1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/dma-resv.h> 8 #include <linux/highmem.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_auth.h> 13 #include <drm/drm_syncobj.h> 14 15 #include "gem/i915_gem_ioctls.h" 16 #include "gt/intel_context.h" 17 #include "gt/intel_gpu_commands.h" 18 #include "gt/intel_gt.h" 19 #include "gt/intel_gt_buffer_pool.h" 20 #include "gt/intel_gt_pm.h" 21 #include "gt/intel_ring.h" 22 23 #include "pxp/intel_pxp.h" 24 25 #include "i915_cmd_parser.h" 26 #include "i915_drv.h" 27 #include "i915_file_private.h" 28 #include "i915_gem_clflush.h" 29 #include "i915_gem_context.h" 30 #include "i915_gem_evict.h" 31 #include "i915_gem_ioctls.h" 32 #include "i915_reg.h" 33 #include "i915_trace.h" 34 #include "i915_user_extensions.h" 35 36 struct eb_vma { 37 struct i915_vma *vma; 38 unsigned int flags; 39 40 /** This vma's place in the execbuf reservation list */ 41 struct drm_i915_gem_exec_object2 *exec; 42 struct list_head bind_link; 43 struct list_head reloc_link; 44 45 struct hlist_node node; 46 u32 handle; 47 }; 48 49 enum { 50 FORCE_CPU_RELOC = 1, 51 FORCE_GTT_RELOC, 52 FORCE_GPU_RELOC, 53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 54 }; 55 56 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */ 57 #define __EXEC_OBJECT_HAS_PIN BIT(29) 58 #define __EXEC_OBJECT_HAS_FENCE BIT(28) 59 #define __EXEC_OBJECT_USERPTR_INIT BIT(27) 60 #define __EXEC_OBJECT_NEEDS_MAP BIT(26) 61 #define __EXEC_OBJECT_NEEDS_BIAS BIT(25) 62 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 25) /* all of the above + */ 63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 64 65 #define __EXEC_HAS_RELOC BIT(31) 66 #define __EXEC_ENGINE_PINNED BIT(30) 67 #define __EXEC_USERPTR_USED BIT(29) 68 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 69 #define UPDATE PIN_OFFSET_FIXED 70 71 #define BATCH_OFFSET_BIAS (256*1024) 72 73 #define __I915_EXEC_ILLEGAL_FLAGS \ 74 (__I915_EXEC_UNKNOWN_FLAGS | \ 75 I915_EXEC_CONSTANTS_MASK | \ 76 I915_EXEC_RESOURCE_STREAMER) 77 78 /* Catch emission of unexpected errors for CI! */ 79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 80 #undef EINVAL 81 #define EINVAL ({ \ 82 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 83 22; \ 84 }) 85 #endif 86 87 /** 88 * DOC: User command execution 89 * 90 * Userspace submits commands to be executed on the GPU as an instruction 91 * stream within a GEM object we call a batchbuffer. This instructions may 92 * refer to other GEM objects containing auxiliary state such as kernels, 93 * samplers, render targets and even secondary batchbuffers. Userspace does 94 * not know where in the GPU memory these objects reside and so before the 95 * batchbuffer is passed to the GPU for execution, those addresses in the 96 * batchbuffer and auxiliary objects are updated. This is known as relocation, 97 * or patching. To try and avoid having to relocate each object on the next 98 * execution, userspace is told the location of those objects in this pass, 99 * but this remains just a hint as the kernel may choose a new location for 100 * any object in the future. 101 * 102 * At the level of talking to the hardware, submitting a batchbuffer for the 103 * GPU to execute is to add content to a buffer from which the HW 104 * command streamer is reading. 105 * 106 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 107 * Execlists, this command is not placed on the same buffer as the 108 * remaining items. 109 * 110 * 2. Add a command to invalidate caches to the buffer. 111 * 112 * 3. Add a batchbuffer start command to the buffer; the start command is 113 * essentially a token together with the GPU address of the batchbuffer 114 * to be executed. 115 * 116 * 4. Add a pipeline flush to the buffer. 117 * 118 * 5. Add a memory write command to the buffer to record when the GPU 119 * is done executing the batchbuffer. The memory write writes the 120 * global sequence number of the request, ``i915_request::global_seqno``; 121 * the i915 driver uses the current value in the register to determine 122 * if the GPU has completed the batchbuffer. 123 * 124 * 6. Add a user interrupt command to the buffer. This command instructs 125 * the GPU to issue an interrupt when the command, pipeline flush and 126 * memory write are completed. 127 * 128 * 7. Inform the hardware of the additional commands added to the buffer 129 * (by updating the tail pointer). 130 * 131 * Processing an execbuf ioctl is conceptually split up into a few phases. 132 * 133 * 1. Validation - Ensure all the pointers, handles and flags are valid. 134 * 2. Reservation - Assign GPU address space for every object 135 * 3. Relocation - Update any addresses to point to the final locations 136 * 4. Serialisation - Order the request with respect to its dependencies 137 * 5. Construction - Construct a request to execute the batchbuffer 138 * 6. Submission (at some point in the future execution) 139 * 140 * Reserving resources for the execbuf is the most complicated phase. We 141 * neither want to have to migrate the object in the address space, nor do 142 * we want to have to update any relocations pointing to this object. Ideally, 143 * we want to leave the object where it is and for all the existing relocations 144 * to match. If the object is given a new address, or if userspace thinks the 145 * object is elsewhere, we have to parse all the relocation entries and update 146 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 147 * all the target addresses in all of its objects match the value in the 148 * relocation entries and that they all match the presumed offsets given by the 149 * list of execbuffer objects. Using this knowledge, we know that if we haven't 150 * moved any buffers, all the relocation entries are valid and we can skip 151 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 152 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 153 * 154 * The addresses written in the objects must match the corresponding 155 * reloc.presumed_offset which in turn must match the corresponding 156 * execobject.offset. 157 * 158 * Any render targets written to in the batch must be flagged with 159 * EXEC_OBJECT_WRITE. 160 * 161 * To avoid stalling, execobject.offset should match the current 162 * address of that object within the active context. 163 * 164 * The reservation is done is multiple phases. First we try and keep any 165 * object already bound in its current location - so as long as meets the 166 * constraints imposed by the new execbuffer. Any object left unbound after the 167 * first pass is then fitted into any available idle space. If an object does 168 * not fit, all objects are removed from the reservation and the process rerun 169 * after sorting the objects into a priority order (more difficult to fit 170 * objects are tried first). Failing that, the entire VM is cleared and we try 171 * to fit the execbuf once last time before concluding that it simply will not 172 * fit. 173 * 174 * A small complication to all of this is that we allow userspace not only to 175 * specify an alignment and a size for the object in the address space, but 176 * we also allow userspace to specify the exact offset. This objects are 177 * simpler to place (the location is known a priori) all we have to do is make 178 * sure the space is available. 179 * 180 * Once all the objects are in place, patching up the buried pointers to point 181 * to the final locations is a fairly simple job of walking over the relocation 182 * entry arrays, looking up the right address and rewriting the value into 183 * the object. Simple! ... The relocation entries are stored in user memory 184 * and so to access them we have to copy them into a local buffer. That copy 185 * has to avoid taking any pagefaults as they may lead back to a GEM object 186 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 187 * the relocation into multiple passes. First we try to do everything within an 188 * atomic context (avoid the pagefaults) which requires that we never wait. If 189 * we detect that we may wait, or if we need to fault, then we have to fallback 190 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 191 * bells yet?) Dropping the mutex means that we lose all the state we have 192 * built up so far for the execbuf and we must reset any global data. However, 193 * we do leave the objects pinned in their final locations - which is a 194 * potential issue for concurrent execbufs. Once we have left the mutex, we can 195 * allocate and copy all the relocation entries into a large array at our 196 * leisure, reacquire the mutex, reclaim all the objects and other state and 197 * then proceed to update any incorrect addresses with the objects. 198 * 199 * As we process the relocation entries, we maintain a record of whether the 200 * object is being written to. Using NORELOC, we expect userspace to provide 201 * this information instead. We also check whether we can skip the relocation 202 * by comparing the expected value inside the relocation entry with the target's 203 * final address. If they differ, we have to map the current object and rewrite 204 * the 4 or 8 byte pointer within. 205 * 206 * Serialising an execbuf is quite simple according to the rules of the GEM 207 * ABI. Execution within each context is ordered by the order of submission. 208 * Writes to any GEM object are in order of submission and are exclusive. Reads 209 * from a GEM object are unordered with respect to other reads, but ordered by 210 * writes. A write submitted after a read cannot occur before the read, and 211 * similarly any read submitted after a write cannot occur before the write. 212 * Writes are ordered between engines such that only one write occurs at any 213 * time (completing any reads beforehand) - using semaphores where available 214 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 215 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 216 * reads before starting, and any read (either using set-domain or pread) must 217 * flush all GPU writes before starting. (Note we only employ a barrier before, 218 * we currently rely on userspace not concurrently starting a new execution 219 * whilst reading or writing to an object. This may be an advantage or not 220 * depending on how much you trust userspace not to shoot themselves in the 221 * foot.) Serialisation may just result in the request being inserted into 222 * a DAG awaiting its turn, but most simple is to wait on the CPU until 223 * all dependencies are resolved. 224 * 225 * After all of that, is just a matter of closing the request and handing it to 226 * the hardware (well, leaving it in a queue to be executed). However, we also 227 * offer the ability for batchbuffers to be run with elevated privileges so 228 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 229 * Before any batch is given extra privileges we first must check that it 230 * contains no nefarious instructions, we check that each instruction is from 231 * our whitelist and all registers are also from an allowed list. We first 232 * copy the user's batchbuffer to a shadow (so that the user doesn't have 233 * access to it, either by the CPU or GPU as we scan it) and then parse each 234 * instruction. If everything is ok, we set a flag telling the hardware to run 235 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 236 */ 237 238 struct eb_fence { 239 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 240 struct dma_fence *dma_fence; 241 u64 value; 242 struct dma_fence_chain *chain_fence; 243 }; 244 245 struct i915_execbuffer { 246 struct drm_i915_private *i915; /** i915 backpointer */ 247 struct drm_file *file; /** per-file lookup tables and limits */ 248 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 249 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 250 struct eb_vma *vma; 251 252 struct intel_gt *gt; /* gt for the execbuf */ 253 struct intel_context *context; /* logical state for the request */ 254 struct i915_gem_context *gem_context; /** caller's context */ 255 intel_wakeref_t wakeref; 256 intel_wakeref_t wakeref_gt0; 257 258 /** our requests to build */ 259 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; 260 /** identity of the batch obj/vma */ 261 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; 262 struct i915_vma *trampoline; /** trampoline used for chaining */ 263 264 /** used for excl fence in dma_resv objects when > 1 BB submitted */ 265 struct dma_fence *composite_fence; 266 267 /** actual size of execobj[] as we may extend it for the cmdparser */ 268 unsigned int buffer_count; 269 270 /* number of batches in execbuf IOCTL */ 271 unsigned int num_batches; 272 273 /** list of vma not yet bound during reservation phase */ 274 struct list_head unbound; 275 276 /** list of vma that have execobj.relocation_count */ 277 struct list_head relocs; 278 279 struct i915_gem_ww_ctx ww; 280 281 /** 282 * Track the most recently used object for relocations, as we 283 * frequently have to perform multiple relocations within the same 284 * obj/page 285 */ 286 struct reloc_cache { 287 struct drm_mm_node node; /** temporary GTT binding */ 288 unsigned long vaddr; /** Current kmap address */ 289 unsigned long page; /** Currently mapped page index */ 290 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 291 bool use_64bit_reloc : 1; 292 bool has_llc : 1; 293 bool has_fence : 1; 294 bool needs_unfenced : 1; 295 } reloc_cache; 296 297 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 298 299 /** Length of batch within object */ 300 u64 batch_len[MAX_ENGINE_INSTANCE + 1]; 301 u32 batch_start_offset; /** Location within object of batch */ 302 u32 batch_flags; /** Flags composed for emit_bb_start() */ 303 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 304 305 /** 306 * Indicate either the size of the hastable used to resolve 307 * relocation handles, or if negative that we are using a direct 308 * index into the execobj[]. 