, then we cannot update
1902 		 * the execobject.offset until we have completed
1903 		 * relocation.
1904 		 */
1905 		eb->args->flags &= ~__EXEC_HAS_RELOC;
1906 
1907 	return err;
1908 }
1909 
1910 /*
1911  * Using two helper loops for the order of which requests / batches are created
1912  * and added the to backend. Requests are created in order from the parent to
1913  * the last child. Requests are added in the reverse order, from the last child
1914  * to parent. This is done for locking reasons as the timeline lock is acquired
1915  * during request creation and released when the request is added to the
1916  * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1917  * the ordering.
1918  */
1919 #define for_each_batch_create_order(_eb, _i) \
1920 	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1921 #define for_each_batch_add_order(_eb, _i) \
1922 	BUILD_BUG_ON(!typecheck(int, _i)); \
1923 	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1924 
1925 static struct i915_request *
1926 eb_find_first_request_added(struct i915_execbuffer *eb)
1927 {
1928 	int i;
1929 
1930 	for_each_batch_add_order(eb, i)
1931 		if (eb->requests[i])
1932 			return eb->requests[i];
1933 
1934 	GEM_BUG_ON("Request not found");
1935 
1936 	return NULL;
1937 }
1938 
1939 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1940 
1941 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
1942 static void eb_capture_stage(struct i915_execbuffer *eb)
1943 {
1944 	const unsigned int count = eb->buffer_count;
1945 	unsigned int i = count, j;
1946 	struct i915_vma_snapshot *vsnap;
1947 
1948 	while (i--) {
1949 		struct eb_vma *ev = &eb->vma[i];
1950 		struct i915_vma *vma = ev->vma;
1951 		unsigned int flags = ev->flags;
1952 
1953 		if (!(flags & EXEC_OBJECT_CAPTURE))
1954 			continue;
1955 
1956 		vsnap = i915_vma_snapshot_alloc(GFP_KERNEL);
1957 		if (!vsnap)
1958 			continue;
1959 
1960 		i915_vma_snapshot_init(vsnap, vma, "user");
1961 		for_each_batch_create_order(eb, j) {
1962 			struct i915_capture_list *capture;
1963 
1964 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1965 			if (!capture)
1966 				continue;
1967 
1968 			capture->next = eb->capture_lists[j];
1969 			capture->vma_snapshot = i915_vma_snapshot_get(vsnap);
1970 			eb->capture_lists[j] = capture;
1971 		}
1972 		i915_vma_snapshot_put(vsnap);
1973 	}
1974 }
1975 
1976 /* Commit once we're in the critical path */
1977 static void eb_capture_commit(struct i915_execbuffer *eb)
1978 {
1979 	unsigned int j;
1980 
1981 	for_each_batch_create_order(eb, j) {
1982 		struct i915_request *rq = eb->requests[j];
1983 
1984 		if (!rq)
1985 			break;
1986 
1987 		rq->capture_list = eb->capture_lists[j];
1988 		eb->capture_lists[j] = NULL;
1989 	}
1990 }
1991 
1992 /*
1993  * Release anything that didn't get committed due to errors.
1994  * The capture_list will otherwise be freed at request retire.
1995  */
1996 static void eb_capture_release(struct i915_execbuffer *eb)
1997 {
1998 	unsigned int j;
1999 
2000 	for_each_batch_create_order(eb, j) {
2001 		if (eb->capture_lists[j]) {
2002 			i915_request_free_capture_list(eb->capture_lists[j]);
2003 			eb->capture_lists[j] = NULL;
2004 		}
2005 	}
2006 }
2007 
2008 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2009 {
2010 	memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2011 }
2012 
2013 #else
2014 
2015 static void eb_capture_stage(struct i915_execbuffer *eb)
2016 {
2017 }
2018 
2019 static void eb_capture_commit(struct i915_execbuffer *eb)
2020 {
2021 }
2022 
2023 static void eb_capture_release(struct i915_execbuffer *eb)
2024 {
2025 }
2026 
2027 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2028 {
2029 }
2030 
2031 #endif
2032 
2033 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2034 {
2035 	const unsigned int count = eb->buffer_count;
2036 	unsigned int i = count;
2037 	int err = 0, j;
2038 
2039 	while (i--) {
2040 		struct eb_vma *ev = &eb->vma[i];
2041 		struct i915_vma *vma = ev->vma;
2042 		unsigned int flags = ev->flags;
2043 		struct drm_i915_gem_object *obj = vma->obj;
2044 
2045 		assert_vma_held(vma);
2046 
2047 		/*
2048 		 * If the GPU is not _reading_ through the CPU cache, we need
2049 		 * to make sure that any writes (both previous GPU writes from
2050 		 * before a change in snooping levels and normal CPU writes)
2051 		 * caught in that cache are flushed to main memory.
2052 		 *
2053 		 * We want to say
2054 		 *   obj->cache_dirty &&
2055 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2056 		 * but gcc's optimiser doesn't handle that as well and emits
2057 		 * two jumps instead of one. Maybe one day...
2058 		 *
2059 		 * FIXME: There is also sync flushing in set_pages(), which
2060 		 * serves a different purpose(some of the time at least).
2061 		 *
2062 		 * We should consider:
2063 		 *
2064 		 *   1. Rip out the async flush code.
2065 		 *
2066 		 *   2. Or make the sync flushing use the async clflush path
2067 		 *   using mandatory fences underneath. Currently the below
2068 		 *   async flush happens after we bind the object.
2069 		 */
2070 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2071 			if (i915_gem_clflush_object(obj, 0))
2072 				flags &= ~EXEC_OBJECT_ASYNC;
2073 		}
2074 
2075 		/* We only need to await on the first request */
2076 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2077 			err = i915_request_await_object
2078 				(eb_find_first_request_added(eb), obj,
2079 				 flags & EXEC_OBJECT_WRITE);
2080 		}
2081 
2082 		for_each_batch_add_order(eb, j) {
2083 			if (err)
2084 				break;
2085 			if (!eb->requests[j])
2086 				continue;
2087 
2088 			err = _i915_vma_move_to_active(vma, eb->requests[j],
2089 						       j ? NULL :
2090 						       eb->composite_fence ?
