1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/dma-resv.h> 8 #include <linux/highmem.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_auth.h> 13 #include <drm/drm_syncobj.h> 14 15 #include "display/intel_frontbuffer.h" 16 17 #include "gem/i915_gem_ioctls.h" 18 #include "gt/intel_context.h" 19 #include "gt/intel_gpu_commands.h" 20 #include "gt/intel_gt.h" 21 #include "gt/intel_gt_buffer_pool.h" 22 #include "gt/intel_gt_pm.h" 23 #include "gt/intel_ring.h" 24 25 #include "pxp/intel_pxp.h" 26 27 #include "i915_cmd_parser.h" 28 #include "i915_drv.h" 29 #include "i915_file_private.h" 30 #include "i915_gem_clflush.h" 31 #include "i915_gem_context.h" 32 #include "i915_gem_evict.h" 33 #include "i915_gem_ioctls.h" 34 #include "i915_reg.h" 35 #include "i915_trace.h" 36 #include "i915_user_extensions.h" 37 38 struct eb_vma { 39 struct i915_vma *vma; 40 unsigned int flags; 41 42 /** This vma's place in the execbuf reservation list */ 43 struct drm_i915_gem_exec_object2 *exec; 44 struct list_head bind_link; 45 struct list_head reloc_link; 46 47 struct hlist_node node; 48 u32 handle; 49 }; 50 51 enum { 52 FORCE_CPU_RELOC = 1, 53 FORCE_GTT_RELOC, 54 FORCE_GPU_RELOC, 55 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 56 }; 57 58 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */ 59 #define __EXEC_OBJECT_HAS_PIN BIT(29) 60 #define __EXEC_OBJECT_HAS_FENCE BIT(28) 61 #define __EXEC_OBJECT_USERPTR_INIT BIT(27) 62 #define __EXEC_OBJECT_NEEDS_MAP BIT(26) 63 #define __EXEC_OBJECT_NEEDS_BIAS BIT(25) 64 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 25) /* all of the above + */ 65 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 66 67 #define __EXEC_HAS_RELOC BIT(31) 68 #define __EXEC_ENGINE_PINNED BIT(30) 69 #define __EXEC_USERPTR_USED BIT(29) 70 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 71 #define UPDATE PIN_OFFSET_FIXED 72 73 #define BATCH_OFFSET_BIAS (256*1024) 74 75 #define __I915_EXEC_ILLEGAL_FLAGS \ 76 (__I915_EXEC_UNKNOWN_FLAGS | \ 77 I915_EXEC_CONSTANTS_MASK | \ 78 I915_EXEC_RESOURCE_STREAMER) 79 80 /* Catch emission of unexpected errors for CI! */ 81 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 82 #undef EINVAL 83 #define EINVAL ({ \ 84 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 85 22; \ 86 }) 87 #endif 88 89 /** 90 * DOC: User command execution 91 * 92 * Userspace submits commands to be executed on the GPU as an instruction 93 * stream within a GEM object we call a batchbuffer. This instructions may 94 * refer to other GEM objects containing auxiliary state such as kernels, 95 * samplers, render targets and even secondary batchbuffers. Userspace does 96 * not know where in the GPU memory these objects reside and so before the 97 * batchbuffer is passed to the GPU for execution, those addresses in the 98 * batchbuffer and auxiliary objects are updated. This is known as relocation, 99 * or patching. To try and avoid having to relocate each object on the next 100 * execution, userspace is told the location of those objects in this pass, 101 * but this remains just a hint as the kernel may choose a new location for 102 * any object in the future. 103 * 104 * At the level of talking to the hardware, submitting a batchbuffer for the 105 * GPU to execute is to add content to a buffer from which the HW 106 * command streamer is reading. 107 * 108 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 109 * Execlists, this command is not placed on the same buffer as the 110 * remaining items. 111 * 112 * 2. Add a command to invalidate caches to the buffer. 113 * 114 * 3. Add a batchbuffer start command to the buffer; the start command is 115 * essentially a token together with the GPU address of the batchbuffer 116 * to be executed. 117 * 118 * 4. Add a pipeline flush to the buffer. 119 * 120 * 5. Add a memory write command to the buffer to record when the GPU 121 * is done executing the batchbuffer. The memory write writes the 122 * global sequence number of the request, ``i915_request::global_seqno``; 123 * the i915 driver uses the current value in the register to determine 124 * if the GPU has completed the batchbuffer. 125 * 126 * 6. Add a user interrupt command to the buffer. This command instructs 127 * the GPU to issue an interrupt when the command, pipeline flush and 128 * memory write are completed. 129 * 130 * 7. Inform the hardware of the additional commands added to the buffer 131 * (by updating the tail pointer). 132 * 133 * Processing an execbuf ioctl is conceptually split up into a few phases. 134 * 135 * 1. Validation - Ensure all the pointers, handles and flags are valid. 136 * 2. Reservation - Assign GPU address space for every object 137 * 3. Relocation - Update any addresses to point to the final locations 138 * 4. Serialisation - Order the request with respect to its dependencies 139 * 5. Construction - Construct a request to execute the batchbuffer 140 * 6. Submission (at some point in the future execution) 141 * 142 * Reserving resources for the execbuf is the most complicated phase. We 143 * neither want to have to migrate the object in the address space, nor do 144 * we want to have to update any relocations pointing to this object. Ideally, 145 * we want to leave the object where it is and for all the existing relocations 146 * to match. If the object is given a new address, or if userspace thinks the 147 * object is elsewhere, we have to parse all the relocation entries and update 148 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 149 * all the target addresses in all of its objects match the value in the 150 * relocation entries and that they all match the presumed offsets given by the 151 * list of execbuffer objects. Using this knowledge, we know that if we haven't 152 * moved any buffers, all the relocation entries are valid and we can skip 153 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 154 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 155 * 156 * The addresses written in the objects must match the corresponding 157 * reloc.presumed_offset which in turn must match the corresponding 158 * execobject.offset. 159 * 160 * Any render targets written to in the batch must be flagged with 161 * EXEC_OBJECT_WRITE. 162 * 163 * To avoid stalling, execobject.offset should match the current 164 * address of that object within the active context. 