xref: /linux/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c (revision 5cfe477f6a3f9a4d9b2906d442964f2115b0403f)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 
14 #include "display/intel_frontbuffer.h"
15 
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23 
24 #include "pxp/intel_pxp.h"
25 
26 #include "i915_cmd_parser.h"
27 #include "i915_drv.h"
28 #include "i915_file_private.h"
29 #include "i915_gem_clflush.h"
30 #include "i915_gem_context.h"
31 #include "i915_gem_evict.h"
32 #include "i915_gem_ioctls.h"
33 #include "i915_trace.h"
34 #include "i915_user_extensions.h"
35 
36 struct eb_vma {
37 	struct i915_vma *vma;
38 	unsigned int flags;
39 
40 	/** This vma's place in the execbuf reservation list */
41 	struct drm_i915_gem_exec_object2 *exec;
42 	struct list_head bind_link;
43 	struct list_head reloc_link;
44 
45 	struct hlist_node node;
46 	u32 handle;
47 };
48 
49 enum {
50 	FORCE_CPU_RELOC = 1,
51 	FORCE_GTT_RELOC,
52 	FORCE_GPU_RELOC,
53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
54 };
55 
56 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
57 #define __EXEC_OBJECT_HAS_PIN		BIT(30)
58 #define __EXEC_OBJECT_HAS_FENCE		BIT(29)
59 #define __EXEC_OBJECT_USERPTR_INIT	BIT(28)
60 #define __EXEC_OBJECT_NEEDS_MAP		BIT(27)
61 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(26)
62 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 26) /* all of the above + */
63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
64 
65 #define __EXEC_HAS_RELOC	BIT(31)
66 #define __EXEC_ENGINE_PINNED	BIT(30)
67 #define __EXEC_USERPTR_USED	BIT(29)
68 #define __EXEC_INTERNAL_FLAGS	(~0u << 29)
69 #define UPDATE			PIN_OFFSET_FIXED
70 
71 #define BATCH_OFFSET_BIAS (256*1024)
72 
73 #define __I915_EXEC_ILLEGAL_FLAGS \
74 	(__I915_EXEC_UNKNOWN_FLAGS | \
75 	 I915_EXEC_CONSTANTS_MASK  | \
76 	 I915_EXEC_RESOURCE_STREAMER)
77 
78 /* Catch emission of unexpected errors for CI! */
79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
80 #undef EINVAL
81 #define EINVAL ({ \
82 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
83 	22; \
84 })
85 #endif
86 
87 /**
88  * DOC: User command execution
89  *
90  * Userspace submits commands to be executed on the GPU as an instruction
91  * stream within a GEM object we call a batchbuffer. This instructions may
92  * refer to other GEM objects containing auxiliary state such as kernels,
93  * samplers, render targets and even secondary batchbuffers. Userspace does
94  * not know where in the GPU memory these objects reside and so before the
95  * batchbuffer is passed to the GPU for execution, those addresses in the
96  * batchbuffer and auxiliary objects are updated. This is known as relocation,
97  * or patching. To try and avoid having to relocate each object on the next
98  * execution, userspace is told the location of those objects in this pass,
99  * but this remains just a hint as the kernel may choose a new location for
100  * any object in the future.
101  *
102  * At the level of talking to the hardware, submitting a batchbuffer for the
103  * GPU to execute is to add content to a buffer from which the HW
104  * command streamer is reading.
105  *
106  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
107  *    Execlists, this command is not placed on the same buffer as the
108  *    remaining items.
109  *
110  * 2. Add a command to invalidate caches to the buffer.
111  *
112  * 3. Add a batchbuffer start command to the buffer; the start command is
113  *    essentially a token together with the GPU address of the batchbuffer
114  *    to be executed.
115  *
116  * 4. Add a pipeline flush to the buffer.
117  *
118  * 5. Add a memory write command to the buffer to record when the GPU
119  *    is done executing the batchbuffer. The memory write writes the
120  *    global sequence number of the request, ``i915_request::global_seqno``;
121  *    the i915 driver uses the current value in the register to determine
122  *    if the GPU has completed the batchbuffer.
123  *
124  * 6. Add a user interrupt command to the buffer. This command instructs
125  *    the GPU to issue an interrupt when the command, pipeline flush and
126  *    memory write are completed.
127  *
128  * 7. Inform the hardware of the additional commands added to the buffer
129  *    (by updating the tail pointer).
130  *
131  * Processing an execbuf ioctl is conceptually split up into a few phases.
132  *
133  * 1. Validation - Ensure all the pointers, handles and flags are valid.
134  * 2. Reservation - Assign GPU address space for every object
135  * 3. Relocation - Update any addresses to point to the final locations
136  * 4. Serialisation - Order the request with respect to its dependencies
137  * 5. Construction - Construct a request to execute the batchbuffer
138  * 6. Submission (at some point in the future execution)
139  *
140  * Reserving resources for the execbuf is the most complicated phase. We
141  * neither want to have to migrate the object in the address space, nor do
142  * we want to have to update any relocations pointing to this object. Ideally,
143  * we want to leave the object where it is and for all the existing relocations
144  * to match. If the object is given a new address, or if userspace thinks the
145  * object is elsewhere, we have to parse all the relocation entries and update
146  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
147  * all the target addresses in all of its objects match the value in the
148  * relocation entries and that they all match the presumed offsets given by the
149  * list of execbuffer objects. Using this knowledge, we know that if we haven't
150  * moved any buffers, all the relocation entries are valid and we can skip
151  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
152  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
153  *
154  *      The addresses written in the objects must match the corresponding
155  *      reloc.presumed_offset which in turn must match the corresponding
156  *      execobject.offset.
157  *
158  *      Any render targets written to in the batch must be flagged with
159  *      EXEC_OBJECT_WRITE.
160  *
161  *      To avoid stalling, execobject.offset should match the current
162  *      address of that object within the active context.
163  *
164  * The reservation is done is multiple phases. First we try and keep any
165  * object already bound in its current location - so as long as meets the
166  * constraints imposed by the new execbuffer. Any object left unbound after the
167  * first pass is then fitted into any available idle space. If an object does
168  * not fit, all objects are removed from the reservation and the process rerun
169  * after sorting the objects into a priority order (more difficult to fit
170  * objects are tried first). Failing that, the entire VM is cleared and we try
171  * to fit the execbuf once last time before concluding that it simply will not
172  * fit.
173  *
174  * A small complication to all of this is that we allow userspace not only to
175  * specify an alignment and a size for the object in the address space, but
176  * we also allow userspace to specify the exact offset. This objects are
177  * simpler to place (the location is known a priori) all we have to do is make
178  * sure the space is available.
179  *
180  * Once all the objects are in place, patching up the buried pointers to point
181  * to the final locations is a fairly simple job of walking over the relocation
182  * entry arrays, looking up the right address and rewriting the value into
183  * the object. Simple! ... The relocation entries are stored in user memory
184  * and so to access them we have to copy them into a local buffer. That copy
185  * has to avoid taking any pagefaults as they may lead back to a GEM object
186  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
187  * the relocation into multiple passes. First we try to do everything within an
188  * atomic context (avoid the pagefaults) which requires that we never wait. If
189  * we detect that we may wait, or if we need to fault, then we have to fallback
190  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
191  * bells yet?) Dropping the mutex means that we lose all the state we have
192  * built up so far for the execbuf and we must reset any global data. However,
193  * we do leave the objects pinned in their final locations - which is a
194  * potential issue for concurrent execbufs. Once we have left the mutex, we can
195  * allocate and copy all the relocation entries into a large array at our
196  * leisure, reacquire the mutex, reclaim all the objects and other state and
197  * then proceed to update any incorrect addresses with the objects.
198  *
199  * As we process the relocation entries, we maintain a record of whether the
200  * object is being written to. Using NORELOC, we expect userspace to provide
201  * this information instead. We also check whether we can skip the relocation
202  * by comparing the expected value inside the relocation entry with the target's
203  * final address. If they differ, we have to map the current object and rewrite
204  * the 4 or 8 byte pointer within.
205  *
206  * Serialising an execbuf is quite simple according to the rules of the GEM
207  * ABI. Execution within each context is ordered by the order of submission.
208  * Writes to any GEM object are in order of submission and are exclusive. Reads
209  * from a GEM object are unordered with respect to other reads, but ordered by
210  * writes. A write submitted after a read cannot occur before the read, and
211  * similarly any read submitted after a write cannot occur before the write.
212  * Writes are ordered between engines such that only one write occurs at any
213  * time (completing any reads beforehand) - using semaphores where available
214  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
215  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
216  * reads before starting, and any read (either using set-domain or pread) must
217  * flush all GPU writes before starting. (Note we only employ a barrier before,
218  * we currently rely on userspace not concurrently starting a new execution
219  * whilst reading or writing to an object. This may be an advantage or not
220  * depending on how much you trust userspace not to shoot themselves in the
221  * foot.) Serialisation may just result in the request being inserted into
222  * a DAG awaiting its turn, but most simple is to wait on the CPU until
223  * all dependencies are resolved.
224  *
225  * After all of that, is just a matter of closing the request and handing it to
226  * the hardware (well, leaving it in a queue to be executed). However, we also
227  * offer the ability for batchbuffers to be run with elevated privileges so
228  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
229  * Before any batch is given extra privileges we first must check that it
230  * contains no nefarious instructions, we check that each instruction is from
231  * our whitelist and all registers are also from an allowed list. We first
232  * copy the user's batchbuffer to a shadow (so that the user doesn't have
233  * access to it, either by the CPU or GPU as we scan it) and then parse each
234  * instruction. If everything is ok, we set a flag telling the hardware to run
235  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
236  */
237 
238 struct eb_fence {
239 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
240 	struct dma_fence *dma_fence;
241 	u64 value;
242 	struct dma_fence_chain *chain_fence;
243 };
244 
245 struct i915_execbuffer {
246 	struct drm_i915_private *i915; /** i915 backpointer */
247 	struct drm_file *file; /** per-file lookup tables and limits */
248 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
249 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
250 	struct eb_vma *vma;
251 
252 	struct intel_gt *gt; /* gt for the execbuf */
253 	struct intel_context *context; /* logical state for the request */
254 	struct i915_gem_context *gem_context; /** caller's context */
255 
256 	/** our requests to build */
257 	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
258 	/** identity of the batch obj/vma */
259 	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
260 	struct i915_vma *trampoline; /** trampoline used for chaining */
261 
262 	/** used for excl fence in dma_resv objects when > 1 BB submitted */
263 	struct dma_fence *composite_fence;
264 
265 	/** actual size of execobj[] as we may extend it for the cmdparser */
266 	unsigned int buffer_count;
267 
268 	/* number of batches in execbuf IOCTL */
269 	unsigned int num_batches;
270 
271 	/** list of vma not yet bound during reservation phase */
272 	struct list_head unbound;
273 
274 	/** list of vma that have execobj.relocation_count */
275 	struct list_head relocs;
276 
277 	struct i915_gem_ww_ctx ww;
278 
279 	/**
280 	 * Track the most recently used object for relocations, as we
281 	 * frequently have to perform multiple relocations within the same
282 	 * obj/page
283 	 */
284 	struct reloc_cache {
285 		struct drm_mm_node node; /** temporary GTT binding */
286 		unsigned long vaddr; /** Current kmap address */
287 		unsigned long page; /** Currently mapped page index */
288 		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
289 		bool use_64bit_reloc : 1;
290 		bool has_llc : 1;
291 		bool has_fence : 1;
292 		bool needs_unfenced : 1;
293 	} reloc_cache;
294 
295 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
296 
297 	/** Length of batch within object */
298 	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
299 	u32 batch_start_offset; /** Location within object of batch */
300 	u32 batch_flags; /** Flags composed for emit_bb_start() */
301 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
302 
303 	/**
304 	 * Indicate either the size of the hastable used to resolve
305 	 * relocation handles, or if negative that we are using a direct
306 	 * index into the execobj[].
307 	 */
308 	int lut_size;
309 	struct hlist_head *buckets; /** ht for relocation handles */
310 
311 	struct eb_fence *fences;
312 	unsigned long num_fences;
313 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
314 	struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
315 #endif
316 };
317 
318 static int eb_parse(struct i915_execbuffer *eb);
319 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
320 static void eb_unpin_engine(struct i915_execbuffer *eb);
321 static void eb_capture_release(struct i915_execbuffer *eb);
322 
323 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
324 {
325 	return intel_engine_requires_cmd_parser(eb->context->engine) ||
326 		(intel_engine_using_cmd_parser(eb->context->engine) &&
327 		 eb->args->batch_len);
328 }
329 
330 static int eb_create(struct i915_execbuffer *eb)
331 {
332 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
333 		unsigned int size = 1 + ilog2(eb->buffer_count);
334 
335 		/*
336 		 * Without a 1:1 association between relocation handles and
337 		 * the execobject[] index, we instead create a hashtable.
338 		 * We size it dynamically based on available memory, starting
339 		 * first with 1:1 assocative hash and scaling back until
340 		 * the allocation succeeds.
341 		 *
342 		 * Later on we use a positive lut_size to indicate we are
343 		 * using this hashtable, and a negative value to indicate a
344 		 * direct lookup.
345 		 */
346 		do {
347 			gfp_t flags;
348 
349 			/* While we can still reduce the allocation size, don't
350 			 * raise a warning and allow the allocation to fail.
351 			 * On the last pass though, we want to try as hard
352 			 * as possible to perform the allocation and warn
353 			 * if it fails.