2091 						       eb->composite_fence :
2092 						       &eb->requests[j]->fence,
2093 						       flags | __EXEC_OBJECT_NO_RESERVE);
2094 		}
2095 	}
2096 
2097 #ifdef CONFIG_MMU_NOTIFIER
2098 	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2099 		read_lock(&eb->i915->mm.notifier_lock);
2100 
2101 		/*
2102 		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2103 		 * could not have been set
2104 		 */
2105 		for (i = 0; i < count; i++) {
2106 			struct eb_vma *ev = &eb->vma[i];
2107 			struct drm_i915_gem_object *obj = ev->vma->obj;
2108 
2109 			if (!i915_gem_object_is_userptr(obj))
2110 				continue;
2111 
2112 			err = i915_gem_object_userptr_submit_done(obj);
2113 			if (err)
2114 				break;
2115 		}
2116 
2117 		read_unlock(&eb->i915->mm.notifier_lock);
2118 	}
2119 #endif
2120 
2121 	if (unlikely(err))
2122 		goto err_skip;
2123 
2124 	/* Unconditionally flush any chipset caches (for streaming writes). */
2125 	intel_gt_chipset_flush(eb->gt);
2126 	eb_capture_commit(eb);
2127 
2128 	return 0;
2129 
2130 err_skip:
2131 	for_each_batch_create_order(eb, j) {
2132 		if (!eb->requests[j])
2133 			break;
2134 
2135 		i915_request_set_error_once(eb->requests[j], err);
2136 	}
2137 	return err;
2138 }
2139 
2140 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2141 {
2142 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2143 		return -EINVAL;
2144 
2145 	/* Kernel clipping was a DRI1 misfeature */
2146 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2147 			     I915_EXEC_USE_EXTENSIONS))) {
2148 		if (exec->num_cliprects || exec->cliprects_ptr)
2149 			return -EINVAL;
2150 	}
2151 
2152 	if (exec->DR4 == 0xffffffff) {
2153 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2154 		exec->DR4 = 0;
2155 	}
2156 	if (exec->DR1 || exec->DR4)
2157 		return -EINVAL;
2158 
2159 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2160 		return -EINVAL;
2161 
2162 	return 0;
2163 }
2164 
2165 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2166 {
2167 	u32 *cs;
2168 	int i;
2169 
2170 	if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2171 		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2172 		return -EINVAL;
2173 	}
2174 
2175 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2176 	if (IS_ERR(cs))
2177 		return PTR_ERR(cs);
2178 
2179 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2180 	for (i = 0; i < 4; i++) {
2181 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2182 		*cs++ = 0;
2183 	}
2184 	*cs++ = MI_NOOP;
2185 	intel_ring_advance(rq, cs);
2186 
2187 	return 0;
2188 }
2189 
2190 static struct i915_vma *
2191 shadow_batch_pin(struct i915_execbuffer *eb,
2192 		 struct drm_i915_gem_object *obj,
2193 		 struct i915_address_space *vm,
2194 		 unsigned int flags)
2195 {
2196 	struct i915_vma *vma;
2197 	int err;
2198 
2199 	vma = i915_vma_instance(obj, vm, NULL);
2200 	if (IS_ERR(vma))
2201 		return vma;
2202 
2203 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2204 	if (err)
2205 		return ERR_PTR(err);
2206 
2207 	return vma;
2208 }
2209 
2210 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2211 {
2212 	/*
2213 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2214 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2215 	 * hsw should have this fixed, but bdw mucks it up again. */
2216 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2217 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2218 
2219 	return NULL;
2220 }
2221 
2222 static int eb_parse(struct i915_execbuffer *eb)
2223 {
2224 	struct drm_i915_private *i915 = eb->i915;
2225 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2226 	struct i915_vma *shadow, *trampoline, *batch;
2227 	unsigned long len;
2228 	int err;
2229 
2230 	if (!eb_use_cmdparser(eb)) {
2231 		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2232 		if (IS_ERR(batch))
2233 			return PTR_ERR(batch);
2234 
2235 		goto secure_batch;
2236 	}
2237 
2238 	if (intel_context_is_parallel(eb->context))
2239 		return -EINVAL;
2240 
2241 	len = eb->batch_len[0];
2242 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2243 		/*
2244 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2245 		 * post-scan tampering
2246 		 */
2247 		if (!eb->context->vm->has_read_only) {
2248 			drm_dbg(&i915->drm,
2249 				"Cannot prevent post-scan tampering without RO capable vm\n");
2250 			return -EINVAL;
2251 		}
2252 	} else {
2253 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2254 	}
2255 	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2256 		return -EINVAL;
2257 
2258 	if (!pool) {
2259 		pool = intel_gt_get_buffer_pool(eb->gt, len,
2260 						I915_MAP_WB);
2261 		if (IS_ERR(pool))
2262 			return PTR_ERR(pool);
2263 		eb->batch_pool = pool;
2264 	}
2265 
2266 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2267 	if (err)
2268 		goto err;
2269 
2270 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2271 	if (IS_ERR(shadow)) {
2272 		err = PTR_ERR(shadow);
2273 		goto err;
2274 	}
2275 	intel_gt_buffer_pool_mark_used(pool);
2276 	i915_gem_object_set_readonly(shadow->obj);
2277 	shadow->private = pool;
2278 
2279 	trampoline = NULL;
2280 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2281 		trampoline = shadow;
2282 
2283 		shadow = shadow_batch_pin(eb, pool->obj,
2284 					  &eb->gt->ggtt->vm,
2285 					  PIN_GLOBAL);
2286 		if (IS_ERR(shadow)) {
2287 			err = PTR_ERR(shadow);
2288 			shadow = trampoline;
2289 			goto err_shadow;
2290 		}
2291 		shadow->private = pool;
2292 
2293 		eb->batch_flags |= I915_DISPATCH_SECURE;
2294 	}
2295 
2296 	batch = eb_dispatch_secure(eb, shadow);
2297 	if (IS_ERR(batch)) {
2298 		err = PTR_ERR(batch);
2299 		goto err_trampoline;
2300 	}
2301 
2302 	err = dma_resv_reserve_shared(shadow->obj->base.resv, 1);
2303 	if (err)
2304 		goto err_trampoline;
2305 
2306 	err = intel_engine_cmd_parser(eb->context->engine,
2307 				      eb->batches[0]->vma,
2308 				      eb->batch_start_offset,
2309 				      eb->batch_len[0],
2310 				      shadow, trampoline);
2311 	if (err)
2312 		goto err_unpin_batch;
2313 
2314 	eb->batches[0] = &eb->vma[eb->buffer_count++];
2315 	eb->batches[0]->vma = i915_vma_get(shadow);
2316 	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2317 
2318 	eb->trampoline = trampoline;
2319 	eb->batch_start_offset = 0;
2320 
2321 secure_batch:
2322 	if (batch) {
2323 		if (intel_context_is_parallel(eb->context))
2324 			return -EINVAL;
2325 
2326 		eb->batches[0] = &eb->vma[eb->buffer_count++];
2327 		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2328 		eb->batches[0]->vma = i915_vma_get(batch);
2329 	}
2330 	return 0;
2331 
2332 err_unpin_batch:
2333 	if (batch)
2334 		i915_vma_unpin(batch);
2335 err_trampoline:
2336 	if (trampoline)
2337 		i915_vma_unpin(trampoline);
2338 err_shadow:
2339 	i915_vma_unpin(shadow);
2340 err:
2341 	return err;
2342 }
2343 
2344 static int eb_request_submit(struct i915_execbuffer *eb,
2345 			     struct i915_request *rq,
2346 			     struct i915_vma *batch,
2347 			     u64 batch_len)
2348 {
2349 	int err;
2350 
2351 	if (intel_context_nopreempt(rq->context))
2352 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2353 
2354 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2355 		err = i915_reset_gen7_sol_offsets(rq);
2356 		if (err)
2357 			return err;
2358 	}
2359 
2360 	/*
2361 	 * After we completed waiting for other engines (using HW semaphores)
2362 	 * then we can signal that this request/batch is ready to run. This
2363 	 * allows us to determine if the batch is still waiting on the GPU
2364 	 * or actually running by checking the breadcrumb.