309 */ 310 int lut_size; 311 struct hlist_head *buckets; /** ht for relocation handles */ 312 313 struct eb_fence *fences; 314 unsigned long num_fences; 315 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 316 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; 317 #endif 318 }; 319 320 static int eb_parse(struct i915_execbuffer *eb); 321 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); 322 static void eb_unpin_engine(struct i915_execbuffer *eb); 323 static void eb_capture_release(struct i915_execbuffer *eb); 324 325 static bool eb_use_cmdparser(const struct i915_execbuffer *eb) 326 { 327 return intel_engine_requires_cmd_parser(eb->context->engine) || 328 (intel_engine_using_cmd_parser(eb->context->engine) && 329 eb->args->batch_len); 330 } 331 332 static int eb_create(struct i915_execbuffer *eb) 333 { 334 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 335 unsigned int size = 1 + ilog2(eb->buffer_count); 336 337 /* 338 * Without a 1:1 association between relocation handles and 339 * the execobject[] index, we instead create a hashtable. 340 * We size it dynamically based on available memory, starting 341 * first with 1:1 associative hash and scaling back until 342 * the allocation succeeds. 343 * 344 * Later on we use a positive lut_size to indicate we are 345 * using this hashtable, and a negative value to indicate a 346 * direct lookup. 347 */ 348 do { 349 gfp_t flags; 350 351 /* While we can still reduce the allocation size, don't 352 * raise a warning and allow the allocation to fail. 353 * On the last pass though, we want to try as hard 354 * as possible to perform the allocation and warn 355 * if it fails. 356 */ 357 flags = GFP_KERNEL; 358 if (size > 1) 359 flags |= __GFP_NORETRY | __GFP_NOWARN; 360 361 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 362 flags); 363 if (eb->buckets) 364 break; 365 } while (--size); 366 367 if (unlikely(!size)) 368 return -ENOMEM; 369 370 eb->lut_size = size; 371 } else { 372 eb->lut_size = -eb->buffer_count; 373 } 374 375 return 0; 376 } 377 378 static bool 379 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 380 const struct i915_vma *vma, 381 unsigned int flags) 382 { 383 const u64 start = i915_vma_offset(vma); 384 const u64 size = i915_vma_size(vma); 385 386 if (size < entry->pad_to_size) 387 return true; 388 389 if (entry->alignment && !IS_ALIGNED(start, entry->alignment)) 390 return true; 391 392 if (flags & EXEC_OBJECT_PINNED && 393 start != entry->offset) 394 return true; 395 396 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 397 start < BATCH_OFFSET_BIAS) 398 return true; 399 400 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 401 (start + size + 4095) >> 32) 402 return true; 403 404 if (flags & __EXEC_OBJECT_NEEDS_MAP && 405 !i915_vma_is_map_and_fenceable(vma)) 406 return true; 407 408 return false; 409 } 410 411 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 412 unsigned int exec_flags) 413 { 414 u64 pin_flags = 0; 415 416 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 417 pin_flags |= PIN_GLOBAL; 418 419 /* 420 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 421 * limit address to the first 4GBs for unflagged objects. 422 */ 423 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 424 pin_flags |= PIN_ZONE_4G; 425 426 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 427 pin_flags |= PIN_MAPPABLE; 428 429 if (exec_flags & EXEC_OBJECT_PINNED) 430 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 431 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 432 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 433 434 return pin_flags; 435 } 436 437 static int 438 eb_pin_vma(struct i915_execbuffer *eb, 439 const struct drm_i915_gem_exec_object2 *entry, 440 struct eb_vma *ev) 441 { 442 struct i915_vma *vma = ev->vma; 443 u64 pin_flags; 444 int err; 445 446 if (vma->node.size) 447 pin_flags = __i915_vma_offset(vma); 448 else 449 pin_flags = entry->offset & PIN_OFFSET_MASK; 450 451 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; 452 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 453 pin_flags |= PIN_GLOBAL; 454 455 /* Attempt to reuse the current location if available */ 456 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 457 if (err == -EDEADLK) 458 return err; 459 460 if (unlikely(err)) { 461 if (entry->flags & EXEC_OBJECT_PINNED) 462 return err; 463 464 /* Failing that pick any _free_ space if suitable */ 465 err = i915_vma_pin_ww(vma, &eb->ww, 466 entry->pad_to_size, 467 entry->alignment, 468 eb_pin_flags(entry, ev->flags) | 469 PIN_USER | PIN_NOEVICT | PIN_VALIDATE); 470 if (unlikely(err)) 471 return err; 472 } 473 474 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 475 err = i915_vma_pin_fence(vma); 476 if (unlikely(err)) 477 return err; 478 479 if (vma->fence) 480 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 481 } 482 483 ev->flags |= __EXEC_OBJECT_HAS_PIN; 484 if (eb_vma_misplaced(entry, vma, ev->flags)) 485 return -EBADSLT; 486 487 return 0; 488 } 489 490 static void 491 eb_unreserve_vma(struct eb_vma *ev) 492 { 493 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 494 __i915_vma_unpin_fence(ev->vma); 495 496 ev->flags &= ~__EXEC_OBJECT_RESERVED; 497 } 498 499 static int 500 eb_validate_vma(struct i915_execbuffer *eb, 501 struct drm_i915_gem_exec_object2 *entry, 502 struct i915_vma *vma) 503 { 504 /* Relocations are disallowed for all platforms after TGL-LP. This 505 * also covers all platforms with local memory. 506 */ 507 if (entry->relocation_count && 508 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 509 return -EINVAL; 510 511 if (unlikely(entry->flags & eb->invalid_flags)) 512 return -EINVAL; 513 514 if (unlikely(entry->alignment && 515 !is_power_of_2_u64(entry->alignment))) 516 return -EINVAL; 517 518 /* 519 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 520 * any non-page-aligned or non-canonical addresses. 521 */ 522 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 523 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 524 return -EINVAL; 525 526 /* pad_to_size was once a reserved field, so sanitize it */ 527 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 528 if (unlikely(offset_in_page(entry->pad_to_size))) 529 return -EINVAL; 530 } else { 531 entry->pad_to_size = 0; 532 } 533 /* 534 * From drm_mm perspective address space is continuous, 535 * so from this point we're always using non-canonical 536 * form internally. 537 */ 538 entry->offset = gen8_noncanonical_addr(entry->offset); 539 540 if (!eb->reloc_cache.has_fence) { 541 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 542 } else { 543 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 544 eb->reloc_cache.needs_unfenced) && 545 i915_gem_object_is_tiled(vma->obj)) 546 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 547 } 548 549 return 0; 550 } 551 552 static bool 553 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) 554 { 555 return eb->args->flags & I915_EXEC_BATCH_FIRST ? 556 buffer_idx < eb->num_batches : 557 buffer_idx >= eb->args->buffer_count - eb->num_batches; 558 } 559 560 static int 561 eb_add_vma(struct i915_execbuffer *eb, 562 unsigned int *current_batch, 563 unsigned int i, 564 struct i915_vma *vma) 565 { 566 struct drm_i915_private *i915 = eb->i915; 567 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 568 struct eb_vma *ev = &eb->vma[i]; 569 570 ev->vma = vma; 571 ev->exec = entry; 572 ev->flags = entry->flags; 573 574 if (eb->lut_size > 0) { 575 ev->handle = entry->handle; 576 hlist_add_head(&ev->node, 577 &eb->buckets[hash_32(entry->handle, 578 eb->lut_size)]); 579 } 580 581 if (entry->relocation_count) 582 list_add_tail(&ev->reloc_link, &eb->relocs); 583 584 /* 585 * SNA is doing fancy tricks with compressing batch buffers, which leads 586 * to negative relocation deltas. Usually that works out ok since the 587 * relocate address is still positive, except when the batch is placed 588 * very low in the GTT. Ensure this doesn't happen. 589 * 590 * Note that actual hangs have only been observed on gen7, but for 591 * paranoia do it everywhere. 592 */ 593 if (is_batch_buffer(eb, i)) { 594 if (entry->relocation_count && 595 !(ev->flags & EXEC_OBJECT_PINNED)) 596 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 597 if (eb->reloc_cache.has_fence) 598 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 599 600 eb->batches[*current_batch] = ev; 601 602 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { 603 drm_dbg(&i915->drm, 604 "Attempting to use self-modifying batch buffer\n"); 605 return -EINVAL; 606 } 607 608 if (range_overflows_t(u64, 609 eb->batch_start_offset, 610 eb->args->batch_len, 611 ev->vma->size)) { 612 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 613 return -EINVAL; 614 } 615 616 if (eb->args->batch_len == 0) 617 eb->batch_len[*current_batch] = ev->vma->size - 618 eb->batch_start_offset; 619 else 620 eb->batch_len[*current_batch] = eb->args->batch_len; 621 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ 622 drm_dbg(&i915->drm, "Invalid batch length\n"); 623 return -EINVAL; 624 } 625 626 ++*current_batch; 627 } 628 629 return 0; 630 } 631 632 static int use_cpu_reloc(const struct reloc_cache *cache, 633 const struct drm_i915_gem_object *obj) 634 { 635 if (!i915_gem_object_has_struct_page(obj)) 636 return false; 637 638 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 639 return true; 640 641 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 642 return false; 643 644 /* 645 * For objects created by userspace through GEM_CREATE with pat_index 646 * set by set_pat extension, i915_gem_object_has_cache_level() always 647 * return true, otherwise the call would fall back to checking whether 648 * the object is un-cached. 649 */ 650 return (cache->has_llc || 651 obj->cache_dirty || 652 !i915_gem_object_has_cache_level(obj, I915_CACHE_NONE)); 653 } 654 655 static int eb_reserve_vma(struct i915_execbuffer *eb, 656 struct eb_vma *ev, 657 u64 pin_flags) 658 { 659 struct drm_i915_gem_exec_object2 *entry = ev->exec; 660 struct i915_vma *vma = ev->vma; 661 int err; 662 663 if (drm_mm_node_allocated(&vma->node) && 664 eb_vma_misplaced(entry, vma, ev->flags)) { 665 err = i915_vma_unbind(vma); 666 if (err) 667 return err; 668 } 669 670 err = i915_vma_pin_ww(vma, &eb->ww, 671 entry->pad_to_size, entry->alignment, 672 eb_pin_flags(entry, ev->flags) | pin_flags); 673 if (err) 674 return err; 675 676 if (entry->offset != i915_vma_offset(vma)) { 677 entry->offset = i915_vma_offset(vma) | UPDATE; 678 eb->args->flags |= __EXEC_HAS_RELOC; 679 } 680 681 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 682 err = i915_vma_pin_fence(vma); 683 if (unlikely(err)) 684 return err; 685 686 if (vma->fence) 687 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 688 } 689 690 ev->flags |= __EXEC_OBJECT_HAS_PIN; 691 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 692 693 return 0; 694 } 695 696 static bool eb_unbind(struct i915_execbuffer *eb, bool force) 697 { 698 const unsigned int count = eb->buffer_count; 699 unsigned int i; 700 struct list_head last; 701 bool unpinned = false; 702 703 /* Resort *all* the objects into priority order */ 704 INIT_LIST_HEAD(&eb->unbound); 705 INIT_LIST_HEAD(&last); 706 707 for (i = 0; i < count; i++) { 708 struct eb_vma *ev = &eb->vma[i]; 709 unsigned int flags = ev->flags; 710 711 if (!force && flags & EXEC_OBJECT_PINNED && 712 flags & __EXEC_OBJECT_HAS_PIN) 713 continue; 714 715 unpinned = true; 716 eb_unreserve_vma(ev); 717 718 if (flags & EXEC_OBJECT_PINNED) 719 /* Pinned must have their slot */ 720 list_add(&ev->bind_link, &eb->unbound); 721 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 722 /* Map require the lowest 256MiB (aperture) */ 723 list_add_tail(&ev->bind_link, &eb->unbound); 724 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 725 /* Prioritise 4GiB region for restricted bo */ 726 list_add(&ev->bind_link, &last); 727 else 728 list_add_tail(&ev->bind_link, &last); 729 } 730 731 list_splice_tail(&last, &eb->unbound); 732 return unpinned; 733 } 734 735 static int eb_reserve(struct i915_execbuffer *eb) 736 { 737 struct eb_vma *ev; 738 unsigned int pass; 739 int err = 0; 740 741 /* 742 * We have one more buffers that we couldn't bind, which could be due to 743 * various reasons. To resolve this we have 4 passes, with every next 744 * level turning the screws tighter: 745 * 746 * 0. Unbind all objects that do not match the GTT constraints for the 747 * execbuffer (fenceable, mappable, alignment etc). Bind all new 748 * objects. This avoids unnecessary unbinding of later objects in order 749 * to make room for the earlier objects *unless* we need to defragment. 