xref: /linux/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 
14 #include "display/intel_frontbuffer.h"
15 
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23 
24 #include "i915_drv.h"
25 #include "i915_gem_clflush.h"
26 #include "i915_gem_context.h"
27 #include "i915_gem_ioctls.h"
28 #include "i915_sw_fence_work.h"
29 #include "i915_trace.h"
30 #include "i915_user_extensions.h"
31 
32 struct eb_vma {
33 	struct i915_vma *vma;
34 	unsigned int flags;
35 
36 	/** This vma's place in the execbuf reservation list */
37 	struct drm_i915_gem_exec_object2 *exec;
38 	struct list_head bind_link;
39 	struct list_head reloc_link;
40 
41 	struct hlist_node node;
42 	u32 handle;
43 };
44 
45 enum {
46 	FORCE_CPU_RELOC = 1,
47 	FORCE_GTT_RELOC,
48 	FORCE_GPU_RELOC,
49 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
50 };
51 
52 #define __EXEC_OBJECT_HAS_PIN		BIT(31)
53 #define __EXEC_OBJECT_HAS_FENCE		BIT(30)
54 #define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
55 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
56 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
57 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
58 
59 #define __EXEC_HAS_RELOC	BIT(31)
60 #define __EXEC_ENGINE_PINNED	BIT(30)
61 #define __EXEC_INTERNAL_FLAGS	(~0u << 30)
62 #define UPDATE			PIN_OFFSET_FIXED
63 
64 #define BATCH_OFFSET_BIAS (256*1024)
65 
66 #define __I915_EXEC_ILLEGAL_FLAGS \
67 	(__I915_EXEC_UNKNOWN_FLAGS | \
68 	 I915_EXEC_CONSTANTS_MASK  | \
69 	 I915_EXEC_RESOURCE_STREAMER)
70 
71 /* Catch emission of unexpected errors for CI! */
72 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
73 #undef EINVAL
74 #define EINVAL ({ \
75 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
76 	22; \
77 })
78 #endif
79 
80 /**
81  * DOC: User command execution
82  *
83  * Userspace submits commands to be executed on the GPU as an instruction
84  * stream within a GEM object we call a batchbuffer. This instructions may
85  * refer to other GEM objects containing auxiliary state such as kernels,
86  * samplers, render targets and even secondary batchbuffers. Userspace does
87  * not know where in the GPU memory these objects reside and so before the
88  * batchbuffer is passed to the GPU for execution, those addresses in the
89  * batchbuffer and auxiliary objects are updated. This is known as relocation,
90  * or patching. To try and avoid having to relocate each object on the next
91  * execution, userspace is told the location of those objects in this pass,
92  * but this remains just a hint as the kernel may choose a new location for
93  * any object in the future.
94  *
95  * At the level of talking to the hardware, submitting a batchbuffer for the
96  * GPU to execute is to add content to a buffer from which the HW
97  * command streamer is reading.
98  *
99  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
100  *    Execlists, this command is not placed on the same buffer as the
101  *    remaining items.
102  *
103  * 2. Add a command to invalidate caches to the buffer.
104  *
105  * 3. Add a batchbuffer start command to the buffer; the start command is
106  *    essentially a token together with the GPU address of the batchbuffer
107  *    to be executed.
108  *
109  * 4. Add a pipeline flush to the buffer.
110  *
111  * 5. Add a memory write command to the buffer to record when the GPU
112  *    is done executing the batchbuffer. The memory write writes the
113  *    global sequence number of the request, ``i915_request::global_seqno``;
114  *    the i915 driver uses the current value in the register to determine
115  *    if the GPU has completed the batchbuffer.
116  *
117  * 6. Add a user interrupt command to the buffer. This command instructs
118  *    the GPU to issue an interrupt when the command, pipeline flush and
119  *    memory write are completed.
120  *
121  * 7. Inform the hardware of the additional commands added to the buffer
122  *    (by updating the tail pointer).
123  *
124  * Processing an execbuf ioctl is conceptually split up into a few phases.
125  *
126  * 1. Validation - Ensure all the pointers, handles and flags are valid.
127  * 2. Reservation - Assign GPU address space for every object
128  * 3. Relocation - Update any addresses to point to the final locations
129  * 4. Serialisation - Order the request with respect to its dependencies
130  * 5. Construction - Construct a request to execute the batchbuffer
131  * 6. Submission (at some point in the future execution)
132  *
133  * Reserving resources for the execbuf is the most complicated phase. We
134  * neither want to have to migrate the object in the address space, nor do
135  * we want to have to update any relocations pointing to this object. Ideally,
136  * we want to leave the object where it is and for all the existing relocations
137  * to match. If the object is given a new address, or if userspace thinks the
138  * object is elsewhere, we have to parse all the relocation entries and update
139  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
140  * all the target addresses in all of its objects match the value in the
141  * relocation entries and that they all match the presumed offsets given by the
142  * list of execbuffer objects. Using this knowledge, we know that if we haven't
143  * moved any buffers, all the relocation entries are valid and we can skip
144  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
145  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
146  *
147  *      The addresses written in the objects must match the corresponding
148  *      reloc.presumed_offset which in turn must match the corresponding
149  *      execobject.offset.
150  *
151  *      Any render targets written to in the batch must be flagged with
152  *      EXEC_OBJECT_WRITE.
153  *
154  *      To avoid stalling, execobject.offset should match the current
155  *      address of that object within the active context.
156  *
157  * The reservation is done is multiple phases. First we try and keep any
158  * object already bound in its current location - so as long as meets the
159  * constraints imposed by the new execbuffer. Any object left unbound after the
160  * first pass is then fitted into any available idle space. If an object does
161  * not fit, all objects are removed from the reservation and the process rerun
162  * after sorting the objects into a priority order (more difficult to fit
163  * objects are tried first). Failing that, the entire VM is cleared and we try
164  * to fit the execbuf once last time before concluding that it simply will not
165  * fit.
166  *
167  * A small complication to all of this is that we allow userspace not only to
168  * specify an alignment and a size for the object in the address space, but
169  * we also allow userspace to specify the exact offset. This objects are
170  * simpler to place (the location is known a priori) all we have to do is make
171  * sure the space is available.
172  *
173  * Once all the objects are in place, patching up the buried pointers to point
174  * to the final locations is a fairly simple job of walking over the relocation
175  * entry arrays, looking up the right address and rewriting the value into
176  * the object. Simple! ... The relocation entries are stored in user memory
177  * and so to access them we have to copy them into a local buffer. That copy
178  * has to avoid taking any pagefaults as they may lead back to a GEM object
179  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
180  * the relocation into multiple passes. First we try to do everything within an
181  * atomic context (avoid the pagefaults) which requires that we never wait. If
182  * we detect that we may wait, or if we need to fault, then we have to fallback
183  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
184  * bells yet?) Dropping the mutex means that we lose all the state we have
185  * built up so far for the execbuf and we must reset any global data. However,
186  * we do leave the objects pinned in their final locations - which is a
187  * potential issue for concurrent execbufs. Once we have left the mutex, we can
188  * allocate and copy all the relocation entries into a large array at our
189  * leisure, reacquire the mutex, reclaim all the objects and other state and
190  * then proceed to update any incorrect addresses with the objects.
191  *
192  * As we process the relocation entries, we maintain a record of whether the
193  * object is being written to. Using NORELOC, we expect userspace to provide
194  * this information instead. We also check whether we can skip the relocation
195  * by comparing the expected value inside the relocation entry with the target's
196  * final address. If they differ, we have to map the current object and rewrite
197  * the 4 or 8 byte pointer within.
198  *
199  * Serialising an execbuf is quite simple according to the rules of the GEM
200  * ABI. Execution within each context is ordered by the order of submission.
201  * Writes to any GEM object are in order of submission and are exclusive. Reads
202  * from a GEM object are unordered with respect to other reads, but ordered by
203  * writes. A write submitted after a read cannot occur before the read, and
204  * similarly any read submitted after a write cannot occur before the write.
205  * Writes are ordered between engines such that only one write occurs at any
206  * time (completing any reads beforehand) - using semaphores where available
207  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
208  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
209  * reads before starting, and any read (either using set-domain or pread) must
210  * flush all GPU writes before starting. (Note we only employ a barrier before,
211  * we currently rely on userspace not concurrently starting a new execution
212  * whilst reading or writing to an object. This may be an advantage or not
213  * depending on how much you trust userspace not to shoot themselves in the
214  * foot.) Serialisation may just result in the request being inserted into
215  * a DAG awaiting its turn, but most simple is to wait on the CPU until
216  * all dependencies are resolved.
217  *
218  * After all of that, is just a matter of closing the request and handing it to
219  * the hardware (well, leaving it in a queue to be executed). However, we also
220  * offer the ability for batchbuffers to be run with elevated privileges so
221  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
222  * Before any batch is given extra privileges we first must check that it
223  * contains no nefarious instructions, we check that each instruction is from
224  * our whitelist and all registers are also from an allowed list. We first
225  * copy the user's batchbuffer to a shadow (so that the user doesn't have
226  * access to it, either by the CPU or GPU as we scan it) and then parse each
227  * instruction. If everything is ok, we set a flag telling the hardware to run
228  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
229  */
230 
231 struct eb_fence {
232 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
233 	struct dma_fence *dma_fence;
234 	u64 value;
235 	struct dma_fence_chain *chain_fence;
236 };
237 
238 struct i915_execbuffer {
239 	struct drm_i915_private *i915; /** i915 backpointer */
240 	struct drm_file *file; /** per-file lookup tables and limits */
241 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
242 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
243 	struct eb_vma *vma;
244 
245 	struct intel_engine_cs *engine; /** engine to queue the request to */
246 	struct intel_context *context; /* logical state for the request */
247 	struct i915_gem_context *gem_context; /** caller's context */
248 
249 	struct i915_request *request; /** our request to build */
250 	struct eb_vma *batch; /** identity of the batch obj/vma */
251 	struct i915_vma *trampoline; /** trampoline used for chaining */
252 
253 	/** actual size of execobj[] as we may extend it for the cmdparser */
254 	unsigned int buffer_count;
255 
256 	/** list of vma not yet bound during reservation phase */
257 	struct list_head unbound;
258 
259 	/** list of vma that have execobj.relocation_count */
260 	struct list_head relocs;
261 
262 	struct i915_gem_ww_ctx ww;
263 
264 	/**
265 	 * Track the most recently used object for relocations, as we
266 	 * frequently have to perform multiple relocations within the same
267 	 * obj/page
268 	 */
269 	struct reloc_cache {
270 		struct drm_mm_node node; /** temporary GTT binding */
271 		unsigned long vaddr; /** Current kmap address */
272 		unsigned long page; /** Currently mapped page index */
273 		unsigned int gen; /** Cached value of INTEL_GEN */
274 		bool use_64bit_reloc : 1;
275 		bool has_llc : 1;
276 		bool has_fence : 1;
277 		bool needs_unfenced : 1;
278 
279 		struct i915_request *rq;
280 		u32 *rq_cmd;
281 		unsigned int rq_size;
282 		struct intel_gt_buffer_pool_node *pool;
283 	} reloc_cache;
284 
285 	struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
286 	struct intel_context *reloc_context;
287 
288 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
289 	u32 context_flags; /** Set of execobj.flags to insert from the ctx */
290 
291 	u64 batch_len; /** Length of batch within object */
292 	u32 batch_start_offset; /** Location within object of batch */
293 	u32 batch_flags; /** Flags composed for emit_bb_start() */
294 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
295 
296 	/**
297 	 * Indicate either the size of the hastable used to resolve
298 	 * relocation handles, or if negative that we are using a direct
299 	 * index into the execobj[].
300 	 */
301 	int lut_size;
302 	struct hlist_head *buckets; /** ht for relocation handles */
303 
304 	struct eb_fence *fences;
305 	unsigned long num_fences;
306 };
307 
308 static int eb_parse(struct i915_execbuffer *eb);
309 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
310 					  bool throttle);
311 static void eb_unpin_engine(struct i915_execbuffer *eb);
312 
313 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
314 {
315 	return intel_engine_requires_cmd_parser(eb->engine) ||
316 		(intel_engine_using_cmd_parser(eb->engine) &&
317 		 eb->args->batch_len);
318 }
319 
320 static int eb_create(struct i915_execbuffer *eb)
321 {
322 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
323 		unsigned int size = 1 + ilog2(eb->buffer_count);
324 
325 		/*
326 		 * Without a 1:1 association between relocation handles and
327 		 * the execobject[] index, we instead create a hashtable.
328 		 * We size it dynamically based on available memory, starting
329 		 * first with 1:1 assocative hash and scaling back until
330 		 * the allocation succeeds.
331 		 *
332 		 * Later on we use a positive lut_size to indicate we are
333 		 * using this hashtable, and a negative value to indicate a
334 		 * direct lookup.
335 		 */
336 		do {
337 			gfp_t flags;
338 
339 			/* While we can still reduce the allocation size, don't
340 			 * raise a warning and allow the allocation to fail.
341 			 * On the last pass though, we want to try as hard
342 			 * as possible to perform the allocation and warn
343 			 * if it fails.
344 			 */
345 			flags = GFP_KERNEL;
346 			if (size > 1)
347 				flags |= __GFP_NORETRY | __GFP_NOWARN;
348 
349 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
350 					      flags);
351 			if (eb->buckets)
352 				break;
353 		} while (--size);
354 
355 		if (unlikely(!size))
356 			return -ENOMEM;
357 
358 		eb->lut_size = size;
359 	} else {
360 		eb->lut_size = -eb->buffer_count;
361 	}
362 
363 	return 0;
364 }
365 
366 static bool
367 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
368 		 const struct i915_vma *vma,
369 		 unsigned int flags)
370 {
371 	if (vma->node.size < entry->pad_to_size)
372 		return true;
373 
374 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
375 		return true;
376 
377 	if (flags & EXEC_OBJECT_PINNED &&
378 	    vma->node.start != entry->offset)
379 		return true;
380 
381 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
382 	    vma->node.start < BATCH_OFFSET_BIAS)
383 		return true;
384 
385 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
386 	    (vma->node.start + vma->node.size + 4095) >> 32)
387 		return true;
388 
389 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
390 	    !i915_vma_is_map_and_fenceable(vma))
391 		return true;
392 
393 	return false;
394 }
395 
396 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
397 			unsigned int exec_flags)
398 {
399 	u64 pin_flags = 0;
400 
401 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
402 		pin_flags |= PIN_GLOBAL;
403 
404 	/*
405 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
406 	 * limit address to the first 4GBs for unflagged objects.