354 			 */
355 			flags = GFP_KERNEL;
356 			if (size > 1)
357 				flags |= __GFP_NORETRY | __GFP_NOWARN;
358 
359 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
360 					      flags);
361 			if (eb->buckets)
362 				break;
363 		} while (--size);
364 
365 		if (unlikely(!size))
366 			return -ENOMEM;
367 
368 		eb->lut_size = size;
369 	} else {
370 		eb->lut_size = -eb->buffer_count;
371 	}
372 
373 	return 0;
374 }
375 
376 static bool
377 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
378 		 const struct i915_vma *vma,
379 		 unsigned int flags)
380 {
381 	if (vma->node.size < entry->pad_to_size)
382 		return true;
383 
384 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
385 		return true;
386 
387 	if (flags & EXEC_OBJECT_PINNED &&
388 	    vma->node.start != entry->offset)
389 		return true;
390 
391 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
392 	    vma->node.start < BATCH_OFFSET_BIAS)
393 		return true;
394 
395 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
396 	    (vma->node.start + vma->node.size + 4095) >> 32)
397 		return true;
398 
399 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
400 	    !i915_vma_is_map_and_fenceable(vma))
401 		return true;
402 
403 	return false;
404 }
405 
406 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
407 			unsigned int exec_flags)
408 {
409 	u64 pin_flags = 0;
410 
411 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
412 		pin_flags |= PIN_GLOBAL;
413 
414 	/*
415 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
416 	 * limit address to the first 4GBs for unflagged objects.
417 	 */
418 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
419 		pin_flags |= PIN_ZONE_4G;
420 
421 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
422 		pin_flags |= PIN_MAPPABLE;
423 
424 	if (exec_flags & EXEC_OBJECT_PINNED)
425 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
426 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
427 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
428 
429 	return pin_flags;
430 }
431 
432 static inline int
433 eb_pin_vma(struct i915_execbuffer *eb,
434 	   const struct drm_i915_gem_exec_object2 *entry,
435 	   struct eb_vma *ev)
436 {
437 	struct i915_vma *vma = ev->vma;
438 	u64 pin_flags;
439 	int err;
440 
441 	if (vma->node.size)
442 		pin_flags = vma->node.start;
443 	else
444 		pin_flags = entry->offset & PIN_OFFSET_MASK;
445 
446 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
447 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
448 		pin_flags |= PIN_GLOBAL;
449 
450 	/* Attempt to reuse the current location if available */
451 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
452 	if (err == -EDEADLK)
453 		return err;
454 
455 	if (unlikely(err)) {
456 		if (entry->flags & EXEC_OBJECT_PINNED)
457 			return err;
458 
459 		/* Failing that pick any _free_ space if suitable */
460 		err = i915_vma_pin_ww(vma, &eb->ww,
461 					     entry->pad_to_size,
462 					     entry->alignment,
463 					     eb_pin_flags(entry, ev->flags) |
464 					     PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
465 		if (unlikely(err))
466 			return err;
467 	}
468 
469 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
470 		err = i915_vma_pin_fence(vma);
471 		if (unlikely(err))
472 			return err;
473 
474 		if (vma->fence)
475 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
476 	}
477 
478 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
479 	if (eb_vma_misplaced(entry, vma, ev->flags))
480 		return -EBADSLT;
481 
482 	return 0;
483 }
484 
485 static inline void
486 eb_unreserve_vma(struct eb_vma *ev)
487 {
488 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
489 		__i915_vma_unpin_fence(ev->vma);
490 
491 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
492 }
493 
494 static int
495 eb_validate_vma(struct i915_execbuffer *eb,
496 		struct drm_i915_gem_exec_object2 *entry,
497 		struct i915_vma *vma)
498 {
499 	/* Relocations are disallowed for all platforms after TGL-LP.  This
500 	 * also covers all platforms with local memory.
501 	 */
502 	if (entry->relocation_count &&
503 	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
504 		return -EINVAL;
505 
506 	if (unlikely(entry->flags & eb->invalid_flags))
507 		return -EINVAL;
508 
509 	if (unlikely(entry->alignment &&
510 		     !is_power_of_2_u64(entry->alignment)))
511 		return -EINVAL;
512 
513 	/*
514 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
515 	 * any non-page-aligned or non-canonical addresses.
516 	 */
517 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
518 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
519 		return -EINVAL;
520 
521 	/* pad_to_size was once a reserved field, so sanitize it */
522 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
523 		if (unlikely(offset_in_page(entry->pad_to_size)))
524 			return -EINVAL;
525 	} else {
526 		entry->pad_to_size = 0;
527 	}
528 	/*
529 	 * From drm_mm perspective address space is continuous,
530 	 * so from this point we're always using non-canonical
531 	 * form internally.
532 	 */
533 	entry->offset = gen8_noncanonical_addr(entry->offset);
534 
535 	if (!eb->reloc_cache.has_fence) {
536 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
537 	} else {
538 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
539 		     eb->reloc_cache.needs_unfenced) &&
540 		    i915_gem_object_is_tiled(vma->obj))
541 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
542 	}
543 
544 	return 0;
545 }
546 
547 static inline bool
548 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
549 {
550 	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
551 		buffer_idx < eb->num_batches :
552 		buffer_idx >= eb->args->buffer_count - eb->num_batches;
553 }
554 
555 static int
556 eb_add_vma(struct i915_execbuffer *eb,
557 	   unsigned int *current_batch,
558 	   unsigned int i,
559 	   struct i915_vma *vma)
560 {
561 	struct drm_i915_private *i915 = eb->i915;
562 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
563 	struct eb_vma *ev = &eb->vma[i];
564 
565 	ev->vma = vma;
566 	ev->exec = entry;
567 	ev->flags = entry->flags;
568 
569 	if (eb->lut_size > 0) {
570 		ev->handle = entry->handle;
571 		hlist_add_head(&ev->node,
572 			       &eb->buckets[hash_32(entry->handle,
573 						    eb->lut_size)]);
574 	}
575 
576 	if (entry->relocation_count)
577 		list_add_tail(&ev->reloc_link, &eb->relocs);
578 
579 	/*
580 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
581 	 * to negative relocation deltas. Usually that works out ok since the
582 	 * relocate address is still positive, except when the batch is placed
583 	 * very low in the GTT. Ensure this doesn't happen.
584 	 *
585 	 * Note that actual hangs have only been observed on gen7, but for
586 	 * paranoia do it everywhere.
587 	 */
588 	if (is_batch_buffer(eb, i)) {
589 		if (entry->relocation_count &&
590 		    !(ev->flags & EXEC_OBJECT_PINNED))
591 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
592 		if (eb->reloc_cache.has_fence)
593 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
594 
595 		eb->batches[*current_batch] = ev;
596 
597 		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
598 			drm_dbg(&i915->drm,
599 				"Attempting to use self-modifying batch buffer\n");
600 			return -EINVAL;
601 		}
602 
603 		if (range_overflows_t(u64,
604 				      eb->batch_start_offset,
605 				      eb->args->batch_len,
606 				      ev->vma->size)) {
607 			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
608 			return -EINVAL;
609 		}
610 
611 		if (eb->args->batch_len == 0)
612 			eb->batch_len[*current_batch] = ev->vma->size -
613 				eb->batch_start_offset;
614 		else
615 			eb->batch_len[*current_batch] = eb->args->batch_len;
616 		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
617 			drm_dbg(&i915->drm, "Invalid batch length\n");
618 			return -EINVAL;
619 		}
620 
621 		++*current_batch;
622 	}
623 
624 	return 0;
625 }
626 
627 static inline int use_cpu_reloc(const struct reloc_cache *cache,
628 				const struct drm_i915_gem_object *obj)
629 {
630 	if (!i915_gem_object_has_struct_page(obj))
631 		return false;
632 
633 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
634 		return true;
635 
636 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
637 		return false;
638 
639 	return (cache->has_llc ||
640 		obj->cache_dirty ||
641 		obj->cache_level != I915_CACHE_NONE);
642 }
643 
644 static int eb_reserve_vma(struct i915_execbuffer *eb,
645 			  struct eb_vma *ev,
646 			  u64 pin_flags)
647 {
648 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
649 	struct i915_vma *vma = ev->vma;
650 	int err;
651 
652 	if (drm_mm_node_allocated(&vma->node) &&
653 	    eb_vma_misplaced(entry, vma, ev->flags)) {
654 		err = i915_vma_unbind(vma);
655 		if (err)
656 			return err;
657 	}
658 
659 	err = i915_vma_pin_ww(vma, &eb->ww,
660 			   entry->pad_to_size, entry->alignment,
661 			   eb_pin_flags(entry, ev->flags) | pin_flags);
662 	if (err)
663 		return err;
664 
665 	if (entry->offset != vma->node.start) {
666 		entry->offset = vma->node.start | UPDATE;
667 		eb->args->flags |= __EXEC_HAS_RELOC;
668 	}
669 
670 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
671 		err = i915_vma_pin_fence(vma);
672 		if (unlikely(err))
673 			return err;
674 
675 		if (vma->fence)
676 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
677 	}
678 
679 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
680 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
681 
682 	return 0;
683 }
684 
685 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
686 {
687 	const unsigned int count = eb->buffer_count;
688 	unsigned int i;
689 	struct list_head last;
690 	bool unpinned = false;
691 
692 	/* Resort *all* the objects into priority order */
693 	INIT_LIST_HEAD(&eb->unbound);
694 	INIT_LIST_HEAD(&last);
695 
696 	for (i = 0; i < count; i++) {
697 		struct eb_vma *ev = &eb->vma[i];
698 		unsigned int flags = ev->flags;
699 
700 		if (!force && flags & EXEC_OBJECT_PINNED &&
701 		    flags & __EXEC_OBJECT_HAS_PIN)
702 			continue;
703 
704 		unpinned = true;
705 		eb_unreserve_vma(ev);
706 
707 		if (flags & EXEC_OBJECT_PINNED)
708 			/* Pinned must have their slot */
709 			list_add(&ev->bind_link, &eb->unbound);
710 		else if (flags & __EXEC_OBJECT_NEEDS_MAP)
711 			/* Map require the lowest 256MiB (aperture) */
712 			list_add_tail(&ev->bind_link, &eb->unbound);
713 		else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
714 			/* Prioritise 4GiB region for restricted bo */
715 			list_add(&ev->bind_link, &last);
716 		else
717 			list_add_tail(&ev->bind_link, &last);
718 	}
719 
720 	list_splice_tail(&last, &eb->unbound);
721 	return unpinned;
722 }
723 
724 static int eb_reserve(struct i915_execbuffer *eb)
725 {
726 	struct eb_vma *ev;
727 	unsigned int pass;
728 	int err = 0;
729 	bool unpinned;
730 
731 	/*
732 	 * Attempt to pin all of the buffers into the GTT.
733 	 * This is done in 2 phases:
734 	 *
735 	 * 1. Unbind all objects that do not match the GTT constraints for
736 	 *    the execbuffer (fenceable, mappable, alignment etc).
737 	 * 2. Bind new objects.
738 	 *
739 	 * This avoid unnecessary unbinding of later objects in order to make
740 	 * room for the earlier objects *unless* we need to defragment.
741 	 *
742 	 * Defragmenting is skipped if all objects are pinned at a fixed location.
743 	 */
744 	for (pass = 0; pass <= 2; pass++) {
745 		int pin_flags = PIN_USER | PIN_VALIDATE;
746 
747 		if (pass == 0)
748 			pin_flags |= PIN_NONBLOCK;
749 
750 		if (pass >= 1)
751 			unpinned = eb_unbind(eb, pass == 2);
752 
753 		if (pass == 2) {
754 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
755 			if (!err) {
756 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww);
757 				mutex_unlock(&eb->context->vm->mutex);
758 			}
759 			if (err)
760 				return err;
761 		}
762 
763 		list_for_each_entry(ev, &eb->unbound, bind_link) {
764 			err = eb_reserve_vma(eb, ev, pin_flags);
765 			if (err)
766 				break;
767 		}
768 
769 		if (err != -ENOSPC)
770 			break;
771 	}
772 
773 	return err;
774 }
775 
776 static int eb_select_context(struct i915_execbuffer *eb)
777 {
778 	struct i915_gem_context *ctx;
779 
780 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
781 	if (unlikely(IS_ERR(ctx)))
782 		return PTR_ERR(ctx);
783 
784 	eb->gem_context = ctx;
785 	if (i915_gem_context_has_full_ppgtt(ctx))
786 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
787 
788 	return 0;
789 }
790 
791 static int __eb_add_lut(struct i915_execbuffer *eb,
792 			u32 handle, struct i915_vma *vma)
793 {
794 	struct i915_gem_context *ctx = eb->gem_context;
795 	struct i915_lut_handle *lut;
796 	int err;
797 
798 	lut = i915_lut_handle_alloc();
799 	if (unlikely(!lut))
800 		return -ENOMEM;
801 
802 	i915_vma_get(vma);
803 	if (!atomic_fetch_inc(&vma->open_count))
804 		i915_vma_reopen(vma);
805 	lut->handle = handle;
806 	lut->ctx = ctx;
807 
808 	/* Check that the context hasn't been closed in the meantime */
809 	err = -EINTR;
810 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
811 		if (likely(!i915_gem_context_is_closed(ctx)))
812 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
813 		else
814 			err = -ENOENT;
815 		if (err == 0) { /* And nor has this handle */
816 			struct drm_i915_gem_object *obj = vma->obj;
817 
818 			spin_lock(&obj->lut_lock);
819 			if (idr_find(&eb->file->object_idr, handle) == obj) {
820 				list_add(&lut->obj_link, &obj->lut_list);
821 			} else {
822 				radix_tree_delete(&ctx->handles_vma, handle);
823 				err = -ENOENT;
824 			}
825 			spin_unlock(&obj->lut_lock);
826 		}
827 		mutex_unlock(&ctx->lut_mutex);
828 	}
829 	if (unlikely(err))
830 		goto err;
831 
832 	return 0;
833 
834 err:
835 	i915_vma_close(vma);
836 	i915_vma_put(vma);
837 	i915_lut_handle_free(lut);
838 	return err;
839 }
840 
841 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
842 {
843 	struct i915_address_space *vm = eb->context->vm;
844 
845 	do {
846 		struct drm_i915_gem_object *obj;
847 		struct i915_vma *vma;
848 		int err;
849 
850 		rcu_read_lock();
851 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
852 		if (likely(vma && vma->vm == vm))
853 			vma = i915_vma_tryget(vma);
854 		rcu_read_unlock();
855 		if (likely(vma))
856 			return vma;
857 
858 		obj = i915_gem_object_lookup(eb->file, handle);
859 		if (unlikely(!obj))
860 			return ERR_PTR(-ENOENT);
861 
862 		/*
863 		 * If the user has opted-in for protected-object tracking, make
864 		 * sure the object encryption can be used.