750 * 751 * 1. Reorder the buffers, where objects with the most restrictive 752 * placement requirements go first (ignoring fixed location buffers for 753 * now). For example, objects needing the mappable aperture (the first 754 * 256M of GTT), should go first vs objects that can be placed just 755 * about anywhere. Repeat the previous pass. 756 * 757 * 2. Consider buffers that are pinned at a fixed location. Also try to 758 * evict the entire VM this time, leaving only objects that we were 759 * unable to lock. Try again to bind the buffers. (still using the new 760 * buffer order). 761 * 762 * 3. We likely have object lock contention for one or more stubborn 763 * objects in the VM, for which we need to evict to make forward 764 * progress (perhaps we are fighting the shrinker?). When evicting the 765 * VM this time around, anything that we can't lock we now track using 766 * the busy_bo, using the full lock (after dropping the vm->mutex to 767 * prevent deadlocks), instead of trylock. We then continue to evict the 768 * VM, this time with the stubborn object locked, which we can now 769 * hopefully unbind (if still bound in the VM). Repeat until the VM is 770 * evicted. Finally we should be able bind everything. 771 */ 772 for (pass = 0; pass <= 3; pass++) { 773 int pin_flags = PIN_USER | PIN_VALIDATE; 774 775 if (pass == 0) 776 pin_flags |= PIN_NONBLOCK; 777 778 if (pass >= 1) 779 eb_unbind(eb, pass >= 2); 780 781 if (pass == 2) { 782 err = mutex_lock_interruptible(&eb->context->vm->mutex); 783 if (!err) { 784 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL); 785 mutex_unlock(&eb->context->vm->mutex); 786 } 787 if (err) 788 return err; 789 } 790 791 if (pass == 3) { 792 retry: 793 err = mutex_lock_interruptible(&eb->context->vm->mutex); 794 if (!err) { 795 struct drm_i915_gem_object *busy_bo = NULL; 796 797 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo); 798 mutex_unlock(&eb->context->vm->mutex); 799 if (err && busy_bo) { 800 err = i915_gem_object_lock(busy_bo, &eb->ww); 801 i915_gem_object_put(busy_bo); 802 if (!err) 803 goto retry; 804 } 805 } 806 if (err) 807 return err; 808 } 809 810 list_for_each_entry(ev, &eb->unbound, bind_link) { 811 err = eb_reserve_vma(eb, ev, pin_flags); 812 if (err) 813 break; 814 } 815 816 if (err != -ENOSPC) 817 break; 818 } 819 820 return err; 821 } 822 823 static int eb_select_context(struct i915_execbuffer *eb) 824 { 825 struct i915_gem_context *ctx; 826 827 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 828 if (IS_ERR(ctx)) 829 return PTR_ERR(ctx); 830 831 eb->gem_context = ctx; 832 if (i915_gem_context_has_full_ppgtt(ctx)) 833 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 834 835 return 0; 836 } 837 838 static int __eb_add_lut(struct i915_execbuffer *eb, 839 u32 handle, struct i915_vma *vma) 840 { 841 struct i915_gem_context *ctx = eb->gem_context; 842 struct i915_lut_handle *lut; 843 int err; 844 845 lut = i915_lut_handle_alloc(); 846 if (unlikely(!lut)) 847 return -ENOMEM; 848 849 i915_vma_get(vma); 850 if (!atomic_fetch_inc(&vma->open_count)) 851 i915_vma_reopen(vma); 852 lut->handle = handle; 853 lut->ctx = ctx; 854 855 /* Check that the context hasn't been closed in the meantime */ 856 err = -EINTR; 857 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 858 if (likely(!i915_gem_context_is_closed(ctx))) 859 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 860 else 861 err = -ENOENT; 862 if (err == 0) { /* And nor has this handle */ 863 struct drm_i915_gem_object *obj = vma->obj; 864 865 spin_lock(&obj->lut_lock); 866 if (idr_find(&eb->file->object_idr, handle) == obj) { 867 list_add(&lut->obj_link, &obj->lut_list); 868 } else { 869 radix_tree_delete(&ctx->handles_vma, handle); 870 err = -ENOENT; 871 } 872 spin_unlock(&obj->lut_lock); 873 } 874 mutex_unlock(&ctx->lut_mutex); 875 } 876 if (unlikely(err)) 877 goto err; 878 879 return 0; 880 881 err: 882 i915_vma_close(vma); 883 i915_vma_put(vma); 884 i915_lut_handle_free(lut); 885 return err; 886 } 887 888 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 889 { 890 struct i915_address_space *vm = eb->context->vm; 891 892 do { 893 struct drm_i915_gem_object *obj; 894 struct i915_vma *vma; 895 int err; 896 897 rcu_read_lock(); 898 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 899 if (likely(vma && vma->vm == vm)) 900 vma = i915_vma_tryget(vma); 901 rcu_read_unlock(); 902 if (likely(vma)) 903 return vma; 904 905 obj = i915_gem_object_lookup(eb->file, handle); 906 if (unlikely(!obj)) 907 return ERR_PTR(-ENOENT); 908 909 /* 910 * If the user has opted-in for protected-object tracking, make 911 * sure the object encryption can be used. 912 * We only need to do this when the object is first used with 913 * this context, because the context itself will be banned when 914 * the protected objects become invalid. 915 */ 916 if (i915_gem_context_uses_protected_content(eb->gem_context) && 917 i915_gem_object_is_protected(obj)) { 918 err = intel_pxp_key_check(eb->i915->pxp, obj, true); 919 if (err) { 920 i915_gem_object_put(obj); 921 return ERR_PTR(err); 922 } 923 } 924 925 vma = i915_vma_instance(obj, vm, NULL); 926 if (IS_ERR(vma)) { 927 i915_gem_object_put(obj); 928 return vma; 929 } 930 931 err = __eb_add_lut(eb, handle, vma); 932 if (likely(!err)) 933 return vma; 934 935 i915_gem_object_put(obj); 936 if (err != -EEXIST) 937 return ERR_PTR(err); 938 } while (1); 939 } 940 941 static int eb_lookup_vmas(struct i915_execbuffer *eb) 942 { 943 unsigned int i, current_batch = 0; 944 int err = 0; 945 946 INIT_LIST_HEAD(&eb->relocs); 947 948 for (i = 0; i < eb->buffer_count; i++) { 949 struct i915_vma *vma; 950 951 vma = eb_lookup_vma(eb, eb->exec[i].handle); 952 if (IS_ERR(vma)) { 953 err = PTR_ERR(vma); 954 goto err; 955 } 956 957 err = eb_validate_vma(eb, &eb->exec[i], vma); 958 if (unlikely(err)) { 959 i915_vma_put(vma); 960 goto err; 961 } 962 963 err = eb_add_vma(eb, ¤t_batch, i, vma); 964 if (err) 965 return err; 966 967 if (i915_gem_object_is_userptr(vma->obj)) { 968 err = i915_gem_object_userptr_submit_init(vma->obj); 969 if (err) { 970 if (i + 1 < eb->buffer_count) { 971 /* 972 * Execbuffer code expects last vma entry to be NULL, 973 * since we already initialized this entry, 974 * set the next value to NULL or we mess up 975 * cleanup handling. 976 */ 977 eb->vma[i + 1].vma = NULL; 978 } 979 980 return err; 981 } 982 983 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 984 eb->args->flags |= __EXEC_USERPTR_USED; 985 } 986 } 987 988 return 0; 989 990 err: 991 eb->vma[i].vma = NULL; 992 return err; 993 } 994 995 static int eb_lock_vmas(struct i915_execbuffer *eb) 996 { 997 unsigned int i; 998 int err; 999 1000 for (i = 0; i < eb->buffer_count; i++) { 1001 struct eb_vma *ev = &eb->vma[i]; 1002 struct i915_vma *vma = ev->vma; 1003 1004 err = i915_gem_object_lock(vma->obj, &eb->ww); 1005 if (err) 1006 return err; 1007 } 1008 1009 return 0; 1010 } 1011 1012 static int eb_validate_vmas(struct i915_execbuffer *eb) 1013 { 1014 unsigned int i; 1015 int err; 1016 1017 INIT_LIST_HEAD(&eb->unbound); 1018 1019 err = eb_lock_vmas(eb); 1020 if (err) 1021 return err; 1022 1023 for (i = 0; i < eb->buffer_count; i++) { 1024 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 1025 struct eb_vma *ev = &eb->vma[i]; 1026 struct i915_vma *vma = ev->vma; 1027 1028 err = eb_pin_vma(eb, entry, ev); 1029 if (err == -EDEADLK) 1030 return err; 1031 1032 if (!err) { 1033 if (entry->offset != i915_vma_offset(vma)) { 1034 entry->offset = i915_vma_offset(vma) | UPDATE; 1035 eb->args->flags |= __EXEC_HAS_RELOC; 1036 } 1037 } else { 1038 eb_unreserve_vma(ev); 1039 1040 list_add_tail(&ev->bind_link, &eb->unbound); 1041 if (drm_mm_node_allocated(&vma->node)) { 1042 err = i915_vma_unbind(vma); 1043 if (err) 1044 return err; 1045 } 1046 } 1047 1048 /* Reserve enough slots to accommodate composite fences */ 1049 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches); 1050 if (err) 1051 return err; 1052 1053 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 1054 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 1055 } 1056 1057 if (!list_empty(&eb->unbound)) 1058 return eb_reserve(eb); 1059 1060 return 0; 1061 } 1062 1063 static struct eb_vma * 1064 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 1065 { 1066 if (eb->lut_size < 0) { 1067 if (handle >= -eb->lut_size) 1068 return NULL; 1069 return &eb->vma[handle]; 1070 } else { 1071 struct hlist_head *head; 1072 struct eb_vma *ev; 1073 1074 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 1075 hlist_for_each_entry(ev, head, node) { 1076 if (ev->handle == handle) 1077 return ev; 1078 } 1079 return NULL; 1080 } 1081 } 1082 1083 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1084 { 1085 const unsigned int count = eb->buffer_count; 1086 unsigned int i; 1087 1088 for (i = 0; i < count; i++) { 1089 struct eb_vma *ev = &eb->vma[i]; 1090 struct i915_vma *vma = ev->vma; 1091 1092 if (!vma) 1093 break; 1094 1095 eb_unreserve_vma(ev); 1096 1097 if (final) 1098 i915_vma_put(vma); 1099 } 1100 1101 eb_capture_release(eb); 1102 eb_unpin_engine(eb); 1103 } 1104 1105 static void eb_destroy(const struct i915_execbuffer *eb) 1106 { 1107 if (eb->lut_size > 0) 1108 kfree(eb->buckets); 1109 } 1110 1111 static u64 1112 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1113 const struct i915_vma *target) 1114 { 1115 return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target)); 1116 } 1117 1118 static void reloc_cache_init(struct reloc_cache *cache, 1119 struct drm_i915_private *i915) 1120 { 1121 cache->page = -1; 1122 cache->vaddr = 0; 1123 /* Must be a variable in the struct to allow GCC to unroll. */ 1124 cache->graphics_ver = GRAPHICS_VER(i915); 1125 cache->has_llc = HAS_LLC(i915); 1126 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1127 cache->has_fence = cache->graphics_ver < 4; 1128 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1129 cache->node.flags = 0; 1130 } 1131 1132 static void *unmask_page(unsigned long p) 1133 { 1134 return (void *)(uintptr_t)(p & PAGE_MASK); 1135 } 1136 1137 static unsigned int unmask_flags(unsigned long p) 1138 { 1139 return p & ~PAGE_MASK; 1140 } 1141 1142 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1143 1144 static struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1145 { 1146 struct drm_i915_private *i915 = 1147 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1148 return to_gt(i915)->ggtt; 1149 } 1150 1151 static void reloc_cache_unmap(struct reloc_cache *cache) 1152 { 1153 void *vaddr; 1154 1155 if (!cache->vaddr) 1156 return; 1157 1158 vaddr = unmask_page(cache->vaddr); 1159 if (cache->vaddr & KMAP) 1160 kunmap_local(vaddr); 1161 else 1162 io_mapping_unmap_atomic((void __iomem *)vaddr); 1163 } 1164 1165 static void reloc_cache_remap(struct reloc_cache *cache, 1166 struct drm_i915_gem_object *obj) 1167 { 1168 void *vaddr; 1169 1170 if (!cache->vaddr) 1171 return; 1172 1173 if (cache->vaddr & KMAP) { 1174 struct page *page = i915_gem_object_get_page(obj, cache->page); 1175 1176 vaddr = kmap_local_page(page); 1177 cache->vaddr = unmask_flags(cache->vaddr) | 1178 (unsigned long)vaddr; 1179 } else { 1180 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1181 unsigned long offset; 1182 1183 offset = cache->node.start; 1184 if (!drm_mm_node_allocated(&cache->node)) 1185 offset += cache->page << PAGE_SHIFT; 1186 1187 cache->vaddr = (unsigned long) 1188 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1189 } 1190 } 1191 1192 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1193 { 1194 void *vaddr; 1195 1196 if (!cache->vaddr) 1197 return; 1198 1199 vaddr = unmask_page(cache->vaddr); 1200 if (cache->vaddr & KMAP) { 1201 struct drm_i915_gem_object *obj = 1202 (struct drm_i915_gem_object *)cache->node.mm; 1203 if (cache->vaddr & CLFLUSH_AFTER) 1204 mb(); 1205 1206 kunmap_local(vaddr); 1207 i915_gem_object_finish_access(obj); 1208 } else { 1209 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1210 1211 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1212 io_mapping_unmap_atomic((void __iomem *)vaddr); 1213 1214 if (drm_mm_node_allocated(&cache->node)) { 1215 ggtt->vm.clear_range(&ggtt->vm, 1216 cache->node.start, 1217 cache->node.size); 1218 mutex_lock(&ggtt->vm.mutex); 1219 drm_mm_remove_node(&cache->node); 1220 mutex_unlock(&ggtt->vm.mutex); 1221 } else { 1222 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1223 } 1224 } 1225 1226 cache->vaddr = 0; 1227 cache->page = -1; 1228 } 1229 1230 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1231 struct reloc_cache *cache, 1232 unsigned long pageno) 1233 { 1234 void *vaddr; 1235 struct page *page; 1236 1237 if (cache->vaddr) { 1238 kunmap_local(unmask_page(cache->vaddr)); 1239 } else { 1240 unsigned int flushes; 1241 int err; 1242 1243 err = i915_gem_object_prepare_write(obj, &flushes); 1244 if (err) 1245 return ERR_PTR(err); 1246 1247 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1248 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1249 1250 cache->vaddr = flushes | KMAP; 1251 cache->node.mm = (void *)obj; 1252 if (flushes) 1253 mb(); 1254 } 1255 1256 page = i915_gem_object_get_page(obj, pageno); 1257 if (!obj->mm.dirty) 1258 set_page_dirty(page); 1259 1260 vaddr = kmap_local_page(page); 1261 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1262 cache->page = pageno; 1263 1264 return vaddr; 1265 } 1266 1267 static void *reloc_iomap(struct i915_vma *batch, 1268 struct i915_execbuffer *eb, 1269 unsigned long page) 1270 { 1271 struct drm_i915_gem_object *obj = batch->obj; 1272 struct reloc_cache *cache = &eb->reloc_cache; 1273 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1274 unsigned long offset; 1275 void *vaddr; 1276 1277 if (cache->vaddr) { 1278 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1279 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1280 } else { 1281 struct i915_vma *vma = ERR_PTR(-ENODEV); 1282 int err; 1283 1284 if (i915_gem_object_is_tiled(obj)) 1285 return ERR_PTR(-EINVAL); 1286 1287 if (use_cpu_reloc(cache, obj)) 1288 return NULL; 1289 1290 err = i915_gem_object_set_to_gtt_domain(obj, true); 1291 if (err) 1292 return ERR_PTR(err); 1293 1294 /* 1295 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch 1296 * VMA from the object list because we no longer pin. 1297 * 1298 * Only attempt to pin the batch buffer to ggtt if the current batch 1299 * is not inside ggtt, or the batch buffer is not misplaced. 