2365 	 */
2366 	if (rq->context->engine->emit_init_breadcrumb) {
2367 		err = rq->context->engine->emit_init_breadcrumb(rq);
2368 		if (err)
2369 			return err;
2370 	}
2371 
2372 	err = rq->context->engine->emit_bb_start(rq,
2373 						 batch->node.start +
2374 						 eb->batch_start_offset,
2375 						 batch_len,
2376 						 eb->batch_flags);
2377 	if (err)
2378 		return err;
2379 
2380 	if (eb->trampoline) {
2381 		GEM_BUG_ON(intel_context_is_parallel(rq->context));
2382 		GEM_BUG_ON(eb->batch_start_offset);
2383 		err = rq->context->engine->emit_bb_start(rq,
2384 							 eb->trampoline->node.start +
2385 							 batch_len, 0, 0);
2386 		if (err)
2387 			return err;
2388 	}
2389 
2390 	return 0;
2391 }
2392 
2393 static int eb_submit(struct i915_execbuffer *eb)
2394 {
2395 	unsigned int i;
2396 	int err;
2397 
2398 	err = eb_move_to_gpu(eb);
2399 
2400 	for_each_batch_create_order(eb, i) {
2401 		if (!eb->requests[i])
2402 			break;
2403 
2404 		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2405 		if (!err)
2406 			err = eb_request_submit(eb, eb->requests[i],
2407 						eb->batches[i]->vma,
2408 						eb->batch_len[i]);
2409 	}
2410 
2411 	return err;
2412 }
2413 
2414 static int num_vcs_engines(struct drm_i915_private *i915)
2415 {
2416 	return hweight_long(VDBOX_MASK(to_gt(i915)));
2417 }
2418 
2419 /*
2420  * Find one BSD ring to dispatch the corresponding BSD command.
2421  * The engine index is returned.
2422  */
2423 static unsigned int
2424 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2425 			 struct drm_file *file)
2426 {
2427 	struct drm_i915_file_private *file_priv = file->driver_priv;
2428 
2429 	/* Check whether the file_priv has already selected one ring. */
2430 	if ((int)file_priv->bsd_engine < 0)
2431 		file_priv->bsd_engine =
2432 			get_random_int() % num_vcs_engines(dev_priv);
2433 
2434 	return file_priv->bsd_engine;
2435 }
2436 
2437 static const enum intel_engine_id user_ring_map[] = {
2438 	[I915_EXEC_DEFAULT]	= RCS0,
2439 	[I915_EXEC_RENDER]	= RCS0,
2440 	[I915_EXEC_BLT]		= BCS0,
2441 	[I915_EXEC_BSD]		= VCS0,
2442 	[I915_EXEC_VEBOX]	= VECS0
2443 };
2444 
2445 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2446 {
2447 	struct intel_ring *ring = ce->ring;
2448 	struct intel_timeline *tl = ce->timeline;
2449 	struct i915_request *rq;
2450 
2451 	/*
2452 	 * Completely unscientific finger-in-the-air estimates for suitable
2453 	 * maximum user request size (to avoid blocking) and then backoff.
2454 	 */
2455 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2456 		return NULL;
2457 
2458 	/*
2459 	 * Find a request that after waiting upon, there will be at least half
2460 	 * the ring available. The hysteresis allows us to compete for the
2461 	 * shared ring and should mean that we sleep less often prior to
2462 	 * claiming our resources, but not so long that the ring completely
2463 	 * drains before we can submit our next request.
2464 	 */
2465 	list_for_each_entry(rq, &tl->requests, link) {
2466 		if (rq->ring != ring)
2467 			continue;
2468 
2469 		if (__intel_ring_space(rq->postfix,
2470 				       ring->emit, ring->size) > ring->size / 2)
2471 			break;
2472 	}
2473 	if (&rq->link == &tl->requests)
2474 		return NULL; /* weird, we will check again later for real */
2475 
2476 	return i915_request_get(rq);
2477 }
2478 
2479 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2480 			   bool throttle)
2481 {
2482 	struct intel_timeline *tl;
2483 	struct i915_request *rq = NULL;
2484 
2485 	/*
2486 	 * Take a local wakeref for preparing to dispatch the execbuf as
2487 	 * we expect to access the hardware fairly frequently in the
2488 	 * process, and require the engine to be kept awake between accesses.
2489 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2490 	 * until the timeline is idle, which in turn releases the wakeref
2491 	 * taken on the engine, and the parent device.
2492 	 */
2493 	tl = intel_context_timeline_lock(ce);
2494 	if (IS_ERR(tl))
2495 		return PTR_ERR(tl);
2496 
2497 	intel_context_enter(ce);
2498 	if (throttle)
2499 		rq = eb_throttle(eb, ce);
2500 	intel_context_timeline_unlock(tl);
2501 
2502 	if (rq) {
2503 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2504 		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2505 
2506 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2507 				      timeout) < 0) {
2508 			i915_request_put(rq);
2509 
2510 			/*
2511 			 * Error path, cannot use intel_context_timeline_lock as
2512 			 * that is user interruptable and this clean up step
2513 			 * must be done.