865 		 * We only need to do this when the object is first used with
866 		 * this context, because the context itself will be banned when
867 		 * the protected objects become invalid.
868 		 */
869 		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
870 		    i915_gem_object_is_protected(obj)) {
871 			err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
872 			if (err) {
873 				i915_gem_object_put(obj);
874 				return ERR_PTR(err);
875 			}
876 		}
877 
878 		vma = i915_vma_instance(obj, vm, NULL);
879 		if (IS_ERR(vma)) {
880 			i915_gem_object_put(obj);
881 			return vma;
882 		}
883 
884 		err = __eb_add_lut(eb, handle, vma);
885 		if (likely(!err))
886 			return vma;
887 
888 		i915_gem_object_put(obj);
889 		if (err != -EEXIST)
890 			return ERR_PTR(err);
891 	} while (1);
892 }
893 
894 static int eb_lookup_vmas(struct i915_execbuffer *eb)
895 {
896 	unsigned int i, current_batch = 0;
897 	int err = 0;
898 
899 	INIT_LIST_HEAD(&eb->relocs);
900 
901 	for (i = 0; i < eb->buffer_count; i++) {
902 		struct i915_vma *vma;
903 
904 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
905 		if (IS_ERR(vma)) {
906 			err = PTR_ERR(vma);
907 			goto err;
908 		}
909 
910 		err = eb_validate_vma(eb, &eb->exec[i], vma);
911 		if (unlikely(err)) {
912 			i915_vma_put(vma);
913 			goto err;
914 		}
915 
916 		err = eb_add_vma(eb, &current_batch, i, vma);
917 		if (err)
918 			return err;
919 
920 		if (i915_gem_object_is_userptr(vma->obj)) {
921 			err = i915_gem_object_userptr_submit_init(vma->obj);
922 			if (err) {
923 				if (i + 1 < eb->buffer_count) {
924 					/*
925 					 * Execbuffer code expects last vma entry to be NULL,
926 					 * since we already initialized this entry,
927 					 * set the next value to NULL or we mess up
928 					 * cleanup handling.
929 					 */
930 					eb->vma[i + 1].vma = NULL;
931 				}
932 
933 				return err;
934 			}
935 
936 			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
937 			eb->args->flags |= __EXEC_USERPTR_USED;
938 		}
939 	}
940 
941 	return 0;
942 
943 err:
944 	eb->vma[i].vma = NULL;
945 	return err;
946 }
947 
948 static int eb_lock_vmas(struct i915_execbuffer *eb)
949 {
950 	unsigned int i;
951 	int err;
952 
953 	for (i = 0; i < eb->buffer_count; i++) {
954 		struct eb_vma *ev = &eb->vma[i];
955 		struct i915_vma *vma = ev->vma;
956 
957 		err = i915_gem_object_lock(vma->obj, &eb->ww);
958 		if (err)
959 			return err;
960 	}
961 
962 	return 0;
963 }
964 
965 static int eb_validate_vmas(struct i915_execbuffer *eb)
966 {
967 	unsigned int i;
968 	int err;
969 
970 	INIT_LIST_HEAD(&eb->unbound);
971 
972 	err = eb_lock_vmas(eb);
973 	if (err)
974 		return err;
975 
976 	for (i = 0; i < eb->buffer_count; i++) {
977 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
978 		struct eb_vma *ev = &eb->vma[i];
979 		struct i915_vma *vma = ev->vma;
980 
981 		err = eb_pin_vma(eb, entry, ev);
982 		if (err == -EDEADLK)
983 			return err;
984 
985 		if (!err) {
986 			if (entry->offset != vma->node.start) {
987 				entry->offset = vma->node.start | UPDATE;
988 				eb->args->flags |= __EXEC_HAS_RELOC;
989 			}
990 		} else {
991 			eb_unreserve_vma(ev);
992 
993 			list_add_tail(&ev->bind_link, &eb->unbound);
994 			if (drm_mm_node_allocated(&vma->node)) {
995 				err = i915_vma_unbind(vma);
996 				if (err)
997 					return err;
998 			}
999 		}
1000 
1001 		if (!(ev->flags & EXEC_OBJECT_WRITE)) {
1002 			err = dma_resv_reserve_shared(vma->obj->base.resv, 1);
1003 			if (err)
1004 				return err;
1005 		}
1006 
1007 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1008 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1009 	}
1010 
1011 	if (!list_empty(&eb->unbound))
1012 		return eb_reserve(eb);
1013 
1014 	return 0;
1015 }
1016 
1017 static struct eb_vma *
1018 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1019 {
1020 	if (eb->lut_size < 0) {
1021 		if (handle >= -eb->lut_size)
1022 			return NULL;
1023 		return &eb->vma[handle];
1024 	} else {
1025 		struct hlist_head *head;
1026 		struct eb_vma *ev;
1027 
1028 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
1029 		hlist_for_each_entry(ev, head, node) {
1030 			if (ev->handle == handle)
1031 				return ev;
1032 		}
1033 		return NULL;
1034 	}
1035 }
1036 
1037 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1038 {
1039 	const unsigned int count = eb->buffer_count;
1040 	unsigned int i;
1041 
1042 	for (i = 0; i < count; i++) {
1043 		struct eb_vma *ev = &eb->vma[i];
1044 		struct i915_vma *vma = ev->vma;
1045 
1046 		if (!vma)
1047 			break;
1048 
1049 		eb_unreserve_vma(ev);
1050 
1051 		if (final)
1052 			i915_vma_put(vma);
1053 	}
1054 
1055 	eb_capture_release(eb);
1056 	eb_unpin_engine(eb);
1057 }
1058 
1059 static void eb_destroy(const struct i915_execbuffer *eb)
1060 {
1061 	if (eb->lut_size > 0)
1062 		kfree(eb->buckets);
1063 }
1064 
1065 static inline u64
1066 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1067 		  const struct i915_vma *target)
1068 {
1069 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
1070 }
1071 
1072 static void reloc_cache_init(struct reloc_cache *cache,
1073 			     struct drm_i915_private *i915)
1074 {
1075 	cache->page = -1;
1076 	cache->vaddr = 0;
1077 	/* Must be a variable in the struct to allow GCC to unroll. */
1078 	cache->graphics_ver = GRAPHICS_VER(i915);
1079 	cache->has_llc = HAS_LLC(i915);
1080 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1081 	cache->has_fence = cache->graphics_ver < 4;
1082 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1083 	cache->node.flags = 0;
1084 }
1085 
1086 static inline void *unmask_page(unsigned long p)
1087 {
1088 	return (void *)(uintptr_t)(p & PAGE_MASK);
1089 }
1090 
1091 static inline unsigned int unmask_flags(unsigned long p)
1092 {
1093 	return p & ~PAGE_MASK;
1094 }
1095 
1096 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1097 
1098 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1099 {
1100 	struct drm_i915_private *i915 =
1101 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1102 	return to_gt(i915)->ggtt;
1103 }
1104 
1105 static void reloc_cache_unmap(struct reloc_cache *cache)
1106 {
1107 	void *vaddr;
1108 
1109 	if (!cache->vaddr)
1110 		return;
1111 
1112 	vaddr = unmask_page(cache->vaddr);
1113 	if (cache->vaddr & KMAP)
1114 		kunmap_atomic(vaddr);
1115 	else
1116 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1117 }
1118 
1119 static void reloc_cache_remap(struct reloc_cache *cache,
1120 			      struct drm_i915_gem_object *obj)
1121 {
1122 	void *vaddr;
1123 
1124 	if (!cache->vaddr)
1125 		return;
1126 
1127 	if (cache->vaddr & KMAP) {
1128 		struct page *page = i915_gem_object_get_page(obj, cache->page);
1129 
1130 		vaddr = kmap_atomic(page);
1131 		cache->vaddr = unmask_flags(cache->vaddr) |
1132 			(unsigned long)vaddr;
1133 	} else {
1134 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1135 		unsigned long offset;
1136 
1137 		offset = cache->node.start;
1138 		if (!drm_mm_node_allocated(&cache->node))
1139 			offset += cache->page << PAGE_SHIFT;
1140 
1141 		cache->vaddr = (unsigned long)
1142 			io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1143 	}
1144 }
1145 
1146 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1147 {
1148 	void *vaddr;
1149 
1150 	if (!cache->vaddr)
1151 		return;
1152 
1153 	vaddr = unmask_page(cache->vaddr);
1154 	if (cache->vaddr & KMAP) {
1155 		struct drm_i915_gem_object *obj =
1156 			(struct drm_i915_gem_object *)cache->node.mm;
1157 		if (cache->vaddr & CLFLUSH_AFTER)
1158 			mb();
1159 
1160 		kunmap_atomic(vaddr);
1161 		i915_gem_object_finish_access(obj);
1162 	} else {
1163 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1164 
1165 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1166 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1167 
1168 		if (drm_mm_node_allocated(&cache->node)) {
1169 			ggtt->vm.clear_range(&ggtt->vm,
1170 					     cache->node.start,
1171 					     cache->node.size);
1172 			mutex_lock(&ggtt->vm.mutex);
1173 			drm_mm_remove_node(&cache->node);
1174 			mutex_unlock(&ggtt->vm.mutex);
1175 		} else {
1176 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1177 		}
1178 	}
1179 
1180 	cache->vaddr = 0;
1181 	cache->page = -1;
1182 }
1183 
1184 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1185 			struct reloc_cache *cache,
1186 			unsigned long pageno)
1187 {
1188 	void *vaddr;
1189 	struct page *page;
1190 
1191 	if (cache->vaddr) {
1192 		kunmap_atomic(unmask_page(cache->vaddr));
1193 	} else {
1194 		unsigned int flushes;
1195 		int err;
1196 
1197 		err = i915_gem_object_prepare_write(obj, &flushes);
1198 		if (err)
1199 			return ERR_PTR(err);
1200 
1201 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1202 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1203 
1204 		cache->vaddr = flushes | KMAP;
1205 		cache->node.mm = (void *)obj;
1206 		if (flushes)
1207 			mb();
1208 	}
1209 
1210 	page = i915_gem_object_get_page(obj, pageno);
1211 	if (!obj->mm.dirty)
1212 		set_page_dirty(page);
1213 
1214 	vaddr = kmap_atomic(page);
1215 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1216 	cache->page = pageno;
1217 
1218 	return vaddr;
1219 }
1220 
1221 static void *reloc_iomap(struct i915_vma *batch,
1222 			 struct i915_execbuffer *eb,
1223 			 unsigned long page)
1224 {
1225 	struct drm_i915_gem_object *obj = batch->obj;
1226 	struct reloc_cache *cache = &eb->reloc_cache;
1227 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1228 	unsigned long offset;
1229 	void *vaddr;
1230 
1231 	if (cache->vaddr) {
1232 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1233 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1234 	} else {
1235 		struct i915_vma *vma = ERR_PTR(-ENODEV);
1236 		int err;
1237 
1238 		if (i915_gem_object_is_tiled(obj))
1239 			return ERR_PTR(-EINVAL);
1240 
1241 		if (use_cpu_reloc(cache, obj))
1242 			return NULL;
1243 
1244 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1245 		if (err)
1246 			return ERR_PTR(err);
1247 
1248 		/*
1249 		 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1250 		 * VMA from the object list because we no longer pin.
1251 		 *
1252 		 * Only attempt to pin the batch buffer to ggtt if the current batch
1253 		 * is not inside ggtt, or the batch buffer is not misplaced.
1254 		 */
1255 		if (!i915_is_ggtt(batch->vm)) {
1256 			vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1257 							  PIN_MAPPABLE |
1258 							  PIN_NONBLOCK /* NOWARN */ |
1259 							  PIN_NOEVICT);
1260 		} else if (i915_vma_is_map_and_fenceable(batch)) {
1261 			__i915_vma_pin(batch);
1262 			vma = batch;
1263 		}
1264 
1265 		if (vma == ERR_PTR(-EDEADLK))
1266 			return vma;
1267 
1268 		if (IS_ERR(vma)) {
1269 			memset(&cache->node, 0, sizeof(cache->node));
1270 			mutex_lock(&ggtt->vm.mutex);
1271 			err = drm_mm_insert_node_in_range
1272 				(&ggtt->vm.mm, &cache->node,
1273 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1274 				 0, ggtt->mappable_end,
1275 				 DRM_MM_INSERT_LOW);
1276 			mutex_unlock(&ggtt->vm.mutex);
1277 			if (err) /* no inactive aperture space, use cpu reloc */
1278 				return NULL;
1279 		} else {
1280 			cache->node.start = vma->node.start;
1281 			cache->node.mm = (void *)vma;
1282 		}
1283 	}
1284 
1285 	offset = cache->node.start;
1286 	if (drm_mm_node_allocated(&cache->node)) {
1287 		ggtt->vm.insert_page(&ggtt->vm,
1288 				     i915_gem_object_get_dma_address(obj, page),
1289 				     offset, I915_CACHE_NONE, 0);
1290 	} else {
1291 		offset += page << PAGE_SHIFT;
1292 	}
1293 
1294 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1295 							 offset);
1296 	cache->page = page;
1297 	cache->vaddr = (unsigned long)vaddr;
1298 
1299 	return vaddr;
1300 }
1301 
1302 static void *reloc_vaddr(struct i915_vma *vma,
1303 			 struct i915_execbuffer *eb,
1304 			 unsigned long page)
1305 {
1306 	struct reloc_cache *cache = &eb->reloc_cache;
1307 	void *vaddr;
1308 
1309 	if (cache->page == page) {
1310 		vaddr = unmask_page(cache->vaddr);
1311 	} else {
1312 		vaddr = NULL;
1313 		if ((cache->vaddr & KMAP) == 0)
1314 			vaddr = reloc_iomap(vma, eb, page);
1315 		if (!vaddr)
1316 			vaddr = reloc_kmap(vma->obj, cache, page);
1317 	}
1318 
1319 	return vaddr;
1320 }
1321 
1322 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1323 {
1324 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1325 		if (flushes & CLFLUSH_BEFORE) {
1326 			clflushopt(addr);
1327 			mb();
1328 		}
1329 
1330 		*addr = value;
1331 
1332 		/*
1333 		 * Writes to the same cacheline are serialised by the CPU
1334 		 * (including clflush). On the write path, we only require
1335 		 * that it hits memory in an orderly fashion and place
1336 		 * mb barriers at the start and end of the relocation phase
1337 		 * to ensure ordering of clflush wrt to the system.