1300 */ 1301 if (!i915_is_ggtt(batch->vm) || 1302 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) { 1303 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1304 PIN_MAPPABLE | 1305 PIN_NONBLOCK /* NOWARN */ | 1306 PIN_NOEVICT); 1307 } 1308 1309 if (vma == ERR_PTR(-EDEADLK)) 1310 return vma; 1311 1312 if (IS_ERR(vma)) { 1313 memset(&cache->node, 0, sizeof(cache->node)); 1314 mutex_lock(&ggtt->vm.mutex); 1315 err = drm_mm_insert_node_in_range 1316 (&ggtt->vm.mm, &cache->node, 1317 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1318 0, ggtt->mappable_end, 1319 DRM_MM_INSERT_LOW); 1320 mutex_unlock(&ggtt->vm.mutex); 1321 if (err) /* no inactive aperture space, use cpu reloc */ 1322 return NULL; 1323 } else { 1324 cache->node.start = i915_ggtt_offset(vma); 1325 cache->node.mm = (void *)vma; 1326 } 1327 } 1328 1329 offset = cache->node.start; 1330 if (drm_mm_node_allocated(&cache->node)) { 1331 ggtt->vm.insert_page(&ggtt->vm, 1332 i915_gem_object_get_dma_address(obj, page), 1333 offset, 1334 i915_gem_get_pat_index(ggtt->vm.i915, 1335 I915_CACHE_NONE), 1336 0); 1337 } else { 1338 offset += page << PAGE_SHIFT; 1339 } 1340 1341 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1342 offset); 1343 cache->page = page; 1344 cache->vaddr = (unsigned long)vaddr; 1345 1346 return vaddr; 1347 } 1348 1349 static void *reloc_vaddr(struct i915_vma *vma, 1350 struct i915_execbuffer *eb, 1351 unsigned long page) 1352 { 1353 struct reloc_cache *cache = &eb->reloc_cache; 1354 void *vaddr; 1355 1356 if (cache->page == page) { 1357 vaddr = unmask_page(cache->vaddr); 1358 } else { 1359 vaddr = NULL; 1360 if ((cache->vaddr & KMAP) == 0) 1361 vaddr = reloc_iomap(vma, eb, page); 1362 if (!vaddr) 1363 vaddr = reloc_kmap(vma->obj, cache, page); 1364 } 1365 1366 return vaddr; 1367 } 1368 1369 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1370 { 1371 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1372 if (flushes & CLFLUSH_BEFORE) 1373 drm_clflush_virt_range(addr, sizeof(*addr)); 1374 1375 *addr = value; 1376 1377 /* 1378 * Writes to the same cacheline are serialised by the CPU 1379 * (including clflush). On the write path, we only require 1380 * that it hits memory in an orderly fashion and place 1381 * mb barriers at the start and end of the relocation phase 1382 * to ensure ordering of clflush wrt to the system. 1383 */ 1384 if (flushes & CLFLUSH_AFTER) 1385 drm_clflush_virt_range(addr, sizeof(*addr)); 1386 } else 1387 *addr = value; 1388 } 1389 1390 static u64 1391 relocate_entry(struct i915_vma *vma, 1392 const struct drm_i915_gem_relocation_entry *reloc, 1393 struct i915_execbuffer *eb, 1394 const struct i915_vma *target) 1395 { 1396 u64 target_addr = relocation_target(reloc, target); 1397 u64 offset = reloc->offset; 1398 bool wide = eb->reloc_cache.use_64bit_reloc; 1399 void *vaddr; 1400 1401 repeat: 1402 vaddr = reloc_vaddr(vma, eb, 1403 offset >> PAGE_SHIFT); 1404 if (IS_ERR(vaddr)) 1405 return PTR_ERR(vaddr); 1406 1407 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1408 clflush_write32(vaddr + offset_in_page(offset), 1409 lower_32_bits(target_addr), 1410 eb->reloc_cache.vaddr); 1411 1412 if (wide) { 1413 offset += sizeof(u32); 1414 target_addr >>= 32; 1415 wide = false; 1416 goto repeat; 1417 } 1418 1419 return target->node.start | UPDATE; 1420 } 1421 1422 static u64 1423 eb_relocate_entry(struct i915_execbuffer *eb, 1424 struct eb_vma *ev, 1425 const struct drm_i915_gem_relocation_entry *reloc) 1426 { 1427 struct drm_i915_private *i915 = eb->i915; 1428 struct eb_vma *target; 1429 int err; 1430 1431 /* we've already hold a reference to all valid objects */ 1432 target = eb_get_vma(eb, reloc->target_handle); 1433 if (unlikely(!target)) 1434 return -ENOENT; 1435 1436 /* Validate that the target is in a valid r/w GPU domain */ 1437 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1438 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1439 "target %d offset %d " 1440 "read %08x write %08x\n", 1441 reloc->target_handle, 1442 (int) reloc->offset, 1443 reloc->read_domains, 1444 reloc->write_domain); 1445 return -EINVAL; 1446 } 1447 if (unlikely((reloc->write_domain | reloc->read_domains) 1448 & ~I915_GEM_GPU_DOMAINS)) { 1449 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1450 "target %d offset %d " 1451 "read %08x write %08x\n", 1452 reloc->target_handle, 1453 (int) reloc->offset, 1454 reloc->read_domains, 1455 reloc->write_domain); 1456 return -EINVAL; 1457 } 1458 1459 if (reloc->write_domain) { 1460 target->flags |= EXEC_OBJECT_WRITE; 1461 1462 /* 1463 * Sandybridge PPGTT errata: We need a global gtt mapping 1464 * for MI and pipe_control writes because the gpu doesn't 1465 * properly redirect them through the ppgtt for non_secure 1466 * batchbuffers. 1467 */ 1468 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1469 GRAPHICS_VER(eb->i915) == 6 && 1470 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1471 struct i915_vma *vma = target->vma; 1472 1473 reloc_cache_unmap(&eb->reloc_cache); 1474 mutex_lock(&vma->vm->mutex); 1475 err = i915_vma_bind(target->vma, 1476 target->vma->obj->pat_index, 1477 PIN_GLOBAL, NULL, NULL); 1478 mutex_unlock(&vma->vm->mutex); 1479 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1480 if (err) 1481 return err; 1482 } 1483 } 1484 1485 /* 1486 * If the relocation already has the right value in it, no 1487 * more work needs to be done. 1488 */ 1489 if (!DBG_FORCE_RELOC && 1490 gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset) 1491 return 0; 1492 1493 /* Check that the relocation address is valid... */ 1494 if (unlikely(reloc->offset > 1495 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1496 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1497 "target %d offset %d size %d.\n", 1498 reloc->target_handle, 1499 (int)reloc->offset, 1500 (int)ev->vma->size); 1501 return -EINVAL; 1502 } 1503 if (unlikely(reloc->offset & 3)) { 1504 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1505 "target %d offset %d.\n", 1506 reloc->target_handle, 1507 (int)reloc->offset); 1508 return -EINVAL; 1509 } 1510 1511 /* 1512 * If we write into the object, we need to force the synchronisation 1513 * barrier, either with an asynchronous clflush or if we executed the 1514 * patching using the GPU (though that should be serialised by the 1515 * timeline). To be completely sure, and since we are required to 1516 * do relocations we are already stalling, disable the user's opt 1517 * out of our synchronisation. 1518 */ 1519 ev->flags &= ~EXEC_OBJECT_ASYNC; 1520 1521 /* and update the user's relocation entry */ 1522 return relocate_entry(ev->vma, reloc, eb, target->vma); 1523 } 1524 1525 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1526 { 1527 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1528 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1529 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1530 struct drm_i915_gem_relocation_entry __user *urelocs = 1531 u64_to_user_ptr(entry->relocs_ptr); 1532 unsigned long remain = entry->relocation_count; 1533 1534 if (unlikely(remain > N_RELOC(INT_MAX))) 1535 return -EINVAL; 1536 1537 /* 1538 * We must check that the entire relocation array is safe 1539 * to read. However, if the array is not writable the user loses 1540 * the updated relocation values. 1541 */ 1542 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1543 return -EFAULT; 1544 1545 do { 1546 struct drm_i915_gem_relocation_entry *r = stack; 1547 unsigned int count = 1548 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1549 unsigned int copied; 1550 1551 /* 1552 * This is the fast path and we cannot handle a pagefault 1553 * whilst holding the struct mutex lest the user pass in the 1554 * relocations contained within a mmaped bo. For in such a case 1555 * we, the page fault handler would call i915_gem_fault() and 1556 * we would try to acquire the struct mutex again. Obviously 1557 * this is bad and so lockdep complains vehemently. 1558 */ 1559 pagefault_disable(); 1560 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1561 pagefault_enable(); 1562 if (unlikely(copied)) { 1563 remain = -EFAULT; 1564 goto out; 1565 } 1566 1567 remain -= count; 1568 do { 1569 u64 offset = eb_relocate_entry(eb, ev, r); 1570 1571 if (likely(offset == 0)) { 1572 } else if ((s64)offset < 0) { 1573 remain = (int)offset; 1574 goto out; 1575 } else { 1576 /* 1577 * Note that reporting an error now 1578 * leaves everything in an inconsistent 1579 * state as we have *already* changed 1580 * the relocation value inside the 1581 * object. As we have not changed the 1582 * reloc.presumed_offset or will not 1583 * change the execobject.offset, on the 1584 * call we may not rewrite the value 1585 * inside the object, leaving it 1586 * dangling and causing a GPU hang. Unless 1587 * userspace dynamically rebuilds the 1588 * relocations on each execbuf rather than 1589 * presume a static tree. 1590 * 1591 * We did previously check if the relocations 1592 * were writable (access_ok), an error now 1593 * would be a strange race with mprotect, 1594 * having already demonstrated that we 1595 * can read from this userspace address. 1596 */ 1597 offset = gen8_canonical_addr(offset & ~UPDATE); 1598 __put_user(offset, 1599 &urelocs[r - stack].presumed_offset); 1600 } 1601 } while (r++, --count); 1602 urelocs += ARRAY_SIZE(stack); 1603 } while (remain); 1604 out: 1605 reloc_cache_reset(&eb->reloc_cache, eb); 1606 return remain; 1607 } 1608 1609 static int 1610 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1611 { 1612 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1613 struct drm_i915_gem_relocation_entry *relocs = 1614 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1615 unsigned int i; 1616 int err; 1617 1618 for (i = 0; i < entry->relocation_count; i++) { 1619 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1620 1621 if ((s64)offset < 0) { 1622 err = (int)offset; 1623 goto err; 1624 } 1625 } 1626 err = 0; 1627 err: 1628 reloc_cache_reset(&eb->reloc_cache, eb); 1629 return err; 1630 } 1631 1632 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1633 { 1634 const char __user *addr, *end; 1635 unsigned long size; 1636 char __maybe_unused c; 1637 1638 size = entry->relocation_count; 1639 if (size == 0) 1640 return 0; 1641 1642 if (size > N_RELOC(INT_MAX)) 1643 return -EINVAL; 1644 1645 addr = u64_to_user_ptr(entry->relocs_ptr); 1646 size *= sizeof(struct drm_i915_gem_relocation_entry); 1647 if (!access_ok(addr, size)) 1648 return -EFAULT; 1649 1650 end = addr + size; 1651 for (; addr < end; addr += PAGE_SIZE) { 1652 int err = __get_user(c, addr); 1653 if (err) 1654 return err; 1655 } 1656 return __get_user(c, end - 1); 1657 } 1658 1659 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1660 { 1661 struct drm_i915_gem_relocation_entry *relocs; 1662 const unsigned int count = eb->buffer_count; 1663 unsigned int i; 1664 int err; 1665 1666 for (i = 0; i < count; i++) { 1667 const unsigned int nreloc = eb->exec[i].relocation_count; 1668 struct drm_i915_gem_relocation_entry __user *urelocs; 1669 unsigned long size; 1670 unsigned long copied; 1671 1672 if (nreloc == 0) 1673 continue; 1674 1675 err = check_relocations(&eb->exec[i]); 1676 if (err) 1677 goto err; 1678 1679 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1680 size = nreloc * sizeof(*relocs); 1681 1682 relocs = kvmalloc_array(1, size, GFP_KERNEL); 1683 if (!relocs) { 1684 err = -ENOMEM; 1685 goto err; 1686 } 1687 1688 /* copy_from_user is limited to < 4GiB */ 1689 copied = 0; 1690 do { 1691 unsigned int len = 1692 min_t(u64, BIT_ULL(31), size - copied); 1693 1694 if (__copy_from_user((char *)relocs + copied, 1695 (char __user *)urelocs + copied, 1696 len)) 1697 goto end; 1698 1699 copied += len; 1700 } while (copied < size); 1701 1702 /* 1703 * As we do not update the known relocation offsets after 1704 * relocating (due to the complexities in lock handling), 1705 * we need to mark them as invalid now so that we force the 1706 * relocation processing next time. Just in case the target 1707 * object is evicted and then rebound into its old 1708 * presumed_offset before the next execbuffer - if that 1709 * happened we would make the mistake of assuming that the 1710 * relocations were valid. 