165 * 166 * The reservation is done is multiple phases. First we try and keep any 167 * object already bound in its current location - so as long as meets the 168 * constraints imposed by the new execbuffer. Any object left unbound after the 169 * first pass is then fitted into any available idle space. If an object does 170 * not fit, all objects are removed from the reservation and the process rerun 171 * after sorting the objects into a priority order (more difficult to fit 172 * objects are tried first). Failing that, the entire VM is cleared and we try 173 * to fit the execbuf once last time before concluding that it simply will not 174 * fit. 175 * 176 * A small complication to all of this is that we allow userspace not only to 177 * specify an alignment and a size for the object in the address space, but 178 * we also allow userspace to specify the exact offset. This objects are 179 * simpler to place (the location is known a priori) all we have to do is make 180 * sure the space is available. 181 * 182 * Once all the objects are in place, patching up the buried pointers to point 183 * to the final locations is a fairly simple job of walking over the relocation 184 * entry arrays, looking up the right address and rewriting the value into 185 * the object. Simple! ... The relocation entries are stored in user memory 186 * and so to access them we have to copy them into a local buffer. That copy 187 * has to avoid taking any pagefaults as they may lead back to a GEM object 188 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 189 * the relocation into multiple passes. First we try to do everything within an 190 * atomic context (avoid the pagefaults) which requires that we never wait. If 191 * we detect that we may wait, or if we need to fault, then we have to fallback 192 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 193 * bells yet?) Dropping the mutex means that we lose all the state we have 194 * built up so far for the execbuf and we must reset any global data. However, 195 * we do leave the objects pinned in their final locations - which is a 196 * potential issue for concurrent execbufs. Once we have left the mutex, we can 197 * allocate and copy all the relocation entries into a large array at our 198 * leisure, reacquire the mutex, reclaim all the objects and other state and 199 * then proceed to update any incorrect addresses with the objects. 200 * 201 * As we process the relocation entries, we maintain a record of whether the 202 * object is being written to. Using NORELOC, we expect userspace to provide 203 * this information instead. We also check whether we can skip the relocation 204 * by comparing the expected value inside the relocation entry with the target's 205 * final address. If they differ, we have to map the current object and rewrite 206 * the 4 or 8 byte pointer within. 207 * 208 * Serialising an execbuf is quite simple according to the rules of the GEM 209 * ABI. Execution within each context is ordered by the order of submission. 210 * Writes to any GEM object are in order of submission and are exclusive. Reads 211 * from a GEM object are unordered with respect to other reads, but ordered by 212 * writes. A write submitted after a read cannot occur before the read, and 213 * similarly any read submitted after a write cannot occur before the write. 214 * Writes are ordered between engines such that only one write occurs at any 215 * time (completing any reads beforehand) - using semaphores where available 216 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 217 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 218 * reads before starting, and any read (either using set-domain or pread) must 219 * flush all GPU writes before starting. (Note we only employ a barrier before, 220 * we currently rely on userspace not concurrently starting a new execution 221 * whilst reading or writing to an object. This may be an advantage or not 222 * depending on how much you trust userspace not to shoot themselves in the 223 * foot.) Serialisation may just result in the request being inserted into 224 * a DAG awaiting its turn, but most simple is to wait on the CPU until 225 * all dependencies are resolved. 226 * 227 * After all of that, is just a matter of closing the request and handing it to 228 * the hardware (well, leaving it in a queue to be executed). However, we also 229 * offer the ability for batchbuffers to be run with elevated privileges so 230 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 231 * Before any batch is given extra privileges we first must check that it 232 * contains no nefarious instructions, we check that each instruction is from 233 * our whitelist and all registers are also from an allowed list. We first 234 * copy the user's batchbuffer to a shadow (so that the user doesn't have 235 * access to it, either by the CPU or GPU as we scan it) and then parse each 236 * instruction. If everything is ok, we set a flag telling the hardware to run 237 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 238 */ 239 240 struct eb_fence { 241 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 242 struct dma_fence *dma_fence; 243 u64 value; 244 struct dma_fence_chain *chain_fence; 245 }; 246 247 struct i915_execbuffer { 248 struct drm_i915_private *i915; /** i915 backpointer */ 249 struct drm_file *file; /** per-file lookup tables and limits */ 250 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 251 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 252 struct eb_vma *vma; 253 254 struct intel_gt *gt; /* gt for the execbuf */ 255 struct intel_context *context; /* logical state for the request */ 256 struct i915_gem_context *gem_context; /** caller's context */ 257 intel_wakeref_t wakeref; 258 259 /** our requests to build */ 260 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; 261 /** identity of the batch obj/vma */ 262 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; 263 struct i915_vma *trampoline; /** trampoline used for chaining */ 264 265 /** used for excl fence in dma_resv objects when > 1 BB submitted */ 266 struct dma_fence *composite_fence; 267 268 /** actual size of execobj[] as we may extend it for the cmdparser */ 269 unsigned int buffer_count; 270 271 /* number of batches in execbuf IOCTL */ 272 unsigned int num_batches; 273 274 /** list of vma not yet bound during reservation phase */ 275 struct list_head unbound; 276 277 /** list of vma that have execobj.relocation_count */ 278 struct list_head