1338 		 */
1339 		if (flushes & CLFLUSH_AFTER)
1340 			clflushopt(addr);
1341 	} else
1342 		*addr = value;
1343 }
1344 
1345 static u64
1346 relocate_entry(struct i915_vma *vma,
1347 	       const struct drm_i915_gem_relocation_entry *reloc,
1348 	       struct i915_execbuffer *eb,
1349 	       const struct i915_vma *target)
1350 {
1351 	u64 target_addr = relocation_target(reloc, target);
1352 	u64 offset = reloc->offset;
1353 	bool wide = eb->reloc_cache.use_64bit_reloc;
1354 	void *vaddr;
1355 
1356 repeat:
1357 	vaddr = reloc_vaddr(vma, eb,
1358 			    offset >> PAGE_SHIFT);
1359 	if (IS_ERR(vaddr))
1360 		return PTR_ERR(vaddr);
1361 
1362 	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1363 	clflush_write32(vaddr + offset_in_page(offset),
1364 			lower_32_bits(target_addr),
1365 			eb->reloc_cache.vaddr);
1366 
1367 	if (wide) {
1368 		offset += sizeof(u32);
1369 		target_addr >>= 32;
1370 		wide = false;
1371 		goto repeat;
1372 	}
1373 
1374 	return target->node.start | UPDATE;
1375 }
1376 
1377 static u64
1378 eb_relocate_entry(struct i915_execbuffer *eb,
1379 		  struct eb_vma *ev,
1380 		  const struct drm_i915_gem_relocation_entry *reloc)
1381 {
1382 	struct drm_i915_private *i915 = eb->i915;
1383 	struct eb_vma *target;
1384 	int err;
1385 
1386 	/* we've already hold a reference to all valid objects */
1387 	target = eb_get_vma(eb, reloc->target_handle);
1388 	if (unlikely(!target))
1389 		return -ENOENT;
1390 
1391 	/* Validate that the target is in a valid r/w GPU domain */
1392 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1393 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1394 			  "target %d offset %d "
1395 			  "read %08x write %08x",
1396 			  reloc->target_handle,
1397 			  (int) reloc->offset,
1398 			  reloc->read_domains,
1399 			  reloc->write_domain);
1400 		return -EINVAL;
1401 	}
1402 	if (unlikely((reloc->write_domain | reloc->read_domains)
1403 		     & ~I915_GEM_GPU_DOMAINS)) {
1404 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1405 			  "target %d offset %d "
1406 			  "read %08x write %08x",
1407 			  reloc->target_handle,
1408 			  (int) reloc->offset,
1409 			  reloc->read_domains,
1410 			  reloc->write_domain);
1411 		return -EINVAL;
1412 	}
1413 
1414 	if (reloc->write_domain) {
1415 		target->flags |= EXEC_OBJECT_WRITE;
1416 
1417 		/*
1418 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1419 		 * for MI and pipe_control writes because the gpu doesn't
1420 		 * properly redirect them through the ppgtt for non_secure
1421 		 * batchbuffers.
1422 		 */
1423 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1424 		    GRAPHICS_VER(eb->i915) == 6 &&
1425 		    !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1426 			struct i915_vma *vma = target->vma;
1427 
1428 			reloc_cache_unmap(&eb->reloc_cache);
1429 			mutex_lock(&vma->vm->mutex);
1430 			err = i915_vma_bind(target->vma,
1431 					    target->vma->obj->cache_level,
1432 					    PIN_GLOBAL, NULL, NULL);
1433 			mutex_unlock(&vma->vm->mutex);
1434 			reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1435 			if (err)
1436 				return err;
1437 		}
1438 	}
1439 
1440 	/*
1441 	 * If the relocation already has the right value in it, no
1442 	 * more work needs to be done.
1443 	 */
1444 	if (!DBG_FORCE_RELOC &&
1445 	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1446 		return 0;
1447 
1448 	/* Check that the relocation address is valid... */
1449 	if (unlikely(reloc->offset >
1450 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1451 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1452 			  "target %d offset %d size %d.\n",
1453 			  reloc->target_handle,
1454 			  (int)reloc->offset,
1455 			  (int)ev->vma->size);
1456 		return -EINVAL;
1457 	}
1458 	if (unlikely(reloc->offset & 3)) {
1459 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1460 			  "target %d offset %d.\n",
1461 			  reloc->target_handle,
1462 			  (int)reloc->offset);
1463 		return -EINVAL;
1464 	}
1465 
1466 	/*
1467 	 * If we write into the object, we need to force the synchronisation
1468 	 * barrier, either with an asynchronous clflush or if we executed the
1469 	 * patching using the GPU (though that should be serialised by the
1470 	 * timeline). To be completely sure, and since we are required to
1471 	 * do relocations we are already stalling, disable the user's opt
1472 	 * out of our synchronisation.
1473 	 */
1474 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1475 
1476 	/* and update the user's relocation entry */
1477 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1478 }
1479 
1480 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1481 {
1482 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1483 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1484 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1485 	struct drm_i915_gem_relocation_entry __user *urelocs =
1486 		u64_to_user_ptr(entry->relocs_ptr);
1487 	unsigned long remain = entry->relocation_count;
1488 
1489 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1490 		return -EINVAL;
1491 
1492 	/*
1493 	 * We must check that the entire relocation array is safe
1494 	 * to read. However, if the array is not writable the user loses
1495 	 * the updated relocation values.
1496 	 */
1497 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1498 		return -EFAULT;
1499 
1500 	do {
1501 		struct drm_i915_gem_relocation_entry *r = stack;
1502 		unsigned int count =
1503 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1504 		unsigned int copied;
1505 
1506 		/*
1507 		 * This is the fast path and we cannot handle a pagefault
1508 		 * whilst holding the struct mutex lest the user pass in the
1509 		 * relocations contained within a mmaped bo. For in such a case
1510 		 * we, the page fault handler would call i915_gem_fault() and
1511 		 * we would try to acquire the struct mutex again. Obviously
1512 		 * this is bad and so lockdep complains vehemently.
1513 		 */
1514 		pagefault_disable();
1515 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1516 		pagefault_enable();
1517 		if (unlikely(copied)) {
1518 			remain = -EFAULT;
1519 			goto out;
1520 		}
1521 
1522 		remain -= count;
1523 		do {
1524 			u64 offset = eb_relocate_entry(eb, ev, r);
1525 
1526 			if (likely(offset == 0)) {
1527 			} else if ((s64)offset < 0) {
1528 				remain = (int)offset;
1529 				goto out;
1530 			} else {
1531 				/*
1532 				 * Note that reporting an error now
1533 				 * leaves everything in an inconsistent
1534 				 * state as we have *already* changed
1535 				 * the relocation value inside the
1536 				 * object. As we have not changed the
1537 				 * reloc.presumed_offset or will not
1538 				 * change the execobject.offset, on the
1539 				 * call we may not rewrite the value
1540 				 * inside the object, leaving it
1541 				 * dangling and causing a GPU hang. Unless
1542 				 * userspace dynamically rebuilds the
1543 				 * relocations on each execbuf rather than
1544 				 * presume a static tree.
1545 				 *
1546 				 * We did previously check if the relocations
1547 				 * were writable (access_ok), an error now
1548 				 * would be a strange race with mprotect,
1549 				 * having already demonstrated that we
1550 				 * can read from this userspace address.
1551 				 */
1552 				offset = gen8_canonical_addr(offset & ~UPDATE);
1553 				__put_user(offset,
1554 					   &urelocs[r - stack].presumed_offset);
1555 			}
1556 		} while (r++, --count);
1557 		urelocs += ARRAY_SIZE(stack);
1558 	} while (remain);
1559 out:
1560 	reloc_cache_reset(&eb->reloc_cache, eb);
1561 	return remain;
1562 }
1563 
1564 static int
1565 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1566 {
1567 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1568 	struct drm_i915_gem_relocation_entry *relocs =
1569 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1570 	unsigned int i;
1571 	int err;
1572 
1573 	for (i = 0; i < entry->relocation_count; i++) {
1574 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1575 
1576 		if ((s64)offset < 0) {
1577 			err = (int)offset;
1578 			goto err;
1579 		}
1580 	}
1581 	err = 0;
1582 err:
1583 	reloc_cache_reset(&eb->reloc_cache, eb);
1584 	return err;
1585 }
1586 
1587 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1588 {
1589 	const char __user *addr, *end;
1590 	unsigned long size;
1591 	char __maybe_unused c;
1592 
1593 	size = entry->relocation_count;
1594 	if (size == 0)
1595 		return 0;
1596 
1597 	if (size > N_RELOC(ULONG_MAX))
1598 		return -EINVAL;
1599 
1600 	addr = u64_to_user_ptr(entry->relocs_ptr);
1601 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1602 	if (!access_ok(addr, size))
1603 		return -EFAULT;
1604 
1605 	end = addr + size;
1606 	for (; addr < end; addr += PAGE_SIZE) {
1607 		int err = __get_user(c, addr);
1608 		if (err)
1609 			return err;
1610 	}
1611 	return __get_user(c, end - 1);
1612 }
1613 
1614 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1615 {
1616 	struct drm_i915_gem_relocation_entry *relocs;
1617 	const unsigned int count = eb->buffer_count;
1618 	unsigned int i;
1619 	int err;
1620 
1621 	for (i = 0; i < count; i++) {
1622 		const unsigned int nreloc = eb->exec[i].relocation_count;
1623 		struct drm_i915_gem_relocation_entry __user *urelocs;
1624 		unsigned long size;
1625 		unsigned long copied;
1626 
1627 		if (nreloc == 0)
1628 			continue;
1629 
1630 		err = check_relocations(&eb->exec[i]);
1631 		if (err)
1632 			goto err;
1633 
1634 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1635 		size = nreloc * sizeof(*relocs);
1636 
1637 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1638 		if (!relocs) {
1639 			err = -ENOMEM;
1640 			goto err;
1641 		}
1642 
1643 		/* copy_from_user is limited to < 4GiB */
1644 		copied = 0;
1645 		do {
1646 			unsigned int len =
1647 				min_t(u64, BIT_ULL(31), size - copied);
1648 
1649 			if (__copy_from_user((char *)relocs + copied,
1650 					     (char __user *)urelocs + copied,
1651 					     len))
1652 				goto end;
1653 
1654 			copied += len;
1655 		} while (copied < size);
1656 
1657 		/*
1658 		 * As we do not update the known relocation offsets after
1659 		 * relocating (due to the complexities in lock handling),
1660 		 * we need to mark them as invalid now so that we force the
1661 		 * relocation processing next time. Just in case the target
1662 		 * object is evicted and then rebound into its old
1663 		 * presumed_offset before the next execbuffer - if that
1664 		 * happened we would make the mistake of assuming that the
1665 		 * relocations were valid.
1666 		 */
1667 		if (!user_access_begin(urelocs, size))
1668 			goto end;
1669 
1670 		for (copied = 0; copied < nreloc; copied++)
1671 			unsafe_put_user(-1,
1672 					&urelocs[copied].presumed_offset,
1673 					end_user);
1674 		user_access_end();
1675 
1676 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1677 	}
1678 
1679 	return 0;
1680 
1681 end_user:
1682 	user_access_end();
1683 end:
1684 	kvfree(relocs);
1685 	err = -EFAULT;
1686 err:
1687 	while (i--) {
1688 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1689 		if (eb->exec[i].relocation_count)
1690 			kvfree(relocs);
1691 	}
1692 	return err;
1693 }
1694 
1695 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1696 {
1697 	const unsigned int count = eb->buffer_count;
1698 	unsigned int i;
1699 
1700 	for (i = 0; i < count; i++) {
1701 		int err;
1702 
1703 		err = check_relocations(&eb->exec[i]);
1704 		if (err)
1705 			return err;
1706 	}
1707 
1708 	return 0;
1709 }
1710 
1711 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1712 {
1713 	const unsigned int count = eb->buffer_count;
1714 	unsigned int i;
1715 	int ret;
1716 
1717 	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1718 		return 0;
1719 
1720 	for (i = 0; i < count; i++) {
1721 		struct eb_vma *ev = &eb->vma[i];
1722 
1723 		if (!i915_gem_object_is_userptr(ev->vma->obj))
1724 			continue;
1725 
1726 		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1727 		if (ret)
1728 			return ret;
1729 
1730 		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1731 	}
1732 
1733 	return 0;
1734 }
1735 
1736 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1737 {
1738 	bool have_copy = false;
1739 	struct eb_vma *ev;
1740 	int err = 0;
1741 
1742 repeat:
1743 	if (signal_pending(current)) {
1744 		err = -ERESTARTSYS;
1745 		goto out;
1746 	}
1747 
1748 	/* We may process another execbuffer during the unlock... */
1749 	eb_release_vmas(eb, false);
1750 	i915_gem_ww_ctx_fini(&eb->ww);
1751 
1752 	/*
1753 	 * We take 3 passes through the slowpatch.