1711 */ 1712 if (!user_access_begin(urelocs, size)) 1713 goto end; 1714 1715 for (copied = 0; copied < nreloc; copied++) 1716 unsafe_put_user(-1, 1717 &urelocs[copied].presumed_offset, 1718 end_user); 1719 user_access_end(); 1720 1721 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1722 } 1723 1724 return 0; 1725 1726 end_user: 1727 user_access_end(); 1728 end: 1729 kvfree(relocs); 1730 err = -EFAULT; 1731 err: 1732 while (i--) { 1733 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1734 if (eb->exec[i].relocation_count) 1735 kvfree(relocs); 1736 } 1737 return err; 1738 } 1739 1740 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1741 { 1742 const unsigned int count = eb->buffer_count; 1743 unsigned int i; 1744 1745 for (i = 0; i < count; i++) { 1746 int err; 1747 1748 err = check_relocations(&eb->exec[i]); 1749 if (err) 1750 return err; 1751 } 1752 1753 return 0; 1754 } 1755 1756 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1757 { 1758 const unsigned int count = eb->buffer_count; 1759 unsigned int i; 1760 int ret; 1761 1762 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1763 return 0; 1764 1765 for (i = 0; i < count; i++) { 1766 struct eb_vma *ev = &eb->vma[i]; 1767 1768 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1769 continue; 1770 1771 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1772 if (ret) 1773 return ret; 1774 1775 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1776 } 1777 1778 return 0; 1779 } 1780 1781 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) 1782 { 1783 bool have_copy = false; 1784 struct eb_vma *ev; 1785 int err = 0; 1786 1787 repeat: 1788 if (signal_pending(current)) { 1789 err = -ERESTARTSYS; 1790 goto out; 1791 } 1792 1793 /* We may process another execbuffer during the unlock... */ 1794 eb_release_vmas(eb, false); 1795 i915_gem_ww_ctx_fini(&eb->ww); 1796 1797 /* 1798 * We take 3 passes through the slowpatch. 1799 * 1800 * 1 - we try to just prefault all the user relocation entries and 1801 * then attempt to reuse the atomic pagefault disabled fast path again. 1802 * 1803 * 2 - we copy the user entries to a local buffer here outside of the 1804 * local and allow ourselves to wait upon any rendering before 1805 * relocations 1806 * 1807 * 3 - we already have a local copy of the relocation entries, but 1808 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1809 */ 1810 if (!err) { 1811 err = eb_prefault_relocations(eb); 1812 } else if (!have_copy) { 1813 err = eb_copy_relocations(eb); 1814 have_copy = err == 0; 1815 } else { 1816 cond_resched(); 1817 err = 0; 1818 } 1819 1820 if (!err) 1821 err = eb_reinit_userptr(eb); 1822 1823 i915_gem_ww_ctx_init(&eb->ww, true); 1824 if (err) 1825 goto out; 1826 1827 /* reacquire the objects */ 1828 repeat_validate: 1829 err = eb_pin_engine(eb, false); 1830 if (err) 1831 goto err; 1832 1833 err = eb_validate_vmas(eb); 1834 if (err) 1835 goto err; 1836 1837 GEM_BUG_ON(!eb->batches[0]); 1838 1839 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1840 if (!have_copy) { 1841 err = eb_relocate_vma(eb, ev); 1842 if (err) 1843 break; 1844 } else { 1845 err = eb_relocate_vma_slow(eb, ev); 1846 if (err) 1847 break; 1848 } 1849 } 1850 1851 if (err == -EDEADLK) 1852 goto err; 1853 1854 if (err && !have_copy) 1855 goto repeat; 1856 1857 if (err) 1858 goto err; 1859 1860 /* as last step, parse the command buffer */ 1861 err = eb_parse(eb); 1862 if (err) 1863 goto err; 1864 1865 /* 1866 * Leave the user relocations as are, this is the painfully slow path, 1867 * and we want to avoid the complication of dropping the lock whilst 1868 * having buffers reserved in the aperture and so causing spurious 1869 * ENOSPC for random operations. 1870 */ 1871 1872 err: 1873 if (err == -EDEADLK) { 1874 eb_release_vmas(eb, false); 1875 err = i915_gem_ww_ctx_backoff(&eb->ww); 1876 if (!err) 1877 goto repeat_validate; 1878 } 1879 1880 if (err == -EAGAIN) 1881 goto repeat; 1882 1883 out: 1884 if (have_copy) { 1885 const unsigned int count = eb->buffer_count; 1886 unsigned int i; 1887 1888 for (i = 0; i < count; i++) { 1889 const struct drm_i915_gem_exec_object2 *entry = 1890 &eb->exec[i]; 1891 struct drm_i915_gem_relocation_entry *relocs; 1892 1893 if (!entry->relocation_count) 1894 continue; 1895 1896 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1897 kvfree(relocs); 1898 } 1899 } 1900 1901 return err; 1902 } 1903 1904 static int eb_relocate_parse(struct i915_execbuffer *eb) 1905 { 1906 int err; 1907 bool throttle = true; 1908 1909 retry: 1910 err = eb_pin_engine(eb, throttle); 1911 if (err) { 1912 if (err != -EDEADLK) 1913 return err; 1914 1915 goto err; 1916 } 1917 1918 /* only throttle once, even if we didn't need to throttle */ 1919 throttle = false; 1920 1921 err = eb_validate_vmas(eb); 1922 if (err == -EAGAIN) 1923 goto slow; 1924 else if (err) 1925 goto err; 1926 1927 /* The objects are in their final locations, apply the relocations. */ 1928 if (eb->args->flags & __EXEC_HAS_RELOC) { 1929 struct eb_vma *ev; 1930 1931 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1932 err = eb_relocate_vma(eb, ev); 1933 if (err) 1934 break; 1935 } 1936 1937 if (err == -EDEADLK) 1938 goto err; 1939 else if (err) 1940 goto slow; 1941 } 1942 1943 if (!err) 1944 err = eb_parse(eb); 1945 1946 err: 1947 if (err == -EDEADLK) { 1948 eb_release_vmas(eb, false); 1949 err = i915_gem_ww_ctx_backoff(&eb->ww); 1950 if (!err) 1951 goto retry; 1952 } 1953 1954 return err; 1955 1956 slow: 1957 err = eb_relocate_parse_slow(eb); 1958 if (err) 1959 /* 1960 * If the user expects the execobject.offset and 1961 * reloc.presumed_offset to be an exact match, 1962 * as for using NO_RELOC, then we cannot update 1963 * the execobject.offset until we have completed 1964 * relocation. 1965 */ 1966 eb->args->flags &= ~__EXEC_HAS_RELOC; 1967 1968 return err; 1969 } 1970 1971 /* 1972 * Using two helper loops for the order of which requests / batches are created 1973 * and added the to backend. Requests are created in order from the parent to 1974 * the last child. Requests are added in the reverse order, from the last child 1975 * to parent. This is done for locking reasons as the timeline lock is acquired 1976 * during request creation and released when the request is added to the 1977 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be 1978 * the ordering. 1979 */ 1980 #define for_each_batch_create_order(_eb, _i) \ 1981 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) 1982 #define for_each_batch_add_order(_eb, _i) \ 1983 BUILD_BUG_ON(!typecheck(int, _i)); \ 1984 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) 1985 1986 static struct i915_request * 1987 eb_find_first_request_added(struct i915_execbuffer *eb) 1988 { 1989 int i; 1990 1991 for_each_batch_add_order(eb, i) 1992 if (eb->requests[i]) 1993 return eb->requests[i]; 1994 1995 GEM_BUG_ON("Request not found"); 1996 1997 return NULL; 1998 } 1999 2000 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 2001 2002 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ 2003 static int eb_capture_stage(struct i915_execbuffer *eb) 2004 { 2005 const unsigned int count = eb->buffer_count; 2006 unsigned int i = count, j; 2007 2008 while (i--) { 2009 struct eb_vma *ev = &eb->vma[i]; 2010 struct i915_vma *vma = ev->vma; 2011 unsigned int flags = ev->flags; 2012 2013 if (!(flags & EXEC_OBJECT_CAPTURE)) 2014 continue; 2015 2016 if (i915_gem_context_is_recoverable(eb->gem_context) && 2017 (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0))) 2018 return -EINVAL; 2019 2020 for_each_batch_create_order(eb, j) { 2021 struct i915_capture_list *capture; 2022 2023 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 2024 if (!capture) 2025 continue; 2026 2027 capture->next = eb->capture_lists[j]; 2028 capture->vma_res = i915_vma_resource_get(vma->resource); 2029 eb->capture_lists[j] = capture; 2030 } 2031 } 2032 2033 return 0; 2034 } 2035 2036 /* Commit once we're in the critical path */ 2037 static void eb_capture_commit(struct i915_execbuffer *eb) 2038 { 2039 unsigned int j; 2040 2041 for_each_batch_create_order(eb, j) { 2042 struct i915_request *rq = eb->requests[j]; 2043 2044 if (!rq) 2045 break; 2046 2047 rq->capture_list = eb->capture_lists[j]; 2048 eb->capture_lists[j] = NULL; 2049 } 2050 } 2051 2052 /* 2053 * Release anything that didn't get committed due to errors. 2054 * The capture_list will otherwise be freed at request retire. 2055 */ 2056 static void eb_capture_release(struct i915_execbuffer *eb) 2057 { 2058 unsigned int j; 2059 2060 for_each_batch_create_order(eb, j) { 2061 if (eb->capture_lists[j]) { 2062 i915_request_free_capture_list(eb->capture_lists[j]); 2063 eb->capture_lists[j] = NULL; 2064 } 2065 } 2066 } 2067 2068 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2069 { 2070 memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); 2071 } 2072 2073 #else 2074 2075 static int eb_capture_stage(struct i915_execbuffer *eb) 2076 { 2077 return 0; 2078 } 2079 2080 static void eb_capture_commit(struct i915_execbuffer *eb) 2081 { 2082 } 2083 2084 static void eb_capture_release(struct i915_execbuffer *eb) 2085 { 2086 } 2087 2088 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2089 { 2090 } 2091 2092 #endif 2093 2094 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2095 { 2096 const unsigned int count = eb->buffer_count; 2097 unsigned int i = count; 2098 int err = 0, j; 2099 2100 while (i--) { 2101 struct eb_vma *ev = &eb->vma[i]; 2102 struct i915_vma *vma = ev->vma; 2103 unsigned int flags = ev->flags; 2104 struct drm_i915_gem_object *obj = vma->obj; 2105 2106 assert_vma_held(vma); 2107 2108 /* 2109 * If the GPU is not _reading_ through the CPU cache, we need 2110 * to make sure that any writes (both previous GPU writes from 2111 * before a change in snooping levels and normal CPU writes) 2112 * caught in that cache are flushed to main memory. 2113 * 2114 * We want to say 2115 * obj->cache_dirty && 2116 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2117 * but gcc's optimiser doesn't handle that as well and emits 2118 * two jumps instead of one. Maybe one day... 2119 * 2120 * FIXME: There is also sync flushing in set_pages(), which 2121 * serves a different purpose(some of the time at least). 2122 * 2123 * We should consider: 2124 * 2125 * 1. Rip out the async flush code. 2126 * 2127 * 2. Or make the sync flushing use the async clflush path 2128 * using mandatory fences underneath. Currently the below 2129 * async flush happens after we bind the object. 2130 */ 2131 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2132 if (i915_gem_clflush_object(obj, 0)) 2133 flags &= ~EXEC_OBJECT_ASYNC; 2134 } 2135 2136 /* We only need to await on the first request */ 2137 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2138 err = i915_request_await_object 2139 (eb_find_first_request_added(eb), obj, 2140 flags & EXEC_OBJECT_WRITE); 2141 } 2142 2143 for_each_batch_add_order(eb, j) { 2144 if (err) 2145 break; 2146 if (!eb->requests[j]) 2147 continue; 2148 2149 err = _i915_vma_move_to_active(vma, eb->requests[j], 2150 j ? NULL : 2151 eb->composite_fence ? 