relocs; 279 280 struct i915_gem_ww_ctx ww; 281 282 /** 283 * Track the most recently used object for relocations, as we 284 * frequently have to perform multiple relocations within the same 285 * obj/page 286 */ 287 struct reloc_cache { 288 struct drm_mm_node node; /** temporary GTT binding */ 289 unsigned long vaddr; /** Current kmap address */ 290 unsigned long page; /** Currently mapped page index */ 291 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 292 bool use_64bit_reloc : 1; 293 bool has_llc : 1; 294 bool has_fence : 1; 295 bool needs_unfenced : 1; 296 } reloc_cache; 297 298 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 299 300 /** Length of batch within object */ 301 u64 batch_len[MAX_ENGINE_INSTANCE + 1]; 302 u32 batch_start_offset; /** Location within object of batch */ 303 u32 batch_flags; /** Flags composed for emit_bb_start() */ 304 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 305 306 /** 307 * Indicate either the size of the hastable used to resolve 308 * relocation handles, or if negative that we are using a direct 309 * index into the execobj[]. 310 */ 311 int lut_size; 312 struct hlist_head *buckets; /** ht for relocation handles */ 313 314 struct eb_fence *fences; 315 unsigned long num_fences; 316 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 317 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; 318 #endif 319 }; 320 321 static int eb_parse(struct i915_execbuffer *eb); 322 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); 323 static void eb_unpin_engine(struct i915_execbuffer *eb); 324 static void eb_capture_release(struct i915_execbuffer *eb); 325 326 static bool eb_use_cmdparser(const struct i915_execbuffer *eb) 327 { 328 return intel_engine_requires_cmd_parser(eb->context->engine) || 329 (intel_engine_using_cmd_parser(eb->context->engine) && 330 eb->args->batch_len); 331 } 332 333 static int eb_create(struct i915_execbuffer *eb) 334 { 335 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 336 unsigned int size = 1 + ilog2(eb->buffer_count); 337 338 /* 339 * Without a 1:1 association between relocation handles and 340 * the execobject[] index, we instead create a hashtable. 341 * We size it dynamically based on available memory, starting 342 * first with 1:1 assocative hash and scaling back until 343 * the allocation succeeds. 344 * 345 * Later on we use a positive lut_size to indicate we are 346 * using this hashtable, and a negative value to indicate a 347 * direct lookup. 348 */ 349 do { 350 gfp_t flags; 351 352 /* While we can still reduce the allocation size, don't 353 * raise a warning and allow the allocation to fail. 354 * On the last pass though, we want to try as hard 355 * as possible to perform the allocation and warn 356 * if it fails. 357 */ 358 flags = GFP_KERNEL; 359 if (size > 1) 360 flags |= __GFP_NORETRY | __GFP_NOWARN; 361 362 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 363 flags); 364 if (eb->buckets) 365 break; 366 } while (--size); 367 368 if (unlikely(!size)) 369 return -ENOMEM; 370 371 eb->lut_size = size; 372 } else { 373 eb->lut_size = -eb->buffer_count; 374 } 375 376 return 0; 377 } 378 379 static bool 380 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 381 const struct i915_vma *vma, 382 unsigned int flags) 383 { 384 const u64 start = i915_vma_offset(vma); 385 const u64 size = i915_vma_size(vma); 386 387 if (size < entry->pad_to_size) 388 return true; 389 390 if (entry->alignment && !IS_ALIGNED(start, entry->alignment)) 391 return true; 392 393 if (flags & EXEC_OBJECT_PINNED && 394 start != entry->offset) 395 return true; 396 397 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 398 start < BATCH_OFFSET_BIAS) 399 return true; 400 401 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 402 (start + size + 4095) >> 32) 403 return true; 404 405 if (flags & __EXEC_OBJECT_NEEDS_MAP && 406 !i915_vma_is_map_and_fenceable(vma)) 407 return true; 408 409 return false; 410 } 411 412 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 413 unsigned int exec_flags) 414 { 415 u64 pin_flags = 0; 416 417 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 418 pin_flags |= PIN_GLOBAL; 419 420 /* 421 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 422 * limit address to the first 4GBs for unflagged objects. 423 */ 424 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 425 pin_flags |= PIN_ZONE_4G; 426 427 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 428 pin_flags |= PIN_MAPPABLE; 429 430 if (exec_flags & EXEC_OBJECT_PINNED) 431 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 432 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 433 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 434 435 return pin_flags; 436 } 437 438 static int 439 eb_pin_vma(struct i915_execbuffer *eb, 440 const struct drm_i915_gem_exec_object2 *entry, 441 struct eb_vma *ev) 442 { 443 struct i915_vma *vma = ev->vma; 444 u64 pin_flags; 445 int err; 446 447 if (vma->node.size) 448 pin_flags = __i915_vma_offset(vma); 449 else 450 pin_flags = entry->offset & PIN_OFFSET_MASK; 451 452 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; 453 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 454 pin_flags |= PIN_GLOBAL; 455 456 /* Attempt to reuse the current location if available */ 457 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 458 if (err == -EDEADLK) 459 return err; 460 461 if (unlikely(err)) { 462 if (entry->flags & EXEC_OBJECT_PINNED) 463 return err; 464 465 /* Failing that pick any _free_ space if suitable */ 466 err = i915_vma_pin_ww(vma, &eb->ww, 467 entry->pad_to_size, 468 entry->alignment, 469 eb_pin_flags(entry, ev->flags) | 470 PIN_USER | PIN_NOEVICT | PIN_VALIDATE); 471 if (unlikely(err)) 472 return err; 473 } 474 475 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 476 err = i915_vma_pin_fence(vma); 477 if (unlikely(err)) 478 return err; 479 480 if (vma->fence) 481 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 482 } 483 484 ev->flags |= __EXEC_OBJECT_HAS_PIN; 485 if (eb_vma_misplaced(entry, vma, ev->flags)) 486 return -EBADSLT; 487 488 return 0; 489 } 490 491 static void 492 eb_unreserve_vma(struct eb_vma *ev) 493 { 494 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 495 __i915_vma_unpin_fence(ev->vma); 496 497 ev->flags &= ~__EXEC_OBJECT_RESERVED; 498 } 499 500 static int 501 eb_validate_vma(struct i915_execbuffer *eb, 502 struct drm_i915_gem_exec_object2 *entry, 503 struct i915_vma *vma) 504 { 505 /* Relocations are disallowed for all platforms after TGL-LP. This 506 * also covers all platforms with local memory. 