407 	 */
408 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
409 		pin_flags |= PIN_ZONE_4G;
410 
411 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
412 		pin_flags |= PIN_MAPPABLE;
413 
414 	if (exec_flags & EXEC_OBJECT_PINNED)
415 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
416 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
417 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
418 
419 	return pin_flags;
420 }
421 
422 static inline bool
423 eb_pin_vma(struct i915_execbuffer *eb,
424 	   const struct drm_i915_gem_exec_object2 *entry,
425 	   struct eb_vma *ev)
426 {
427 	struct i915_vma *vma = ev->vma;
428 	u64 pin_flags;
429 
430 	if (vma->node.size)
431 		pin_flags = vma->node.start;
432 	else
433 		pin_flags = entry->offset & PIN_OFFSET_MASK;
434 
435 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
436 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
437 		pin_flags |= PIN_GLOBAL;
438 
439 	/* Attempt to reuse the current location if available */
440 	/* TODO: Add -EDEADLK handling here */
441 	if (unlikely(i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags))) {
442 		if (entry->flags & EXEC_OBJECT_PINNED)
443 			return false;
444 
445 		/* Failing that pick any _free_ space if suitable */
446 		if (unlikely(i915_vma_pin_ww(vma, &eb->ww,
447 					     entry->pad_to_size,
448 					     entry->alignment,
449 					     eb_pin_flags(entry, ev->flags) |
450 					     PIN_USER | PIN_NOEVICT)))
451 			return false;
452 	}
453 
454 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
455 		if (unlikely(i915_vma_pin_fence(vma))) {
456 			i915_vma_unpin(vma);
457 			return false;
458 		}
459 
460 		if (vma->fence)
461 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
462 	}
463 
464 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
465 	return !eb_vma_misplaced(entry, vma, ev->flags);
466 }
467 
468 static inline void
469 eb_unreserve_vma(struct eb_vma *ev)
470 {
471 	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
472 		return;
473 
474 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
475 		__i915_vma_unpin_fence(ev->vma);
476 
477 	__i915_vma_unpin(ev->vma);
478 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
479 }
480 
481 static int
482 eb_validate_vma(struct i915_execbuffer *eb,
483 		struct drm_i915_gem_exec_object2 *entry,
484 		struct i915_vma *vma)
485 {
486 	if (unlikely(entry->flags & eb->invalid_flags))
487 		return -EINVAL;
488 
489 	if (unlikely(entry->alignment &&
490 		     !is_power_of_2_u64(entry->alignment)))
491 		return -EINVAL;
492 
493 	/*
494 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
495 	 * any non-page-aligned or non-canonical addresses.
496 	 */
497 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
498 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
499 		return -EINVAL;
500 
501 	/* pad_to_size was once a reserved field, so sanitize it */
502 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
503 		if (unlikely(offset_in_page(entry->pad_to_size)))
504 			return -EINVAL;
505 	} else {
506 		entry->pad_to_size = 0;
507 	}
508 	/*
509 	 * From drm_mm perspective address space is continuous,
510 	 * so from this point we're always using non-canonical
511 	 * form internally.
512 	 */
513 	entry->offset = gen8_noncanonical_addr(entry->offset);
514 
515 	if (!eb->reloc_cache.has_fence) {
516 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
517 	} else {
518 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
519 		     eb->reloc_cache.needs_unfenced) &&
520 		    i915_gem_object_is_tiled(vma->obj))
521 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
522 	}
523 
524 	if (!(entry->flags & EXEC_OBJECT_PINNED))
525 		entry->flags |= eb->context_flags;
526 
527 	return 0;
528 }
529 
530 static void
531 eb_add_vma(struct i915_execbuffer *eb,
532 	   unsigned int i, unsigned batch_idx,
533 	   struct i915_vma *vma)
534 {
535 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
536 	struct eb_vma *ev = &eb->vma[i];
537 
538 	ev->vma = vma;
539 	ev->exec = entry;
540 	ev->flags = entry->flags;
541 
542 	if (eb->lut_size > 0) {
543 		ev->handle = entry->handle;
544 		hlist_add_head(&ev->node,
545 			       &eb->buckets[hash_32(entry->handle,
546 						    eb->lut_size)]);
547 	}
548 
549 	if (entry->relocation_count)
550 		list_add_tail(&ev->reloc_link, &eb->relocs);
551 
552 	/*
553 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
554 	 * to negative relocation deltas. Usually that works out ok since the
555 	 * relocate address is still positive, except when the batch is placed
556 	 * very low in the GTT. Ensure this doesn't happen.
557 	 *
558 	 * Note that actual hangs have only been observed on gen7, but for
559 	 * paranoia do it everywhere.
560 	 */
561 	if (i == batch_idx) {
562 		if (entry->relocation_count &&
563 		    !(ev->flags & EXEC_OBJECT_PINNED))
564 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
565 		if (eb->reloc_cache.has_fence)
566 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
567 
568 		eb->batch = ev;
569 	}
570 }
571 
572 static inline int use_cpu_reloc(const struct reloc_cache *cache,
573 				const struct drm_i915_gem_object *obj)
574 {
575 	if (!i915_gem_object_has_struct_page(obj))
576 		return false;
577 
578 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
579 		return true;
580 
581 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
582 		return false;
583 
584 	return (cache->has_llc ||
585 		obj->cache_dirty ||
586 		obj->cache_level != I915_CACHE_NONE);
587 }
588 
589 static int eb_reserve_vma(struct i915_execbuffer *eb,
590 			  struct eb_vma *ev,
591 			  u64 pin_flags)
592 {
593 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
594 	struct i915_vma *vma = ev->vma;
595 	int err;
596 
597 	if (drm_mm_node_allocated(&vma->node) &&
598 	    eb_vma_misplaced(entry, vma, ev->flags)) {
599 		err = i915_vma_unbind(vma);
600 		if (err)
601 			return err;
602 	}
603 
604 	err = i915_vma_pin_ww(vma, &eb->ww,
605 			   entry->pad_to_size, entry->alignment,
606 			   eb_pin_flags(entry, ev->flags) | pin_flags);
607 	if (err)
608 		return err;
609 
610 	if (entry->offset != vma->node.start) {
611 		entry->offset = vma->node.start | UPDATE;
612 		eb->args->flags |= __EXEC_HAS_RELOC;
613 	}
614 
615 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
616 		err = i915_vma_pin_fence(vma);
617 		if (unlikely(err)) {
618 			i915_vma_unpin(vma);
619 			return err;
620 		}
621 
622 		if (vma->fence)
623 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
624 	}
625 
626 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
627 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
628 
629 	return 0;
630 }
631 
632 static int eb_reserve(struct i915_execbuffer *eb)
633 {
634 	const unsigned int count = eb->buffer_count;
635 	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
636 	struct list_head last;
637 	struct eb_vma *ev;
638 	unsigned int i, pass;
639 	int err = 0;
640 
641 	/*
642 	 * Attempt to pin all of the buffers into the GTT.
643 	 * This is done in 3 phases:
644 	 *
645 	 * 1a. Unbind all objects that do not match the GTT constraints for
646 	 *     the execbuffer (fenceable, mappable, alignment etc).
647 	 * 1b. Increment pin count for already bound objects.
648 	 * 2.  Bind new objects.
649 	 * 3.  Decrement pin count.
650 	 *
651 	 * This avoid unnecessary unbinding of later objects in order to make
652 	 * room for the earlier objects *unless* we need to defragment.
653 	 */
654 	pass = 0;
655 	do {
656 		list_for_each_entry(ev, &eb->unbound, bind_link) {
657 			err = eb_reserve_vma(eb, ev, pin_flags);
658 			if (err)
659 				break;
660 		}
661 		if (err != -ENOSPC)
662 			return err;
663 
664 		/* Resort *all* the objects into priority order */
665 		INIT_LIST_HEAD(&eb->unbound);
666 		INIT_LIST_HEAD(&last);
667 		for (i = 0; i < count; i++) {
668 			unsigned int flags;
669 
670 			ev = &eb->vma[i];
671 			flags = ev->flags;
672 			if (flags & EXEC_OBJECT_PINNED &&
673 			    flags & __EXEC_OBJECT_HAS_PIN)
674 				continue;
675 
676 			eb_unreserve_vma(ev);
677 
678 			if (flags & EXEC_OBJECT_PINNED)
679 				/* Pinned must have their slot */
680 				list_add(&ev->bind_link, &eb->unbound);
681 			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
682 				/* Map require the lowest 256MiB (aperture) */
683 				list_add_tail(&ev->bind_link, &eb->unbound);
684 			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
685 				/* Prioritise 4GiB region for restricted bo */
686 				list_add(&ev->bind_link, &last);
687 			else
688 				list_add_tail(&ev->bind_link, &last);
689 		}
690 		list_splice_tail(&last, &eb->unbound);
691 
692 		switch (pass++) {
693 		case 0:
694 			break;
695 
696 		case 1:
697 			/* Too fragmented, unbind everything and retry */
698 			mutex_lock(&eb->context->vm->mutex);
699 			err = i915_gem_evict_vm(eb->context->vm);
700 			mutex_unlock(&eb->context->vm->mutex);
701 			if (err)
702 				return err;
703 			break;
704 
705 		default:
706 			return -ENOSPC;
707 		}
708 
709 		pin_flags = PIN_USER;
710 	} while (1);
711 }
712 
713 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
714 {
715 	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
716 		return 0;
717 	else
718 		return eb->buffer_count - 1;
719 }
720 
721 static int eb_select_context(struct i915_execbuffer *eb)
722 {
723 	struct i915_gem_context *ctx;
724 
725 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
726 	if (unlikely(!ctx))
727 		return -ENOENT;
728 
729 	eb->gem_context = ctx;
730 	if (rcu_access_pointer(ctx->vm))
731 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
732 
733 	eb->context_flags = 0;
734 	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
735 		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
736 
737 	return 0;
738 }
739 
740 static int __eb_add_lut(struct i915_execbuffer *eb,
741 			u32 handle, struct i915_vma *vma)
742 {
743 	struct i915_gem_context *ctx = eb->gem_context;
744 	struct i915_lut_handle *lut;
745 	int err;
746 
747 	lut = i915_lut_handle_alloc();
748 	if (unlikely(!lut))
749 		return -ENOMEM;
750 
751 	i915_vma_get(vma);
752 	if (!atomic_fetch_inc(&vma->open_count))
753 		i915_vma_reopen(vma);
754 	lut->handle = handle;
755 	lut->ctx = ctx;
756 
757 	/* Check that the context hasn't been closed in the meantime */
758 	err = -EINTR;
759 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
760 		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);
761 
762 		if (unlikely(vm && vma->vm != vm))
763 			err = -EAGAIN; /* user racing with ctx set-vm */
764 		else if (likely(!i915_gem_context_is_closed(ctx)))
765 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
766 		else
767 			err = -ENOENT;
768 		if (err == 0) { /* And nor has this handle */
769 			struct drm_i915_gem_object *obj = vma->obj;
770 
771 			spin_lock(&obj->lut_lock);
772 			if (idr_find(&eb->file->object_idr, handle) == obj) {
773 				list_add(&lut->obj_link, &obj->lut_list);
774 			} else {
775 				radix_tree_delete(&ctx->handles_vma, handle);
776 				err = -ENOENT;
777 			}
778 			spin_unlock(&obj->lut_lock);
779 		}
780 		mutex_unlock(&ctx->lut_mutex);
781 	}
782 	if (unlikely(err))
783 		goto err;
784 
785 	return 0;
786 
787 err:
788 	i915_vma_close(vma);
789 	i915_vma_put(vma);
790 	i915_lut_handle_free(lut);
791 	return err;
792 }
793 
794 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
795 {
796 	struct i915_address_space *vm = eb->context->vm;
797 
798 	do {
799 		struct drm_i915_gem_object *obj;
800 		struct i915_vma *vma;
801 		int err;
802 
803 		rcu_read_lock();
804 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
805 		if (likely(vma && vma->vm == vm))
806 			vma = i915_vma_tryget(vma);
807 		rcu_read_unlock();
808 		if (likely(vma))
809 			return vma;
810 
811 		obj = i915_gem_object_lookup(eb->file, handle);
812 		if (unlikely(!obj))
813 			return ERR_PTR(-ENOENT);
814 
815 		vma = i915_vma_instance(obj, vm, NULL);
816 		if (IS_ERR(vma)) {
817 			i915_gem_object_put(obj);
818 			return vma;
819 		}
820 
821 		err = __eb_add_lut(eb, handle, vma);
822 		if (likely(!err))
823 			return vma;
824 
825 		i915_gem_object_put(obj);
826 		if (err != -EEXIST)
827 			return ERR_PTR(err);
828 	} while (1);
829 }
830 