2152 eb->composite_fence : 2153 &eb->requests[j]->fence, 2154 flags | __EXEC_OBJECT_NO_RESERVE | 2155 __EXEC_OBJECT_NO_REQUEST_AWAIT); 2156 } 2157 } 2158 2159 #ifdef CONFIG_MMU_NOTIFIER 2160 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2161 for (i = 0; i < count; i++) { 2162 struct eb_vma *ev = &eb->vma[i]; 2163 struct drm_i915_gem_object *obj = ev->vma->obj; 2164 2165 if (!i915_gem_object_is_userptr(obj)) 2166 continue; 2167 2168 err = i915_gem_object_userptr_submit_done(obj); 2169 if (err) 2170 break; 2171 } 2172 } 2173 #endif 2174 2175 if (unlikely(err)) 2176 goto err_skip; 2177 2178 /* Unconditionally flush any chipset caches (for streaming writes). */ 2179 intel_gt_chipset_flush(eb->gt); 2180 eb_capture_commit(eb); 2181 2182 return 0; 2183 2184 err_skip: 2185 for_each_batch_create_order(eb, j) { 2186 if (!eb->requests[j]) 2187 break; 2188 2189 i915_request_set_error_once(eb->requests[j], err); 2190 } 2191 return err; 2192 } 2193 2194 static int i915_gem_check_execbuffer(struct drm_i915_private *i915, 2195 struct drm_i915_gem_execbuffer2 *exec) 2196 { 2197 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2198 return -EINVAL; 2199 2200 /* Kernel clipping was a DRI1 misfeature */ 2201 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2202 I915_EXEC_USE_EXTENSIONS))) { 2203 if (exec->num_cliprects || exec->cliprects_ptr) 2204 return -EINVAL; 2205 } 2206 2207 if (exec->DR4 == 0xffffffff) { 2208 drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n"); 2209 exec->DR4 = 0; 2210 } 2211 if (exec->DR1 || exec->DR4) 2212 return -EINVAL; 2213 2214 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2215 return -EINVAL; 2216 2217 return 0; 2218 } 2219 2220 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2221 { 2222 u32 *cs; 2223 int i; 2224 2225 if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) { 2226 drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n"); 2227 return -EINVAL; 2228 } 2229 2230 cs = intel_ring_begin(rq, 4 * 2 + 2); 2231 if (IS_ERR(cs)) 2232 return PTR_ERR(cs); 2233 2234 *cs++ = MI_LOAD_REGISTER_IMM(4); 2235 for (i = 0; i < 4; i++) { 2236 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2237 *cs++ = 0; 2238 } 2239 *cs++ = MI_NOOP; 2240 intel_ring_advance(rq, cs); 2241 2242 return 0; 2243 } 2244 2245 static struct i915_vma * 2246 shadow_batch_pin(struct i915_execbuffer *eb, 2247 struct drm_i915_gem_object *obj, 2248 struct i915_address_space *vm, 2249 unsigned int flags) 2250 { 2251 struct i915_vma *vma; 2252 int err; 2253 2254 vma = i915_vma_instance(obj, vm, NULL); 2255 if (IS_ERR(vma)) 2256 return vma; 2257 2258 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); 2259 if (err) 2260 return ERR_PTR(err); 2261 2262 return vma; 2263 } 2264 2265 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2266 { 2267 /* 2268 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2269 * batch" bit. Hence we need to pin secure batches into the global gtt. 2270 * hsw should have this fixed, but bdw mucks it up again. */ 2271 if (eb->batch_flags & I915_DISPATCH_SECURE) 2272 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); 2273 2274 return NULL; 2275 } 2276 2277 static int eb_parse(struct i915_execbuffer *eb) 2278 { 2279 struct drm_i915_private *i915 = eb->i915; 2280 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2281 struct i915_vma *shadow, *trampoline, *batch; 2282 unsigned long len; 2283 int err; 2284 2285 if (!eb_use_cmdparser(eb)) { 2286 batch = eb_dispatch_secure(eb, eb->batches[0]->vma); 2287 if (IS_ERR(batch)) 2288 return PTR_ERR(batch); 2289 2290 goto secure_batch; 2291 } 2292 2293 if (intel_context_is_parallel(eb->context)) 2294 return -EINVAL; 2295 2296 len = eb->batch_len[0]; 2297 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2298 /* 2299 * ppGTT backed shadow buffers must be mapped RO, to prevent 2300 * post-scan tampering 2301 */ 2302 if (!eb->context->vm->has_read_only) { 2303 drm_dbg(&i915->drm, 2304 "Cannot prevent post-scan tampering without RO capable vm\n"); 2305 return -EINVAL; 2306 } 2307 } else { 2308 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2309 } 2310 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ 2311 return -EINVAL; 2312 2313 if (!pool) { 2314 pool = intel_gt_get_buffer_pool(eb->gt, len, 2315 I915_MAP_WB); 2316 if (IS_ERR(pool)) 2317 return PTR_ERR(pool); 2318 eb->batch_pool = pool; 2319 } 2320 2321 err = i915_gem_object_lock(pool->obj, &eb->ww); 2322 if (err) 2323 return err; 2324 2325 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2326 if (IS_ERR(shadow)) 2327 return PTR_ERR(shadow); 2328 2329 intel_gt_buffer_pool_mark_used(pool); 2330 i915_gem_object_set_readonly(shadow->obj); 2331 shadow->private = pool; 2332 2333 trampoline = NULL; 2334 if (CMDPARSER_USES_GGTT(eb->i915)) { 2335 trampoline = shadow; 2336 2337 shadow = shadow_batch_pin(eb, pool->obj, 2338 &eb->gt->ggtt->vm, 2339 PIN_GLOBAL); 2340 if (IS_ERR(shadow)) 2341 return PTR_ERR(shadow); 2342 2343 shadow->private = pool; 2344 2345 eb->batch_flags |= I915_DISPATCH_SECURE; 2346 } 2347 2348 batch = eb_dispatch_secure(eb, shadow); 2349 if (IS_ERR(batch)) 2350 return PTR_ERR(batch); 2351 2352 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1); 2353 if (err) 2354 return err; 2355 2356 err = intel_engine_cmd_parser(eb->context->engine, 2357 eb->batches[0]->vma, 2358 eb->batch_start_offset, 2359 eb->batch_len[0], 2360 shadow, trampoline); 2361 if (err) 2362 return err; 2363 2364 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2365 eb->batches[0]->vma = i915_vma_get(shadow); 2366 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2367 2368 eb->trampoline = trampoline; 2369 eb->batch_start_offset = 0; 2370 2371 secure_batch: 2372 if (batch) { 2373 if (intel_context_is_parallel(eb->context)) 2374 return -EINVAL; 2375 2376 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2377 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2378 eb->batches[0]->vma = i915_vma_get(batch); 2379 } 2380 return 0; 2381 } 2382 2383 static int eb_request_submit(struct i915_execbuffer *eb, 2384 struct i915_request *rq, 2385 struct i915_vma *batch, 2386 u64 batch_len) 2387 { 2388 int err; 2389 2390 if (intel_context_nopreempt(rq->context)) 2391 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); 2392 2393 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2394 err = i915_reset_gen7_sol_offsets(rq); 2395 if (err) 2396 return err; 2397 } 2398 2399 /* 2400 * After we completed waiting for other engines (using HW semaphores) 2401 * then we can signal that this request/batch is ready to run. This 2402 * allows us to determine if the batch is still waiting on the GPU 2403 * or actually running by checking the breadcrumb. 2404 */ 2405 if (rq->context->engine->emit_init_breadcrumb) { 2406 err = rq->context->engine->emit_init_breadcrumb(rq); 2407 if (err) 2408 return err; 2409 } 2410 2411 err = rq->context->engine->emit_bb_start(rq, 2412 i915_vma_offset(batch) + 2413 eb->batch_start_offset, 2414 batch_len, 2415 eb->batch_flags); 2416 if (err) 2417 return err; 2418 2419 if (eb->trampoline) { 2420 GEM_BUG_ON(intel_context_is_parallel(rq->context)); 2421 GEM_BUG_ON(eb->batch_start_offset); 2422 err = rq->context->engine->emit_bb_start(rq, 2423 i915_vma_offset(eb->trampoline) + 2424 batch_len, 0, 0); 2425 if (err) 2426 return err; 2427 } 2428 2429 return 0; 2430 } 2431 2432 static int eb_submit(struct i915_execbuffer *eb) 2433 { 2434 unsigned int i; 2435 int err; 2436 2437 err = eb_move_to_gpu(eb); 2438 2439 for_each_batch_create_order(eb, i) { 2440 if (!eb->requests[i]) 2441 break; 2442 2443 trace_i915_request_queue(eb->requests[i], eb->batch_flags); 2444 if (!err) 2445 err = eb_request_submit(eb, eb->requests[i], 2446 eb->batches[i]->vma, 2447 eb->batch_len[i]); 2448 } 2449 2450 return err; 2451 } 2452 2453 /* 2454 * Find one BSD ring to dispatch the corresponding BSD command. 2455 * The engine index is returned. 2456 */ 2457 static unsigned int 2458 gen8_dispatch_bsd_engine(struct drm_i915_private *i915, 2459 struct drm_file *file) 2460 { 2461 struct drm_i915_file_private *file_priv = file->driver_priv; 2462 2463 /* Check whether the file_priv has already selected one ring. */ 2464 if ((int)file_priv->bsd_engine < 0) 2465 file_priv->bsd_engine = 2466 get_random_u32_below(i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]); 2467 2468 return file_priv->bsd_engine; 2469 } 2470 2471 static const enum intel_engine_id user_ring_map[] = { 2472 [I915_EXEC_DEFAULT] = RCS0, 2473 [I915_EXEC_RENDER] = RCS0, 2474 [I915_EXEC_BLT] = BCS0, 2475 [I915_EXEC_BSD] = VCS0, 2476 [I915_EXEC_VEBOX] = VECS0 2477 }; 2478 2479 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2480 { 2481 struct intel_ring *ring = ce->ring; 2482 struct intel_timeline *tl = ce->timeline; 2483 struct i915_request *rq; 2484 2485 /* 2486 * Completely unscientific finger-in-the-air estimates for suitable 2487 * maximum user request size (to avoid blocking) and then backoff. 2488 */ 2489 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2490 return NULL; 2491 2492 /* 2493 * Find a request that after waiting upon, there will be at least half 2494 * the ring available. The hysteresis allows us to compete for the 2495 * shared ring and should mean that we sleep less often prior to 2496 * claiming our resources, but not so long that the ring completely 2497 * drains before we can submit our next request. 2498 */ 2499 list_for_each_entry(rq, &tl->requests, link) { 2500 if (rq->ring != ring) 2501 continue; 2502 2503 if (__intel_ring_space(rq->postfix, 2504 ring->emit, ring->size) > ring->size / 2) 2505 break; 2506 } 2507 if (&rq->link == &tl->requests) 2508 return NULL; /* weird, we will check again later for real */ 2509 2510 return i915_request_get(rq); 2511 } 2512 2513 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, 2514 bool throttle) 2515 { 2516 struct intel_timeline *tl; 2517 struct i915_request *rq = NULL; 2518 2519 /* 2520 * Take a local wakeref for preparing to dispatch the execbuf as 2521 * we expect to access the hardware fairly frequently in the 2522 * process, and require the engine to be kept awake between accesses. 2523 * Upon dispatch, we acquire another prolonged wakeref that we hold 2524 * until the timeline is idle, which in turn releases the wakeref 2525 * taken on the engine, and the parent device. 2526 */ 2527 tl = intel_context_timeline_lock(ce); 2528 if (IS_ERR(tl)) 2529 return PTR_ERR(tl); 2530 2531 intel_context_enter(ce); 2532 if (throttle) 2533 rq = eb_throttle(eb, ce); 2534 intel_context_timeline_unlock(tl); 2535 2536 if (rq) { 2537 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2538 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; 2539 2540 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 2541 timeout) < 0) { 2542 i915_request_put(rq); 2543 2544 /* 2545 * Error path, cannot use intel_context_timeline_lock as 2546 * that is user interruptable and this clean up step 2547 * must be done. 2548 */ 2549 mutex_lock(&ce->timeline->mutex); 2550 intel_context_exit(ce); 2551 mutex_unlock(&ce->timeline->mutex); 2552 2553 if (nonblock) 2554 return -EWOULDBLOCK; 2555 else 2556 return -EINTR; 2557 } 2558 i915_request_put(rq); 2559 } 2560 2561 return 0; 2562 } 2563 2564 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2565 { 2566 struct intel_context *ce = eb->context, *child; 2567 int err; 2568 int i = 0, j = 0; 2569 2570 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2571 2572 if (unlikely(intel_context_is_banned(ce))) 2573 return -EIO; 2574 2575 /* 2576 * Pinning the contexts may generate requests in order to acquire 2577 * GGTT space, so do this first before we reserve a seqno for 2578 * ourselves. 2579 */ 2580 err = intel_context_pin_ww(ce, &eb->ww); 2581 if (err) 2582 return err; 2583 for_each_child(ce, child) { 2584 err = intel_context_pin_ww(child, &eb->ww); 2585 GEM_BUG_ON(err); /* perma-pinned should incr a counter */ 2586 } 2587 2588 for_each_child(ce, child) { 2589 err = eb_pin_timeline(eb, child, throttle); 2590 if (err) 2591 goto unwind; 2592 ++i; 2593 } 2594 err = eb_pin_timeline(eb, ce, throttle); 2595 if (err) 2596 goto unwind; 2597 2598 eb->args->flags |= __EXEC_ENGINE_PINNED; 2599 return 0; 2600 2601 unwind: 2602 for_each_child(ce, child) { 2603 if (j++ < i) { 2604 mutex_lock(&child->timeline->mutex); 2605 intel_context_exit(child); 2606 mutex_unlock(&child->timeline->mutex); 2607 } 2608 } 2609 for_each_child(ce, child) 2610 intel_context_unpin(child); 2611 intel_context_unpin(ce); 2612 return err; 2613 } 2614 2615 static void eb_unpin_engine(struct i915_execbuffer *eb) 2616 { 2617 struct intel_context *ce = eb->context, *child; 2618 2619 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2620 return; 2621 2622 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2623 2624 for_each_child(ce, child) { 2625 mutex_lock(&child->timeline->mutex); 2626 intel_context_exit(child); 2627 mutex_unlock(&child->timeline->mutex); 2628 2629 intel_context_unpin(child); 2630 } 2631 2632 mutex_lock(&ce->timeline->mutex); 2633 intel_context_exit(ce); 2634 mutex_unlock(&ce->timeline->mutex); 2635 2636 intel_context_unpin(ce); 2637 } 2638 2639 static unsigned int 2640 eb_select_legacy_ring(struct i915_execbuffer *eb) 2641 { 2642 struct drm_i915_private *i915 = eb->i915; 2643 struct drm_i915_gem_execbuffer2 *args = eb->args; 2644 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2645 2646 if (user_ring_id != I915_EXEC_BSD && 2647 (args->flags & I915_EXEC_BSD_MASK)) { 2648 drm_dbg(&i915->drm, 2649 "execbuf with non bsd ring but with invalid " 2650 "bsd dispatch flags: %d\n", (int)(args->flags)); 2651 return -1; 2652 } 2653 2654 if (user_ring_id == I915_EXEC_BSD && 2655 i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) { 2656 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2657 2658 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2659 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2660 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2661 bsd_idx <= I915_EXEC_BSD_RING2) { 2662 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2663 bsd_idx--; 2664 } else { 2665 drm_dbg(&i915->drm, 2666 "execbuf with unknown bsd ring: %u\n", 2667 bsd_idx); 2668 return -1; 2669 } 2670 2671 return _VCS(bsd_idx); 2672 } 2673 2674 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2675 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2676 user_ring_id); 2677 return -1; 2678 } 2679 2680 return user_ring_map[user_ring_id]; 2681 } 2682 2683 static int 2684 eb_select_engine(struct i915_execbuffer *eb) 2685 { 2686 struct intel_context *ce, *child; 2687 struct intel_gt *gt; 2688 unsigned int idx; 2689 int err; 2690 2691 if (i915_gem_context_user_engines(eb->gem_context)) 2692 idx = eb->args->flags & I915_EXEC_RING_MASK; 2693 else 2694 idx = eb_select_legacy_ring(eb); 2695 2696 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2697 if (IS_ERR(ce)) 2698 return PTR_ERR(ce); 2699 2700 if (intel_context_is_parallel(ce)) { 2701 if (eb->buffer_count < ce->parallel.number_children + 1) { 2702 intel_context_put(ce); 2703 return -EINVAL; 2704 } 2705 if (eb->batch_start_offset || eb->args->batch_len) { 2706 intel_context_put(ce); 2707 return -EINVAL; 2708 } 2709 } 2710 eb->num_batches = ce->parallel.number_children + 1; 2711 gt = ce->engine->gt; 2712 2713 for_each_child(ce, child) 2714 intel_context_get(child); 2715 eb->wakeref = intel_gt_pm_get(ce->engine->gt); 2716 /* 2717 * Keep GT0 active on MTL so that i915_vma_parked() doesn't 2718 * free VMAs while execbuf ioctl is validating VMAs. 2719 */ 2720 if (gt->info.id) 2721 eb->wakeref_gt0 = intel_gt_pm_get(to_gt(gt->i915)); 2722 2723 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2724 err = intel_context_alloc_state(ce); 2725 if (err) 2726 goto err; 2727 } 2728 for_each_child(ce, child) { 2729 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { 2730 err = intel_context_alloc_state(child); 2731 if (err) 2732 goto err; 2733 } 2734 } 2735 2736 /* 2737 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2738 * EIO if the GPU is already wedged. 