507 */ 508 if (entry->relocation_count && 509 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 510 return -EINVAL; 511 512 if (unlikely(entry->flags & eb->invalid_flags)) 513 return -EINVAL; 514 515 if (unlikely(entry->alignment && 516 !is_power_of_2_u64(entry->alignment))) 517 return -EINVAL; 518 519 /* 520 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 521 * any non-page-aligned or non-canonical addresses. 522 */ 523 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 524 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 525 return -EINVAL; 526 527 /* pad_to_size was once a reserved field, so sanitize it */ 528 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 529 if (unlikely(offset_in_page(entry->pad_to_size))) 530 return -EINVAL; 531 } else { 532 entry->pad_to_size = 0; 533 } 534 /* 535 * From drm_mm perspective address space is continuous, 536 * so from this point we're always using non-canonical 537 * form internally. 538 */ 539 entry->offset = gen8_noncanonical_addr(entry->offset); 540 541 if (!eb->reloc_cache.has_fence) { 542 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 543 } else { 544 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 545 eb->reloc_cache.needs_unfenced) && 546 i915_gem_object_is_tiled(vma->obj)) 547 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 548 } 549 550 return 0; 551 } 552 553 static bool 554 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) 555 { 556 return eb->args->flags & I915_EXEC_BATCH_FIRST ? 557 buffer_idx < eb->num_batches : 558 buffer_idx >= eb->args->buffer_count - eb->num_batches; 559 } 560 561 static int 562 eb_add_vma(struct i915_execbuffer *eb, 563 unsigned int *current_batch, 564 unsigned int i, 565 struct i915_vma *vma) 566 { 567 struct drm_i915_private *i915 = eb->i915; 568 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 569 struct eb_vma *ev = &eb->vma[i]; 570 571 ev->vma = vma; 572 ev->exec = entry; 573 ev->flags = entry->flags; 574 575 if (eb->lut_size > 0) { 576 ev->handle = entry->handle; 577 hlist_add_head(&ev->node, 578 &eb->buckets[hash_32(entry->handle, 579 eb->lut_size)]); 580 } 581 582 if (entry->relocation_count) 583 list_add_tail(&ev->reloc_link, &eb->relocs); 584 585 /* 586 * SNA is doing fancy tricks with compressing batch buffers, which leads 587 * to negative relocation deltas. Usually that works out ok since the 588 * relocate address is still positive, except when the batch is placed 589 * very low in the GTT. Ensure this doesn't happen. 590 * 591 * Note that actual hangs have only been observed on gen7, but for 592 * paranoia do it everywhere. 593 */ 594 if (is_batch_buffer(eb, i)) { 595 if (entry->relocation_count && 596 !(ev->flags & EXEC_OBJECT_PINNED)) 597 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 598 if (eb->reloc_cache.has_fence) 599 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 600 601 eb->batches[*current_batch] = ev; 602 603 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { 604 drm_dbg(&i915->drm, 605 "Attempting to use self-modifying batch buffer\n"); 606 return -EINVAL; 607 } 608 609 if (range_overflows_t(u64, 610 eb->batch_start_offset, 611 eb->args->batch_len, 612 ev->vma->size)) { 613 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 614 return -EINVAL; 615 } 616 617 if (eb->args->batch_len == 0) 618 eb->batch_len[*current_batch] = ev->vma->size - 619 eb->batch_start_offset; 620 else 621 eb->batch_len[*current_batch] = eb->args->batch_len; 622 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ 623 drm_dbg(&i915->drm, "Invalid batch length\n"); 624 return -EINVAL; 625 } 626 627 ++*current_batch; 628 } 629 630 return 0; 631 } 632 633 static int use_cpu_reloc(const struct reloc_cache *cache, 634 const struct drm_i915_gem_object *obj) 635 { 636 if (!i915_gem_object_has_struct_page(obj)) 637 return false; 638 639 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 640 return true; 641 642 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 643 return false; 644 645 /* 646 * For objects created by userspace through GEM_CREATE with pat_index 647 * set by set_pat extension, i915_gem_object_has_cache_level() always 648 * return true, otherwise the call would fall back to checking whether 649 * the object is un-cached. 650 */ 651 return (cache->has_llc || 652 obj->cache_dirty || 653 !i915_gem_object_has_cache_level(obj, I915_CACHE_NONE)); 654 } 655 656 static int eb_reserve_vma(struct i915_execbuffer *eb, 657 struct eb_vma *ev, 658 u64 pin_flags) 659 { 660 struct drm_i915_gem_exec_object2 *entry = ev->exec; 661 struct i915_vma *vma = ev->vma; 662 int err; 663 664 if (drm_mm_node_allocated(&vma->node) && 665 eb_vma_misplaced(entry, vma, ev->flags)) { 666 err = i915_vma_unbind(vma); 667 if (err) 668 return err; 669 } 670 671 err = i915_vma_pin_ww(vma, &eb->ww, 672 entry->pad_to_size, entry->alignment, 673 eb_pin_flags(entry, ev->flags) | pin_flags); 674 if (err) 675 return err; 676 677 if (entry->offset != i915_vma_offset(vma)) { 678 entry->offset = i915_vma_offset(vma) | UPDATE; 679 eb->args->flags |= __EXEC_HAS_RELOC; 680 } 681 682 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 683 err = i915_vma_pin_fence(vma); 684 if (unlikely(err)) 685 return err; 686 687 if (vma->fence) 688 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 689 } 690 691 ev->flags |= __EXEC_OBJECT_HAS_PIN; 692 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 693 694 return 0; 695 } 696 697 static bool eb_unbind(struct i915_execbuffer *eb, bool force) 698 { 699 const unsigned int count = eb->buffer_count; 700 unsigned int i; 701 struct list_head last; 702 bool unpinned = false; 703 704 /* Resort *all* the objects into priority order */ 705 INIT_LIST_HEAD(&eb->unbound); 706 INIT_LIST_HEAD(&last); 707 708 for (i = 0; i < count; i++) { 709 struct eb_vma *ev = &eb->vma[i]; 710 unsigned int flags = ev->flags; 711 712 if (!force && flags & EXEC_OBJECT_PINNED && 713 flags & __EXEC_OBJECT_HAS_PIN) 714 continue; 715 716 unpinned = true; 717 eb_unreserve_vma(ev); 718 719 if (flags & EXEC_OBJECT_PINNED) 720 /* Pinned must have their slot */ 721 list_add(&ev->bind_link, &eb->unbound); 722 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 723 /* Map require the lowest 256MiB (aperture) */ 724 list_add_tail(&ev->bind_link, &eb->unbound); 725 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 726 /* Prioritise 4GiB region for restricted bo */ 727 list_add(&ev->bind_link, &last); 728 else 729 list_add_tail(&ev->bind_link, &last); 730 } 731 732 list_splice_tail(&last, &eb->unbound); 733 return unpinned; 734 } 735 736 static int eb_reserve(struct i915_execbuffer *eb) 737 { 738 struct eb_vma *ev; 739 unsigned int pass; 740 int err = 0; 741 742 /* 743 * We have one more buffers that we couldn't bind, which could be due to 744 * various reasons. To resolve this we have 4 passes, with every next 745 * level turning the screws tighter: 746 * 747 * 0. Unbind all objects that do not match the GTT constraints for the 748 * execbuffer (fenceable, mappable, alignment etc). Bind all new 749 * objects. This avoids unnecessary unbinding of later objects in order 750 * to make room for the earlier objects *unless* we need to defragment. 