2514 			 */
2515 			mutex_lock(&ce->timeline->mutex);
2516 			intel_context_exit(ce);
2517 			mutex_unlock(&ce->timeline->mutex);
2518 
2519 			if (nonblock)
2520 				return -EWOULDBLOCK;
2521 			else
2522 				return -EINTR;
2523 		}
2524 		i915_request_put(rq);
2525 	}
2526 
2527 	return 0;
2528 }
2529 
2530 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2531 {
2532 	struct intel_context *ce = eb->context, *child;
2533 	int err;
2534 	int i = 0, j = 0;
2535 
2536 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2537 
2538 	if (unlikely(intel_context_is_banned(ce)))
2539 		return -EIO;
2540 
2541 	/*
2542 	 * Pinning the contexts may generate requests in order to acquire
2543 	 * GGTT space, so do this first before we reserve a seqno for
2544 	 * ourselves.
2545 	 */
2546 	err = intel_context_pin_ww(ce, &eb->ww);
2547 	if (err)
2548 		return err;
2549 	for_each_child(ce, child) {
2550 		err = intel_context_pin_ww(child, &eb->ww);
2551 		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
2552 	}
2553 
2554 	for_each_child(ce, child) {
2555 		err = eb_pin_timeline(eb, child, throttle);
2556 		if (err)
2557 			goto unwind;
2558 		++i;
2559 	}
2560 	err = eb_pin_timeline(eb, ce, throttle);
2561 	if (err)
2562 		goto unwind;
2563 
2564 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2565 	return 0;
2566 
2567 unwind:
2568 	for_each_child(ce, child) {
2569 		if (j++ < i) {
2570 			mutex_lock(&child->timeline->mutex);
2571 			intel_context_exit(child);
2572 			mutex_unlock(&child->timeline->mutex);
2573 		}
2574 	}
2575 	for_each_child(ce, child)
2576 		intel_context_unpin(child);
2577 	intel_context_unpin(ce);
2578 	return err;
2579 }
2580 
2581 static void eb_unpin_engine(struct i915_execbuffer *eb)
2582 {
2583 	struct intel_context *ce = eb->context, *child;
2584 
2585 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2586 		return;
2587 
2588 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2589 
2590 	for_each_child(ce, child) {
2591 		mutex_lock(&child->timeline->mutex);
2592 		intel_context_exit(child);
2593 		mutex_unlock(&child->timeline->mutex);
2594 
2595 		intel_context_unpin(child);
2596 	}
2597 
2598 	mutex_lock(&ce->timeline->mutex);
2599 	intel_context_exit(ce);
2600 	mutex_unlock(&ce->timeline->mutex);
2601 
2602 	intel_context_unpin(ce);
2603 }
2604 
2605 static unsigned int
2606 eb_select_legacy_ring(struct i915_execbuffer *eb)
2607 {
2608 	struct drm_i915_private *i915 = eb->i915;
2609 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2610 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2611 
2612 	if (user_ring_id != I915_EXEC_BSD &&
2613 	    (args->flags & I915_EXEC_BSD_MASK)) {
2614 		drm_dbg(&i915->drm,
2615 			"execbuf with non bsd ring but with invalid "
2616 			"bsd dispatch flags: %d\n", (int)(args->flags));
2617 		return -1;
2618 	}
2619 
2620 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2621 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2622 
2623 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2624 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2625 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2626 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2627 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2628 			bsd_idx--;
2629 		} else {
2630 			drm_dbg(&i915->drm,
2631 				"execbuf with unknown bsd ring: %u\n",
2632 				bsd_idx);
2633 			return -1;
2634 		}
2635 
2636 		return _VCS(bsd_idx);
2637 	}
2638 
2639 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2640 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2641 			user_ring_id);
2642 		return -1;
2643 	}
2644 
2645 	return user_ring_map[user_ring_id];
2646 }
2647 
2648 static int
2649 eb_select_engine(struct i915_execbuffer *eb)
2650 {
2651 	struct intel_context *ce, *child;
2652 	unsigned int idx;
2653 	int err;
2654 
2655 	if (i915_gem_context_user_engines(eb->gem_context))
2656 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2657 	else
2658 		idx = eb_select_legacy_ring(eb);
2659 
2660 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2661 	if (IS_ERR(ce))
2662 		return PTR_ERR(ce);
2663 
2664 	if (intel_context_is_parallel(ce)) {
2665 		if (eb->buffer_count < ce->parallel.number_children + 1) {
2666 			intel_context_put(ce);
2667 			return -EINVAL;
2668 		}
2669 		if (eb->batch_start_offset || eb->args->batch_len) {
2670 			intel_context_put(ce);
2671 			return -EINVAL;
2672 		}
2673 	}
2674 	eb->num_batches = ce->parallel.number_children + 1;
2675 
2676 	for_each_child(ce, child)
2677 		intel_context_get(child);
2678 	intel_gt_pm_get(ce->engine->gt);
2679 
2680 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2681 		err = intel_context_alloc_state(ce);
2682 		if (err)
2683 			goto err;
2684 	}
2685 	for_each_child(ce, child) {
2686 		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2687 			err = intel_context_alloc_state(child);
2688 			if (err)
2689 				goto err;
2690 		}
2691 	}
2692 
2693 	/*
2694 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2695 	 * EIO if the GPU is already wedged.
2696 	 */
2697 	err = intel_gt_terminally_wedged(ce->engine->gt);
2698 	if (err)
2699 		goto err;
2700 
2701 	eb->context = ce;
2702 	eb->gt = ce->engine->gt;
2703 
2704 	/*
2705 	 * Make sure engine pool stays alive even if we call intel_context_put
2706 	 * during ww handling. The pool is destroyed when last pm reference
2707 	 * is dropped, which breaks our -EDEADLK handling.