831 static int eb_lookup_vmas(struct i915_execbuffer *eb)
832 {
833 	struct drm_i915_private *i915 = eb->i915;
834 	unsigned int batch = eb_batch_index(eb);
835 	unsigned int i;
836 	int err = 0;
837 
838 	INIT_LIST_HEAD(&eb->relocs);
839 
840 	for (i = 0; i < eb->buffer_count; i++) {
841 		struct i915_vma *vma;
842 
843 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
844 		if (IS_ERR(vma)) {
845 			err = PTR_ERR(vma);
846 			goto err;
847 		}
848 
849 		err = eb_validate_vma(eb, &eb->exec[i], vma);
850 		if (unlikely(err)) {
851 			i915_vma_put(vma);
852 			goto err;
853 		}
854 
855 		eb_add_vma(eb, i, batch, vma);
856 	}
857 
858 	if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
859 		drm_dbg(&i915->drm,
860 			"Attempting to use self-modifying batch buffer\n");
861 		return -EINVAL;
862 	}
863 
864 	if (range_overflows_t(u64,
865 			      eb->batch_start_offset, eb->batch_len,
866 			      eb->batch->vma->size)) {
867 		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
868 		return -EINVAL;
869 	}
870 
871 	if (eb->batch_len == 0)
872 		eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;
873 	if (unlikely(eb->batch_len == 0)) { /* impossible! */
874 		drm_dbg(&i915->drm, "Invalid batch length\n");
875 		return -EINVAL;
876 	}
877 
878 	return 0;
879 
880 err:
881 	eb->vma[i].vma = NULL;
882 	return err;
883 }
884 
885 static int eb_validate_vmas(struct i915_execbuffer *eb)
886 {
887 	unsigned int i;
888 	int err;
889 
890 	INIT_LIST_HEAD(&eb->unbound);
891 
892 	for (i = 0; i < eb->buffer_count; i++) {
893 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
894 		struct eb_vma *ev = &eb->vma[i];
895 		struct i915_vma *vma = ev->vma;
896 
897 		err = i915_gem_object_lock(vma->obj, &eb->ww);
898 		if (err)
899 			return err;
900 
901 		if (eb_pin_vma(eb, entry, ev)) {
902 			if (entry->offset != vma->node.start) {
903 				entry->offset = vma->node.start | UPDATE;
904 				eb->args->flags |= __EXEC_HAS_RELOC;
905 			}
906 		} else {
907 			eb_unreserve_vma(ev);
908 
909 			list_add_tail(&ev->bind_link, &eb->unbound);
910 			if (drm_mm_node_allocated(&vma->node)) {
911 				err = i915_vma_unbind(vma);
912 				if (err)
913 					return err;
914 			}
915 		}
916 
917 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
918 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
919 	}
920 
921 	if (!list_empty(&eb->unbound))
922 		return eb_reserve(eb);
923 
924 	return 0;
925 }
926 
927 static struct eb_vma *
928 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
929 {
930 	if (eb->lut_size < 0) {
931 		if (handle >= -eb->lut_size)
932 			return NULL;
933 		return &eb->vma[handle];
934 	} else {
935 		struct hlist_head *head;
936 		struct eb_vma *ev;
937 
938 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
939 		hlist_for_each_entry(ev, head, node) {
940 			if (ev->handle == handle)
941 				return ev;
942 		}
943 		return NULL;
944 	}
945 }
946 
947 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
948 {
949 	const unsigned int count = eb->buffer_count;
950 	unsigned int i;
951 
952 	for (i = 0; i < count; i++) {
953 		struct eb_vma *ev = &eb->vma[i];
954 		struct i915_vma *vma = ev->vma;
955 
956 		if (!vma)
957 			break;
958 
959 		eb_unreserve_vma(ev);
960 
961 		if (final)
962 			i915_vma_put(vma);
963 	}
964 
965 	eb_unpin_engine(eb);
966 }
967 
968 static void eb_destroy(const struct i915_execbuffer *eb)
969 {
970 	GEM_BUG_ON(eb->reloc_cache.rq);
971 
972 	if (eb->lut_size > 0)
973 		kfree(eb->buckets);
974 }
975 
976 static inline u64
977 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
978 		  const struct i915_vma *target)
979 {
980 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
981 }
982 
983 static void reloc_cache_clear(struct reloc_cache *cache)
984 {
985 	cache->rq = NULL;
986 	cache->rq_cmd = NULL;
987 	cache->pool = NULL;
988 	cache->rq_size = 0;
989 }
990 
991 static void reloc_cache_init(struct reloc_cache *cache,
992 			     struct drm_i915_private *i915)
993 {
994 	cache->page = -1;
995 	cache->vaddr = 0;
996 	/* Must be a variable in the struct to allow GCC to unroll. */
997 	cache->gen = INTEL_GEN(i915);
998 	cache->has_llc = HAS_LLC(i915);
999 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1000 	cache->has_fence = cache->gen < 4;
1001 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1002 	cache->node.flags = 0;
1003 	reloc_cache_clear(cache);
1004 }
1005 
1006 static inline void *unmask_page(unsigned long p)
1007 {
1008 	return (void *)(uintptr_t)(p & PAGE_MASK);
1009 }
1010 
1011 static inline unsigned int unmask_flags(unsigned long p)
1012 {
1013 	return p & ~PAGE_MASK;
1014 }
1015 
1016 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1017 
1018 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1019 {
1020 	struct drm_i915_private *i915 =
1021 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1022 	return &i915->ggtt;
1023 }
1024 
1025 static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
1026 {
1027 	if (!cache->pool)
1028 		return;
1029 
1030 	/*
1031 	 * This is a bit nasty, normally we keep objects locked until the end
1032 	 * of execbuffer, but we already submit this, and have to unlock before
1033 	 * dropping the reference. Fortunately we can only hold 1 pool node at
1034 	 * a time, so this should be harmless.
1035 	 */
1036 	i915_gem_ww_unlock_single(cache->pool->obj);
1037 	intel_gt_buffer_pool_put(cache->pool);
1038 	cache->pool = NULL;
1039 }
1040 
1041 static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
1042 {
1043 	struct drm_i915_gem_object *obj = cache->rq->batch->obj;
1044 
1045 	GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1046 	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
1047 
1048 	i915_gem_object_flush_map(obj);
1049 	i915_gem_object_unpin_map(obj);
1050 
1051 	intel_gt_chipset_flush(cache->rq->engine->gt);
1052 
1053 	i915_request_add(cache->rq);
1054 	reloc_cache_put_pool(eb, cache);
1055 	reloc_cache_clear(cache);
1056 
1057 	eb->reloc_pool = NULL;
1058 }
1059 
1060 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1061 {
1062 	void *vaddr;
1063 
1064 	if (cache->rq)
1065 		reloc_gpu_flush(eb, cache);
1066 
1067 	if (!cache->vaddr)
1068 		return;
1069 
1070 	vaddr = unmask_page(cache->vaddr);
1071 	if (cache->vaddr & KMAP) {
1072 		struct drm_i915_gem_object *obj =
1073 			(struct drm_i915_gem_object *)cache->node.mm;
1074 		if (cache->vaddr & CLFLUSH_AFTER)
1075 			mb();
1076 
1077 		kunmap_atomic(vaddr);
1078 		i915_gem_object_finish_access(obj);
1079 	} else {
1080 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1081 
1082 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1083 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1084 
1085 		if (drm_mm_node_allocated(&cache->node)) {
1086 			ggtt->vm.clear_range(&ggtt->vm,
1087 					     cache->node.start,
1088 					     cache->node.size);
1089 			mutex_lock(&ggtt->vm.mutex);
1090 			drm_mm_remove_node(&cache->node);
1091 			mutex_unlock(&ggtt->vm.mutex);
1092 		} else {
1093 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1094 		}
1095 	}
1096 
1097 	cache->vaddr = 0;
1098 	cache->page = -1;
1099 }
1100 
1101 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1102 			struct reloc_cache *cache,
1103 			unsigned long pageno)
1104 {
1105 	void *vaddr;
1106 	struct page *page;
1107 
1108 	if (cache->vaddr) {
1109 		kunmap_atomic(unmask_page(cache->vaddr));
1110 	} else {
1111 		unsigned int flushes;
1112 		int err;
1113 
1114 		err = i915_gem_object_prepare_write(obj, &flushes);
1115 		if (err)
1116 			return ERR_PTR(err);
1117 
1118 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1119 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1120 
1121 		cache->vaddr = flushes | KMAP;
1122 		cache->node.mm = (void *)obj;
1123 		if (flushes)
1124 			mb();
1125 	}
1126 
1127 	page = i915_gem_object_get_page(obj, pageno);
1128 	if (!obj->mm.dirty)
1129 		set_page_dirty(page);
1130 
1131 	vaddr = kmap_atomic(page);
1132 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1133 	cache->page = pageno;
1134 
1135 	return vaddr;
1136 }
1137 
1138 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1139 			 struct i915_execbuffer *eb,
1140 			 unsigned long page)
1141 {
1142 	struct reloc_cache *cache = &eb->reloc_cache;
1143 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1144 	unsigned long offset;
1145 	void *vaddr;
1146 
1147 	if (cache->vaddr) {
1148 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1149 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1150 	} else {
1151 		struct i915_vma *vma;
1152 		int err;
1153 
1154 		if (i915_gem_object_is_tiled(obj))
1155 			return ERR_PTR(-EINVAL);
1156 
1157 		if (use_cpu_reloc(cache, obj))
1158 			return NULL;
1159 
1160 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1161 		if (err)
1162 			return ERR_PTR(err);
1163 
1164 		vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1165 						  PIN_MAPPABLE |
1166 						  PIN_NONBLOCK /* NOWARN */ |
1167 						  PIN_NOEVICT);
1168 		if (vma == ERR_PTR(-EDEADLK))
1169 			return vma;
1170 
1171 		if (IS_ERR(vma)) {
1172 			memset(&cache->node, 0, sizeof(cache->node));
1173 			mutex_lock(&ggtt->vm.mutex);
1174 			err = drm_mm_insert_node_in_range
1175 				(&ggtt->vm.mm, &cache->node,
1176 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1177 				 0, ggtt->mappable_end,
1178 				 DRM_MM_INSERT_LOW);
1179 			mutex_unlock(&ggtt->vm.mutex);
1180 			if (err) /* no inactive aperture space, use cpu reloc */
1181 				return NULL;
1182 		} else {
1183 			cache->node.start = vma->node.start;
1184 			cache->node.mm = (void *)vma;
1185 		}
1186 	}
1187 
1188 	offset = cache->node.start;
1189 	if (drm_mm_node_allocated(&cache->node)) {
1190 		ggtt->vm.insert_page(&ggtt->vm,
1191 				     i915_gem_object_get_dma_address(obj, page),
1192 				     offset, I915_CACHE_NONE, 0);
1193 	} else {
1194 		offset += page << PAGE_SHIFT;
1195 	}
1196 
1197 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1198 							 offset);
1199 	cache->page = page;
1200 	cache->vaddr = (unsigned long)vaddr;
1201 
1202 	return vaddr;
1203 }
1204 
1205 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1206 			 struct i915_execbuffer *eb,
1207 			 unsigned long page)
1208 {
1209 	struct reloc_cache *cache = &eb->reloc_cache;
1210 	void *vaddr;
1211 
1212 	if (cache->page == page) {
1213 		vaddr = unmask_page(cache->vaddr);
1214 	} else {
1215 		vaddr = NULL;
1216 		if ((cache->vaddr & KMAP) == 0)
1217 			vaddr = reloc_iomap(obj, eb, page);
1218 		if (!vaddr)
1219 			vaddr = reloc_kmap(obj, cache, page);
1220 	}
1221 
1222 	return vaddr;
1223 }
1224 
1225 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1226 {
1227 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1228 		if (flushes & CLFLUSH_BEFORE) {
1229 			clflushopt(addr);
1230 			mb();
1231 		}
1232 
1233 		*addr = value;
1234 
1235 		/*
1236 		 * Writes to the same cacheline are serialised by the CPU
1237 		 * (including clflush). On the write path, we only require
1238 		 * that it hits memory in an orderly fashion and place
1239 		 * mb barriers at the start and end of the relocation phase
1240 		 * to ensure ordering of clflush wrt to the system.
1241 		 */
1242 		if (flushes & CLFLUSH_AFTER)
1243 			clflushopt(addr);
1244 	} else
1245 		*addr = value;
1246 }
1247 
1248 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1249 {
1250 	struct drm_i915_gem_object *obj = vma->obj;
1251 	int err;
1252 
1253 	assert_vma_held(vma);
1254 
1255 	if (obj->cache_dirty & ~obj->cache_coherent)
1256 		i915_gem_clflush_object(obj, 0);
1257 	obj->write_domain = 0;
1258 
1259 	err = i915_request_await_object(rq, vma->obj, true);
1260 	if (err == 0)
1261 		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1262 
1263 	return err;
1264 }
1265 
1266 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1267 			     struct intel_engine_cs *engine,
1268 			     struct i915_vma *vma,
1269 			     unsigned int len)
1270 {
1271 	struct reloc_cache *cache = &eb->reloc_cache;
1272 	struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
1273 	struct i915_request *rq;
1274 	struct i915_vma *batch;
1275 	u32 *cmd;
1276 	int err;
1277 
1278 	if (!pool) {
1279 		pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE,
1280 						cache->has_llc ?