751 * 752 * 1. Reorder the buffers, where objects with the most restrictive 753 * placement requirements go first (ignoring fixed location buffers for 754 * now). For example, objects needing the mappable aperture (the first 755 * 256M of GTT), should go first vs objects that can be placed just 756 * about anywhere. Repeat the previous pass. 757 * 758 * 2. Consider buffers that are pinned at a fixed location. Also try to 759 * evict the entire VM this time, leaving only objects that we were 760 * unable to lock. Try again to bind the buffers. (still using the new 761 * buffer order). 762 * 763 * 3. We likely have object lock contention for one or more stubborn 764 * objects in the VM, for which we need to evict to make forward 765 * progress (perhaps we are fighting the shrinker?). When evicting the 766 * VM this time around, anything that we can't lock we now track using 767 * the busy_bo, using the full lock (after dropping the vm->mutex to 768 * prevent deadlocks), instead of trylock. We then continue to evict the 769 * VM, this time with the stubborn object locked, which we can now 770 * hopefully unbind (if still bound in the VM). Repeat until the VM is 771 * evicted. Finally we should be able bind everything. 772 */ 773 for (pass = 0; pass <= 3; pass++) { 774 int pin_flags = PIN_USER | PIN_VALIDATE; 775 776 if (pass == 0) 777 pin_flags |= PIN_NONBLOCK; 778 779 if (pass >= 1) 780 eb_unbind(eb, pass >= 2); 781 782 if (pass == 2) { 783 err = mutex_lock_interruptible(&eb->context->vm->mutex); 784 if (!err) { 785 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL); 786 mutex_unlock(&eb->context->vm->mutex); 787 } 788 if (err) 789 return err; 790 } 791 792 if (pass == 3) { 793 retry: 794 err = mutex_lock_interruptible(&eb->context->vm->mutex); 795 if (!err) { 796 struct drm_i915_gem_object *busy_bo = NULL; 797 798 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo); 799 mutex_unlock(&eb->context->vm->mutex); 800 if (err && busy_bo) { 801 err = i915_gem_object_lock(busy_bo, &eb->ww); 802 i915_gem_object_put(busy_bo); 803 if (!err) 804 goto retry; 805 } 806 } 807 if (err) 808 return err; 809 } 810 811 list_for_each_entry(ev, &eb->unbound, bind_link) { 812 err = eb_reserve_vma(eb, ev, pin_flags); 813 if (err) 814 break; 815 } 816 817 if (err != -ENOSPC) 818 break; 819 } 820 821 return err; 822 } 823 824 static int eb_select_context(struct i915_execbuffer *eb) 825 { 826 struct i915_gem_context *ctx; 827 828 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 829 if (unlikely(IS_ERR(ctx))) 830 return PTR_ERR(ctx); 831 832 eb->gem_context = ctx; 833 if (i915_gem_context_has_full_ppgtt(ctx)) 834 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 835 836 return 0; 837 } 838 839 static int __eb_add_lut(struct i915_execbuffer *eb, 840 u32 handle, struct i915_vma *vma) 841 { 842 struct i915_gem_context *ctx = eb->gem_context; 843 struct i915_lut_handle *lut; 844 int err; 845 846 lut = i915_lut_handle_alloc(); 847 if (unlikely(!lut)) 848 return -ENOMEM; 849 850 i915_vma_get(vma); 851 if (!atomic_fetch_inc(&vma->open_count)) 852 i915_vma_reopen(vma); 853 lut->handle = handle; 854 lut->ctx = ctx; 855 856 /* Check that the context hasn't been closed in the meantime */ 857 err = -EINTR; 858 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 859 if (likely(!i915_gem_context_is_closed(ctx))) 860 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 861 else 862 err = -ENOENT; 863 if (err == 0) { /* And nor has this handle */ 864 struct drm_i915_gem_object *obj = vma->obj; 865 866 spin_lock(&obj->lut_lock); 867 if (idr_find(&eb->file->object_idr, handle) == obj) { 868 list_add(&lut->obj_link, &obj->lut_list); 869 } else { 870 radix_tree_delete(&ctx->handles_vma, handle); 871 err = -ENOENT; 872 } 873 spin_unlock(&obj->lut_lock); 874 } 875 mutex_unlock(&ctx->lut_mutex); 876 } 877 if (unlikely(err)) 878 goto err; 879 880 return 0; 881 882 err: 883 i915_vma_close(vma); 884 i915_vma_put(vma); 885 i915_lut_handle_free(lut); 886 return err; 887 } 888 889 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 890 { 891 struct i915_address_space *vm = eb->context->vm; 892 893 do { 894 struct drm_i915_gem_object *obj; 895 struct i915_vma *vma; 896 int err; 897 898 rcu_read_lock(); 899 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 900 if (likely(vma && vma->vm == vm)) 901 vma = i915_vma_tryget(vma); 902 rcu_read_unlock(); 903 if (likely(vma)) 904 return vma; 905 906 obj = i915_gem_object_lookup(eb->file, handle); 907 if (unlikely(!obj)) 908 return ERR_PTR(-ENOENT); 909 910 /* 911 * If the user has opted-in for protected-object tracking, make 912 * sure the object encryption can be used. 913 * We only need to do this when the object is first used with 914 * this context, because the context itself will be banned when 915 * the protected objects become invalid. 