1754 	 *
1755 	 * 1 - we try to just prefault all the user relocation entries and
1756 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1757 	 *
1758 	 * 2 - we copy the user entries to a local buffer here outside of the
1759 	 * local and allow ourselves to wait upon any rendering before
1760 	 * relocations
1761 	 *
1762 	 * 3 - we already have a local copy of the relocation entries, but
1763 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1764 	 */
1765 	if (!err) {
1766 		err = eb_prefault_relocations(eb);
1767 	} else if (!have_copy) {
1768 		err = eb_copy_relocations(eb);
1769 		have_copy = err == 0;
1770 	} else {
1771 		cond_resched();
1772 		err = 0;
1773 	}
1774 
1775 	if (!err)
1776 		err = eb_reinit_userptr(eb);
1777 
1778 	i915_gem_ww_ctx_init(&eb->ww, true);
1779 	if (err)
1780 		goto out;
1781 
1782 	/* reacquire the objects */
1783 repeat_validate:
1784 	err = eb_pin_engine(eb, false);
1785 	if (err)
1786 		goto err;
1787 
1788 	err = eb_validate_vmas(eb);
1789 	if (err)
1790 		goto err;
1791 
1792 	GEM_BUG_ON(!eb->batches[0]);
1793 
1794 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1795 		if (!have_copy) {
1796 			err = eb_relocate_vma(eb, ev);
1797 			if (err)
1798 				break;
1799 		} else {
1800 			err = eb_relocate_vma_slow(eb, ev);
1801 			if (err)
1802 				break;
1803 		}
1804 	}
1805 
1806 	if (err == -EDEADLK)
1807 		goto err;
1808 
1809 	if (err && !have_copy)
1810 		goto repeat;
1811 
1812 	if (err)
1813 		goto err;
1814 
1815 	/* as last step, parse the command buffer */
1816 	err = eb_parse(eb);
1817 	if (err)
1818 		goto err;
1819 
1820 	/*
1821 	 * Leave the user relocations as are, this is the painfully slow path,
1822 	 * and we want to avoid the complication of dropping the lock whilst
1823 	 * having buffers reserved in the aperture and so causing spurious
1824 	 * ENOSPC for random operations.
1825 	 */
1826 
1827 err:
1828 	if (err == -EDEADLK) {
1829 		eb_release_vmas(eb, false);
1830 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1831 		if (!err)
1832 			goto repeat_validate;
1833 	}
1834 
1835 	if (err == -EAGAIN)
1836 		goto repeat;
1837 
1838 out:
1839 	if (have_copy) {
1840 		const unsigned int count = eb->buffer_count;
1841 		unsigned int i;
1842 
1843 		for (i = 0; i < count; i++) {
1844 			const struct drm_i915_gem_exec_object2 *entry =
1845 				&eb->exec[i];
1846 			struct drm_i915_gem_relocation_entry *relocs;
1847 
1848 			if (!entry->relocation_count)
1849 				continue;
1850 
1851 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1852 			kvfree(relocs);
1853 		}
1854 	}
1855 
1856 	return err;
1857 }
1858 
1859 static int eb_relocate_parse(struct i915_execbuffer *eb)
1860 {
1861 	int err;
1862 	bool throttle = true;
1863 
1864 retry:
1865 	err = eb_pin_engine(eb, throttle);
1866 	if (err) {
1867 		if (err != -EDEADLK)
1868 			return err;
1869 
1870 		goto err;
1871 	}
1872 
1873 	/* only throttle once, even if we didn't need to throttle */
1874 	throttle = false;
1875 
1876 	err = eb_validate_vmas(eb);
1877 	if (err == -EAGAIN)
1878 		goto slow;
1879 	else if (err)
1880 		goto err;
1881 
1882 	/* The objects are in their final locations, apply the relocations. */
1883 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1884 		struct eb_vma *ev;
1885 
1886 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1887 			err = eb_relocate_vma(eb, ev);
1888 			if (err)
1889 				break;
1890 		}
1891 
1892 		if (err == -EDEADLK)
1893 			goto err;
1894 		else if (err)
1895 			goto slow;
1896 	}
1897 
1898 	if (!err)
1899 		err = eb_parse(eb);
1900 
1901 err:
1902 	if (err == -EDEADLK) {
1903 		eb_release_vmas(eb, false);
1904 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1905 		if (!err)
1906 			goto retry;
1907 	}
1908 
1909 	return err;
1910 
1911 slow:
1912 	err = eb_relocate_parse_slow(eb);
1913 	if (err)
1914 		/*
1915 		 * If the user expects the execobject.offset and
1916 		 * reloc.presumed_offset to be an exact match,
1917 		 * as for using NO_RELOC, then we cannot update
1918 		 * the execobject.offset until we have completed
1919 		 * relocation.
1920 		 */
1921 		eb->args->flags &= ~__EXEC_HAS_RELOC;
1922 
1923 	return err;
1924 }
1925 
1926 /*
1927  * Using two helper loops for the order of which requests / batches are created
1928  * and added the to backend. Requests are created in order from the parent to
1929  * the last child. Requests are added in the reverse order, from the last child
1930  * to parent. This is done for locking reasons as the timeline lock is acquired
1931  * during request creation and released when the request is added to the
1932  * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1933  * the ordering.
1934  */
1935 #define for_each_batch_create_order(_eb, _i) \
1936 	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1937 #define for_each_batch_add_order(_eb, _i) \
1938 	BUILD_BUG_ON(!typecheck(int, _i)); \
1939 	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1940 
1941 static struct i915_request *
1942 eb_find_first_request_added(struct i915_execbuffer *eb)
1943 {
1944 	int i;
1945 
1946 	for_each_batch_add_order(eb, i)
1947 		if (eb->requests[i])
1948 			return eb->requests[i];
1949 
1950 	GEM_BUG_ON("Request not found");
1951 
1952 	return NULL;
1953 }
1954 
1955 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1956 
1957 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
1958 static void eb_capture_stage(struct i915_execbuffer *eb)
1959 {
1960 	const unsigned int count = eb->buffer_count;
1961 	unsigned int i = count, j;
1962 
1963 	while (i--) {
1964 		struct eb_vma *ev = &eb->vma[i];
1965 		struct i915_vma *vma = ev->vma;
1966 		unsigned int flags = ev->flags;
1967 
1968 		if (!(flags & EXEC_OBJECT_CAPTURE))
1969 			continue;
1970 
1971 		for_each_batch_create_order(eb, j) {
1972 			struct i915_capture_list *capture;
1973 
1974 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1975 			if (!capture)
1976 				continue;
1977 
1978 			capture->next = eb->capture_lists[j];
1979 			capture->vma_res = i915_vma_resource_get(vma->resource);
1980 			eb->capture_lists[j] = capture;
1981 		}
1982 	}
1983 }
1984 
1985 /* Commit once we're in the critical path */
1986 static void eb_capture_commit(struct i915_execbuffer *eb)
1987 {
1988 	unsigned int j;
1989 
1990 	for_each_batch_create_order(eb, j) {
1991 		struct i915_request *rq = eb->requests[j];
1992 
1993 		if (!rq)
1994 			break;
1995 
1996 		rq->capture_list = eb->capture_lists[j];
1997 		eb->capture_lists[j] = NULL;
1998 	}
1999 }
2000 
2001 /*
2002  * Release anything that didn't get committed due to errors.
2003  * The capture_list will otherwise be freed at request retire.
2004  */
2005 static void eb_capture_release(struct i915_execbuffer *eb)
2006 {
2007 	unsigned int j;
2008 
2009 	for_each_batch_create_order(eb, j) {
2010 		if (eb->capture_lists[j]) {
2011 			i915_request_free_capture_list(eb->capture_lists[j]);
2012 			eb->capture_lists[j] = NULL;
2013 		}
2014 	}
2015 }
2016 
2017 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2018 {
2019 	memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2020 }
2021 
2022 #else
2023 
2024 static void eb_capture_stage(struct i915_execbuffer *eb)
2025 {
2026 }
2027 
2028 static void eb_capture_commit(struct i915_execbuffer *eb)
2029 {
2030 }
2031 
2032 static void eb_capture_release(struct i915_execbuffer *eb)
2033 {
2034 }
2035 
2036 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2037 {
2038 }
2039 
2040 #endif
2041 
2042 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2043 {
2044 	const unsigned int count = eb->buffer_count;
2045 	unsigned int i = count;
2046 	int err = 0, j;
2047 
2048 	while (i--) {
2049 		struct eb_vma *ev = &eb->vma[i];
2050 		struct i915_vma *vma = ev->vma;
2051 		unsigned int flags = ev->flags;
2052 		struct drm_i915_gem_object *obj = vma->obj;
2053 
2054 		assert_vma_held(vma);
2055 
2056 		/*
2057 		 * If the GPU is not _reading_ through the CPU cache, we need
2058 		 * to make sure that any writes (both previous GPU writes from
2059 		 * before a change in snooping levels and normal CPU writes)
2060 		 * caught in that cache are flushed to main memory.
2061 		 *
2062 		 * We want to say
2063 		 *   obj->cache_dirty &&
2064 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2065 		 * but gcc's optimiser doesn't handle that as well and emits
2066 		 * two jumps instead of one. Maybe one day...
2067 		 *
2068 		 * FIXME: There is also sync flushing in set_pages(), which
2069 		 * serves a different purpose(some of the time at least).
2070 		 *
2071 		 * We should consider:
2072 		 *
2073 		 *   1. Rip out the async flush code.
2074 		 *
2075 		 *   2. Or make the sync flushing use the async clflush path
2076 		 *   using mandatory fences underneath. Currently the below
2077 		 *   async flush happens after we bind the object.
2078 		 */
2079 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2080 			if (i915_gem_clflush_object(obj, 0))
2081 				flags &= ~EXEC_OBJECT_ASYNC;
2082 		}
2083 
2084 		/* We only need to await on the first request */
2085 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2086 			err = i915_request_await_object
2087 				(eb_find_first_request_added(eb), obj,
2088 				 flags & EXEC_OBJECT_WRITE);
2089 		}
2090 
2091 		for_each_batch_add_order(eb, j) {
2092 			if (err)
2093 				break;
2094 			if (!eb->requests[j])
2095 				continue;
2096 
2097 			err = _i915_vma_move_to_active(vma, eb->requests[j],
2098 						       j ? NULL :
2099 						       eb->composite_fence ?