2708 	 */
2709 	return err;
2710 
2711 err:
2712 	intel_gt_pm_put(ce->engine->gt);
2713 	for_each_child(ce, child)
2714 		intel_context_put(child);
2715 	intel_context_put(ce);
2716 	return err;
2717 }
2718 
2719 static void
2720 eb_put_engine(struct i915_execbuffer *eb)
2721 {
2722 	struct intel_context *child;
2723 
2724 	intel_gt_pm_put(eb->gt);
2725 	for_each_child(eb->context, child)
2726 		intel_context_put(child);
2727 	intel_context_put(eb->context);
2728 }
2729 
2730 static void
2731 __free_fence_array(struct eb_fence *fences, unsigned int n)
2732 {
2733 	while (n--) {
2734 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2735 		dma_fence_put(fences[n].dma_fence);
2736 		dma_fence_chain_free(fences[n].chain_fence);
2737 	}
2738 	kvfree(fences);
2739 }
2740 
2741 static int
2742 add_timeline_fence_array(struct i915_execbuffer *eb,
2743 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2744 {
2745 	struct drm_i915_gem_exec_fence __user *user_fences;
2746 	u64 __user *user_values;
2747 	struct eb_fence *f;
2748 	u64 nfences;
2749 	int err = 0;
2750 
2751 	nfences = timeline_fences->fence_count;
2752 	if (!nfences)
2753 		return 0;
2754 
2755 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2756 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2757 	if (nfences > min_t(unsigned long,
2758 			    ULONG_MAX / sizeof(*user_fences),
2759 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2760 		return -EINVAL;
2761 
2762 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2763 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2764 		return -EFAULT;
2765 
2766 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2767 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2768 		return -EFAULT;
2769 
2770 	f = krealloc(eb->fences,
2771 		     (eb->num_fences + nfences) * sizeof(*f),
2772 		     __GFP_NOWARN | GFP_KERNEL);
2773 	if (!f)
2774 		return -ENOMEM;
2775 
2776 	eb->fences = f;
2777 	f += eb->num_fences;
2778 
2779 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2780 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2781 
2782 	while (nfences--) {
2783 		struct drm_i915_gem_exec_fence user_fence;
2784 		struct drm_syncobj *syncobj;
2785 		struct dma_fence *fence = NULL;
2786 		u64 point;
2787 
2788 		if (__copy_from_user(&user_fence,
2789 				     user_fences++,
2790 				     sizeof(user_fence)))
2791 			return -EFAULT;
2792 
2793 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2794 			return -EINVAL;
2795 
2796 		if (__get_user(point, user_values++))
2797 			return -EFAULT;
2798 
2799 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2800 		if (!syncobj) {
2801 			DRM_DEBUG("Invalid syncobj handle provided\n");
2802 			return -ENOENT;
2803 		}
2804 
2805 		fence = drm_syncobj_fence_get(syncobj);
2806 
2807 		if (!fence && user_fence.flags &&
2808 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2809 			DRM_DEBUG("Syncobj handle has no fence\n");
2810 			drm_syncobj_put(syncobj);
2811 			return -EINVAL;
2812 		}
2813 
2814 		if (fence)
2815 			err = dma_fence_chain_find_seqno(&fence, point);
2816 
2817 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2818 			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2819 			dma_fence_put(fence);
2820 			drm_syncobj_put(syncobj);
2821 			return err;
2822 		}
2823 
2824 		/*
2825 		 * A point might have been signaled already and
2826 		 * garbage collected from the timeline. In this case
2827 		 * just ignore the point and carry on.
2828 		 */
2829 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2830 			drm_syncobj_put(syncobj);
2831 			continue;
2832 		}
2833 
2834 		/*
2835 		 * For timeline syncobjs we need to preallocate chains for
2836 		 * later signaling.
2837 		 */
2838 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2839 			/*
2840 			 * Waiting and signaling the same point (when point !=
2841 			 * 0) would break the timeline.
2842 			 */
2843 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2844 				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2845 				dma_fence_put(fence);
2846 				drm_syncobj_put(syncobj);
2847 				return -EINVAL;
2848 			}
2849 
2850 			f->chain_fence = dma_fence_chain_alloc();
2851 			if (!f->chain_fence) {
2852 				drm_syncobj_put(syncobj);
2853 				dma_fence_put(fence);
2854 				return -ENOMEM;
2855 			}
2856 		} else {
2857 			f->chain_fence = NULL;
2858 		}
2859 
2860 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2861 		f->dma_fence = fence;
2862 		f->value = point;
2863 		f++;
2864 		eb->num_fences++;
2865 	}
2866 
2867 	return 0;
2868 }
2869 
2870 static int add_fence_array(struct i915_execbuffer *eb)
2871 {
2872 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2873 	struct drm_i915_gem_exec_fence __user *user;
2874 	unsigned long num_fences = args->num_cliprects;
2875 	struct eb_fence *f;
2876 
2877 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2878 		return 0;
2879 
2880 	if (!num_fences)
2881 		return 0;
2882 
2883 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2884 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2885 	if (num_fences > min_t(unsigned long,
2886 			       ULONG_MAX / sizeof(*user),
2887 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2888 		return -EINVAL;
2889 
2890 	user = u64_to_user_ptr(args->cliprects_ptr);
2891 	if (!access_ok(user, num_fences * sizeof(*user)))
2892 		return -EFAULT;
2893 
2894 	f = krealloc(eb->fences,
2895 		     (eb->num_fences + num_fences) * sizeof(*f),
2896 		     __GFP_NOWARN | GFP_KERNEL);
2897 	if (!f)
2898 		return -ENOMEM;
2899 
2900 	eb->fences = f;
2901 	f += eb->num_fences;
2902 	while (num_fences--) {
2903 		struct drm_i915_gem_exec_fence user_fence;
2904 		struct drm_syncobj *syncobj;
2905 		struct dma_fence *fence = NULL;
2906 
2907 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2908 			return -EFAULT;
2909 
2910 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2911 			return -EINVAL;
2912 
2913 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2914 		if (!syncobj) {
2915 			DRM_DEBUG("Invalid syncobj handle provided\n");
2916 			return -ENOENT;
2917 		}
2918 
2919 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2920 			fence = drm_syncobj_fence_get(syncobj);
2921 			if (!fence) {
2922 				DRM_DEBUG("Syncobj handle has no fence\n");
2923 				drm_syncobj_put(syncobj);
2924 				return -EINVAL;
2925 			}
2926 		}
2927 
2928 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2929 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2930 
2931 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2932 		f->dma_fence = fence;
2933 		f->value = 0;
2934 		f->chain_fence = NULL;
2935 		f++;
2936 		eb->num_fences++;
2937 	}
2938 
2939 	return 0;
2940 }
2941 
2942 static void put_fence_array(struct eb_fence *fences, int num_fences)
2943 {
2944 	if (fences)
2945 		__free_fence_array(fences, num_fences);
2946 }
2947 
2948 static int
2949 await_fence_array(struct i915_execbuffer *eb,
2950 		  struct i915_request *rq)
2951 {
2952 	unsigned int n;
2953 	int err;
2954 
2955 	for (n = 0; n < eb->num_fences; n++) {
2956 		struct drm_syncobj *syncobj;
2957 		unsigned int flags;
2958 
2959 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2960 
2961 		if (!eb->fences[n].dma_fence)
2962 			continue;
2963 
2964 		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
2965 		if (err < 0)
2966 			return err;
2967 	}
2968 
2969 	return 0;
2970 }
2971 
2972 static void signal_fence_array(const struct i915_execbuffer *eb,
2973 			       struct dma_fence * const fence)
2974 {
2975 	unsigned int n;
2976 
2977 	for (n = 0; n < eb->num_fences; n++) {
2978 		struct drm_syncobj *syncobj;
2979 		unsigned int flags;
2980 
2981 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2982 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
2983 			continue;
2984 
2985 		if (eb->fences[n].chain_fence) {
2986 			drm_syncobj_add_point(syncobj,
2987 					      eb->fences[n].chain_fence,
2988 					      fence,
2989 					      eb->fences[n].value);
2990 			/*
2991 			 * The chain's ownership is transferred to the
2992 			 * timeline.