2739 */ 2740 err = intel_gt_terminally_wedged(ce->engine->gt); 2741 if (err) 2742 goto err; 2743 2744 if (!i915_vm_tryget(ce->vm)) { 2745 err = -ENOENT; 2746 goto err; 2747 } 2748 2749 eb->context = ce; 2750 eb->gt = ce->engine->gt; 2751 2752 /* 2753 * Make sure engine pool stays alive even if we call intel_context_put 2754 * during ww handling. The pool is destroyed when last pm reference 2755 * is dropped, which breaks our -EDEADLK handling. 2756 */ 2757 return err; 2758 2759 err: 2760 if (gt->info.id) 2761 intel_gt_pm_put(to_gt(gt->i915), eb->wakeref_gt0); 2762 2763 intel_gt_pm_put(ce->engine->gt, eb->wakeref); 2764 for_each_child(ce, child) 2765 intel_context_put(child); 2766 intel_context_put(ce); 2767 return err; 2768 } 2769 2770 static void 2771 eb_put_engine(struct i915_execbuffer *eb) 2772 { 2773 struct intel_context *child; 2774 2775 i915_vm_put(eb->context->vm); 2776 /* 2777 * This works in conjunction with eb_select_engine() to prevent 2778 * i915_vma_parked() from interfering while execbuf validates vmas. 2779 */ 2780 if (eb->gt->info.id) 2781 intel_gt_pm_put(to_gt(eb->gt->i915), eb->wakeref_gt0); 2782 intel_gt_pm_put(eb->context->engine->gt, eb->wakeref); 2783 for_each_child(eb->context, child) 2784 intel_context_put(child); 2785 intel_context_put(eb->context); 2786 } 2787 2788 static void 2789 __free_fence_array(struct eb_fence *fences, unsigned int n) 2790 { 2791 while (n--) { 2792 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2793 dma_fence_put(fences[n].dma_fence); 2794 dma_fence_chain_free(fences[n].chain_fence); 2795 } 2796 kvfree(fences); 2797 } 2798 2799 static int 2800 add_timeline_fence_array(struct i915_execbuffer *eb, 2801 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2802 { 2803 struct drm_i915_gem_exec_fence __user *user_fences; 2804 u64 __user *user_values; 2805 struct eb_fence *f; 2806 u64 nfences; 2807 int err = 0; 2808 2809 nfences = timeline_fences->fence_count; 2810 if (!nfences) 2811 return 0; 2812 2813 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2814 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2815 if (nfences > min_t(unsigned long, 2816 ULONG_MAX / sizeof(*user_fences), 2817 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2818 return -EINVAL; 2819 2820 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2821 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2822 return -EFAULT; 2823 2824 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2825 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2826 return -EFAULT; 2827 2828 f = krealloc(eb->fences, 2829 (eb->num_fences + nfences) * sizeof(*f), 2830 __GFP_NOWARN | GFP_KERNEL); 2831 if (!f) 2832 return -ENOMEM; 2833 2834 eb->fences = f; 2835 f += eb->num_fences; 2836 2837 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2838 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2839 2840 while (nfences--) { 2841 struct drm_i915_gem_exec_fence user_fence; 2842 struct drm_syncobj *syncobj; 2843 struct dma_fence *fence = NULL; 2844 u64 point; 2845 2846 if (__copy_from_user(&user_fence, 2847 user_fences++, 2848 sizeof(user_fence))) 2849 return -EFAULT; 2850 2851 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2852 return -EINVAL; 2853 2854 if (__get_user(point, user_values++)) 2855 return -EFAULT; 2856 2857 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2858 if (!syncobj) { 2859 drm_dbg(&eb->i915->drm, 2860 "Invalid syncobj handle provided\n"); 2861 return -ENOENT; 2862 } 2863 2864 fence = drm_syncobj_fence_get(syncobj); 2865 2866 if (!fence && user_fence.flags && 2867 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2868 drm_dbg(&eb->i915->drm, 2869 "Syncobj handle has no fence\n"); 2870 drm_syncobj_put(syncobj); 2871 return -EINVAL; 2872 } 2873 2874 if (fence) 2875 err = dma_fence_chain_find_seqno(&fence, point); 2876 2877 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2878 drm_dbg(&eb->i915->drm, 2879 "Syncobj handle missing requested point %llu\n", 2880 point); 2881 dma_fence_put(fence); 2882 drm_syncobj_put(syncobj); 2883 return err; 2884 } 2885 2886 /* 2887 * A point might have been signaled already and 2888 * garbage collected from the timeline. In this case 2889 * just ignore the point and carry on. 2890 */ 2891 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2892 drm_syncobj_put(syncobj); 2893 continue; 2894 } 2895 2896 /* 2897 * For timeline syncobjs we need to preallocate chains for 2898 * later signaling. 2899 */ 2900 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2901 /* 2902 * Waiting and signaling the same point (when point != 2903 * 0) would break the timeline. 2904 */ 2905 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2906 drm_dbg(&eb->i915->drm, 2907 "Trying to wait & signal the same timeline point.\n"); 2908 dma_fence_put(fence); 2909 drm_syncobj_put(syncobj); 2910 return -EINVAL; 2911 } 2912 2913 f->chain_fence = dma_fence_chain_alloc(); 2914 if (!f->chain_fence) { 2915 drm_syncobj_put(syncobj); 2916 dma_fence_put(fence); 2917 return -ENOMEM; 2918 } 2919 } else { 2920 f->chain_fence = NULL; 2921 } 2922 2923 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2924 f->dma_fence = fence; 2925 f->value = point; 2926 f++; 2927 eb->num_fences++; 2928 } 2929 2930 return 0; 2931 } 2932 2933 static int add_fence_array(struct i915_execbuffer *eb) 2934 { 2935 struct drm_i915_gem_execbuffer2 *args = eb->args; 2936 struct drm_i915_gem_exec_fence __user *user; 2937 unsigned long num_fences = args->num_cliprects; 2938 struct eb_fence *f; 2939 2940 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2941 return 0; 2942 2943 if (!num_fences) 2944 return 0; 2945 2946 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2947 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2948 if (num_fences > min_t(unsigned long, 2949 ULONG_MAX / sizeof(*user), 2950 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2951 return -EINVAL; 2952 2953 user = u64_to_user_ptr(args->cliprects_ptr); 2954 if (!access_ok(user, num_fences * sizeof(*user))) 2955 return -EFAULT; 2956 2957 f = krealloc(eb->fences, 2958 (eb->num_fences + num_fences) * sizeof(*f), 2959 __GFP_NOWARN | GFP_KERNEL); 2960 if (!f) 2961 return -ENOMEM; 2962 2963 eb->fences = f; 2964 f += eb->num_fences; 2965 while (num_fences--) { 2966 struct drm_i915_gem_exec_fence user_fence; 2967 struct drm_syncobj *syncobj; 2968 struct dma_fence *fence = NULL; 2969 2970 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2971 return -EFAULT; 2972 2973 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2974 return -EINVAL; 2975 2976 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2977 if (!syncobj) { 2978 drm_dbg(&eb->i915->drm, 2979 "Invalid syncobj handle provided\n"); 2980 return -ENOENT; 2981 } 2982 2983 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2984 fence = drm_syncobj_fence_get(syncobj); 2985 if (!fence) { 2986 drm_dbg(&eb->i915->drm, 2987 "Syncobj handle has no fence\n"); 2988 drm_syncobj_put(syncobj); 2989 return -EINVAL; 2990 } 2991 } 2992 2993 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2994 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2995 2996 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2997 f->dma_fence = fence; 2998 f->value = 0; 2999 f->chain_fence = NULL; 3000 f++; 3001 eb->num_fences++; 3002 } 3003 3004 return 0; 3005 } 3006 3007 static void put_fence_array(struct eb_fence *fences, int num_fences) 3008 { 3009 if (fences) 3010 __free_fence_array(fences, num_fences); 3011 } 3012 3013 static int 3014 await_fence_array(struct i915_execbuffer *eb, 3015 struct i915_request *rq) 3016 { 3017 unsigned int n; 3018 int err; 3019 3020 for (n = 0; n < eb->num_fences; n++) { 3021 if (!eb->fences[n].dma_fence) 3022 continue; 3023 3024 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); 3025 if (err < 0) 3026 return err; 3027 } 3028 3029 return 0; 3030 } 3031 3032 static void signal_fence_array(const struct i915_execbuffer *eb, 3033 struct dma_fence * const fence) 3034 { 3035 unsigned int n; 3036 3037 for (n = 0; n < eb->num_fences; n++) { 3038 struct drm_syncobj *syncobj; 3039 unsigned int flags; 3040 3041 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 3042 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 3043 continue; 3044 3045 if (eb->fences[n].chain_fence) { 3046 drm_syncobj_add_point(syncobj, 3047 eb->fences[n].chain_fence, 3048 fence, 3049 eb->fences[n].value); 3050 /* 3051 * The chain's ownership is transferred to the 3052 * timeline. 3053 */ 3054 eb->fences[n].chain_fence = NULL; 3055 } else { 3056 drm_syncobj_replace_fence(syncobj, fence); 3057 } 3058 } 3059 } 3060 3061 static int 3062 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 3063 { 3064 struct i915_execbuffer *eb = data; 3065 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 3066 3067 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3068 return -EFAULT; 3069 3070 return add_timeline_fence_array(eb, &timeline_fences); 3071 } 3072 3073 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3074 { 3075 struct i915_request *rq, *rn; 3076 3077 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3078 if (rq == end || !i915_request_retire(rq)) 3079 break; 3080 } 3081 3082 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, 3083 int err, bool last_parallel) 3084 { 3085 struct intel_timeline * const tl = i915_request_timeline(rq); 3086 struct i915_sched_attr attr = {}; 3087 struct i915_request *prev; 3088 3089 lockdep_assert_held(&tl->mutex); 3090 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3091 3092 trace_i915_request_add(rq); 3093 3094 prev = __i915_request_commit(rq); 3095 3096 /* Check that the context wasn't destroyed before submission */ 3097 if (likely(!intel_context_is_closed(eb->context))) { 3098 attr = eb->gem_context->sched; 3099 } else { 3100 /* Serialise with context_close via the add_to_timeline */ 3101 i915_request_set_error_once(rq, -ENOENT); 3102 __i915_request_skip(rq); 3103 err = -ENOENT; /* override any transient errors */ 3104 } 3105 3106 if (intel_context_is_parallel(eb->context)) { 3107 if (err) { 3108 __i915_request_skip(rq); 3109 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, 3110 &rq->fence.flags); 3111 } 3112 if (last_parallel) 3113 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, 3114 &rq->fence.flags); 3115 } 3116 3117 __i915_request_queue(rq, &attr); 3118 3119 /* Try to clean up the client's timeline after submitting the request */ 3120 if (prev) 3121 retire_requests(tl, prev); 3122 3123 mutex_unlock(&tl->mutex); 3124 3125 return err; 3126 } 3127 3128 static int eb_requests_add(struct i915_execbuffer *eb, int err) 3129 { 3130 int i; 3131 3132 /* 3133 * We iterate in reverse order of creation to release timeline mutexes in 3134 * same order. 