1281 						I915_MAP_WB :
1282 						I915_MAP_WC);
1283 		if (IS_ERR(pool))
1284 			return PTR_ERR(pool);
1285 	}
1286 	eb->reloc_pool = NULL;
1287 
1288 	err = i915_gem_object_lock(pool->obj, &eb->ww);
1289 	if (err)
1290 		goto err_pool;
1291 
1292 	cmd = i915_gem_object_pin_map(pool->obj, pool->type);
1293 	if (IS_ERR(cmd)) {
1294 		err = PTR_ERR(cmd);
1295 		goto err_pool;
1296 	}
1297 
1298 	memset32(cmd, 0, pool->obj->base.size / sizeof(u32));
1299 
1300 	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1301 	if (IS_ERR(batch)) {
1302 		err = PTR_ERR(batch);
1303 		goto err_unmap;
1304 	}
1305 
1306 	err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK);
1307 	if (err)
1308 		goto err_unmap;
1309 
1310 	if (engine == eb->context->engine) {
1311 		rq = i915_request_create(eb->context);
1312 	} else {
1313 		struct intel_context *ce = eb->reloc_context;
1314 
1315 		if (!ce) {
1316 			ce = intel_context_create(engine);
1317 			if (IS_ERR(ce)) {
1318 				err = PTR_ERR(ce);
1319 				goto err_unpin;
1320 			}
1321 
1322 			i915_vm_put(ce->vm);
1323 			ce->vm = i915_vm_get(eb->context->vm);
1324 			eb->reloc_context = ce;
1325 		}
1326 
1327 		err = intel_context_pin_ww(ce, &eb->ww);
1328 		if (err)
1329 			goto err_unpin;
1330 
1331 		rq = i915_request_create(ce);
1332 		intel_context_unpin(ce);
1333 	}
1334 	if (IS_ERR(rq)) {
1335 		err = PTR_ERR(rq);
1336 		goto err_unpin;
1337 	}
1338 
1339 	err = intel_gt_buffer_pool_mark_active(pool, rq);
1340 	if (err)
1341 		goto err_request;
1342 
1343 	err = reloc_move_to_gpu(rq, vma);
1344 	if (err)
1345 		goto err_request;
1346 
1347 	err = eb->engine->emit_bb_start(rq,
1348 					batch->node.start, PAGE_SIZE,
1349 					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1350 	if (err)
1351 		goto skip_request;
1352 
1353 	assert_vma_held(batch);
1354 	err = i915_request_await_object(rq, batch->obj, false);
1355 	if (err == 0)
1356 		err = i915_vma_move_to_active(batch, rq, 0);
1357 	if (err)
1358 		goto skip_request;
1359 
1360 	rq->batch = batch;
1361 	i915_vma_unpin(batch);
1362 
1363 	cache->rq = rq;
1364 	cache->rq_cmd = cmd;
1365 	cache->rq_size = 0;
1366 	cache->pool = pool;
1367 
1368 	/* Return with batch mapping (cmd) still pinned */
1369 	return 0;
1370 
1371 skip_request:
1372 	i915_request_set_error_once(rq, err);
1373 err_request:
1374 	i915_request_add(rq);
1375 err_unpin:
1376 	i915_vma_unpin(batch);
1377 err_unmap:
1378 	i915_gem_object_unpin_map(pool->obj);
1379 err_pool:
1380 	eb->reloc_pool = pool;
1381 	return err;
1382 }
1383 
1384 static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1385 {
1386 	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
1387 }
1388 
1389 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1390 		      struct i915_vma *vma,
1391 		      unsigned int len)
1392 {
1393 	struct reloc_cache *cache = &eb->reloc_cache;
1394 	u32 *cmd;
1395 
1396 	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1397 		reloc_gpu_flush(eb, cache);
1398 
1399 	if (unlikely(!cache->rq)) {
1400 		int err;
1401 		struct intel_engine_cs *engine = eb->engine;
1402 
1403 		if (!reloc_can_use_engine(engine)) {
1404 			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1405 			if (!engine)
1406 				return ERR_PTR(-ENODEV);
1407 		}
1408 
1409 		err = __reloc_gpu_alloc(eb, engine, vma, len);
1410 		if (unlikely(err))
1411 			return ERR_PTR(err);
1412 	}
1413 
1414 	cmd = cache->rq_cmd + cache->rq_size;
1415 	cache->rq_size += len;
1416 
1417 	return cmd;
1418 }
1419 
1420 static inline bool use_reloc_gpu(struct i915_vma *vma)
1421 {
1422 	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1423 		return true;
1424 
1425 	if (DBG_FORCE_RELOC)
1426 		return false;
1427 
1428 	return !dma_resv_test_signaled_rcu(vma->resv, true);
1429 }
1430 
1431 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1432 {
1433 	struct page *page;
1434 	unsigned long addr;
1435 
1436 	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1437 
1438 	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1439 	addr = PFN_PHYS(page_to_pfn(page));
1440 	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1441 
1442 	return addr + offset_in_page(offset);
1443 }
1444 
1445 static int __reloc_entry_gpu(struct i915_execbuffer *eb,
1446 			      struct i915_vma *vma,
1447 			      u64 offset,
1448 			      u64 target_addr)
1449 {
1450 	const unsigned int gen = eb->reloc_cache.gen;
1451 	unsigned int len;
1452 	u32 *batch;
1453 	u64 addr;
1454 
1455 	if (gen >= 8)
1456 		len = offset & 7 ? 8 : 5;
1457 	else if (gen >= 4)
1458 		len = 4;
1459 	else
1460 		len = 3;
1461 
1462 	batch = reloc_gpu(eb, vma, len);
1463 	if (batch == ERR_PTR(-EDEADLK))
1464 		return -EDEADLK;
1465 	else if (IS_ERR(batch))
1466 		return false;
1467 
1468 	addr = gen8_canonical_addr(vma->node.start + offset);
1469 	if (gen >= 8) {
1470 		if (offset & 7) {
1471 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1472 			*batch++ = lower_32_bits(addr);
1473 			*batch++ = upper_32_bits(addr);
1474 			*batch++ = lower_32_bits(target_addr);
1475 
1476 			addr = gen8_canonical_addr(addr + 4);
1477 
1478 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1479 			*batch++ = lower_32_bits(addr);
1480 			*batch++ = upper_32_bits(addr);
1481 			*batch++ = upper_32_bits(target_addr);
1482 		} else {
1483 			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1484 			*batch++ = lower_32_bits(addr);
1485 			*batch++ = upper_32_bits(addr);
1486 			*batch++ = lower_32_bits(target_addr);
1487 			*batch++ = upper_32_bits(target_addr);
1488 		}
1489 	} else if (gen >= 6) {
1490 		*batch++ = MI_STORE_DWORD_IMM_GEN4;
1491 		*batch++ = 0;
1492 		*batch++ = addr;
1493 		*batch++ = target_addr;
1494 	} else if (IS_I965G(eb->i915)) {
1495 		*batch++ = MI_STORE_DWORD_IMM_GEN4;
1496 		*batch++ = 0;
1497 		*batch++ = vma_phys_addr(vma, offset);
1498 		*batch++ = target_addr;
1499 	} else if (gen >= 4) {
1500 		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1501 		*batch++ = 0;
1502 		*batch++ = addr;
1503 		*batch++ = target_addr;
1504 	} else if (gen >= 3 &&
1505 		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1506 		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1507 		*batch++ = addr;
1508 		*batch++ = target_addr;
1509 	} else {
1510 		*batch++ = MI_STORE_DWORD_IMM;
1511 		*batch++ = vma_phys_addr(vma, offset);
1512 		*batch++ = target_addr;
1513 	}
1514 
1515 	return true;
1516 }
1517 
1518 static int reloc_entry_gpu(struct i915_execbuffer *eb,
1519 			    struct i915_vma *vma,
1520 			    u64 offset,
1521 			    u64 target_addr)
1522 {
1523 	if (eb->reloc_cache.vaddr)
1524 		return false;
1525 
1526 	if (!use_reloc_gpu(vma))
1527 		return false;
1528 
1529 	return __reloc_entry_gpu(eb, vma, offset, target_addr);
1530 }
1531 
1532 static u64
1533 relocate_entry(struct i915_vma *vma,
1534 	       const struct drm_i915_gem_relocation_entry *reloc,
1535 	       struct i915_execbuffer *eb,
1536 	       const struct i915_vma *target)
1537 {
1538 	u64 target_addr = relocation_target(reloc, target);
1539 	u64 offset = reloc->offset;
1540 	int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);
1541 
1542 	if (reloc_gpu < 0)
1543 		return reloc_gpu;
1544 
1545 	if (!reloc_gpu) {
1546 		bool wide = eb->reloc_cache.use_64bit_reloc;
1547 		void *vaddr;
1548 
1549 repeat:
1550 		vaddr = reloc_vaddr(vma->obj, eb,
1551 				    offset >> PAGE_SHIFT);
1552 		if (IS_ERR(vaddr))
1553 			return PTR_ERR(vaddr);
1554 
1555 		GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1556 		clflush_write32(vaddr + offset_in_page(offset),
1557 				lower_32_bits(target_addr),
1558 				eb->reloc_cache.vaddr);
1559 
1560 		if (wide) {
1561 			offset += sizeof(u32);
1562 			target_addr >>= 32;
1563 			wide = false;
1564 			goto repeat;
1565 		}
1566 	}
1567 
1568 	return target->node.start | UPDATE;
1569 }
1570 
1571 static u64
1572 eb_relocate_entry(struct i915_execbuffer *eb,
1573 		  struct eb_vma *ev,
1574 		  const struct drm_i915_gem_relocation_entry *reloc)
1575 {
1576 	struct drm_i915_private *i915 = eb->i915;
1577 	struct eb_vma *target;
1578 	int err;
1579 
1580 	/* we've already hold a reference to all valid objects */
1581 	target = eb_get_vma(eb, reloc->target_handle);
1582 	if (unlikely(!target))
1583 		return -ENOENT;
1584 
1585 	/* Validate that the target is in a valid r/w GPU domain */
1586 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1587 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1588 			  "target %d offset %d "
1589 			  "read %08x write %08x",
1590 			  reloc->target_handle,
1591 			  (int) reloc->offset,
1592 			  reloc->read_domains,
1593 			  reloc->write_domain);
1594 		return -EINVAL;
1595 	}
1596 	if (unlikely((reloc->write_domain | reloc->read_domains)
1597 		     & ~I915_GEM_GPU_DOMAINS)) {
1598 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1599 			  "target %d offset %d "
1600 			  "read %08x write %08x",
1601 			  reloc->target_handle,
1602 			  (int) reloc->offset,
1603 			  reloc->read_domains,
1604 			  reloc->write_domain);
1605 		return -EINVAL;
1606 	}
1607 
1608 	if (reloc->write_domain) {
1609 		target->flags |= EXEC_OBJECT_WRITE;
1610 
1611 		/*
1612 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1613 		 * for MI and pipe_control writes because the gpu doesn't
1614 		 * properly redirect them through the ppgtt for non_secure
1615 		 * batchbuffers.
1616 		 */
1617 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1618 		    IS_GEN(eb->i915, 6)) {
1619 			err = i915_vma_bind(target->vma,
1620 					    target->vma->obj->cache_level,
1621 					    PIN_GLOBAL, NULL);
1622 			if (err)
1623 				return err;
1624 		}
1625 	}
1626 
1627 	/*
1628 	 * If the relocation already has the right value in it, no
1629 	 * more work needs to be done.
1630 	 */
1631 	if (!DBG_FORCE_RELOC &&
1632 	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1633 		return 0;
1634 
1635 	/* Check that the relocation address is valid... */
1636 	if (unlikely(reloc->offset >
1637 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1638 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1639 			  "target %d offset %d size %d.\n",
1640 			  reloc->target_handle,
1641 			  (int)reloc->offset,
1642 			  (int)ev->vma->size);
1643 		return -EINVAL;
1644 	}
1645 	if (unlikely(reloc->offset & 3)) {
1646 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1647 			  "target %d offset %d.\n",
1648 			  reloc->target_handle,
1649 			  (int)reloc->offset);
1650 		return -EINVAL;
1651 	}
1652 
1653 	/*
1654 	 * If we write into the object, we need to force the synchronisation
1655 	 * barrier, either with an asynchronous clflush or if we executed the
1656 	 * patching using the GPU (though that should be serialised by the
1657 	 * timeline). To be completely sure, and since we are required to
1658 	 * do relocations we are already stalling, disable the user's opt
1659 	 * out of our synchronisation.
1660 	 */
1661 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1662 
1663 	/* and update the user's relocation entry */
1664 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1665 }
1666 
1667 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1668 {
1669 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1670 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1671 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1672 	struct drm_i915_gem_relocation_entry __user *urelocs =
1673 		u64_to_user_ptr(entry->relocs_ptr);
1674 	unsigned long remain = entry->relocation_count;
1675 
1676 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1677 		return -EINVAL;
1678 
1679 	/*
1680 	 * We must check that the entire relocation array is safe
1681 	 * to read. However, if the array is not writable the user loses
1682 	 * the updated relocation values.
1683 	 */
1684 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1685 		return -EFAULT;
1686 
1687 	do {
1688 		struct drm_i915_gem_relocation_entry *r = stack;
1689 		unsigned int count =
1690 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1691 		unsigned int copied;
1692 
1693 		/*
1694 		 * This is the fast path and we cannot handle a pagefault
1695 		 * whilst holding the struct mutex lest the user pass in the
1696 		 * relocations contained within a mmaped bo. For in such a case
1697 		 * we, the page fault handler would call i915_gem_fault() and
1698 		 * we would try to acquire the struct mutex again. Obviously
1699 		 * this is bad and so lockdep complains vehemently.
1700 		 */
1701 		pagefault_disable();
1702 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1703 		pagefault_enable();
1704 		if (unlikely(copied)) {
1705 			remain = -EFAULT;
1706 			goto out;
1707 		}
1708 
1709 		remain -= count;
1710 		do {
1711 			u64 offset = eb_relocate_entry(eb, ev, r);
1712 
1713 			if (likely(offset == 0)) {
1714 			} else if ((s64)offset < 0) {
1715 				remain = (int)offset;
1716 				goto out;
1717 			} else {
1718 				/*
1719 				 * Note that reporting an error now
1720 				 * leaves everything in an inconsistent
1721 				 * state as we have *already* changed
1722 				 * the relocation value inside the
1723 				 * object. As we have not changed the
1724 				 * reloc.presumed_offset or will not
1725 				 * change the execobject.offset, on the
1726 				 * call we may not rewrite the value
1727 				 * inside the object, leaving it
1728 				 * dangling and causing a GPU hang. Unless
1729 				 * userspace dynamically rebuilds the
1730 				 * relocations on each execbuf rather than
1731 				 * presume a static tree.
1732 				 *
1733 				 * We did previously check if the relocations
1734 				 * were writable (access_ok), an error now
1735 				 * would be a strange race with mprotect,
1736 				 * having already demonstrated that we
1737 				 * can read from this userspace address.