916 */ 917 if (i915_gem_context_uses_protected_content(eb->gem_context) && 918 i915_gem_object_is_protected(obj)) { 919 err = intel_pxp_key_check(eb->i915->pxp, obj, true); 920 if (err) { 921 i915_gem_object_put(obj); 922 return ERR_PTR(err); 923 } 924 } 925 926 vma = i915_vma_instance(obj, vm, NULL); 927 if (IS_ERR(vma)) { 928 i915_gem_object_put(obj); 929 return vma; 930 } 931 932 err = __eb_add_lut(eb, handle, vma); 933 if (likely(!err)) 934 return vma; 935 936 i915_gem_object_put(obj); 937 if (err != -EEXIST) 938 return ERR_PTR(err); 939 } while (1); 940 } 941 942 static int eb_lookup_vmas(struct i915_execbuffer *eb) 943 { 944 unsigned int i, current_batch = 0; 945 int err = 0; 946 947 INIT_LIST_HEAD(&eb->relocs); 948 949 for (i = 0; i < eb->buffer_count; i++) { 950 struct i915_vma *vma; 951 952 vma = eb_lookup_vma(eb, eb->exec[i].handle); 953 if (IS_ERR(vma)) { 954 err = PTR_ERR(vma); 955 goto err; 956 } 957 958 err = eb_validate_vma(eb, &eb->exec[i], vma); 959 if (unlikely(err)) { 960 i915_vma_put(vma); 961 goto err; 962 } 963 964 err = eb_add_vma(eb, ¤t_batch, i, vma); 965 if (err) 966 return err; 967 968 if (i915_gem_object_is_userptr(vma->obj)) { 969 err = i915_gem_object_userptr_submit_init(vma->obj); 970 if (err) { 971 if (i + 1 < eb->buffer_count) { 972 /* 973 * Execbuffer code expects last vma entry to be NULL, 974 * since we already initialized this entry, 975 * set the next value to NULL or we mess up 976 * cleanup handling. 977 */ 978 eb->vma[i + 1].vma = NULL; 979 } 980 981 return err; 982 } 983 984 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 985 eb->args->flags |= __EXEC_USERPTR_USED; 986 } 987 } 988 989 return 0; 990 991 err: 992 eb->vma[i].vma = NULL; 993 return err; 994 } 995 996 static int eb_lock_vmas(struct i915_execbuffer *eb) 997 { 998 unsigned int i; 999 int err; 1000 1001 for (i = 0; i < eb->buffer_count; i++) { 1002 struct eb_vma *ev = &eb->vma[i]; 1003 struct i915_vma *vma = ev->vma; 1004 1005 err = i915_gem_object_lock(vma->obj, &eb->ww); 1006 if (err) 1007 return err; 1008 } 1009 1010 return 0; 1011 } 1012 1013 static int eb_validate_vmas(struct i915_execbuffer *eb) 1014 { 1015 unsigned int i; 1016 int err; 1017 1018 INIT_LIST_HEAD(&eb->unbound); 1019 1020 err = eb_lock_vmas(eb); 1021 if (err) 1022 return err; 1023 1024 for (i = 0; i < eb->buffer_count; i++) { 1025 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 1026 struct eb_vma *ev = &eb->vma[i]; 1027 struct i915_vma *vma = ev->vma; 1028 1029 err = eb_pin_vma(eb, entry, ev); 1030 if (err == -EDEADLK) 1031 return err; 1032 1033 if (!err) { 1034 if (entry->offset != i915_vma_offset(vma)) { 1035 entry->offset = i915_vma_offset(vma) | UPDATE; 1036 eb->args->flags |= __EXEC_HAS_RELOC; 1037 } 1038 } else { 1039 eb_unreserve_vma(ev); 1040 1041 list_add_tail(&ev->bind_link, &eb->unbound); 1042 if (drm_mm_node_allocated(&vma->node)) { 1043 err = i915_vma_unbind(vma); 1044 if (err) 1045 return err; 1046 } 1047 } 1048 1049 /* Reserve enough slots to accommodate composite fences */ 1050 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches); 1051 if (err) 1052 return err; 1053 1054 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 1055 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 1056 } 1057 1058 if (!list_empty(&eb->unbound)) 1059 return eb_reserve(eb); 1060 1061 return 0; 1062 } 1063 1064 static struct eb_vma * 1065 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 1066 { 1067 if (eb->lut_size < 0) { 1068 if (handle >= -eb->lut_size) 1069 return NULL; 1070 return &eb->vma[handle]; 1071 } else { 1072 struct hlist_head *head; 1073 struct eb_vma *ev; 1074 1075 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 1076 hlist_for_each_entry(ev, head, node) { 1077 if (ev->handle == handle) 1078 return ev; 1079 } 1080 return NULL; 1081 } 1082 } 1083 1084 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1085 { 1086 const unsigned int count = eb->buffer_count; 1087 unsigned int i; 1088 1089 for (i = 0; i < count; i++) { 1090 struct eb_vma *ev = &eb->vma[i]; 1091 struct i915_vma *vma = ev->vma; 1092 1093 if (!vma) 1094 break; 1095 1096 eb_unreserve_vma(ev); 1097 1098 if (final) 1099 i915_vma_put(vma); 1100 } 1101 1102 eb_capture_release(eb); 1103 eb_unpin_engine(eb); 1104 } 1105 1106 static void eb_destroy(const struct i915_execbuffer *eb) 1107 { 1108 if (eb->lut_size > 0) 1109 kfree(eb->buckets); 1110 } 1111 1112 static u64 1113 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1114 const struct i915_vma *target) 1115 { 1116 return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target)); 1117 } 1118 1119 static void reloc_cache_init(struct reloc_cache *cache, 1120 struct drm_i915_private *i915) 1121 { 1122 cache->page = -1; 1123 cache->vaddr = 0; 1124 /* Must be a variable in the struct to allow GCC to unroll. */ 1125 cache->graphics_ver = GRAPHICS_VER(i915); 1126 cache->has_llc = HAS_LLC(i915); 1127 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1128 cache->has_fence = cache->graphics_ver < 4; 1129 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1130 cache->node.flags = 0; 1131 } 1132 1133 static void *unmask_page(unsigned long p) 1134 { 1135 return (void *)(uintptr_t)(p & PAGE_MASK); 1136 } 1137 1138 static unsigned int unmask_flags(unsigned long p) 1139 { 1140 return p & ~PAGE_MASK; 1141 } 1142 1143 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1144 1145 static struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1146 { 1147 struct drm_i915_private *i915 = 1148 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1149 return to_gt(i915)->ggtt; 1150 } 1151 1152 static void reloc_cache_unmap(struct reloc_cache *cache) 1153 { 1154 void *vaddr; 1155 1156 if (!cache->vaddr) 1157 return; 1158 1159 vaddr = unmask_page(cache->vaddr); 1160 if (cache->vaddr & KMAP) 1161 kunmap_local(vaddr); 1162 else 1163 io_mapping_unmap_atomic((void __iomem *)vaddr); 1164 } 1165 1166 static void reloc_cache_remap(struct reloc_cache *cache, 1167 struct drm_i915_gem_object *obj) 1168 { 1169 void *vaddr; 1170 1171 if (!cache->vaddr) 1172 return; 1173 1174 if (cache->vaddr & KMAP) { 1175 struct page *page = i915_gem_object_get_page(obj, cache->page); 1176 1177 vaddr = kmap_local_page(page); 1178 cache->vaddr = unmask_flags(cache->vaddr) | 1179 (unsigned long)vaddr; 1180 } else { 1181 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1182 unsigned long offset; 1183 1184 offset = cache->node.start; 1185 if (!drm_mm_node_allocated(&cache->node)) 1186 offset += cache->page << PAGE_SHIFT; 1187 1188 cache->vaddr = (unsigned long) 1189 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1190 } 1191 } 1192 1193 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1194 { 1195 void *vaddr; 1196 1197 if (!cache->vaddr) 1198 return; 1199 1200 vaddr = unmask_page(cache->vaddr); 1201 if (cache->vaddr & KMAP) { 1202 struct drm_i915_gem_object *obj = 1203 (struct drm_i915_gem_object *)cache->node.mm; 1204 if (cache->vaddr & CLFLUSH_AFTER) 1205 mb(); 1206 1207 kunmap_local(vaddr); 1208 i915_gem_object_finish_access(obj); 1209 } else { 1210 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1211 