2993 			 */
2994 			eb->fences[n].chain_fence = NULL;
2995 		} else {
2996 			drm_syncobj_replace_fence(syncobj, fence);
2997 		}
2998 	}
2999 }
3000 
3001 static int
3002 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3003 {
3004 	struct i915_execbuffer *eb = data;
3005 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3006 
3007 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3008 		return -EFAULT;
3009 
3010 	return add_timeline_fence_array(eb, &timeline_fences);
3011 }
3012 
3013 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3014 {
3015 	struct i915_request *rq, *rn;
3016 
3017 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3018 		if (rq == end || !i915_request_retire(rq))
3019 			break;
3020 }
3021 
3022 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3023 			  int err, bool last_parallel)
3024 {
3025 	struct intel_timeline * const tl = i915_request_timeline(rq);
3026 	struct i915_sched_attr attr = {};
3027 	struct i915_request *prev;
3028 
3029 	lockdep_assert_held(&tl->mutex);
3030 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3031 
3032 	trace_i915_request_add(rq);
3033 
3034 	prev = __i915_request_commit(rq);
3035 
3036 	/* Check that the context wasn't destroyed before submission */
3037 	if (likely(!intel_context_is_closed(eb->context))) {
3038 		attr = eb->gem_context->sched;
3039 	} else {
3040 		/* Serialise with context_close via the add_to_timeline */
3041 		i915_request_set_error_once(rq, -ENOENT);
3042 		__i915_request_skip(rq);
3043 		err = -ENOENT; /* override any transient errors */
3044 	}
3045 
3046 	if (intel_context_is_parallel(eb->context)) {
3047 		if (err) {
3048 			__i915_request_skip(rq);
3049 			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3050 				&rq->fence.flags);
3051 		}
3052 		if (last_parallel)
3053 			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3054 				&rq->fence.flags);
3055 	}
3056 
3057 	__i915_request_queue(rq, &attr);
3058 
3059 	/* Try to clean up the client's timeline after submitting the request */
3060 	if (prev)
3061 		retire_requests(tl, prev);
3062 
3063 	mutex_unlock(&tl->mutex);
3064 
3065 	return err;
3066 }
3067 
3068 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3069 {
3070 	int i;
3071 
3072 	/*
3073 	 * We iterate in reverse order of creation to release timeline mutexes in
3074 	 * same order.
3075 	 */
3076 	for_each_batch_add_order(eb, i) {
3077 		struct i915_request *rq = eb->requests[i];
3078 
3079 		if (!rq)
3080 			continue;
3081 		err |= eb_request_add(eb, rq, err, i == 0);
3082 	}
3083 
3084 	return err;
3085 }
3086 
3087 static const i915_user_extension_fn execbuf_extensions[] = {
3088 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3089 };
3090 
3091 static int
3092 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3093 			  struct i915_execbuffer *eb)
3094 {
3095 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3096 		return 0;
3097 
3098 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3099 	 * have another flag also using it at the same time.
3100 	 */
3101 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3102 		return -EINVAL;
3103 
3104 	if (args->num_cliprects != 0)
3105 		return -EINVAL;
3106 
3107 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3108 				    execbuf_extensions,
3109 				    ARRAY_SIZE(execbuf_extensions),
3110 				    eb);
3111 }
3112 
3113 static void eb_requests_get(struct i915_execbuffer *eb)
3114 {
3115 	unsigned int i;
3116 
3117 	for_each_batch_create_order(eb, i) {
3118 		if (!eb->requests[i])
3119 			break;
3120 
3121 		i915_request_get(eb->requests[i]);
3122 	}
3123 }
3124 
3125 static void eb_requests_put(struct i915_execbuffer *eb)
3126 {
3127 	unsigned int i;
3128 
3129 	for_each_batch_create_order(eb, i) {
3130 		if (!eb->requests[i])
3131 			break;
3132 
3133 		i915_request_put(eb->requests[i]);
3134 	}
3135 }
3136 
3137 static struct sync_file *
3138 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3139 {
3140 	struct sync_file *out_fence = NULL;
3141 	struct dma_fence_array *fence_array;
3142 	struct dma_fence **fences;
3143 	unsigned int i;
3144 
3145 	GEM_BUG_ON(!intel_context_is_parent(eb->context));
3146 
3147 	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3148 	if (!fences)
3149 		return ERR_PTR(-ENOMEM);
3150 
3151 	for_each_batch_create_order(eb, i) {
3152 		fences[i] = &eb->requests[i]->fence;
3153 		__set_bit(I915_FENCE_FLAG_COMPOSITE,
3154 			  &eb->requests[i]->fence.flags);
3155 	}
3156 
3157 	fence_array = dma_fence_array_create(eb->num_batches,
3158 					     fences,
3159 					     eb->context->parallel.fence_context,
3160 					     eb->context->parallel.seqno++,
3161 					     false);
3162 	if (!fence_array) {
3163 		kfree(fences);
3164 		return ERR_PTR(-ENOMEM);
3165 	}
3166 
3167 	/* Move ownership to the dma_fence_array created above */
3168 	for_each_batch_create_order(eb, i)
3169 		dma_fence_get(fences[i]);
3170 
3171 	if (out_fence_fd != -1) {
3172 		out_fence = sync_file_create(&fence_array->base);
3173 		/* sync_file now owns fence_arry, drop creation ref */
3174 		dma_fence_put(&fence_array->base);
3175 		if (!out_fence)
3176 			return ERR_PTR(-ENOMEM);
3177 	}
3178 
3179 	eb->composite_fence = &fence_array->base;
3180 
3181 	return out_fence;
3182 }
3183 
3184 static struct sync_file *
3185 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3186 	      struct dma_fence *in_fence, int out_fence_fd)
3187 {
3188 	struct sync_file *out_fence = NULL;
3189 	int err;
3190 
3191 	if (unlikely(eb->gem_context->syncobj)) {
3192 		struct dma_fence *fence;
3193 
3194 		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3195 		err = i915_request_await_dma_fence(rq, fence);
3196 		dma_fence_put(fence);
3197 		if (err)
3198 			return ERR_PTR(err);
3199 	}
3200 
3201 	if (in_fence) {
3202 		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3203 			err = i915_request_await_execution(rq, in_fence);
3204 		else