1738 				 */
1739 				offset = gen8_canonical_addr(offset & ~UPDATE);
1740 				__put_user(offset,
1741 					   &urelocs[r - stack].presumed_offset);
1742 			}
1743 		} while (r++, --count);
1744 		urelocs += ARRAY_SIZE(stack);
1745 	} while (remain);
1746 out:
1747 	reloc_cache_reset(&eb->reloc_cache, eb);
1748 	return remain;
1749 }
1750 
1751 static int
1752 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1753 {
1754 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1755 	struct drm_i915_gem_relocation_entry *relocs =
1756 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1757 	unsigned int i;
1758 	int err;
1759 
1760 	for (i = 0; i < entry->relocation_count; i++) {
1761 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1762 
1763 		if ((s64)offset < 0) {
1764 			err = (int)offset;
1765 			goto err;
1766 		}
1767 	}
1768 	err = 0;
1769 err:
1770 	reloc_cache_reset(&eb->reloc_cache, eb);
1771 	return err;
1772 }
1773 
1774 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1775 {
1776 	const char __user *addr, *end;
1777 	unsigned long size;
1778 	char __maybe_unused c;
1779 
1780 	size = entry->relocation_count;
1781 	if (size == 0)
1782 		return 0;
1783 
1784 	if (size > N_RELOC(ULONG_MAX))
1785 		return -EINVAL;
1786 
1787 	addr = u64_to_user_ptr(entry->relocs_ptr);
1788 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1789 	if (!access_ok(addr, size))
1790 		return -EFAULT;
1791 
1792 	end = addr + size;
1793 	for (; addr < end; addr += PAGE_SIZE) {
1794 		int err = __get_user(c, addr);
1795 		if (err)
1796 			return err;
1797 	}
1798 	return __get_user(c, end - 1);
1799 }
1800 
1801 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1802 {
1803 	struct drm_i915_gem_relocation_entry *relocs;
1804 	const unsigned int count = eb->buffer_count;
1805 	unsigned int i;
1806 	int err;
1807 
1808 	for (i = 0; i < count; i++) {
1809 		const unsigned int nreloc = eb->exec[i].relocation_count;
1810 		struct drm_i915_gem_relocation_entry __user *urelocs;
1811 		unsigned long size;
1812 		unsigned long copied;
1813 
1814 		if (nreloc == 0)
1815 			continue;
1816 
1817 		err = check_relocations(&eb->exec[i]);
1818 		if (err)
1819 			goto err;
1820 
1821 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1822 		size = nreloc * sizeof(*relocs);
1823 
1824 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1825 		if (!relocs) {
1826 			err = -ENOMEM;
1827 			goto err;
1828 		}
1829 
1830 		/* copy_from_user is limited to < 4GiB */
1831 		copied = 0;
1832 		do {
1833 			unsigned int len =
1834 				min_t(u64, BIT_ULL(31), size - copied);
1835 
1836 			if (__copy_from_user((char *)relocs + copied,
1837 					     (char __user *)urelocs + copied,
1838 					     len))
1839 				goto end;
1840 
1841 			copied += len;
1842 		} while (copied < size);
1843 
1844 		/*
1845 		 * As we do not update the known relocation offsets after
1846 		 * relocating (due to the complexities in lock handling),
1847 		 * we need to mark them as invalid now so that we force the
1848 		 * relocation processing next time. Just in case the target
1849 		 * object is evicted and then rebound into its old
1850 		 * presumed_offset before the next execbuffer - if that
1851 		 * happened we would make the mistake of assuming that the
1852 		 * relocations were valid.
1853 		 */
1854 		if (!user_access_begin(urelocs, size))
1855 			goto end;
1856 
1857 		for (copied = 0; copied < nreloc; copied++)
1858 			unsafe_put_user(-1,
1859 					&urelocs[copied].presumed_offset,
1860 					end_user);
1861 		user_access_end();
1862 
1863 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1864 	}
1865 
1866 	return 0;
1867 
1868 end_user:
1869 	user_access_end();
1870 end:
1871 	kvfree(relocs);
1872 	err = -EFAULT;
1873 err:
1874 	while (i--) {
1875 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1876 		if (eb->exec[i].relocation_count)
1877 			kvfree(relocs);
1878 	}
1879 	return err;
1880 }
1881 
1882 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1883 {
1884 	const unsigned int count = eb->buffer_count;
1885 	unsigned int i;
1886 
1887 	for (i = 0; i < count; i++) {
1888 		int err;
1889 
1890 		err = check_relocations(&eb->exec[i]);
1891 		if (err)
1892 			return err;
1893 	}
1894 
1895 	return 0;
1896 }
1897 
1898 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
1899 					   struct i915_request *rq)
1900 {
1901 	bool have_copy = false;
1902 	struct eb_vma *ev;
1903 	int err = 0;
1904 
1905 repeat:
1906 	if (signal_pending(current)) {
1907 		err = -ERESTARTSYS;
1908 		goto out;
1909 	}
1910 
1911 	/* We may process another execbuffer during the unlock... */
1912 	eb_release_vmas(eb, false);
1913 	i915_gem_ww_ctx_fini(&eb->ww);
1914 
1915 	if (rq) {
1916 		/* nonblocking is always false */
1917 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
1918 				      MAX_SCHEDULE_TIMEOUT) < 0) {
1919 			i915_request_put(rq);
1920 			rq = NULL;
1921 
1922 			err = -EINTR;
1923 			goto err_relock;
1924 		}
1925 
1926 		i915_request_put(rq);
1927 		rq = NULL;
1928 	}
1929 
1930 	/*
1931 	 * We take 3 passes through the slowpatch.
1932 	 *
1933 	 * 1 - we try to just prefault all the user relocation entries and
1934 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1935 	 *
1936 	 * 2 - we copy the user entries to a local buffer here outside of the
1937 	 * local and allow ourselves to wait upon any rendering before
1938 	 * relocations
1939 	 *
1940 	 * 3 - we already have a local copy of the relocation entries, but
1941 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1942 	 */
1943 	if (!err) {
1944 		err = eb_prefault_relocations(eb);
1945 	} else if (!have_copy) {
1946 		err = eb_copy_relocations(eb);
1947 		have_copy = err == 0;
1948 	} else {
1949 		cond_resched();
1950 		err = 0;
1951 	}
1952 
1953 	if (!err)
1954 		flush_workqueue(eb->i915->mm.userptr_wq);
1955 
1956 err_relock:
1957 	i915_gem_ww_ctx_init(&eb->ww, true);
1958 	if (err)
1959 		goto out;
1960 
1961 	/* reacquire the objects */
1962 repeat_validate:
1963 	rq = eb_pin_engine(eb, false);
1964 	if (IS_ERR(rq)) {
1965 		err = PTR_ERR(rq);
1966 		rq = NULL;
1967 		goto err;
1968 	}
1969 
1970 	/* We didn't throttle, should be NULL */
1971 	GEM_WARN_ON(rq);
1972 
1973 	err = eb_validate_vmas(eb);
1974 	if (err)
1975 		goto err;
1976 
1977 	GEM_BUG_ON(!eb->batch);
1978 
1979 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1980 		if (!have_copy) {
1981 			pagefault_disable();
1982 			err = eb_relocate_vma(eb, ev);
1983 			pagefault_enable();
1984 			if (err)
1985 				break;
1986 		} else {
1987 			err = eb_relocate_vma_slow(eb, ev);
1988 			if (err)
1989 				break;
1990 		}
1991 	}
1992 
1993 	if (err == -EDEADLK)
1994 		goto err;
1995 
1996 	if (err && !have_copy)
1997 		goto repeat;
1998 
1999 	if (err)
2000 		goto err;
2001 
2002 	/* as last step, parse the command buffer */
2003 	err = eb_parse(eb);
2004 	if (err)
2005 		goto err;
2006 
2007 	/*
2008 	 * Leave the user relocations as are, this is the painfully slow path,
2009 	 * and we want to avoid the complication of dropping the lock whilst
2010 	 * having buffers reserved in the aperture and so causing spurious
2011 	 * ENOSPC for random operations.
2012 	 */
2013 
2014 err:
2015 	if (err == -EDEADLK) {
2016 		eb_release_vmas(eb, false);
2017 		err = i915_gem_ww_ctx_backoff(&eb->ww);
2018 		if (!err)
2019 			goto repeat_validate;
2020 	}
2021 
2022 	if (err == -EAGAIN)
2023 		goto repeat;
2024 
2025 out:
2026 	if (have_copy) {
2027 		const unsigned int count = eb->buffer_count;
2028 		unsigned int i;
2029 
2030 		for (i = 0; i < count; i++) {
2031 			const struct drm_i915_gem_exec_object2 *entry =
2032 				&eb->exec[i];
2033 			struct drm_i915_gem_relocation_entry *relocs;
2034 
2035 			if (!entry->relocation_count)
2036 				continue;
2037 
2038 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
2039 			kvfree(relocs);
2040 		}
2041 	}
2042 
2043 	if (rq)
2044 		i915_request_put(rq);
2045 
2046 	return err;
2047 }
2048 
2049 static int eb_relocate_parse(struct i915_execbuffer *eb)
2050 {
2051 	int err;
2052 	struct i915_request *rq = NULL;
2053 	bool throttle = true;
2054 
2055 retry:
2056 	rq = eb_pin_engine(eb, throttle);
2057 	if (IS_ERR(rq)) {
2058 		err = PTR_ERR(rq);
2059 		rq = NULL;
2060 		if (err != -EDEADLK)
2061 			return err;
2062 
2063 		goto err;
2064 	}
2065 
2066 	if (rq) {
2067 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2068 
2069 		/* Need to drop all locks now for throttling, take slowpath */
2070 		err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
2071 		if (err == -ETIME) {
2072 			if (nonblock) {
2073 				err = -EWOULDBLOCK;
2074 				i915_request_put(rq);
2075 				goto err;
2076 			}
2077 			goto slow;
2078 		}
2079 		i915_request_put(rq);
2080 		rq = NULL;
2081 	}
2082 
2083 	/* only throttle once, even if we didn't need to throttle */
2084 	throttle = false;
2085 
2086 	err = eb_validate_vmas(eb);
2087 	if (err == -EAGAIN)
2088 		goto slow;
2089 	else if (err)
2090 		goto err;
2091 
2092 	/* The objects are in their final locations, apply the relocations. */
2093 	if (eb->args->flags & __EXEC_HAS_RELOC) {
2094 		struct eb_vma *ev;
2095 
2096 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
2097 			err = eb_relocate_vma(eb, ev);
2098 			if (err)
2099 				break;
2100 		}
2101 
2102 		if (err == -EDEADLK)
2103 			goto err;
2104 		else if (err)
2105 			goto slow;
2106 	}
2107 
2108 	if (!err)
2109 		err = eb_parse(eb);
2110 
2111 err:
2112 	if (err == -EDEADLK) {
2113 		eb_release_vmas(eb, false);
2114 		err = i915_gem_ww_ctx_backoff(&eb->ww);
2115 		if (!err)
2116 			goto retry;
2117 	}
2118 
2119 	return err;
2120 
2121 slow:
2122 	err = eb_relocate_parse_slow(eb, rq);
2123 	if (err)
2124 		/*
2125 		 * If the user expects the execobject.offset and
2126 		 * reloc.presumed_offset to be an exact match,
2127 		 * as for using NO_RELOC, then we cannot update
2128 		 * the execobject.offset until we have completed
2129 		 * relocation.
2130 		 */
2131 		eb->args->flags &= ~__EXEC_HAS_RELOC;
2132 
2133 	return err;
2134 }
2135 
2136 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2137 {
2138 	const unsigned int count = eb->buffer_count;
2139 	unsigned int i = count;
2140 	int err = 0;
2141 
2142 	while (i--) {
2143 		struct eb_vma *ev = &eb->vma[i];
2144 		struct i915_vma *vma = ev->vma;
2145 		unsigned int flags = ev->flags;
2146 		struct drm_i915_gem_object *obj = vma->obj;
2147 
2148 		assert_vma_held(vma);
2149 
2150 		if (flags & EXEC_OBJECT_CAPTURE) {
2151 			struct i915_capture_list *capture;
2152 
2153 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2154 			if (capture) {
2155 				capture->next = eb->request->capture_list;
2156 				capture->vma = vma;
2157 				eb->request->capture_list = capture;
2158 			}
2159 		}
2160 
2161 		/*
2162 		 * If the GPU is not _reading_ through the CPU cache, we need
2163 		 * to make sure that any writes (both previous GPU writes from
2164 		 * before a change in snooping levels and normal CPU writes)
2165 		 * caught in that cache are flushed to main memory.
2166 		 *
2167 		 * We want to say
2168 		 *   obj->cache_dirty &&
2169 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2170 		 * but gcc's optimiser doesn't handle that as well and emits
2171 		 * two jumps instead of one. Maybe one day...