1212 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1213 io_mapping_unmap_atomic((void __iomem *)vaddr); 1214 1215 if (drm_mm_node_allocated(&cache->node)) { 1216 ggtt->vm.clear_range(&ggtt->vm, 1217 cache->node.start, 1218 cache->node.size); 1219 mutex_lock(&ggtt->vm.mutex); 1220 drm_mm_remove_node(&cache->node); 1221 mutex_unlock(&ggtt->vm.mutex); 1222 } else { 1223 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1224 } 1225 } 1226 1227 cache->vaddr = 0; 1228 cache->page = -1; 1229 } 1230 1231 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1232 struct reloc_cache *cache, 1233 unsigned long pageno) 1234 { 1235 void *vaddr; 1236 struct page *page; 1237 1238 if (cache->vaddr) { 1239 kunmap_local(unmask_page(cache->vaddr)); 1240 } else { 1241 unsigned int flushes; 1242 int err; 1243 1244 err = i915_gem_object_prepare_write(obj, &flushes); 1245 if (err) 1246 return ERR_PTR(err); 1247 1248 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1249 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1250 1251 cache->vaddr = flushes | KMAP; 1252 cache->node.mm = (void *)obj; 1253 if (flushes) 1254 mb(); 1255 } 1256 1257 page = i915_gem_object_get_page(obj, pageno); 1258 if (!obj->mm.dirty) 1259 set_page_dirty(page); 1260 1261 vaddr = kmap_local_page(page); 1262 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1263 cache->page = pageno; 1264 1265 return vaddr; 1266 } 1267 1268 static void *reloc_iomap(struct i915_vma *batch, 1269 struct i915_execbuffer *eb, 1270 unsigned long page) 1271 { 1272 struct drm_i915_gem_object *obj = batch->obj; 1273 struct reloc_cache *cache = &eb->reloc_cache; 1274 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1275 unsigned long offset; 1276 void *vaddr; 1277 1278 if (cache->vaddr) { 1279 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1280 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1281 } else { 1282 struct i915_vma *vma = ERR_PTR(-ENODEV); 1283 int err; 1284 1285 if (i915_gem_object_is_tiled(obj)) 1286 return ERR_PTR(-EINVAL); 1287 1288 if (use_cpu_reloc(cache, obj)) 1289 return NULL; 1290 1291 err = i915_gem_object_set_to_gtt_domain(obj, true); 1292 if (err) 1293 return ERR_PTR(err); 1294 1295 /* 1296 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch 1297 * VMA from the object list because we no longer pin. 1298 * 1299 * Only attempt to pin the batch buffer to ggtt if the current batch 1300 * is not inside ggtt, or the batch buffer is not misplaced. 1301 */ 1302 if (!i915_is_ggtt(batch->vm) || 1303 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) { 1304 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1305 PIN_MAPPABLE | 1306 PIN_NONBLOCK /* NOWARN */ | 1307 PIN_NOEVICT); 1308 } 1309 1310 if (vma == ERR_PTR(-EDEADLK)) 1311 return vma; 1312 1313 if (IS_ERR(vma)) { 1314 memset(&cache->node, 0, sizeof(cache->node)); 1315 mutex_lock(&ggtt->vm.mutex); 1316 err = drm_mm_insert_node_in_range 1317 (&ggtt->vm.mm, &cache->node, 1318 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1319 0, ggtt->mappable_end, 1320 DRM_MM_INSERT_LOW); 1321 mutex_unlock(&ggtt->vm.mutex); 1322 if (err) /* no inactive aperture space, use cpu reloc */ 1323 return NULL; 1324 } else { 1325 cache->node.start = i915_ggtt_offset(vma); 1326 cache->node.mm = (void *)vma; 1327 } 1328 } 1329 1330 offset = cache->node.start; 1331 if (drm_mm_node_allocated(&cache->node)) { 1332 ggtt->vm.insert_page(&ggtt->vm, 1333 i915_gem_object_get_dma_address(obj, page), 1334 offset, 1335 i915_gem_get_pat_index(ggtt->vm.i915, 1336 I915_CACHE_NONE), 1337 0); 1338 } else { 1339 offset += page << PAGE_SHIFT; 1340 } 1341 1342 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1343 offset); 1344 cache->page = page; 1345 cache->vaddr = (unsigned long)vaddr; 1346 1347 return vaddr; 1348 } 1349 1350 static void *reloc_vaddr(struct i915_vma *vma, 1351 struct i915_execbuffer *eb, 1352 unsigned long page) 1353 { 1354 struct reloc_cache *cache = &eb->reloc_cache; 1355 void *vaddr; 1356 1357 if (cache->page == page) { 1358 vaddr = unmask_page(cache->vaddr); 1359 } else { 1360 vaddr = NULL; 1361 if ((cache->vaddr & KMAP) == 0) 1362 vaddr = reloc_iomap(vma, eb, page); 1363 if (!vaddr) 1364 vaddr = reloc_kmap(vma->obj, cache, page); 1365 } 1366 1367 return vaddr; 1368 } 1369 1370 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1371 { 1372 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1373 if (flushes & CLFLUSH_BEFORE) 1374 drm_clflush_virt_range(addr, sizeof(*addr)); 1375 1376 *addr = value; 1377 1378 /* 1379 * Writes to the same cacheline are serialised by the CPU 1380 * (including clflush). On the write path, we only require 1381 * that it hits memory in an orderly fashion and place 1382 * mb barriers at the start and end of the relocation phase 1383 * to ensure ordering of clflush wrt to the system. 1384 */ 1385 if (flushes & CLFLUSH_AFTER) 1386 drm_clflush_virt_range(addr, sizeof(*addr)); 1387 } else 1388 *addr = value; 1389 } 1390 1391 static u64 1392 relocate_entry(struct i915_vma *vma, 1393 const struct drm_i915_gem_relocation_entry *reloc, 1394 struct i915_execbuffer *eb, 1395 const struct i915_vma *target) 1396 { 1397 u64 target_addr = relocation_target(reloc, target); 1398 u64 offset = reloc->offset; 1399 bool wide = eb->reloc_cache.use_64bit_reloc; 1400 void *vaddr; 1401 1402 repeat: 1403 vaddr = reloc_vaddr(vma, eb, 1404 offset >> PAGE_SHIFT); 1405 if (IS_ERR(vaddr)) 1406 return PTR_ERR(vaddr); 1407 1408 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1409 clflush_write32(vaddr + offset_in_page(offset), 1410 lower_32_bits(target_addr), 1411 eb->reloc_cache.vaddr); 1412 1413 if (wide) { 1414 offset += sizeof(u32); 1415 target_addr >>= 32; 1416 wide = false; 1417 goto repeat; 1418 } 1419 1420 return target->node.start | UPDATE; 1421 } 1422 1423 static u64 1424 eb_relocate_entry(struct i915_execbuffer *eb, 1425 struct eb_vma *ev, 1426 const struct drm_i915_gem_relocation_entry *reloc) 1427 { 1428 struct drm_i915_private *i915 = eb->i915; 1429 struct eb_vma *target; 1430 int err; 1431 1432 /* we've already hold a reference to all valid objects */ 1433 target = eb_get_vma(eb, reloc->target_handle); 1434 if (unlikely(!target)) 1435 return -ENOENT; 1436 1437 /* Validate that the target is in a valid r/w GPU domain */ 1438 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1439 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1440 "target %d offset %d " 1441 "read %08x write %08x\n", 1442 reloc->target_handle, 1443 (int) reloc->offset, 1444 reloc->read_domains, 1445 reloc->write_domain); 1446 return -EINVAL; 1447 } 1448 if (unlikely((reloc->write_domain | reloc->read_domains) 1449 & ~I915_GEM_GPU_DOMAINS)) { 1450 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1451 "target %d offset %d " 1452 "read %08x write %08x\n", 1453 reloc->target_handle, 1454 (int) reloc->offset, 1455 reloc->read_domains, 1456 reloc->write_domain); 1457 return -EINVAL; 1458 } 1459 1460 if (reloc->write_domain) { 1461 target->flags |= EXEC_OBJECT_WRITE; 1462 1463 /* 1464 * Sandybridge PPGTT errata: We need a global gtt mapping 1465 * for MI and pipe_control writes because the gpu doesn't 1466 * properly redirect them through the ppgtt for non_secure 1467 * batchbuffers. 