3135 */ 3136 for_each_batch_add_order(eb, i) { 3137 struct i915_request *rq = eb->requests[i]; 3138 3139 if (!rq) 3140 continue; 3141 err |= eb_request_add(eb, rq, err, i == 0); 3142 } 3143 3144 return err; 3145 } 3146 3147 static const i915_user_extension_fn execbuf_extensions[] = { 3148 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3149 }; 3150 3151 static int 3152 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3153 struct i915_execbuffer *eb) 3154 { 3155 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3156 return 0; 3157 3158 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3159 * have another flag also using it at the same time. 3160 */ 3161 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3162 return -EINVAL; 3163 3164 if (args->num_cliprects != 0) 3165 return -EINVAL; 3166 3167 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3168 execbuf_extensions, 3169 ARRAY_SIZE(execbuf_extensions), 3170 eb); 3171 } 3172 3173 static void eb_requests_get(struct i915_execbuffer *eb) 3174 { 3175 unsigned int i; 3176 3177 for_each_batch_create_order(eb, i) { 3178 if (!eb->requests[i]) 3179 break; 3180 3181 i915_request_get(eb->requests[i]); 3182 } 3183 } 3184 3185 static void eb_requests_put(struct i915_execbuffer *eb) 3186 { 3187 unsigned int i; 3188 3189 for_each_batch_create_order(eb, i) { 3190 if (!eb->requests[i]) 3191 break; 3192 3193 i915_request_put(eb->requests[i]); 3194 } 3195 } 3196 3197 static struct sync_file * 3198 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) 3199 { 3200 struct sync_file *out_fence = NULL; 3201 struct dma_fence_array *fence_array; 3202 struct dma_fence **fences; 3203 unsigned int i; 3204 3205 GEM_BUG_ON(!intel_context_is_parent(eb->context)); 3206 3207 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); 3208 if (!fences) 3209 return ERR_PTR(-ENOMEM); 3210 3211 for_each_batch_create_order(eb, i) { 3212 fences[i] = &eb->requests[i]->fence; 3213 __set_bit(I915_FENCE_FLAG_COMPOSITE, 3214 &eb->requests[i]->fence.flags); 3215 } 3216 3217 fence_array = dma_fence_array_create(eb->num_batches, 3218 fences, 3219 eb->context->parallel.fence_context, 3220 eb->context->parallel.seqno++, 3221 false); 3222 if (!fence_array) { 3223 kfree(fences); 3224 return ERR_PTR(-ENOMEM); 3225 } 3226 3227 /* Move ownership to the dma_fence_array created above */ 3228 for_each_batch_create_order(eb, i) 3229 dma_fence_get(fences[i]); 3230 3231 if (out_fence_fd != -1) { 3232 out_fence = sync_file_create(&fence_array->base); 3233 /* sync_file now owns fence_arry, drop creation ref */ 3234 dma_fence_put(&fence_array->base); 3235 if (!out_fence) 3236 return ERR_PTR(-ENOMEM); 3237 } 3238 3239 eb->composite_fence = &fence_array->base; 3240 3241 return out_fence; 3242 } 3243 3244 static struct sync_file * 3245 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, 3246 struct dma_fence *in_fence, int out_fence_fd) 3247 { 3248 struct sync_file *out_fence = NULL; 3249 int err; 3250 3251 if (unlikely(eb->gem_context->syncobj)) { 3252 struct dma_fence *fence; 3253 3254 fence = drm_syncobj_fence_get(eb->gem_context->syncobj); 3255 err = i915_request_await_dma_fence(rq, fence); 3256 dma_fence_put(fence); 3257 if (err) 3258 return ERR_PTR(err); 3259 } 3260 3261 if (in_fence) { 3262 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) 3263 err = i915_request_await_execution(rq, in_fence); 3264 else 3265 err = i915_request_await_dma_fence(rq, in_fence); 3266 if (err < 0) 3267 return ERR_PTR(err); 3268 } 3269 3270 if (eb->fences) { 3271 err = await_fence_array(eb, rq); 3272 if (err) 3273 return ERR_PTR(err); 3274 } 3275 3276 if (intel_context_is_parallel(eb->context)) { 3277 out_fence = eb_composite_fence_create(eb, out_fence_fd); 3278 if (IS_ERR(out_fence)) 3279 return ERR_PTR(-ENOMEM); 3280 } else if (out_fence_fd != -1) { 3281 out_fence = sync_file_create(&rq->fence); 3282 if (!out_fence) 3283 return ERR_PTR(-ENOMEM); 3284 } 3285 3286 return out_fence; 3287 } 3288 3289 static struct intel_context * 3290 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) 3291 { 3292 struct intel_context *child; 3293 3294 if (likely(context_number == 0)) 3295 return eb->context; 3296 3297 for_each_child(eb->context, child) 3298 if (!--context_number) 3299 return child; 3300 3301 GEM_BUG_ON("Context not found"); 3302 3303 return NULL; 3304 } 3305 3306 static struct sync_file * 3307 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, 3308 int out_fence_fd) 3309 { 3310 struct sync_file *out_fence = NULL; 3311 unsigned int i; 3312 3313 for_each_batch_create_order(eb, i) { 3314 /* Allocate a request for this batch buffer nice and early. */ 3315 eb->requests[i] = i915_request_create(eb_find_context(eb, i)); 3316 if (IS_ERR(eb->requests[i])) { 3317 out_fence = ERR_CAST(eb->requests[i]); 3318 eb->requests[i] = NULL; 3319 return out_fence; 3320 } 3321 3322 /* 3323 * Only the first request added (committed to backend) has to 3324 * take the in fences into account as all subsequent requests 3325 * will have fences inserted inbetween them. 3326 */ 3327 if (i + 1 == eb->num_batches) { 3328 out_fence = eb_fences_add(eb, eb->requests[i], 3329 in_fence, out_fence_fd); 3330 if (IS_ERR(out_fence)) 3331 return out_fence; 3332 } 3333 3334 /* 3335 * Not really on stack, but we don't want to call 3336 * kfree on the batch_snapshot when we put it, so use the 3337 * _onstack interface. 3338 */ 3339 if (eb->batches[i]->vma) 3340 eb->requests[i]->batch_res = 3341 i915_vma_resource_get(eb->batches[i]->vma->resource); 3342 if (eb->batch_pool) { 3343 GEM_BUG_ON(intel_context_is_parallel(eb->context)); 3344 intel_gt_buffer_pool_mark_active(eb->batch_pool, 3345 eb->requests[i]); 3346 } 3347 } 3348 3349 return out_fence; 3350 } 3351 3352 static int 3353 i915_gem_do_execbuffer(struct drm_device *dev, 3354 struct drm_file *file, 3355 struct drm_i915_gem_execbuffer2 *args, 3356 struct drm_i915_gem_exec_object2 *exec) 3357 { 3358 struct drm_i915_private *i915 = to_i915(dev); 3359 struct i915_execbuffer eb; 3360 struct dma_fence *in_fence = NULL; 3361 struct sync_file *out_fence = NULL; 3362 int out_fence_fd = -1; 3363 int err; 3364 3365 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3366 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3367 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3368 3369 eb.i915 = i915; 3370 eb.file = file; 3371 eb.args = args; 3372 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3373 args->flags |= __EXEC_HAS_RELOC; 3374 3375 eb.exec = exec; 3376 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3377 eb.vma[0].vma = NULL; 3378 eb.batch_pool = NULL; 3379 3380 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3381 reloc_cache_init(&eb.reloc_cache, eb.i915); 3382 3383 eb.buffer_count = args->buffer_count; 3384 eb.batch_start_offset = args->batch_start_offset; 3385 eb.trampoline = NULL; 3386 3387 eb.fences = NULL; 3388 eb.num_fences = 0; 3389 3390 eb_capture_list_clear(&eb); 3391 3392 memset(eb.requests, 0, sizeof(struct i915_request *) * 3393 ARRAY_SIZE(eb.requests)); 3394 eb.composite_fence = NULL; 3395 3396 eb.batch_flags = 0; 3397 if (args->flags & I915_EXEC_SECURE) { 3398 if (GRAPHICS_VER(i915) >= 11) 3399 return -ENODEV; 3400 3401 /* Return -EPERM to trigger fallback code on old binaries. */ 3402 if (!HAS_SECURE_BATCHES(i915)) 3403 return -EPERM; 3404 3405 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3406 return -EPERM; 3407 3408 eb.batch_flags |= I915_DISPATCH_SECURE; 3409 } 3410 if (args->flags & I915_EXEC_IS_PINNED) 3411 eb.batch_flags |= I915_DISPATCH_PINNED; 3412 3413 err = parse_execbuf2_extensions(args, &eb); 3414 if (err) 3415 goto err_ext; 3416 3417 err = add_fence_array(&eb); 3418 if (err) 3419 goto err_ext; 3420 3421 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3422 if (args->flags & IN_FENCES) { 3423 if ((args->flags & IN_FENCES) == IN_FENCES) 3424 return -EINVAL; 3425 3426 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3427 if (!in_fence) { 3428 err = -EINVAL; 3429 goto err_ext; 3430 } 3431 } 3432 #undef IN_FENCES 3433 3434 if (args->flags & I915_EXEC_FENCE_OUT) { 3435 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3436 if (out_fence_fd < 0) { 3437 err = out_fence_fd; 3438 goto err_in_fence; 3439 } 3440 } 3441 3442 err = eb_create(&eb); 3443 if (err) 3444 goto err_out_fence; 3445 3446 GEM_BUG_ON(!eb.lut_size); 3447 3448 err = eb_select_context(&eb); 3449 if (unlikely(err)) 3450 goto err_destroy; 3451 3452 err = eb_select_engine(&eb); 3453 if (unlikely(err)) 3454 goto err_context; 3455 3456 err = eb_lookup_vmas(&eb); 3457 if (err) { 3458 eb_release_vmas(&eb, true); 3459 goto err_engine; 3460 } 3461 3462 i915_gem_ww_ctx_init(&eb.ww, true); 3463 3464 err = eb_relocate_parse(&eb); 3465 if (err) { 3466 /* 3467 * If the user expects the execobject.offset and 3468 * reloc.presumed_offset to be an exact match, 3469 * as for using NO_RELOC, then we cannot update 3470 * the execobject.offset until we have completed 3471 * relocation. 3472 */ 3473 args->flags &= ~__EXEC_HAS_RELOC; 3474 goto err_vma; 3475 } 3476 3477 ww_acquire_done(&eb.ww.ctx); 3478 err = eb_capture_stage(&eb); 3479 if (err) 3480 goto err_vma; 3481 3482 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); 3483 if (IS_ERR(out_fence)) { 3484 err = PTR_ERR(out_fence); 3485 out_fence = NULL; 3486 if (eb.requests[0]) 3487 goto err_request; 3488 else 3489 goto err_vma; 3490 } 3491 3492 err = eb_submit(&eb); 3493 3494 err_request: 3495 eb_requests_get(&eb); 3496 err = eb_requests_add(&eb, err); 3497 3498 if (eb.fences) 3499 signal_fence_array(&eb, eb.composite_fence ? 3500 eb.composite_fence : 3501 &eb.requests[0]->fence); 3502 3503 if (unlikely(eb.gem_context->syncobj)) { 3504 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3505 eb.composite_fence ? 3506 eb.composite_fence : 3507 &eb.requests[0]->fence); 3508 } 3509 3510 if (out_fence) { 3511 if (err == 0) { 3512 fd_install(out_fence_fd, out_fence->file); 3513 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3514 args->rsvd2 |= (u64)out_fence_fd << 32; 3515 out_fence_fd = -1; 3516 } else { 3517 fput(out_fence->file); 3518 } 3519 } 3520 3521 if (!out_fence && eb.composite_fence) 3522 dma_fence_put(eb.composite_fence); 3523 3524 eb_requests_put(&eb); 3525 3526 err_vma: 3527 eb_release_vmas(&eb, true); 3528 WARN_ON(err == -EDEADLK); 3529 i915_gem_ww_ctx_fini(&eb.ww); 3530 3531 if (eb.batch_pool) 3532 intel_gt_buffer_pool_put(eb.batch_pool); 3533 err_engine: 3534 eb_put_engine(&eb); 3535 err_context: 3536 i915_gem_context_put(eb.gem_context); 3537 err_destroy: 3538 eb_destroy(&eb); 3539 err_out_fence: 3540 if (out_fence_fd != -1) 3541 put_unused_fd(out_fence_fd); 3542 err_in_fence: 3543 dma_fence_put(in_fence); 3544 err_ext: 3545 put_fence_array(eb.fences, eb.num_fences); 3546 return err; 3547 } 3548 3549 static size_t eb_element_size(void) 3550 { 3551 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3552 } 3553 3554 static bool check_buffer_count(size_t count) 3555 { 3556 const size_t sz = eb_element_size(); 3557 3558 /* 3559 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3560 * array size (see eb_create()). Otherwise, we can accept an array as 3561 * large as can be addressed (though use large arrays at your peril)! 3562 */ 3563 3564 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3565 } 3566 3567 int 3568 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3569 struct drm_file *file) 3570 { 3571 struct drm_i915_private *i915 = to_i915(dev); 3572 struct drm_i915_gem_execbuffer2 *args = data; 3573 struct drm_i915_gem_exec_object2 *exec2_list; 3574 const size_t count = args->buffer_count; 3575 int err; 3576 3577 if (!check_buffer_count(count)) { 3578 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3579 return -EINVAL; 3580 } 3581 3582 err = i915_gem_check_execbuffer(i915, args); 3583 if (err) 3584 return err; 3585 3586 /* Allocate extra slots for use by the command parser */ 3587 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3588 __GFP_NOWARN | GFP_KERNEL); 3589 if (exec2_list == NULL) { 3590 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3591 count); 3592 return -ENOMEM; 3593 } 3594 if (copy_from_user(exec2_list, 3595 u64_to_user_ptr(args->buffers_ptr), 3596 sizeof(*exec2_list) * count)) { 3597 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3598 kvfree(exec2_list); 3599 return -EFAULT; 3600 } 3601 3602 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3603 3604 /* 3605 * Now that we have begun execution of the batchbuffer, we ignore 3606 * any new error after this point. Also given that we have already 3607 * updated the associated relocations, we try to write out the current 3608 * object locations irrespective of any error. 3609 */ 3610 if (args->flags & __EXEC_HAS_RELOC) { 3611 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3612 u64_to_user_ptr(args->buffers_ptr); 3613 unsigned int i; 3614 3615 /* Copy the new buffer offsets back to the user's exec list. */ 3616 /* 3617 * Note: count * sizeof(*user_exec_list) does not overflow, 3618 * because we checked 'count' in check_buffer_count(). 3619 * 3620 * And this range already got effectively checked earlier 3621 * when we did the "copy_from_user()" above. 3622 */ 3623 if (!user_write_access_begin(user_exec_list, 3624 count * sizeof(*user_exec_list))) 3625 goto end; 3626 3627 for (i = 0; i < args->buffer_count; i++) { 3628 if (!(exec2_list[i].offset & UPDATE)) 3629 continue; 3630 3631 exec2_list[i].offset = 3632 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3633 unsafe_put_user(exec2_list[i].offset, 3634 &user_exec_list[i].offset, 3635 end_user); 3636 } 3637 end_user: 3638 user_write_access_end(); 3639 end:; 3640 } 3641 3642 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3643 kvfree(exec2_list); 3644 return err; 3645 } 3646