2172 		 */
2173 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2174 			if (i915_gem_clflush_object(obj, 0))
2175 				flags &= ~EXEC_OBJECT_ASYNC;
2176 		}
2177 
2178 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2179 			err = i915_request_await_object
2180 				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
2181 		}
2182 
2183 		if (err == 0)
2184 			err = i915_vma_move_to_active(vma, eb->request, flags);
2185 	}
2186 
2187 	if (unlikely(err))
2188 		goto err_skip;
2189 
2190 	/* Unconditionally flush any chipset caches (for streaming writes). */
2191 	intel_gt_chipset_flush(eb->engine->gt);
2192 	return 0;
2193 
2194 err_skip:
2195 	i915_request_set_error_once(eb->request, err);
2196 	return err;
2197 }
2198 
2199 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2200 {
2201 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2202 		return -EINVAL;
2203 
2204 	/* Kernel clipping was a DRI1 misfeature */
2205 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2206 			     I915_EXEC_USE_EXTENSIONS))) {
2207 		if (exec->num_cliprects || exec->cliprects_ptr)
2208 			return -EINVAL;
2209 	}
2210 
2211 	if (exec->DR4 == 0xffffffff) {
2212 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2213 		exec->DR4 = 0;
2214 	}
2215 	if (exec->DR1 || exec->DR4)
2216 		return -EINVAL;
2217 
2218 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2219 		return -EINVAL;
2220 
2221 	return 0;
2222 }
2223 
2224 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2225 {
2226 	u32 *cs;
2227 	int i;
2228 
2229 	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
2230 		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2231 		return -EINVAL;
2232 	}
2233 
2234 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2235 	if (IS_ERR(cs))
2236 		return PTR_ERR(cs);
2237 
2238 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2239 	for (i = 0; i < 4; i++) {
2240 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2241 		*cs++ = 0;
2242 	}
2243 	*cs++ = MI_NOOP;
2244 	intel_ring_advance(rq, cs);
2245 
2246 	return 0;
2247 }
2248 
2249 static struct i915_vma *
2250 shadow_batch_pin(struct i915_execbuffer *eb,
2251 		 struct drm_i915_gem_object *obj,
2252 		 struct i915_address_space *vm,
2253 		 unsigned int flags)
2254 {
2255 	struct i915_vma *vma;
2256 	int err;
2257 
2258 	vma = i915_vma_instance(obj, vm, NULL);
2259 	if (IS_ERR(vma))
2260 		return vma;
2261 
2262 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2263 	if (err)
2264 		return ERR_PTR(err);
2265 
2266 	return vma;
2267 }
2268 
2269 struct eb_parse_work {
2270 	struct dma_fence_work base;
2271 	struct intel_engine_cs *engine;
2272 	struct i915_vma *batch;
2273 	struct i915_vma *shadow;
2274 	struct i915_vma *trampoline;
2275 	unsigned long batch_offset;
2276 	unsigned long batch_length;
2277 };
2278 
2279 static int __eb_parse(struct dma_fence_work *work)
2280 {
2281 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2282 
2283 	return intel_engine_cmd_parser(pw->engine,
2284 				       pw->batch,
2285 				       pw->batch_offset,
2286 				       pw->batch_length,
2287 				       pw->shadow,
2288 				       pw->trampoline);
2289 }
2290 
2291 static void __eb_parse_release(struct dma_fence_work *work)
2292 {
2293 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2294 
2295 	if (pw->trampoline)
2296 		i915_active_release(&pw->trampoline->active);
2297 	i915_active_release(&pw->shadow->active);
2298 	i915_active_release(&pw->batch->active);
2299 }
2300 
2301 static const struct dma_fence_work_ops eb_parse_ops = {
2302 	.name = "eb_parse",
2303 	.work = __eb_parse,
2304 	.release = __eb_parse_release,
2305 };
2306 
2307 static inline int
2308 __parser_mark_active(struct i915_vma *vma,
2309 		     struct intel_timeline *tl,
2310 		     struct dma_fence *fence)
2311 {
2312 	struct intel_gt_buffer_pool_node *node = vma->private;
2313 
2314 	return i915_active_ref(&node->active, tl->fence_context, fence);
2315 }
2316 
2317 static int
2318 parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
2319 {
2320 	int err;
2321 
2322 	mutex_lock(&tl->mutex);
2323 
2324 	err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
2325 	if (err)
2326 		goto unlock;
2327 
2328 	if (pw->trampoline) {
2329 		err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
2330 		if (err)
2331 			goto unlock;
2332 	}
2333 
2334 unlock:
2335 	mutex_unlock(&tl->mutex);
2336 	return err;
2337 }
2338 
2339 static int eb_parse_pipeline(struct i915_execbuffer *eb,
2340 			     struct i915_vma *shadow,
2341 			     struct i915_vma *trampoline)
2342 {
2343 	struct eb_parse_work *pw;
2344 	int err;
2345 
2346 	GEM_BUG_ON(overflows_type(eb->batch_start_offset, pw->batch_offset));
2347 	GEM_BUG_ON(overflows_type(eb->batch_len, pw->batch_length));
2348 
2349 	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
2350 	if (!pw)
2351 		return -ENOMEM;
2352 
2353 	err = i915_active_acquire(&eb->batch->vma->active);
2354 	if (err)
2355 		goto err_free;
2356 
2357 	err = i915_active_acquire(&shadow->active);
2358 	if (err)
2359 		goto err_batch;
2360 
2361 	if (trampoline) {
2362 		err = i915_active_acquire(&trampoline->active);
2363 		if (err)
2364 			goto err_shadow;
2365 	}
2366 
2367 	dma_fence_work_init(&pw->base, &eb_parse_ops);
2368 
2369 	pw->engine = eb->engine;
2370 	pw->batch = eb->batch->vma;
2371 	pw->batch_offset = eb->batch_start_offset;
2372 	pw->batch_length = eb->batch_len;
2373 	pw->shadow = shadow;
2374 	pw->trampoline = trampoline;
2375 
2376 	/* Mark active refs early for this worker, in case we get interrupted */
2377 	err = parser_mark_active(pw, eb->context->timeline);
2378 	if (err)
2379 		goto err_commit;
2380 
2381 	err = dma_resv_reserve_shared(pw->batch->resv, 1);
2382 	if (err)
2383 		goto err_commit;
2384 
2385 	/* Wait for all writes (and relocs) into the batch to complete */
2386 	err = i915_sw_fence_await_reservation(&pw->base.chain,
2387 					      pw->batch->resv, NULL, false,
2388 					      0, I915_FENCE_GFP);
2389 	if (err < 0)
2390 		goto err_commit;
2391 
2392 	/* Keep the batch alive and unwritten as we parse */
2393 	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2394 
2395 	/* Force execution to wait for completion of the parser */
2396 	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
2397 
2398 	dma_fence_work_commit_imm(&pw->base);
2399 	return 0;
2400 
2401 err_commit:
2402 	i915_sw_fence_set_error_once(&pw->base.chain, err);
2403 	dma_fence_work_commit_imm(&pw->base);
2404 	return err;
2405 
2406 err_shadow:
2407 	i915_active_release(&shadow->active);
2408 err_batch:
2409 	i915_active_release(&eb->batch->vma->active);
2410 err_free:
2411 	kfree(pw);
2412 	return err;
2413 }
2414 
2415 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2416 {
2417 	/*
2418 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2419 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2420 	 * hsw should have this fixed, but bdw mucks it up again. */
2421 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2422 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2423 
2424 	return NULL;
2425 }
2426 
2427 static int eb_parse(struct i915_execbuffer *eb)
2428 {
2429 	struct drm_i915_private *i915 = eb->i915;
2430 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2431 	struct i915_vma *shadow, *trampoline, *batch;
2432 	unsigned long len;
2433 	int err;
2434 
2435 	if (!eb_use_cmdparser(eb)) {
2436 		batch = eb_dispatch_secure(eb, eb->batch->vma);
2437 		if (IS_ERR(batch))
2438 			return PTR_ERR(batch);
2439 
2440 		goto secure_batch;
2441 	}
2442 
2443 	len = eb->batch_len;
2444 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2445 		/*
2446 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2447 		 * post-scan tampering
2448 		 */
2449 		if (!eb->context->vm->has_read_only) {
2450 			drm_dbg(&i915->drm,
2451 				"Cannot prevent post-scan tampering without RO capable vm\n");
2452 			return -EINVAL;
2453 		}
2454 	} else {
2455 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2456 	}
2457 	if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */
2458 		return -EINVAL;
2459 
2460 	if (!pool) {
2461 		pool = intel_gt_get_buffer_pool(eb->engine->gt, len,
2462 						I915_MAP_WB);
2463 		if (IS_ERR(pool))
2464 			return PTR_ERR(pool);
2465 		eb->batch_pool = pool;
2466 	}
2467 
2468 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2469 	if (err)
2470 		goto err;
2471 
2472 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2473 	if (IS_ERR(shadow)) {
2474 		err = PTR_ERR(shadow);
2475 		goto err;
2476 	}
2477 	i915_gem_object_set_readonly(shadow->obj);
2478 	shadow->private = pool;
2479 
2480 	trampoline = NULL;
2481 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2482 		trampoline = shadow;
2483 
2484 		shadow = shadow_batch_pin(eb, pool->obj,
2485 					  &eb->engine->gt->ggtt->vm,
2486 					  PIN_GLOBAL);
2487 		if (IS_ERR(shadow)) {
2488 			err = PTR_ERR(shadow);
2489 			shadow = trampoline;
2490 			goto err_shadow;
2491 		}
2492 		shadow->private = pool;
2493 
2494 		eb->batch_flags |= I915_DISPATCH_SECURE;
2495 	}
2496 
2497 	batch = eb_dispatch_secure(eb, shadow);
2498 	if (IS_ERR(batch)) {
2499 		err = PTR_ERR(batch);
2500 		goto err_trampoline;
2501 	}
2502 
2503 	err = eb_parse_pipeline(eb, shadow, trampoline);
2504 	if (err)
2505 		goto err_unpin_batch;
2506 
2507 	eb->batch = &eb->vma[eb->buffer_count++];
2508 	eb->batch->vma = i915_vma_get(shadow);
2509 	eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2510 
2511 	eb->trampoline = trampoline;
2512 	eb->batch_start_offset = 0;
2513 
2514 secure_batch:
2515 	if (batch) {
2516 		eb->batch = &eb->vma[eb->buffer_count++];
2517 		eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2518 		eb->batch->vma = i915_vma_get(batch);
2519 	}
2520 	return 0;
2521 
2522 err_unpin_batch:
2523 	if (batch)
2524 		i915_vma_unpin(batch);
2525 err_trampoline:
2526 	if (trampoline)
2527 		i915_vma_unpin(trampoline);
2528 err_shadow:
2529 	i915_vma_unpin(shadow);
2530 err:
2531 	return err;
2532 }
2533 
2534 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2535 {
2536 	int err;
2537 
2538 	if (intel_context_nopreempt(eb->context))
2539 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2540 
2541 	err = eb_move_to_gpu(eb);
2542 	if (err)
2543 		return err;
2544 
2545 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2546 		err = i915_reset_gen7_sol_offsets(eb->request);
2547 		if (err)
2548 			return err;
2549 	}
2550 
2551 	/*
2552 	 * After we completed waiting for other engines (using HW semaphores)
2553 	 * then we can signal that this request/batch is ready to run. This
2554 	 * allows us to determine if the batch is still waiting on the GPU
2555 	 * or actually running by checking the breadcrumb.
2556 	 */
2557 	if (eb->engine->emit_init_breadcrumb) {
2558 		err = eb->engine->emit_init_breadcrumb(eb->request);
2559 		if (err)
2560 			return err;
2561 	}
2562 
2563 	err = eb->engine->emit_bb_start(eb->request,
2564 					batch->node.start +
2565 					eb->batch_start_offset,
2566 					eb->batch_len,
2567 					eb->batch_flags);
2568 	if (err)
2569 		return err;
2570 
2571 	if (eb->trampoline) {
2572 		GEM_BUG_ON(eb->batch_start_offset);
2573 		err = eb->engine->emit_bb_start(eb->request,
2574 						eb->trampoline->node.start +
2575 						eb->batch_len,
2576 						0, 0);
2577 		if (err)
2578 			return err;
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 static int num_vcs_engines(const struct drm_i915_private *i915)
2585 {
2586 	return hweight_long(VDBOX_MASK(&i915->gt));
2587 }
2588 
2589 /*
2590  * Find one BSD ring to dispatch the corresponding BSD command.
2591  * The engine index is returned.
2592  */
2593 static unsigned int
2594 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2595 			 struct drm_file *file)
2596 {
2597 	struct drm_i915_file_private *file_priv = file->driver_priv;
2598 
2599 	/* Check whether the file_priv has already selected one ring. */
2600 	if ((int)file_priv->bsd_engine < 0)
2601 		file_priv->bsd_engine =
2602 			get_random_int() % num_vcs_engines(dev_priv);
2603 
2604 	return file_priv->bsd_engine;
2605 }
2606 
2607 static const enum intel_engine_id user_ring_map[] = {
2608 	[I915_EXEC_DEFAULT]	= RCS0,
2609 	[I915_EXEC_RENDER]	= RCS0,
2610 	[I915_EXEC_BLT]		= BCS0,
2611 	[I915_EXEC_BSD]		= VCS0,
2612 	[I915_EXEC_VEBOX]	= VECS0
2613 };
2614 
2615 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2616 {
2617 	struct intel_ring *ring = ce->ring;
2618 	struct intel_timeline *tl = ce->timeline;
2619 	struct i915_request *rq;
2620 
2621 	/*
2622 	 * Completely unscientific finger-in-the-air estimates for suitable
2623 	 * maximum user request size (to avoid blocking) and then backoff.
2624 	 */
2625 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2626 		return NULL;
2627 
2628 	/*
2629 	 * Find a request that after waiting upon, there will be at least half
2630 	 * the ring available. The hysteresis allows us to compete for the
2631 	 * shared ring and should mean that we sleep less often prior to
2632 	 * claiming our resources, but not so long that the ring completely
2633 	 * drains before we can submit our next request.
2634 	 */
2635 	list_for_each_entry(rq, &tl->requests, link) {
2636 		if (rq->ring != ring)
2637 			continue;
2638 
2639 		if (__intel_ring_space(rq->postfix,
2640 				       ring->emit, ring->size) > ring->size / 2)
2641 			break;
2642 	}
2643 	if (&rq->link == &tl->requests)
2644 		return NULL; /* weird, we will check again later for real */
2645 
2646 	return i915_request_get(rq);
2647 }
2648 
2649 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2650 {
2651 	struct intel_context *ce = eb->context;
2652 	struct intel_timeline *tl;
2653 	struct i915_request *rq = NULL;
2654 	int err;
2655 
2656 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2657 
2658 	if (unlikely(intel_context_is_banned(ce)))
2659 		return ERR_PTR(-EIO);
2660 
2661 	/*
2662 	 * Pinning the contexts may generate requests in order to acquire
2663 	 * GGTT space, so do this first before we reserve a seqno for
2664 	 * ourselves.
2665 	 */
2666 	err = intel_context_pin_ww(ce, &eb->ww);
2667 	if (err)
2668 		return ERR_PTR(err);
2669 
2670 	/*
2671 	 * Take a local wakeref for preparing to dispatch the execbuf as
2672 	 * we expect to access the hardware fairly frequently in the
2673 	 * process, and require the engine to be kept awake between accesses.
2674 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2675 	 * until the timeline is idle, which in turn releases the wakeref
2676 	 * taken on the engine, and the parent device.