2100 						       eb->composite_fence :
2101 						       &eb->requests[j]->fence,
2102 						       flags | __EXEC_OBJECT_NO_RESERVE);
2103 		}
2104 	}
2105 
2106 #ifdef CONFIG_MMU_NOTIFIER
2107 	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2108 		read_lock(&eb->i915->mm.notifier_lock);
2109 
2110 		/*
2111 		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2112 		 * could not have been set
2113 		 */
2114 		for (i = 0; i < count; i++) {
2115 			struct eb_vma *ev = &eb->vma[i];
2116 			struct drm_i915_gem_object *obj = ev->vma->obj;
2117 
2118 			if (!i915_gem_object_is_userptr(obj))
2119 				continue;
2120 
2121 			err = i915_gem_object_userptr_submit_done(obj);
2122 			if (err)
2123 				break;
2124 		}
2125 
2126 		read_unlock(&eb->i915->mm.notifier_lock);
2127 	}
2128 #endif
2129 
2130 	if (unlikely(err))
2131 		goto err_skip;
2132 
2133 	/* Unconditionally flush any chipset caches (for streaming writes). */
2134 	intel_gt_chipset_flush(eb->gt);
2135 	eb_capture_commit(eb);
2136 
2137 	return 0;
2138 
2139 err_skip:
2140 	for_each_batch_create_order(eb, j) {
2141 		if (!eb->requests[j])
2142 			break;
2143 
2144 		i915_request_set_error_once(eb->requests[j], err);
2145 	}
2146 	return err;
2147 }
2148 
2149 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2150 {
2151 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2152 		return -EINVAL;
2153 
2154 	/* Kernel clipping was a DRI1 misfeature */
2155 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2156 			     I915_EXEC_USE_EXTENSIONS))) {
2157 		if (exec->num_cliprects || exec->cliprects_ptr)
2158 			return -EINVAL;
2159 	}
2160 
2161 	if (exec->DR4 == 0xffffffff) {
2162 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2163 		exec->DR4 = 0;
2164 	}
2165 	if (exec->DR1 || exec->DR4)
2166 		return -EINVAL;
2167 
2168 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2169 		return -EINVAL;
2170 
2171 	return 0;
2172 }
2173 
2174 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2175 {
2176 	u32 *cs;
2177 	int i;
2178 
2179 	if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2180 		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2181 		return -EINVAL;
2182 	}
2183 
2184 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2185 	if (IS_ERR(cs))
2186 		return PTR_ERR(cs);
2187 
2188 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2189 	for (i = 0; i < 4; i++) {
2190 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2191 		*cs++ = 0;
2192 	}
2193 	*cs++ = MI_NOOP;
2194 	intel_ring_advance(rq, cs);
2195 
2196 	return 0;
2197 }
2198 
2199 static struct i915_vma *
2200 shadow_batch_pin(struct i915_execbuffer *eb,
2201 		 struct drm_i915_gem_object *obj,
2202 		 struct i915_address_space *vm,
2203 		 unsigned int flags)
2204 {
2205 	struct i915_vma *vma;
2206 	int err;
2207 
2208 	vma = i915_vma_instance(obj, vm, NULL);
2209 	if (IS_ERR(vma))
2210 		return vma;
2211 
2212 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2213 	if (err)
2214 		return ERR_PTR(err);
2215 
2216 	return vma;
2217 }
2218 
2219 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2220 {
2221 	/*
2222 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2223 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2224 	 * hsw should have this fixed, but bdw mucks it up again. */
2225 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2226 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2227 
2228 	return NULL;
2229 }
2230 
2231 static int eb_parse(struct i915_execbuffer *eb)
2232 {
2233 	struct drm_i915_private *i915 = eb->i915;
2234 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2235 	struct i915_vma *shadow, *trampoline, *batch;
2236 	unsigned long len;
2237 	int err;
2238 
2239 	if (!eb_use_cmdparser(eb)) {
2240 		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2241 		if (IS_ERR(batch))
2242 			return PTR_ERR(batch);
2243 
2244 		goto secure_batch;
2245 	}
2246 
2247 	if (intel_context_is_parallel(eb->context))
2248 		return -EINVAL;
2249 
2250 	len = eb->batch_len[0];
2251 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2252 		/*
2253 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2254 		 * post-scan tampering
2255 		 */
2256 		if (!eb->context->vm->has_read_only) {
2257 			drm_dbg(&i915->drm,
2258 				"Cannot prevent post-scan tampering without RO capable vm\n");
2259 			return -EINVAL;
2260 		}
2261 	} else {
2262 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2263 	}
2264 	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2265 		return -EINVAL;
2266 
2267 	if (!pool) {
2268 		pool = intel_gt_get_buffer_pool(eb->gt, len,
2269 						I915_MAP_WB);
2270 		if (IS_ERR(pool))
2271 			return PTR_ERR(pool);
2272 		eb->batch_pool = pool;
2273 	}
2274 
2275 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2276 	if (err)
2277 		return err;
2278 
2279 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2280 	if (IS_ERR(shadow))
2281 		return PTR_ERR(shadow);
2282 
2283 	intel_gt_buffer_pool_mark_used(pool);
2284 	i915_gem_object_set_readonly(shadow->obj);
2285 	shadow->private = pool;
2286 
2287 	trampoline = NULL;
2288 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2289 		trampoline = shadow;
2290 
2291 		shadow = shadow_batch_pin(eb, pool->obj,
2292 					  &eb->gt->ggtt->vm,
2293 					  PIN_GLOBAL);
2294 		if (IS_ERR(shadow))
2295 			return PTR_ERR(shadow);
2296 
2297 		shadow->private = pool;
2298 
2299 		eb->batch_flags |= I915_DISPATCH_SECURE;
2300 	}
2301 
2302 	batch = eb_dispatch_secure(eb, shadow);
2303 	if (IS_ERR(batch))
2304 		return PTR_ERR(batch);
2305 
2306 	err = dma_resv_reserve_shared(shadow->obj->base.resv, 1);
2307 	if (err)
2308 		return err;
2309 
2310 	err = intel_engine_cmd_parser(eb->context->engine,
2311 				      eb->batches[0]->vma,
2312 				      eb->batch_start_offset,
2313 				      eb->batch_len[0],
2314 				      shadow, trampoline);
2315 	if (err)
2316 		return err;
2317 
2318 	eb->batches[0] = &eb->vma[eb->buffer_count++];
2319 	eb->batches[0]->vma = i915_vma_get(shadow);
2320 	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2321 
2322 	eb->trampoline = trampoline;
2323 	eb->batch_start_offset = 0;
2324 
2325 secure_batch:
2326 	if (batch) {
2327 		if (intel_context_is_parallel(eb->context))
2328 			return -EINVAL;
2329 
2330 		eb->batches[0] = &eb->vma[eb->buffer_count++];
2331 		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2332 		eb->batches[0]->vma = i915_vma_get(batch);
2333 	}
2334 	return 0;
2335 }
2336 
2337 static int eb_request_submit(struct i915_execbuffer *eb,
2338 			     struct i915_request *rq,
2339 			     struct i915_vma *batch,
2340 			     u64 batch_len)
2341 {
2342 	int err;
2343 
2344 	if (intel_context_nopreempt(rq->context))
2345 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2346 
2347 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2348 		err = i915_reset_gen7_sol_offsets(rq);
2349 		if (err)
2350 			return err;
2351 	}
2352 
2353 	/*
2354 	 * After we completed waiting for other engines (using HW semaphores)
2355 	 * then we can signal that this request/batch is ready to run. This
2356 	 * allows us to determine if the batch is still waiting on the GPU
2357 	 * or actually running by checking the breadcrumb.
2358 	 */
2359 	if (rq->context->engine->emit_init_breadcrumb) {
2360 		err = rq->context->engine->emit_init_breadcrumb(rq);
2361 		if (err)
2362 			return err;
2363 	}
2364 
2365 	err = rq->context->engine->emit_bb_start(rq,
2366 						 batch->node.start +
2367 						 eb->batch_start_offset,
2368 						 batch_len,
2369 						 eb->batch_flags);
2370 	if (err)
2371 		return err;
2372 
2373 	if (eb->trampoline) {
2374 		GEM_BUG_ON(intel_context_is_parallel(rq->context));
2375 		GEM_BUG_ON(eb->batch_start_offset);
2376 		err = rq->context->engine->emit_bb_start(rq,
2377 							 eb->trampoline->node.start +
2378 							 batch_len, 0, 0);
2379 		if (err)
2380 			return err;
2381 	}
2382 
2383 	return 0;
2384 }
2385 
2386 static int eb_submit(struct i915_execbuffer *eb)
2387 {
2388 	unsigned int i;
2389 	int err;
2390 
2391 	err = eb_move_to_gpu(eb);
2392 
2393 	for_each_batch_create_order(eb, i) {
2394 		if (!eb->requests[i])
2395 			break;
2396 
2397 		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2398 		if (!err)
2399 			err = eb_request_submit(eb, eb->requests[i],
2400 						eb->batches[i]->vma,
2401 						eb->batch_len[i]);
2402 	}
2403 
2404 	return err;
2405 }
2406 
2407 static int num_vcs_engines(struct drm_i915_private *i915)
2408 {
2409 	return hweight_long(VDBOX_MASK(to_gt(i915)));
2410 }
2411 
2412 /*
2413  * Find one BSD ring to dispatch the corresponding BSD command.
2414  * The engine index is returned.
2415  */
2416 static unsigned int
2417 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2418 			 struct drm_file *file)
2419 {
2420 	struct drm_i915_file_private *file_priv = file->driver_priv;
2421 
2422 	/* Check whether the file_priv has already selected one ring. */
2423 	if ((int)file_priv->bsd_engine < 0)
2424 		file_priv->bsd_engine =
2425 			get_random_int() % num_vcs_engines(dev_priv);
2426 
2427 	return file_priv->bsd_engine;
2428 }
2429 
2430 static const enum intel_engine_id user_ring_map[] = {
2431 	[I915_EXEC_DEFAULT]	= RCS0,
2432 	[I915_EXEC_RENDER]	= RCS0,
2433 	[I915_EXEC_BLT]		= BCS0,
2434 	[I915_EXEC_BSD]		= VCS0,
2435 	[I915_EXEC_VEBOX]	= VECS0
2436 };
2437 
2438 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2439 {
2440 	struct intel_ring *ring = ce->ring;
2441 	struct intel_timeline *tl = ce->timeline;
2442 	struct i915_request *rq;
2443 
2444 	/*
2445 	 * Completely unscientific finger-in-the-air estimates for suitable
2446 	 * maximum user request size (to avoid blocking) and then backoff.
2447 	 */
2448 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2449 		return NULL;
2450 
2451 	/*
2452 	 * Find a request that after waiting upon, there will be at least half
2453 	 * the ring available. The hysteresis allows us to compete for the
2454 	 * shared ring and should mean that we sleep less often prior to
2455 	 * claiming our resources, but not so long that the ring completely
2456 	 * drains before we can submit our next request.
2457 	 */
2458 	list_for_each_entry(rq, &tl->requests, link) {
2459 		if (rq->ring != ring)
2460 			continue;
2461 
2462 		if (__intel_ring_space(rq->postfix,
2463 				       ring->emit, ring->size) > ring->size / 2)
2464 			break;
2465 	}
2466 	if (&rq->link == &tl->requests)
2467 		return NULL; /* weird, we will check again later for real */
2468 
2469 	return i915_request_get(rq);
2470 }
2471 
2472 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2473 			   bool throttle)
2474 {
2475 	struct intel_timeline *tl;
2476 	struct i915_request *rq = NULL;
2477 
2478 	/*
2479 	 * Take a local wakeref for preparing to dispatch the execbuf as
2480 	 * we expect to access the hardware fairly frequently in the
2481 	 * process, and require the engine to be kept awake between accesses.
2482 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2483 	 * until the timeline is idle, which in turn releases the wakeref
2484 	 * taken on the engine, and the parent device.
2485 	 */
2486 	tl = intel_context_timeline_lock(ce);
2487 	if (IS_ERR(tl))
2488 		return PTR_ERR(tl);
2489 
2490 	intel_context_enter(ce);
2491 	if (throttle)
2492 		rq = eb_throttle(eb, ce);
2493 	intel_context_timeline_unlock(tl);
2494 
2495 	if (rq) {
2496 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2497 		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2498 
2499 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2500 				      timeout) < 0) {
2501 			i915_request_put(rq);
2502 
2503 			/*
2504 			 * Error path, cannot use intel_context_timeline_lock as
2505 			 * that is user interruptable and this clean up step
2506 			 * must be done.
2507 			 */
2508 			mutex_lock(&ce->timeline->mutex);
2509 			intel_context_exit(ce);
2510 			mutex_unlock(&ce->timeline->mutex);
2511 
2512 			if (nonblock)
2513 				return -EWOULDBLOCK;
2514 			else
2515 				return -EINTR;
2516 		}
2517 		i915_request_put(rq);
2518 	}
2519 
2520 	return 0;
2521 }
2522 
2523 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2524 {
2525 	struct intel_context *ce = eb->context, *child;
2526 	int err;
2527 	int i = 0, j = 0;
2528 
2529 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2530 
2531 	if (unlikely(intel_context_is_banned(ce)))
2532 		return -EIO;
2533 
2534 	/*
2535 	 * Pinning the contexts may generate requests in order to acquire
2536 	 * GGTT space, so do this first before we reserve a seqno for
2537 	 * ourselves.
2538 	 */
2539 	err = intel_context_pin_ww(ce, &eb->ww);
2540 	if (err)
2541 		return err;
2542 	for_each_child(ce, child) {
2543 		err = intel_context_pin_ww(child, &eb->ww);
2544 		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
2545 	}
2546 
2547 	for_each_child(ce, child) {
2548 		err = eb_pin_timeline(eb, child, throttle);
2549 		if (err)
2550 			goto unwind;
2551 		++i;
2552 	}
2553 	err = eb_pin_timeline(eb, ce, throttle);
2554 	if (err)
2555 		goto unwind;
2556 
2557 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2558 	return 0;
2559 
2560 unwind:
2561 	for_each_child(ce, child) {
2562 		if (j++ < i) {
2563 			mutex_lock(&child->timeline->mutex);
2564 			intel_context_exit(child);
2565 			mutex_unlock(&child->timeline->mutex);
2566 		}
2567 	}
2568 	for_each_child(ce, child)
2569 		intel_context_unpin(child);
2570 	intel_context_unpin(ce);
2571 	return err;
2572 }
2573 
2574 static void eb_unpin_engine(struct i915_execbuffer *eb)
2575 {
2576 	struct intel_context *ce = eb->context, *child;
2577 
2578 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2579 		return;
2580 
2581 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2582 
2583 	for_each_child(ce, child) {
2584 		mutex_lock(&child->timeline->mutex);
2585 		intel_context_exit(child);
2586 		mutex_unlock(&child->timeline->mutex);
2587 
2588 		intel_context_unpin(child);
2589 	}
2590 
2591 	mutex_lock(&ce->timeline->mutex);
2592 	intel_context_exit(ce);
2593 	mutex_unlock(&ce->timeline->mutex);
2594 
2595 	intel_context_unpin(ce);
2596 }
2597 
2598 static unsigned int
2599 eb_select_legacy_ring(struct i915_execbuffer *eb)
2600 {
2601 	struct drm_i915_private *i915 = eb->i915;
2602 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2603 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2604 
2605 	if (user_ring_id != I915_EXEC_BSD &&
2606 	    (args->flags & I915_EXEC_BSD_MASK)) {
2607 		drm_dbg(&i915->drm,
2608 			"execbuf with non bsd ring but with invalid "
2609 			"bsd dispatch flags: %d\n", (int)(args->flags));
2610 		return -1;
2611 	}
2612 
2613 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2614 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2615 
2616 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2617 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2618 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2619 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2620 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2621 			bsd_idx--;
2622 		} else {
2623 			drm_dbg(&i915->drm,
2624 				"execbuf with unknown bsd ring: %u\n",
2625 				bsd_idx);
2626 			return -1;
2627 		}
2628 
2629 		return _VCS(bsd_idx);
2630 	}
2631 
2632 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2633 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2634 			user_ring_id);
2635 		return -1;
2636 	}
2637 
2638 	return user_ring_map[user_ring_id];
2639 }
2640 
2641 static int
2642 eb_select_engine(struct i915_execbuffer *eb)
2643 {
2644 	struct intel_context *ce, *child;
2645 	unsigned int idx;
2646 	int err;
2647 
2648 	if (i915_gem_context_user_engines(eb->gem_context))
2649 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2650 	else
2651 		idx = eb_select_legacy_ring(eb);
2652 
2653 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2654 	if (IS_ERR(ce))
2655 		return PTR_ERR(ce);
2656 
2657 	if (intel_context_is_parallel(ce)) {
2658 		if (eb->buffer_count < ce->parallel.number_children + 1) {
2659 			intel_context_put(ce);
2660 			return -EINVAL;
2661 		}
2662 		if (eb->batch_start_offset || eb->args->batch_len) {
2663 			intel_context_put(ce);
2664 			return -EINVAL;
2665 		}
2666 	}
2667 	eb->num_batches = ce->parallel.number_children + 1;
2668 
2669 	for_each_child(ce, child)
2670 		intel_context_get(child);
2671 	intel_gt_pm_get(ce->engine->gt);
2672 
2673 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2674 		err = intel_context_alloc_state(ce);
2675 		if (err)
2676 			goto err;
2677 	}
2678 	for_each_child(ce, child) {
2679 		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2680 			err = intel_context_alloc_state(child);
2681 			if (err)
2682 				goto err;
2683 		}
2684 	}
2685 
2686 	/*
2687 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2688 	 * EIO if the GPU is already wedged.