3205 			err = i915_request_await_dma_fence(rq, in_fence);
3206 		if (err < 0)
3207 			return ERR_PTR(err);
3208 	}
3209 
3210 	if (eb->fences) {
3211 		err = await_fence_array(eb, rq);
3212 		if (err)
3213 			return ERR_PTR(err);
3214 	}
3215 
3216 	if (intel_context_is_parallel(eb->context)) {
3217 		out_fence = eb_composite_fence_create(eb, out_fence_fd);
3218 		if (IS_ERR(out_fence))
3219 			return ERR_PTR(-ENOMEM);
3220 	} else if (out_fence_fd != -1) {
3221 		out_fence = sync_file_create(&rq->fence);
3222 		if (!out_fence)
3223 			return ERR_PTR(-ENOMEM);
3224 	}
3225 
3226 	return out_fence;
3227 }
3228 
3229 static struct intel_context *
3230 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3231 {
3232 	struct intel_context *child;
3233 
3234 	if (likely(context_number == 0))
3235 		return eb->context;
3236 
3237 	for_each_child(eb->context, child)
3238 		if (!--context_number)
3239 			return child;
3240 
3241 	GEM_BUG_ON("Context not found");
3242 
3243 	return NULL;
3244 }
3245 
3246 static struct sync_file *
3247 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3248 		   int out_fence_fd)
3249 {
3250 	struct sync_file *out_fence = NULL;
3251 	unsigned int i;
3252 
3253 	for_each_batch_create_order(eb, i) {
3254 		/* Allocate a request for this batch buffer nice and early. */
3255 		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3256 		if (IS_ERR(eb->requests[i])) {
3257 			out_fence = ERR_CAST(eb->requests[i]);
3258 			eb->requests[i] = NULL;
3259 			return out_fence;
3260 		}
3261 
3262 		/*
3263 		 * Only the first request added (committed to backend) has to
3264 		 * take the in fences into account as all subsequent requests
3265 		 * will have fences inserted inbetween them.
3266 		 */
3267 		if (i + 1 == eb->num_batches) {
3268 			out_fence = eb_fences_add(eb, eb->requests[i],
3269 						  in_fence, out_fence_fd);
3270 			if (IS_ERR(out_fence))
3271 				return out_fence;
3272 		}
3273 
3274 		/*
3275 		 * Not really on stack, but we don't want to call
3276 		 * kfree on the batch_snapshot when we put it, so use the
3277 		 * _onstack interface.
3278 		 */
3279 		if (eb->batches[i]->vma)
3280 			i915_vma_snapshot_init_onstack(&eb->requests[i]->batch_snapshot,
3281 						       eb->batches[i]->vma,
3282 						       "batch");
3283 		if (eb->batch_pool) {
3284 			GEM_BUG_ON(intel_context_is_parallel(eb->context));
3285 			intel_gt_buffer_pool_mark_active(eb->batch_pool,
3286 							 eb->requests[i]);
3287 		}
3288 	}
3289 
3290 	return out_fence;
3291 }
3292 
3293 static int
3294 i915_gem_do_execbuffer(struct drm_device *dev,
3295 		       struct drm_file *file,
3296 		       struct drm_i915_gem_execbuffer2 *args,
3297 		       struct drm_i915_gem_exec_object2 *exec)
3298 {
3299 	struct drm_i915_private *i915 = to_i915(dev);
3300 	struct i915_execbuffer eb;
3301 	struct dma_fence *in_fence = NULL;
3302 	struct sync_file *out_fence = NULL;
3303 	int out_fence_fd = -1;
3304 	int err;
3305 
3306 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3307 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3308 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3309 
3310 	eb.i915 = i915;
3311 	eb.file = file;
3312 	eb.args = args;
3313 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3314 		args->flags |= __EXEC_HAS_RELOC;
3315 
3316 	eb.exec = exec;
3317 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3318 	eb.vma[0].vma = NULL;
3319 	eb.batch_pool = NULL;
3320 
3321 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3322 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3323 
3324 	eb.buffer_count = args->buffer_count;
3325 	eb.batch_start_offset = args->batch_start_offset;
3326 	eb.trampoline = NULL;
3327 
3328 	eb.fences = NULL;
3329 	eb.num_fences = 0;
3330 
3331 	eb_capture_list_clear(&eb);
3332 
3333 	memset(eb.requests, 0, sizeof(struct i915_request *) *
3334 	       ARRAY_SIZE(eb.requests));
3335 	eb.composite_fence = NULL;
3336 
3337 	eb.batch_flags = 0;
3338 	if (args->flags & I915_EXEC_SECURE) {
3339 		if (GRAPHICS_VER(i915) >= 11)
3340 			return -ENODEV;
3341 
3342 		/* Return -EPERM to trigger fallback code on old binaries. */
3343 		if (!HAS_SECURE_BATCHES(i915))
3344 			return -EPERM;
3345 
3346 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3347 			return -EPERM;
3348 
3349 		eb.batch_flags |= I915_DISPATCH_SECURE;
3350 	}
3351 	if (args->flags & I915_EXEC_IS_PINNED)
3352 		eb.batch_flags |= I915_DISPATCH_PINNED;
3353 
3354 	err = parse_execbuf2_extensions(args, &eb);
3355 	if (err)
3356 		goto err_ext;
3357 
3358 	err = add_fence_array(&eb);
3359 	if (err)
3360 		goto err_ext;
3361 
3362 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3363 	if (args->flags & IN_FENCES) {
3364 		if ((args->flags & IN_FENCES) == IN_FENCES)
3365 			return -EINVAL;
3366 
3367 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3368 		if (!in_fence) {
3369 			err = -EINVAL;
3370 			goto err_ext;
3371 		}
3372 	}
3373 #undef IN_FENCES
3374 
3375 	if (args->flags & I915_EXEC_FENCE_OUT) {
3376 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3377 		if (out_fence_fd < 0) {
3378 			err = out_fence_fd;
3379 			goto err_in_fence;
3380 		}
3381 	}
3382 
3383 	err = eb_create(&eb);
3384 	if (err)
3385 		goto err_out_fence;
3386 
3387 	GEM_BUG_ON(!eb.lut_size);
3388 
3389 	err = eb_select_context(&eb);
3390 	if (unlikely(err))
3391 		goto err_destroy;
3392 
3393 	err = eb_select_engine(&eb);
3394 	if (unlikely(err))
3395 		goto err_context;
3396 
3397 	err = eb_lookup_vmas(&eb);
3398 	if (err) {
3399 		eb_release_vmas(&eb, true);
3400 		goto err_engine;
3401 	}
3402 
3403 	i915_gem_ww_ctx_init(&eb.ww, true);
3404 
3405 	err = eb_relocate_parse(&eb);
3406 	if (err) {
3407 		/*
3408 		 * If the user expects the execobject.offset and
3409 		 * reloc.presumed_offset to be an exact match,
3410 		 * as for using NO_RELOC, then we cannot update
3411 		 * the execobject.offset until we have completed
3412 		 * relocation.