2677 	 */
2678 	tl = intel_context_timeline_lock(ce);
2679 	if (IS_ERR(tl)) {
2680 		intel_context_unpin(ce);
2681 		return ERR_CAST(tl);
2682 	}
2683 
2684 	intel_context_enter(ce);
2685 	if (throttle)
2686 		rq = eb_throttle(eb, ce);
2687 	intel_context_timeline_unlock(tl);
2688 
2689 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2690 	return rq;
2691 }
2692 
2693 static void eb_unpin_engine(struct i915_execbuffer *eb)
2694 {
2695 	struct intel_context *ce = eb->context;
2696 	struct intel_timeline *tl = ce->timeline;
2697 
2698 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2699 		return;
2700 
2701 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2702 
2703 	mutex_lock(&tl->mutex);
2704 	intel_context_exit(ce);
2705 	mutex_unlock(&tl->mutex);
2706 
2707 	intel_context_unpin(ce);
2708 }
2709 
2710 static unsigned int
2711 eb_select_legacy_ring(struct i915_execbuffer *eb)
2712 {
2713 	struct drm_i915_private *i915 = eb->i915;
2714 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2715 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2716 
2717 	if (user_ring_id != I915_EXEC_BSD &&
2718 	    (args->flags & I915_EXEC_BSD_MASK)) {
2719 		drm_dbg(&i915->drm,
2720 			"execbuf with non bsd ring but with invalid "
2721 			"bsd dispatch flags: %d\n", (int)(args->flags));
2722 		return -1;
2723 	}
2724 
2725 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2726 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2727 
2728 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2729 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2730 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2731 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2732 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2733 			bsd_idx--;
2734 		} else {
2735 			drm_dbg(&i915->drm,
2736 				"execbuf with unknown bsd ring: %u\n",
2737 				bsd_idx);
2738 			return -1;
2739 		}
2740 
2741 		return _VCS(bsd_idx);
2742 	}
2743 
2744 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2745 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2746 			user_ring_id);
2747 		return -1;
2748 	}
2749 
2750 	return user_ring_map[user_ring_id];
2751 }
2752 
2753 static int
2754 eb_select_engine(struct i915_execbuffer *eb)
2755 {
2756 	struct intel_context *ce;
2757 	unsigned int idx;
2758 	int err;
2759 
2760 	if (i915_gem_context_user_engines(eb->gem_context))
2761 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2762 	else
2763 		idx = eb_select_legacy_ring(eb);
2764 
2765 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2766 	if (IS_ERR(ce))
2767 		return PTR_ERR(ce);
2768 
2769 	intel_gt_pm_get(ce->engine->gt);
2770 
2771 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2772 		err = intel_context_alloc_state(ce);
2773 		if (err)
2774 			goto err;
2775 	}
2776 
2777 	/*
2778 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2779 	 * EIO if the GPU is already wedged.
2780 	 */
2781 	err = intel_gt_terminally_wedged(ce->engine->gt);
2782 	if (err)
2783 		goto err;
2784 
2785 	eb->context = ce;
2786 	eb->engine = ce->engine;
2787 
2788 	/*
2789 	 * Make sure engine pool stays alive even if we call intel_context_put
2790 	 * during ww handling. The pool is destroyed when last pm reference
2791 	 * is dropped, which breaks our -EDEADLK handling.
2792 	 */
2793 	return err;
2794 
2795 err:
2796 	intel_gt_pm_put(ce->engine->gt);
2797 	intel_context_put(ce);
2798 	return err;
2799 }
2800 
2801 static void
2802 eb_put_engine(struct i915_execbuffer *eb)
2803 {
2804 	intel_gt_pm_put(eb->engine->gt);
2805 	intel_context_put(eb->context);
2806 }
2807 
2808 static void
2809 __free_fence_array(struct eb_fence *fences, unsigned int n)
2810 {
2811 	while (n--) {
2812 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2813 		dma_fence_put(fences[n].dma_fence);
2814 		kfree(fences[n].chain_fence);
2815 	}
2816 	kvfree(fences);
2817 }
2818 
2819 static int
2820 add_timeline_fence_array(struct i915_execbuffer *eb,
2821 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2822 {
2823 	struct drm_i915_gem_exec_fence __user *user_fences;
2824 	u64 __user *user_values;
2825 	struct eb_fence *f;
2826 	u64 nfences;
2827 	int err = 0;
2828 
2829 	nfences = timeline_fences->fence_count;
2830 	if (!nfences)
2831 		return 0;
2832 
2833 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2834 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2835 	if (nfences > min_t(unsigned long,
2836 			    ULONG_MAX / sizeof(*user_fences),
2837 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2838 		return -EINVAL;
2839 
2840 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2841 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2842 		return -EFAULT;
2843 
2844 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2845 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2846 		return -EFAULT;
2847 
2848 	f = krealloc(eb->fences,
2849 		     (eb->num_fences + nfences) * sizeof(*f),
2850 		     __GFP_NOWARN | GFP_KERNEL);
2851 	if (!f)
2852 		return -ENOMEM;
2853 
2854 	eb->fences = f;
2855 	f += eb->num_fences;
2856 
2857 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2858 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2859 
2860 	while (nfences--) {
2861 		struct drm_i915_gem_exec_fence user_fence;
2862 		struct drm_syncobj *syncobj;
2863 		struct dma_fence *fence = NULL;
2864 		u64 point;
2865 
2866 		if (__copy_from_user(&user_fence,
2867 				     user_fences++,
2868 				     sizeof(user_fence)))
2869 			return -EFAULT;
2870 
2871 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2872 			return -EINVAL;
2873 
2874 		if (__get_user(point, user_values++))
2875 			return -EFAULT;
2876 
2877 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2878 		if (!syncobj) {
2879 			DRM_DEBUG("Invalid syncobj handle provided\n");
2880 			return -ENOENT;
2881 		}
2882 
2883 		fence = drm_syncobj_fence_get(syncobj);
2884 
2885 		if (!fence && user_fence.flags &&
2886 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2887 			DRM_DEBUG("Syncobj handle has no fence\n");
2888 			drm_syncobj_put(syncobj);
2889 			return -EINVAL;
2890 		}
2891 
2892 		if (fence)
2893 			err = dma_fence_chain_find_seqno(&fence, point);
2894 
2895 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2896 			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2897 			dma_fence_put(fence);
2898 			drm_syncobj_put(syncobj);
2899 			return err;
2900 		}
2901 
2902 		/*
2903 		 * A point might have been signaled already and
2904 		 * garbage collected from the timeline. In this case
2905 		 * just ignore the point and carry on.
2906 		 */
2907 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2908 			drm_syncobj_put(syncobj);
2909 			continue;
2910 		}
2911 
2912 		/*
2913 		 * For timeline syncobjs we need to preallocate chains for
2914 		 * later signaling.
2915 		 */
2916 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2917 			/*
2918 			 * Waiting and signaling the same point (when point !=
2919 			 * 0) would break the timeline.
2920 			 */
2921 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2922 				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2923 				dma_fence_put(fence);
2924 				drm_syncobj_put(syncobj);
2925 				return -EINVAL;
2926 			}
2927 
2928 			f->chain_fence =
2929 				kmalloc(sizeof(*f->chain_fence),
2930 					GFP_KERNEL);
2931 			if (!f->chain_fence) {
2932 				drm_syncobj_put(syncobj);
2933 				dma_fence_put(fence);
2934 				return -ENOMEM;
2935 			}
2936 		} else {
2937 			f->chain_fence = NULL;
2938 		}
2939 
2940 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2941 		f->dma_fence = fence;
2942 		f->value = point;
2943 		f++;
2944 		eb->num_fences++;
2945 	}
2946 
2947 	return 0;
2948 }
2949 
2950 static int add_fence_array(struct i915_execbuffer *eb)
2951 {
2952 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2953 	struct drm_i915_gem_exec_fence __user *user;
2954 	unsigned long num_fences = args->num_cliprects;
2955 	struct eb_fence *f;
2956 
2957 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2958 		return 0;
2959 
2960 	if (!num_fences)
2961 		return 0;
2962 
2963 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2964 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2965 	if (num_fences > min_t(unsigned long,
2966 			       ULONG_MAX / sizeof(*user),
2967 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2968 		return -EINVAL;
2969 
2970 	user = u64_to_user_ptr(args->cliprects_ptr);
2971 	if (!access_ok(user, num_fences * sizeof(*user)))
2972 		return -EFAULT;
2973 
2974 	f = krealloc(eb->fences,
2975 		     (eb->num_fences + num_fences) * sizeof(*f),
2976 		     __GFP_NOWARN | GFP_KERNEL);
2977 	if (!f)
2978 		return -ENOMEM;
2979 
2980 	eb->fences = f;
2981 	f += eb->num_fences;
2982 	while (num_fences--) {
2983 		struct drm_i915_gem_exec_fence user_fence;
2984 		struct drm_syncobj *syncobj;
2985 		struct dma_fence *fence = NULL;
2986 
2987 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2988 			return -EFAULT;
2989 
2990 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2991 			return -EINVAL;
2992 
2993 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2994 		if (!syncobj) {
2995 			DRM_DEBUG("Invalid syncobj handle provided\n");
2996 			return -ENOENT;
2997 		}
2998 
2999 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
3000 			fence = drm_syncobj_fence_get(syncobj);
3001 			if (!fence) {
3002 				DRM_DEBUG("Syncobj handle has no fence\n");
3003 				drm_syncobj_put(syncobj);
3004 				return -EINVAL;
3005 			}
3006 		}
3007 
3008 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3009 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3010 
3011 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3012 		f->dma_fence = fence;
3013 		f->value = 0;
3014 		f->chain_fence = NULL;
3015 		f++;
3016 		eb->num_fences++;
3017 	}
3018 
3019 	return 0;
3020 }
3021 
3022 static void put_fence_array(struct eb_fence *fences, int num_fences)
3023 {
3024 	if (fences)
3025 		__free_fence_array(fences, num_fences);
3026 }
3027 
3028 static int
3029 await_fence_array(struct i915_execbuffer *eb)
3030 {
3031 	unsigned int n;
3032 	int err;
3033 
3034 	for (n = 0; n < eb->num_fences; n++) {
3035 		struct drm_syncobj *syncobj;
3036 		unsigned int flags;
3037 
3038 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3039 
3040 		if (!eb->fences[n].dma_fence)
3041 			continue;
3042 
3043 		err = i915_request_await_dma_fence(eb->request,
3044 						   eb->fences[n].dma_fence);
3045 		if (err < 0)
3046 			return err;
3047 	}
3048 
3049 	return 0;
3050 }
3051 
3052 static void signal_fence_array(const struct i915_execbuffer *eb)
3053 {
3054 	struct dma_fence * const fence = &eb->request->fence;
3055 	unsigned int n;
3056 
3057 	for (n = 0; n < eb->num_fences; n++) {
3058 		struct drm_syncobj *syncobj;
3059 		unsigned int flags;
3060 
3061 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3062 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
3063 			continue;
3064 
3065 		if (eb->fences[n].chain_fence) {
3066 			drm_syncobj_add_point(syncobj,
3067 					      eb->fences[n].chain_fence,
3068 					      fence,
3069 					      eb->fences[n].value);
3070 			/*
3071 			 * The chain's ownership is transferred to the
3072 			 * timeline.
3073 			 */
3074 			eb->fences[n].chain_fence = NULL;
3075 		} else {
3076 			drm_syncobj_replace_fence(syncobj, fence);
3077 		}
3078 	}
3079 }
3080 
3081 static int
3082 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3083 {
3084 	struct i915_execbuffer *eb = data;
3085 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3086 
3087 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3088 		return -EFAULT;
3089 
3090 	return add_timeline_fence_array(eb, &timeline_fences);
3091 }
3092 
3093 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3094 {
3095 	struct i915_request *rq, *rn;
3096 
3097 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3098 		if (rq == end || !i915_request_retire(rq))
3099 			break;
3100 }
3101 
3102 static int eb_request_add(struct i915_execbuffer *eb, int err)
3103 {
3104 	struct i915_request *rq = eb->request;
3105 	struct intel_timeline * const tl = i915_request_timeline(rq);
3106 	struct i915_sched_attr attr = {};
3107 	struct i915_request *prev;
3108 
3109 	lockdep_assert_held(&tl->mutex);
3110 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3111 
3112 	trace_i915_request_add(rq);
3113 
3114 	prev = __i915_request_commit(rq);
3115 
3116 	/* Check that the context wasn't destroyed before submission */
3117 	if (likely(!intel_context_is_closed(eb->context))) {
3118 		attr = eb->gem_context->sched;
3119 	} else {
3120 		/* Serialise with context_close via the add_to_timeline */
3121 		i915_request_set_error_once(rq, -ENOENT);
3122 		__i915_request_skip(rq);
3123 		err = -ENOENT; /* override any transient errors */
3124 	}
3125 
3126 	__i915_request_queue(rq, &attr);
3127 
3128 	/* Try to clean up the client's timeline after submitting the request */
3129 	if (prev)
3130 		retire_requests(tl, prev);
3131 
3132 	mutex_unlock(&tl->mutex);
3133 
3134 	return err;
3135 }
3136 
3137 static const i915_user_extension_fn execbuf_extensions[] = {
3138 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3139 };
3140 
3141 static int
3142 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3143 			  struct i915_execbuffer *eb)
3144 {
3145 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3146 		return 0;
3147 
3148 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3149 	 * have another flag also using it at the same time.