2689 	 */
2690 	err = intel_gt_terminally_wedged(ce->engine->gt);
2691 	if (err)
2692 		goto err;
2693 
2694 	eb->context = ce;
2695 	eb->gt = ce->engine->gt;
2696 
2697 	/*
2698 	 * Make sure engine pool stays alive even if we call intel_context_put
2699 	 * during ww handling. The pool is destroyed when last pm reference
2700 	 * is dropped, which breaks our -EDEADLK handling.
2701 	 */
2702 	return err;
2703 
2704 err:
2705 	intel_gt_pm_put(ce->engine->gt);
2706 	for_each_child(ce, child)
2707 		intel_context_put(child);
2708 	intel_context_put(ce);
2709 	return err;
2710 }
2711 
2712 static void
2713 eb_put_engine(struct i915_execbuffer *eb)
2714 {
2715 	struct intel_context *child;
2716 
2717 	intel_gt_pm_put(eb->gt);
2718 	for_each_child(eb->context, child)
2719 		intel_context_put(child);
2720 	intel_context_put(eb->context);
2721 }
2722 
2723 static void
2724 __free_fence_array(struct eb_fence *fences, unsigned int n)
2725 {
2726 	while (n--) {
2727 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2728 		dma_fence_put(fences[n].dma_fence);
2729 		dma_fence_chain_free(fences[n].chain_fence);
2730 	}
2731 	kvfree(fences);
2732 }
2733 
2734 static int
2735 add_timeline_fence_array(struct i915_execbuffer *eb,
2736 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2737 {
2738 	struct drm_i915_gem_exec_fence __user *user_fences;
2739 	u64 __user *user_values;
2740 	struct eb_fence *f;
2741 	u64 nfences;
2742 	int err = 0;
2743 
2744 	nfences = timeline_fences->fence_count;
2745 	if (!nfences)
2746 		return 0;
2747 
2748 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2749 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2750 	if (nfences > min_t(unsigned long,
2751 			    ULONG_MAX / sizeof(*user_fences),
2752 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2753 		return -EINVAL;
2754 
2755 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2756 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2757 		return -EFAULT;
2758 
2759 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2760 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2761 		return -EFAULT;
2762 
2763 	f = krealloc(eb->fences,
2764 		     (eb->num_fences + nfences) * sizeof(*f),
2765 		     __GFP_NOWARN | GFP_KERNEL);
2766 	if (!f)
2767 		return -ENOMEM;
2768 
2769 	eb->fences = f;
2770 	f += eb->num_fences;
2771 
2772 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2773 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2774 
2775 	while (nfences--) {
2776 		struct drm_i915_gem_exec_fence user_fence;
2777 		struct drm_syncobj *syncobj;
2778 		struct dma_fence *fence = NULL;
2779 		u64 point;
2780 
2781 		if (__copy_from_user(&user_fence,
2782 				     user_fences++,
2783 				     sizeof(user_fence)))
2784 			return -EFAULT;
2785 
2786 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2787 			return -EINVAL;
2788 
2789 		if (__get_user(point, user_values++))
2790 			return -EFAULT;
2791 
2792 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2793 		if (!syncobj) {
2794 			DRM_DEBUG("Invalid syncobj handle provided\n");
2795 			return -ENOENT;
2796 		}
2797 
2798 		fence = drm_syncobj_fence_get(syncobj);
2799 
2800 		if (!fence && user_fence.flags &&
2801 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2802 			DRM_DEBUG("Syncobj handle has no fence\n");
2803 			drm_syncobj_put(syncobj);
2804 			return -EINVAL;
2805 		}
2806 
2807 		if (fence)
2808 			err = dma_fence_chain_find_seqno(&fence, point);
2809 
2810 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2811 			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2812 			dma_fence_put(fence);
2813 			drm_syncobj_put(syncobj);
2814 			return err;
2815 		}
2816 
2817 		/*
2818 		 * A point might have been signaled already and
2819 		 * garbage collected from the timeline. In this case
2820 		 * just ignore the point and carry on.
2821 		 */
2822 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2823 			drm_syncobj_put(syncobj);
2824 			continue;
2825 		}
2826 
2827 		/*
2828 		 * For timeline syncobjs we need to preallocate chains for
2829 		 * later signaling.
2830 		 */
2831 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2832 			/*
2833 			 * Waiting and signaling the same point (when point !=
2834 			 * 0) would break the timeline.
2835 			 */
2836 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2837 				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2838 				dma_fence_put(fence);
2839 				drm_syncobj_put(syncobj);
2840 				return -EINVAL;
2841 			}
2842 
2843 			f->chain_fence = dma_fence_chain_alloc();
2844 			if (!f->chain_fence) {
2845 				drm_syncobj_put(syncobj);
2846 				dma_fence_put(fence);
2847 				return -ENOMEM;
2848 			}
2849 		} else {
2850 			f->chain_fence = NULL;
2851 		}
2852 
2853 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2854 		f->dma_fence = fence;
2855 		f->value = point;
2856 		f++;
2857 		eb->num_fences++;
2858 	}
2859 
2860 	return 0;
2861 }
2862 
2863 static int add_fence_array(struct i915_execbuffer *eb)
2864 {
2865 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2866 	struct drm_i915_gem_exec_fence __user *user;
2867 	unsigned long num_fences = args->num_cliprects;
2868 	struct eb_fence *f;
2869 
2870 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2871 		return 0;
2872 
2873 	if (!num_fences)
2874 		return 0;
2875 
2876 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2877 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2878 	if (num_fences > min_t(unsigned long,
2879 			       ULONG_MAX / sizeof(*user),
2880 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2881 		return -EINVAL;
2882 
2883 	user = u64_to_user_ptr(args->cliprects_ptr);
2884 	if (!access_ok(user, num_fences * sizeof(*user)))
2885 		return -EFAULT;
2886 
2887 	f = krealloc(eb->fences,
2888 		     (eb->num_fences + num_fences) * sizeof(*f),
2889 		     __GFP_NOWARN | GFP_KERNEL);
2890 	if (!f)
2891 		return -ENOMEM;
2892 
2893 	eb->fences = f;
2894 	f += eb->num_fences;
2895 	while (num_fences--) {
2896 		struct drm_i915_gem_exec_fence user_fence;
2897 		struct drm_syncobj *syncobj;
2898 		struct dma_fence *fence = NULL;
2899 
2900 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2901 			return -EFAULT;
2902 
2903 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2904 			return -EINVAL;
2905 
2906 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2907 		if (!syncobj) {
2908 			DRM_DEBUG("Invalid syncobj handle provided\n");
2909 			return -ENOENT;
2910 		}
2911 
2912 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2913 			fence = drm_syncobj_fence_get(syncobj);
2914 			if (!fence) {
2915 				DRM_DEBUG("Syncobj handle has no fence\n");
2916 				drm_syncobj_put(syncobj);
2917 				return -EINVAL;
2918 			}
2919 		}
2920 
2921 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2922 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2923 
2924 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2925 		f->dma_fence = fence;
2926 		f->value = 0;
2927 		f->chain_fence = NULL;
2928 		f++;
2929 		eb->num_fences++;
2930 	}
2931 
2932 	return 0;
2933 }
2934 
2935 static void put_fence_array(struct eb_fence *fences, int num_fences)
2936 {
2937 	if (fences)
2938 		__free_fence_array(fences, num_fences);
2939 }
2940 
2941 static int
2942 await_fence_array(struct i915_execbuffer *eb,
2943 		  struct i915_request *rq)
2944 {
2945 	unsigned int n;
2946 	int err;
2947 
2948 	for (n = 0; n < eb->num_fences; n++) {
2949 		struct drm_syncobj *syncobj;
2950 		unsigned int flags;
2951 
2952 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2953 
2954 		if (!eb->fences[n].dma_fence)
2955 			continue;
2956 
2957 		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
2958 		if (err < 0)
2959 			return err;
2960 	}
2961 
2962 	return 0;
2963 }
2964 
2965 static void signal_fence_array(const struct i915_execbuffer *eb,
2966 			       struct dma_fence * const fence)
2967 {
2968 	unsigned int n;
2969 
2970 	for (n = 0; n < eb->num_fences; n++) {
2971 		struct drm_syncobj *syncobj;
2972 		unsigned int flags;
2973 
2974 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2975 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
2976 			continue;
2977 
2978 		if (eb->fences[n].chain_fence) {
2979 			drm_syncobj_add_point(syncobj,
2980 					      eb->fences[n].chain_fence,
2981 					      fence,
2982 					      eb->fences[n].value);
2983 			/*
2984 			 * The chain's ownership is transferred to the
2985 			 * timeline.
2986 			 */
2987 			eb->fences[n].chain_fence = NULL;
2988 		} else {
2989 			drm_syncobj_replace_fence(syncobj, fence);
2990 		}
2991 	}
2992 }
2993 
2994 static int
2995 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
2996 {
2997 	struct i915_execbuffer *eb = data;
2998 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
2999 
3000 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3001 		return -EFAULT;
3002 
3003 	return add_timeline_fence_array(eb, &timeline_fences);
3004 }
3005 
3006 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3007 {
3008 	struct i915_request *rq, *rn;
3009 
3010 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3011 		if (rq == end || !i915_request_retire(rq))
3012 			break;
3013 }
3014 
3015 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3016 			  int err, bool last_parallel)
3017 {
3018 	struct intel_timeline * const tl = i915_request_timeline(rq);
3019 	struct i915_sched_attr attr = {};
3020 	struct i915_request *prev;
3021 
3022 	lockdep_assert_held(&tl->mutex);
3023 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3024 
3025 	trace_i915_request_add(rq);
3026 
3027 	prev = __i915_request_commit(rq);
3028 
3029 	/* Check that the context wasn't destroyed before submission */
3030 	if (likely(!intel_context_is_closed(eb->context))) {
3031 		attr = eb->gem_context->sched;
3032 	} else {
3033 		/* Serialise with context_close via the add_to_timeline */
3034 		i915_request_set_error_once(rq, -ENOENT);
3035 		__i915_request_skip(rq);
3036 		err = -ENOENT; /* override any transient errors */
3037 	}
3038 
3039 	if (intel_context_is_parallel(eb->context)) {
3040 		if (err) {
3041 			__i915_request_skip(rq);
3042 			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3043 				&rq->fence.flags);
3044 		}
3045 		if (last_parallel)
3046 			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3047 				&rq->fence.flags);
3048 	}
3049 
3050 	__i915_request_queue(rq, &attr);
3051 
3052 	/* Try to clean up the client's timeline after submitting the request */
3053 	if (prev)
3054 		retire_requests(tl, prev);
3055 
3056 	mutex_unlock(&tl->mutex);
3057 
3058 	return err;
3059 }
3060 
3061 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3062 {
3063 	int i;
3064 
3065 	/*
3066 	 * We iterate in reverse order of creation to release timeline mutexes in
3067 	 * same order.
3068 	 */
3069 	for_each_batch_add_order(eb, i) {
3070 		struct i915_request *rq = eb->requests[i];
3071 
3072 		if (!rq)
3073 			continue;
3074 		err |= eb_request_add(eb, rq, err, i == 0);
3075 	}
3076 
3077 	return err;
3078 }
3079 
3080 static const i915_user_extension_fn execbuf_extensions[] = {
3081 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3082 };
3083 
3084 static int
3085 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3086 			  struct i915_execbuffer *eb)
3087 {
3088 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3089 		return 0;
3090 
3091 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3092 	 * have another flag also using it at the same time.