3413 		 */
3414 		args->flags &= ~__EXEC_HAS_RELOC;
3415 		goto err_vma;
3416 	}
3417 
3418 	ww_acquire_done(&eb.ww.ctx);
3419 	eb_capture_stage(&eb);
3420 
3421 	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3422 	if (IS_ERR(out_fence)) {
3423 		err = PTR_ERR(out_fence);
3424 		out_fence = NULL;
3425 		if (eb.requests[0])
3426 			goto err_request;
3427 		else
3428 			goto err_vma;
3429 	}
3430 
3431 	err = eb_submit(&eb);
3432 
3433 err_request:
3434 	eb_requests_get(&eb);
3435 	err = eb_requests_add(&eb, err);
3436 
3437 	if (eb.fences)
3438 		signal_fence_array(&eb, eb.composite_fence ?
3439 				   eb.composite_fence :
3440 				   &eb.requests[0]->fence);
3441 
3442 	if (out_fence) {
3443 		if (err == 0) {
3444 			fd_install(out_fence_fd, out_fence->file);
3445 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3446 			args->rsvd2 |= (u64)out_fence_fd << 32;
3447 			out_fence_fd = -1;
3448 		} else {
3449 			fput(out_fence->file);
3450 		}
3451 	}
3452 
3453 	if (unlikely(eb.gem_context->syncobj)) {
3454 		drm_syncobj_replace_fence(eb.gem_context->syncobj,
3455 					  eb.composite_fence ?
3456 					  eb.composite_fence :
3457 					  &eb.requests[0]->fence);
3458 	}
3459 
3460 	if (!out_fence && eb.composite_fence)
3461 		dma_fence_put(eb.composite_fence);
3462 
3463 	eb_requests_put(&eb);
3464 
3465 err_vma:
3466 	eb_release_vmas(&eb, true);
3467 	if (eb.trampoline)
3468 		i915_vma_unpin(eb.trampoline);
3469 	WARN_ON(err == -EDEADLK);
3470 	i915_gem_ww_ctx_fini(&eb.ww);
3471 
3472 	if (eb.batch_pool)
3473 		intel_gt_buffer_pool_put(eb.batch_pool);
3474 err_engine:
3475 	eb_put_engine(&eb);
3476 err_context:
3477 	i915_gem_context_put(eb.gem_context);
3478 err_destroy:
3479 	eb_destroy(&eb);
3480 err_out_fence:
3481 	if (out_fence_fd != -1)
3482 		put_unused_fd(out_fence_fd);
3483 err_in_fence:
3484 	dma_fence_put(in_fence);
3485 err_ext:
3486 	put_fence_array(eb.fences, eb.num_fences);
3487 	return err;
3488 }
3489 
3490 static size_t eb_element_size(void)
3491 {
3492 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3493 }
3494 
3495 static bool check_buffer_count(size_t count)
3496 {
3497 	const size_t sz = eb_element_size();
3498 
3499 	/*
3500 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3501 	 * array size (see eb_create()). Otherwise, we can accept an array as
3502 	 * large as can be addressed (though use large arrays at your peril)!
3503 	 */
3504 
3505 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3506 }
3507 
3508 int
3509 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3510 			   struct drm_file *file)
3511 {
3512 	struct drm_i915_private *i915 = to_i915(dev);
3513 	struct drm_i915_gem_execbuffer2 *args = data;
3514 	struct drm_i915_gem_exec_object2 *exec2_list;
3515 	const size_t count = args->buffer_count;
3516 	int err;
3517 
3518 	if (!check_buffer_count(count)) {
3519 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3520 		return -EINVAL;
3521 	}
3522 
3523 	err = i915_gem_check_execbuffer(args);
3524 	if (err)
3525 		return err;
3526 
3527 	/* Allocate extra slots for use by the command parser */
3528 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3529 				    __GFP_NOWARN | GFP_KERNEL);
3530 	if (exec2_list == NULL) {
3531 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3532 			count);
3533 		return -ENOMEM;
3534 	}
3535 	if (copy_from_user(exec2_list,
3536 			   u64_to_user_ptr(args->buffers_ptr),
3537 			   sizeof(*exec2_list) * count)) {
3538 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3539 		kvfree(exec2_list);
3540 		return -EFAULT;
3541 	}
3542 
3543 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3544 
3545 	/*
3546 	 * Now that we have begun execution of the batchbuffer, we ignore
3547 	 * any new error after this point. Also given that we have already
3548 	 * updated the associated relocations, we try to write out the current
3549 	 * object locations irrespective of any error.
3550 	 */
3551 	if (args->flags & __EXEC_HAS_RELOC) {
3552 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3553 			u64_to_user_ptr(args->buffers_ptr);
3554 		unsigned int i;
3555 
3556 		/* Copy the new buffer offsets back to the user's exec list. */
3557 		/*
3558 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3559 		 * because we checked 'count' in check_buffer_count().
3560 		 *
3561 		 * And this range already got effectively checked earlier
3562 		 * when we did the "copy_from_user()" above.
3563 		 */
3564 		if (!user_write_access_begin(user_exec_list,
3565 					     count * sizeof(*user_exec_list)))
3566 			goto end;
3567 
3568 		for (i = 0; i < args->buffer_count; i++) {
3569 			if (!(exec2_list[i].offset & UPDATE))
3570 				continue;
3571 
3572 			exec2_list[i].offset =
3573 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3574 			unsafe_put_user(exec2_list[i].offset,
3575 					&user_exec_list[i].offset,
3576 					end_user);
3577 		}
3578 end_user:
3579 		user_write_access_end();
3580 end:;
3581 	}
3582 
3583 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3584 	kvfree(exec2_list);
3585 	return err;
3586 }
3587