3150 	 */
3151 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3152 		return -EINVAL;
3153 
3154 	if (args->num_cliprects != 0)
3155 		return -EINVAL;
3156 
3157 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3158 				    execbuf_extensions,
3159 				    ARRAY_SIZE(execbuf_extensions),
3160 				    eb);
3161 }
3162 
3163 static int
3164 i915_gem_do_execbuffer(struct drm_device *dev,
3165 		       struct drm_file *file,
3166 		       struct drm_i915_gem_execbuffer2 *args,
3167 		       struct drm_i915_gem_exec_object2 *exec)
3168 {
3169 	struct drm_i915_private *i915 = to_i915(dev);
3170 	struct i915_execbuffer eb;
3171 	struct dma_fence *in_fence = NULL;
3172 	struct sync_file *out_fence = NULL;
3173 	struct i915_vma *batch;
3174 	int out_fence_fd = -1;
3175 	int err;
3176 
3177 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3178 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3179 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3180 
3181 	eb.i915 = i915;
3182 	eb.file = file;
3183 	eb.args = args;
3184 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3185 		args->flags |= __EXEC_HAS_RELOC;
3186 
3187 	eb.exec = exec;
3188 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3189 	eb.vma[0].vma = NULL;
3190 	eb.reloc_pool = eb.batch_pool = NULL;
3191 	eb.reloc_context = NULL;
3192 
3193 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3194 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3195 
3196 	eb.buffer_count = args->buffer_count;
3197 	eb.batch_start_offset = args->batch_start_offset;
3198 	eb.batch_len = args->batch_len;
3199 	eb.trampoline = NULL;
3200 
3201 	eb.fences = NULL;
3202 	eb.num_fences = 0;
3203 
3204 	eb.batch_flags = 0;
3205 	if (args->flags & I915_EXEC_SECURE) {
3206 		if (INTEL_GEN(i915) >= 11)
3207 			return -ENODEV;
3208 
3209 		/* Return -EPERM to trigger fallback code on old binaries. */
3210 		if (!HAS_SECURE_BATCHES(i915))
3211 			return -EPERM;
3212 
3213 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3214 			return -EPERM;
3215 
3216 		eb.batch_flags |= I915_DISPATCH_SECURE;
3217 	}
3218 	if (args->flags & I915_EXEC_IS_PINNED)
3219 		eb.batch_flags |= I915_DISPATCH_PINNED;
3220 
3221 	err = parse_execbuf2_extensions(args, &eb);
3222 	if (err)
3223 		goto err_ext;
3224 
3225 	err = add_fence_array(&eb);
3226 	if (err)
3227 		goto err_ext;
3228 
3229 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3230 	if (args->flags & IN_FENCES) {
3231 		if ((args->flags & IN_FENCES) == IN_FENCES)
3232 			return -EINVAL;
3233 
3234 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3235 		if (!in_fence) {
3236 			err = -EINVAL;
3237 			goto err_ext;
3238 		}
3239 	}
3240 #undef IN_FENCES
3241 
3242 	if (args->flags & I915_EXEC_FENCE_OUT) {
3243 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3244 		if (out_fence_fd < 0) {
3245 			err = out_fence_fd;
3246 			goto err_in_fence;
3247 		}
3248 	}
3249 
3250 	err = eb_create(&eb);
3251 	if (err)
3252 		goto err_out_fence;
3253 
3254 	GEM_BUG_ON(!eb.lut_size);
3255 
3256 	err = eb_select_context(&eb);
3257 	if (unlikely(err))
3258 		goto err_destroy;
3259 
3260 	err = eb_select_engine(&eb);
3261 	if (unlikely(err))
3262 		goto err_context;
3263 
3264 	err = eb_lookup_vmas(&eb);
3265 	if (err) {
3266 		eb_release_vmas(&eb, true);
3267 		goto err_engine;
3268 	}
3269 
3270 	i915_gem_ww_ctx_init(&eb.ww, true);
3271 
3272 	err = eb_relocate_parse(&eb);
3273 	if (err) {
3274 		/*
3275 		 * If the user expects the execobject.offset and
3276 		 * reloc.presumed_offset to be an exact match,
3277 		 * as for using NO_RELOC, then we cannot update
3278 		 * the execobject.offset until we have completed
3279 		 * relocation.
3280 		 */
3281 		args->flags &= ~__EXEC_HAS_RELOC;
3282 		goto err_vma;
3283 	}
3284 
3285 	ww_acquire_done(&eb.ww.ctx);
3286 
3287 	batch = eb.batch->vma;
3288 
3289 	/* All GPU relocation batches must be submitted prior to the user rq */
3290 	GEM_BUG_ON(eb.reloc_cache.rq);
3291 
3292 	/* Allocate a request for this batch buffer nice and early. */
3293 	eb.request = i915_request_create(eb.context);
3294 	if (IS_ERR(eb.request)) {
3295 		err = PTR_ERR(eb.request);
3296 		goto err_vma;
3297 	}
3298 
3299 	if (in_fence) {
3300 		if (args->flags & I915_EXEC_FENCE_SUBMIT)
3301 			err = i915_request_await_execution(eb.request,
3302 							   in_fence,
3303 							   eb.engine->bond_execute);
3304 		else
3305 			err = i915_request_await_dma_fence(eb.request,
3306 							   in_fence);
3307 		if (err < 0)
3308 			goto err_request;
3309 	}
3310 
3311 	if (eb.fences) {
3312 		err = await_fence_array(&eb);
3313 		if (err)
3314 			goto err_request;
3315 	}
3316 
3317 	if (out_fence_fd != -1) {
3318 		out_fence = sync_file_create(&eb.request->fence);
3319 		if (!out_fence) {
3320 			err = -ENOMEM;
3321 			goto err_request;
3322 		}
3323 	}
3324 
3325 	/*
3326 	 * Whilst this request exists, batch_obj will be on the
3327 	 * active_list, and so will hold the active reference. Only when this
3328 	 * request is retired will the the batch_obj be moved onto the
3329 	 * inactive_list and lose its active reference. Hence we do not need
3330 	 * to explicitly hold another reference here.
3331 	 */
3332 	eb.request->batch = batch;
3333 	if (eb.batch_pool)
3334 		intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
3335 
3336 	trace_i915_request_queue(eb.request, eb.batch_flags);
3337 	err = eb_submit(&eb, batch);
3338 err_request:
3339 	i915_request_get(eb.request);
3340 	err = eb_request_add(&eb, err);
3341 
3342 	if (eb.fences)
3343 		signal_fence_array(&eb);
3344 
3345 	if (out_fence) {
3346 		if (err == 0) {
3347 			fd_install(out_fence_fd, out_fence->file);
3348 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3349 			args->rsvd2 |= (u64)out_fence_fd << 32;
3350 			out_fence_fd = -1;
3351 		} else {
3352 			fput(out_fence->file);
3353 		}
3354 	}
3355 	i915_request_put(eb.request);
3356 
3357 err_vma:
3358 	eb_release_vmas(&eb, true);
3359 	if (eb.trampoline)
3360 		i915_vma_unpin(eb.trampoline);
3361 	WARN_ON(err == -EDEADLK);
3362 	i915_gem_ww_ctx_fini(&eb.ww);
3363 
3364 	if (eb.batch_pool)
3365 		intel_gt_buffer_pool_put(eb.batch_pool);
3366 	if (eb.reloc_pool)
3367 		intel_gt_buffer_pool_put(eb.reloc_pool);
3368 	if (eb.reloc_context)
3369 		intel_context_put(eb.reloc_context);
3370 err_engine:
3371 	eb_put_engine(&eb);
3372 err_context:
3373 	i915_gem_context_put(eb.gem_context);
3374 err_destroy:
3375 	eb_destroy(&eb);
3376 err_out_fence:
3377 	if (out_fence_fd != -1)
3378 		put_unused_fd(out_fence_fd);
3379 err_in_fence:
3380 	dma_fence_put(in_fence);
3381 err_ext:
3382 	put_fence_array(eb.fences, eb.num_fences);
3383 	return err;
3384 }
3385 
3386 static size_t eb_element_size(void)
3387 {
3388 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3389 }
3390 
3391 static bool check_buffer_count(size_t count)
3392 {
3393 	const size_t sz = eb_element_size();
3394 
3395 	/*
3396 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3397 	 * array size (see eb_create()). Otherwise, we can accept an array as
3398 	 * large as can be addressed (though use large arrays at your peril)!
3399 	 */
3400 
3401 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3402 }
3403 
3404 /*
3405  * Legacy execbuffer just creates an exec2 list from the original exec object
3406  * list array and passes it to the real function.
3407  */
3408 int
3409 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
3410 			  struct drm_file *file)
3411 {
3412 	struct drm_i915_private *i915 = to_i915(dev);
3413 	struct drm_i915_gem_execbuffer *args = data;
3414 	struct drm_i915_gem_execbuffer2 exec2;
3415 	struct drm_i915_gem_exec_object *exec_list = NULL;
3416 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3417 	const size_t count = args->buffer_count;
3418 	unsigned int i;
3419 	int err;
3420 
3421 	if (!check_buffer_count(count)) {
3422 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3423 		return -EINVAL;
3424 	}
3425 
3426 	exec2.buffers_ptr = args->buffers_ptr;
3427 	exec2.buffer_count = args->buffer_count;
3428 	exec2.batch_start_offset = args->batch_start_offset;
3429 	exec2.batch_len = args->batch_len;
3430 	exec2.DR1 = args->DR1;
3431 	exec2.DR4 = args->DR4;
3432 	exec2.num_cliprects = args->num_cliprects;
3433 	exec2.cliprects_ptr = args->cliprects_ptr;
3434 	exec2.flags = I915_EXEC_RENDER;
3435 	i915_execbuffer2_set_context_id(exec2, 0);
3436 
3437 	err = i915_gem_check_execbuffer(&exec2);
3438 	if (err)
3439 		return err;
3440 
3441 	/* Copy in the exec list from userland */
3442 	exec_list = kvmalloc_array(count, sizeof(*exec_list),
3443 				   __GFP_NOWARN | GFP_KERNEL);
3444 
3445 	/* Allocate extra slots for use by the command parser */
3446 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3447 				    __GFP_NOWARN | GFP_KERNEL);
3448 	if (exec_list == NULL || exec2_list == NULL) {
3449 		drm_dbg(&i915->drm,
3450 			"Failed to allocate exec list for %d buffers\n",
3451 			args->buffer_count);
3452 		kvfree(exec_list);
3453 		kvfree(exec2_list);
3454 		return -ENOMEM;
3455 	}
3456 	err = copy_from_user(exec_list,
3457 			     u64_to_user_ptr(args->buffers_ptr),
3458 			     sizeof(*exec_list) * count);
3459 	if (err) {
3460 		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
3461 			args->buffer_count, err);
3462 		kvfree(exec_list);
3463 		kvfree(exec2_list);
3464 		return -EFAULT;
3465 	}
3466 
3467 	for (i = 0; i < args->buffer_count; i++) {
3468 		exec2_list[i].handle = exec_list[i].handle;
3469 		exec2_list[i].relocation_count = exec_list[i].relocation_count;
3470 		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3471 		exec2_list[i].alignment = exec_list[i].alignment;
3472 		exec2_list[i].offset = exec_list[i].offset;
3473 		if (INTEL_GEN(to_i915(dev)) < 4)
3474 			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3475 		else
3476 			exec2_list[i].flags = 0;
3477 	}
3478 
3479 	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
3480 	if (exec2.flags & __EXEC_HAS_RELOC) {
3481 		struct drm_i915_gem_exec_object __user *user_exec_list =
3482 			u64_to_user_ptr(args->buffers_ptr);
3483 
3484 		/* Copy the new buffer offsets back to the user's exec list. */
3485 		for (i = 0; i < args->buffer_count; i++) {
3486 			if (!(exec2_list[i].offset & UPDATE))
3487 				continue;
3488 
3489 			exec2_list[i].offset =
3490 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3491 			exec2_list[i].offset &= PIN_OFFSET_MASK;
3492 			if (__copy_to_user(&user_exec_list[i].offset,
3493 					   &exec2_list[i].offset,
3494 					   sizeof(user_exec_list[i].offset)))
3495 				break;
3496 		}
3497 	}
3498 
3499 	kvfree(exec_list);
3500 	kvfree(exec2_list);
3501 	return err;
3502 }
3503 
3504 int
3505 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3506 			   struct drm_file *file)
3507 {
3508 	struct drm_i915_private *i915 = to_i915(dev);
3509 	struct drm_i915_gem_execbuffer2 *args = data;
3510 	struct drm_i915_gem_exec_object2 *exec2_list;
3511 	const size_t count = args->buffer_count;
3512 	int err;
3513 
3514 	if (!check_buffer_count(count)) {
3515 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3516 		return -EINVAL;
3517 	}
3518 
3519 	err = i915_gem_check_execbuffer(args);
3520 	if (err)
3521 		return err;
3522 
3523 	/* Allocate extra slots for use by the command parser */
3524 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3525 				    __GFP_NOWARN | GFP_KERNEL);
3526 	if (exec2_list == NULL) {
3527 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3528 			count);
3529 		return -ENOMEM;
3530 	}
3531 	if (copy_from_user(exec2_list,
3532 			   u64_to_user_ptr(args->buffers_ptr),
3533 			   sizeof(*exec2_list) * count)) {
3534 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3535 		kvfree(exec2_list);
3536 		return -EFAULT;
3537 	}
3538 
3539 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3540 
3541 	/*
3542 	 * Now that we have begun execution of the batchbuffer, we ignore
3543 	 * any new error after this point. Also given that we have already
3544 	 * updated the associated relocations, we try to write out the current
3545 	 * object locations irrespective of any error.
3546 	 */
3547 	if (args->flags & __EXEC_HAS_RELOC) {
3548 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3549 			u64_to_user_ptr(args->buffers_ptr);
3550 		unsigned int i;
3551 
3552 		/* Copy the new buffer offsets back to the user's exec list. */
3553 		/*
3554 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3555 		 * because we checked 'count' in check_buffer_count().
3556 		 *
3557 		 * And this range already got effectively checked earlier
3558 		 * when we did the "copy_from_user()" above.
3559 		 */
3560 		if (!user_write_access_begin(user_exec_list,
3561 					     count * sizeof(*user_exec_list)))
3562 			goto end;
3563 
3564 		for (i = 0; i < args->buffer_count; i++) {
3565 			if (!(exec2_list[i].offset & UPDATE))
3566 				continue;
3567 
3568 			exec2_list[i].offset =
3569 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3570 			unsafe_put_user(exec2_list[i].offset,
3571 					&user_exec_list[i].offset,
3572 					end_user);
3573 		}
3574 end_user:
3575 		user_write_access_end();
3576 end:;
3577 	}
3578 
3579 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3580 	kvfree(exec2_list);
3581 	return err;
3582 }
3583 
3584 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3585 #include "selftests/i915_gem_execbuffer.c"
3586 #endif
3587