3093 	 */
3094 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3095 		return -EINVAL;
3096 
3097 	if (args->num_cliprects != 0)
3098 		return -EINVAL;
3099 
3100 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3101 				    execbuf_extensions,
3102 				    ARRAY_SIZE(execbuf_extensions),
3103 				    eb);
3104 }
3105 
3106 static void eb_requests_get(struct i915_execbuffer *eb)
3107 {
3108 	unsigned int i;
3109 
3110 	for_each_batch_create_order(eb, i) {
3111 		if (!eb->requests[i])
3112 			break;
3113 
3114 		i915_request_get(eb->requests[i]);
3115 	}
3116 }
3117 
3118 static void eb_requests_put(struct i915_execbuffer *eb)
3119 {
3120 	unsigned int i;
3121 
3122 	for_each_batch_create_order(eb, i) {
3123 		if (!eb->requests[i])
3124 			break;
3125 
3126 		i915_request_put(eb->requests[i]);
3127 	}
3128 }
3129 
3130 static struct sync_file *
3131 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3132 {
3133 	struct sync_file *out_fence = NULL;
3134 	struct dma_fence_array *fence_array;
3135 	struct dma_fence **fences;
3136 	unsigned int i;
3137 
3138 	GEM_BUG_ON(!intel_context_is_parent(eb->context));
3139 
3140 	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3141 	if (!fences)
3142 		return ERR_PTR(-ENOMEM);
3143 
3144 	for_each_batch_create_order(eb, i) {
3145 		fences[i] = &eb->requests[i]->fence;
3146 		__set_bit(I915_FENCE_FLAG_COMPOSITE,
3147 			  &eb->requests[i]->fence.flags);
3148 	}
3149 
3150 	fence_array = dma_fence_array_create(eb->num_batches,
3151 					     fences,
3152 					     eb->context->parallel.fence_context,
3153 					     eb->context->parallel.seqno++,
3154 					     false);
3155 	if (!fence_array) {
3156 		kfree(fences);
3157 		return ERR_PTR(-ENOMEM);
3158 	}
3159 
3160 	/* Move ownership to the dma_fence_array created above */
3161 	for_each_batch_create_order(eb, i)
3162 		dma_fence_get(fences[i]);
3163 
3164 	if (out_fence_fd != -1) {
3165 		out_fence = sync_file_create(&fence_array->base);
3166 		/* sync_file now owns fence_arry, drop creation ref */
3167 		dma_fence_put(&fence_array->base);
3168 		if (!out_fence)
3169 			return ERR_PTR(-ENOMEM);
3170 	}
3171 
3172 	eb->composite_fence = &fence_array->base;
3173 
3174 	return out_fence;
3175 }
3176 
3177 static struct sync_file *
3178 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3179 	      struct dma_fence *in_fence, int out_fence_fd)
3180 {
3181 	struct sync_file *out_fence = NULL;
3182 	int err;
3183 
3184 	if (unlikely(eb->gem_context->syncobj)) {
3185 		struct dma_fence *fence;
3186 
3187 		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3188 		err = i915_request_await_dma_fence(rq, fence);
3189 		dma_fence_put(fence);
3190 		if (err)
3191 			return ERR_PTR(err);
3192 	}
3193 
3194 	if (in_fence) {
3195 		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3196 			err = i915_request_await_execution(rq, in_fence);
3197 		else
3198 			err = i915_request_await_dma_fence(rq, in_fence);
3199 		if (err < 0)
3200 			return ERR_PTR(err);
3201 	}
3202 
3203 	if (eb->fences) {
3204 		err = await_fence_array(eb, rq);
3205 		if (err)
3206 			return ERR_PTR(err);
3207 	}
3208 
3209 	if (intel_context_is_parallel(eb->context)) {
3210 		out_fence = eb_composite_fence_create(eb, out_fence_fd);
3211 		if (IS_ERR(out_fence))
3212 			return ERR_PTR(-ENOMEM);
3213 	} else if (out_fence_fd != -1) {
3214 		out_fence = sync_file_create(&rq->fence);
3215 		if (!out_fence)
3216 			return ERR_PTR(-ENOMEM);
3217 	}
3218 
3219 	return out_fence;
3220 }
3221 
3222 static struct intel_context *
3223 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3224 {
3225 	struct intel_context *child;
3226 
3227 	if (likely(context_number == 0))
3228 		return eb->context;
3229 
3230 	for_each_child(eb->context, child)
3231 		if (!--context_number)
3232 			return child;
3233 
3234 	GEM_BUG_ON("Context not found");
3235 
3236 	return NULL;
3237 }
3238 
3239 static struct sync_file *
3240 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3241 		   int out_fence_fd)
3242 {
3243 	struct sync_file *out_fence = NULL;
3244 	unsigned int i;
3245 
3246 	for_each_batch_create_order(eb, i) {
3247 		/* Allocate a request for this batch buffer nice and early. */
3248 		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3249 		if (IS_ERR(eb->requests[i])) {
3250 			out_fence = ERR_CAST(eb->requests[i]);
3251 			eb->requests[i] = NULL;
3252 			return out_fence;
3253 		}
3254 
3255 		/*
3256 		 * Only the first request added (committed to backend) has to
3257 		 * take the in fences into account as all subsequent requests
3258 		 * will have fences inserted inbetween them.
3259 		 */
3260 		if (i + 1 == eb->num_batches) {
3261 			out_fence = eb_fences_add(eb, eb->requests[i],
3262 						  in_fence, out_fence_fd);
3263 			if (IS_ERR(out_fence))
3264 				return out_fence;
3265 		}
3266 
3267 		/*
3268 		 * Not really on stack, but we don't want to call
3269 		 * kfree on the batch_snapshot when we put it, so use the
3270 		 * _onstack interface.
3271 		 */
3272 		if (eb->batches[i]->vma)
3273 			eb->requests[i]->batch_res =
3274 				i915_vma_resource_get(eb->batches[i]->vma->resource);
3275 		if (eb->batch_pool) {
3276 			GEM_BUG_ON(intel_context_is_parallel(eb->context));
3277 			intel_gt_buffer_pool_mark_active(eb->batch_pool,
3278 							 eb->requests[i]);
3279 		}
3280 	}
3281 
3282 	return out_fence;
3283 }
3284 
3285 static int
3286 i915_gem_do_execbuffer(struct drm_device *dev,
3287 		       struct drm_file *file,
3288 		       struct drm_i915_gem_execbuffer2 *args,
3289 		       struct drm_i915_gem_exec_object2 *exec)
3290 {
3291 	struct drm_i915_private *i915 = to_i915(dev);
3292 	struct i915_execbuffer eb;
3293 	struct dma_fence *in_fence = NULL;
3294 	struct sync_file *out_fence = NULL;
3295 	int out_fence_fd = -1;
3296 	int err;
3297 
3298 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3299 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3300 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3301 
3302 	eb.i915 = i915;
3303 	eb.file = file;
3304 	eb.args = args;
3305 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3306 		args->flags |= __EXEC_HAS_RELOC;
3307 
3308 	eb.exec = exec;
3309 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3310 	eb.vma[0].vma = NULL;
3311 	eb.batch_pool = NULL;
3312 
3313 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3314 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3315 
3316 	eb.buffer_count = args->buffer_count;
3317 	eb.batch_start_offset = args->batch_start_offset;
3318 	eb.trampoline = NULL;
3319 
3320 	eb.fences = NULL;
3321 	eb.num_fences = 0;
3322 
3323 	eb_capture_list_clear(&eb);
3324 
3325 	memset(eb.requests, 0, sizeof(struct i915_request *) *
3326 	       ARRAY_SIZE(eb.requests));
3327 	eb.composite_fence = NULL;
3328 
3329 	eb.batch_flags = 0;
3330 	if (args->flags & I915_EXEC_SECURE) {
3331 		if (GRAPHICS_VER(i915) >= 11)
3332 			return -ENODEV;
3333 
3334 		/* Return -EPERM to trigger fallback code on old binaries. */
3335 		if (!HAS_SECURE_BATCHES(i915))
3336 			return -EPERM;
3337 
3338 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3339 			return -EPERM;
3340 
3341 		eb.batch_flags |= I915_DISPATCH_SECURE;
3342 	}
3343 	if (args->flags & I915_EXEC_IS_PINNED)
3344 		eb.batch_flags |= I915_DISPATCH_PINNED;
3345 
3346 	err = parse_execbuf2_extensions(args, &eb);
3347 	if (err)
3348 		goto err_ext;
3349 
3350 	err = add_fence_array(&eb);
3351 	if (err)
3352 		goto err_ext;
3353 
3354 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3355 	if (args->flags & IN_FENCES) {
3356 		if ((args->flags & IN_FENCES) == IN_FENCES)
3357 			return -EINVAL;
3358 
3359 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3360 		if (!in_fence) {
3361 			err = -EINVAL;
3362 			goto err_ext;
3363 		}
3364 	}
3365 #undef IN_FENCES
3366 
3367 	if (args->flags & I915_EXEC_FENCE_OUT) {
3368 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3369 		if (out_fence_fd < 0) {
3370 			err = out_fence_fd;
3371 			goto err_in_fence;
3372 		}
3373 	}
3374 
3375 	err = eb_create(&eb);
3376 	if (err)
3377 		goto err_out_fence;
3378 
3379 	GEM_BUG_ON(!eb.lut_size);
3380 
3381 	err = eb_select_context(&eb);
3382 	if (unlikely(err))
3383 		goto err_destroy;
3384 
3385 	err = eb_select_engine(&eb);
3386 	if (unlikely(err))
3387 		goto err_context;
3388 
3389 	err = eb_lookup_vmas(&eb);
3390 	if (err) {
3391 		eb_release_vmas(&eb, true);
3392 		goto err_engine;
3393 	}
3394 
3395 	i915_gem_ww_ctx_init(&eb.ww, true);
3396 
3397 	err = eb_relocate_parse(&eb);
3398 	if (err) {
3399 		/*
3400 		 * If the user expects the execobject.offset and
3401 		 * reloc.presumed_offset to be an exact match,
3402 		 * as for using NO_RELOC, then we cannot update
3403 		 * the execobject.offset until we have completed
3404 		 * relocation.
3405 		 */
3406 		args->flags &= ~__EXEC_HAS_RELOC;
3407 		goto err_vma;
3408 	}
3409 
3410 	ww_acquire_done(&eb.ww.ctx);
3411 	eb_capture_stage(&eb);
3412 
3413 	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3414 	if (IS_ERR(out_fence)) {
3415 		err = PTR_ERR(out_fence);
3416 		out_fence = NULL;
3417 		if (eb.requests[0])
3418 			goto err_request;
3419 		else
3420 			goto err_vma;
3421 	}
3422 
3423 	err = eb_submit(&eb);
3424 
3425 err_request:
3426 	eb_requests_get(&eb);
3427 	err = eb_requests_add(&eb, err);
3428 
3429 	if (eb.fences)
3430 		signal_fence_array(&eb, eb.composite_fence ?
3431 				   eb.composite_fence :
3432 				   &eb.requests[0]->fence);
3433 
3434 	if (out_fence) {
3435 		if (err == 0) {
3436 			fd_install(out_fence_fd, out_fence->file);
3437 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3438 			args->rsvd2 |= (u64)out_fence_fd << 32;
3439 			out_fence_fd = -1;
3440 		} else {
3441 			fput(out_fence->file);
3442 		}
3443 	}
3444 
3445 	if (unlikely(eb.gem_context->syncobj)) {
3446 		drm_syncobj_replace_fence(eb.gem_context->syncobj,
3447 					  eb.composite_fence ?
3448 					  eb.composite_fence :
3449 					  &eb.requests[0]->fence);
3450 	}
3451 
3452 	if (!out_fence && eb.composite_fence)
3453 		dma_fence_put(eb.composite_fence);
3454 
3455 	eb_requests_put(&eb);
3456 
3457 err_vma:
3458 	eb_release_vmas(&eb, true);
3459 	WARN_ON(err == -EDEADLK);
3460 	i915_gem_ww_ctx_fini(&eb.ww);
3461 
3462 	if (eb.batch_pool)
3463 		intel_gt_buffer_pool_put(eb.batch_pool);
3464 err_engine:
3465 	eb_put_engine(&eb);
3466 err_context:
3467 	i915_gem_context_put(eb.gem_context);
3468 err_destroy:
3469 	eb_destroy(&eb);
3470 err_out_fence:
3471 	if (out_fence_fd != -1)
3472 		put_unused_fd(out_fence_fd);
3473 err_in_fence:
3474 	dma_fence_put(in_fence);
3475 err_ext:
3476 	put_fence_array(eb.fences, eb.num_fences);
3477 	return err;
3478 }
3479 
3480 static size_t eb_element_size(void)
3481 {
3482 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3483 }
3484 
3485 static bool check_buffer_count(size_t count)
3486 {
3487 	const size_t sz = eb_element_size();
3488 
3489 	/*
3490 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3491 	 * array size (see eb_create()). Otherwise, we can accept an array as
3492 	 * large as can be addressed (though use large arrays at your peril)!
3493 	 */
3494 
3495 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3496 }
3497 
3498 int
3499 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3500 			   struct drm_file *file)
3501 {
3502 	struct drm_i915_private *i915 = to_i915(dev);
3503 	struct drm_i915_gem_execbuffer2 *args = data;
3504 	struct drm_i915_gem_exec_object2 *exec2_list;
3505 	const size_t count = args->buffer_count;
3506 	int err;
3507 
3508 	if (!check_buffer_count(count)) {
3509 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3510 		return -EINVAL;
3511 	}
3512 
3513 	err = i915_gem_check_execbuffer(args);
3514 	if (err)
3515 		return err;
3516 
3517 	/* Allocate extra slots for use by the command parser */
3518 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3519 				    __GFP_NOWARN | GFP_KERNEL);
3520 	if (exec2_list == NULL) {
3521 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3522 			count);
3523 		return -ENOMEM;
3524 	}
3525 	if (copy_from_user(exec2_list,
3526 			   u64_to_user_ptr(args->buffers_ptr),
3527 			   sizeof(*exec2_list) * count)) {
3528 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3529 		kvfree(exec2_list);
3530 		return -EFAULT;
3531 	}
3532 
3533 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3534 
3535 	/*
3536 	 * Now that we have begun execution of the batchbuffer, we ignore
3537 	 * any new error after this point. Also given that we have already
3538 	 * updated the associated relocations, we try to write out the current
3539 	 * object locations irrespective of any error.
3540 	 */
3541 	if (args->flags & __EXEC_HAS_RELOC) {
3542 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3543 			u64_to_user_ptr(args->buffers_ptr);
3544 		unsigned int i;
3545 
3546 		/* Copy the new buffer offsets back to the user's exec list. */
3547 		/*
3548 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3549 		 * because we checked 'count' in check_buffer_count().
3550 		 *
3551 		 * And this range already got effectively checked earlier
3552 		 * when we did the "copy_from_user()" above.
3553 		 */
3554 		if (!user_write_access_begin(user_exec_list,
3555 					     count * sizeof(*user_exec_list)))
3556 			goto end;
3557 
3558 		for (i = 0; i < args->buffer_count; i++) {
3559 			if (!(exec2_list[i].offset & UPDATE))
3560 				continue;
3561 
3562 			exec2_list[i].offset =
3563 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3564 			unsafe_put_user(exec2_list[i].offset,
3565 					&user_exec_list[i].offset,
3566 					end_user);
3567 		}
3568 end_user:
3569 		user_write_access_end();
3570 end:;
3571 	}
3572 
3573 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3574 	kvfree(exec2_list);
3575 	return err;
3576 }
3577