1468 */ 1469 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1470 GRAPHICS_VER(eb->i915) == 6 && 1471 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1472 struct i915_vma *vma = target->vma; 1473 1474 reloc_cache_unmap(&eb->reloc_cache); 1475 mutex_lock(&vma->vm->mutex); 1476 err = i915_vma_bind(target->vma, 1477 target->vma->obj->pat_index, 1478 PIN_GLOBAL, NULL, NULL); 1479 mutex_unlock(&vma->vm->mutex); 1480 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1481 if (err) 1482 return err; 1483 } 1484 } 1485 1486 /* 1487 * If the relocation already has the right value in it, no 1488 * more work needs to be done. 1489 */ 1490 if (!DBG_FORCE_RELOC && 1491 gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset) 1492 return 0; 1493 1494 /* Check that the relocation address is valid... */ 1495 if (unlikely(reloc->offset > 1496 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1497 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1498 "target %d offset %d size %d.\n", 1499 reloc->target_handle, 1500 (int)reloc->offset, 1501 (int)ev->vma->size); 1502 return -EINVAL; 1503 } 1504 if (unlikely(reloc->offset & 3)) { 1505 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1506 "target %d offset %d.\n", 1507 reloc->target_handle, 1508 (int)reloc->offset); 1509 return -EINVAL; 1510 } 1511 1512 /* 1513 * If we write into the object, we need to force the synchronisation 1514 * barrier, either with an asynchronous clflush or if we executed the 1515 * patching using the GPU (though that should be serialised by the 1516 * timeline). To be completely sure, and since we are required to 1517 * do relocations we are already stalling, disable the user's opt 1518 * out of our synchronisation. 1519 */ 1520 ev->flags &= ~EXEC_OBJECT_ASYNC; 1521 1522 /* and update the user's relocation entry */ 1523 return relocate_entry(ev->vma, reloc, eb, target->vma); 1524 } 1525 1526 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1527 { 1528 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1529 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1530 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1531 struct drm_i915_gem_relocation_entry __user *urelocs = 1532 u64_to_user_ptr(entry->relocs_ptr); 1533 unsigned long remain = entry->relocation_count; 1534 1535 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1536 return -EINVAL; 1537 1538 /* 1539 * We must check that the entire relocation array is safe 1540 * to read. However, if the array is not writable the user loses 1541 * the updated relocation values. 1542 */ 1543 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1544 return -EFAULT; 1545 1546 do { 1547 struct drm_i915_gem_relocation_entry *r = stack; 1548 unsigned int count = 1549 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1550 unsigned int copied; 1551 1552 /* 1553 * This is the fast path and we cannot handle a pagefault 1554 * whilst holding the struct mutex lest the user pass in the 1555 * relocations contained within a mmaped bo. For in such a case 1556 * we, the page fault handler would call i915_gem_fault() and 1557 * we would try to acquire the struct mutex again. Obviously 1558 * this is bad and so lockdep complains vehemently. 1559 */ 1560 pagefault_disable(); 1561 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1562 pagefault_enable(); 1563 if (unlikely(copied)) { 1564 remain = -EFAULT; 1565 goto out; 1566 } 1567 1568 remain -= count; 1569 do { 1570 u64 offset = eb_relocate_entry(eb, ev, r); 1571 1572 if (likely(offset == 0)) { 1573 } else if ((s64)offset < 0) { 1574 remain = (int)offset; 1575 goto out; 1576 } else { 1577 /* 1578 * Note that reporting an error now 1579 * leaves everything in an inconsistent 1580 * state as we have *already* changed 1581 * the relocation value inside the 1582 * object. As we have not changed the 1583 * reloc.presumed_offset or will not 1584 * change the execobject.offset, on the 1585 * call we may not rewrite the value 1586 * inside the object, leaving it 1587 * dangling and causing a GPU hang. Unless 1588 * userspace dynamically rebuilds the 1589 * relocations on each execbuf rather than 1590 * presume a static tree. 1591 * 1592 * We did previously check if the relocations 1593 * were writable (access_ok), an error now 1594 * would be a strange race with mprotect, 1595 * having already demonstrated that we 1596 * can read from this userspace address. 1597 */ 1598 offset = gen8_canonical_addr(offset & ~UPDATE); 1599 __put_user(offset, 1600 &urelocs[r - stack].presumed_offset); 1601 } 1602 } while (r++, --count); 1603 urelocs += ARRAY_SIZE(stack); 1604 } while (remain); 1605 out: 1606 reloc_cache_reset(&eb->reloc_cache, eb); 1607 return remain; 1608 } 1609 1610 static int 1611 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1612 { 1613 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1614 struct drm_i915_gem_relocation_entry *relocs = 1615 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1616 unsigned int i; 1617 int err; 1618 1619 for (i = 0; i < entry->relocation_count; i++) { 1620 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1621 1622 if ((s64)offset < 0) { 1623 err = (int)offset; 1624 goto err; 1625 } 1626 } 1627 err = 0; 1628 err: 1629 reloc_cache_reset(&eb->reloc_cache, eb); 1630 return err; 1631 } 1632 1633 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1634 { 1635 const char __user *addr, *end; 1636 unsigned long size; 1637 char __maybe_unused c; 1638 1639 size = entry->relocation_count; 1640 if (size == 0) 1641 return 0; 1642 1643 if (size > N_RELOC(ULONG_MAX)) 1644 return -EINVAL; 1645 1646 addr = u64_to_user_ptr(entry->relocs_ptr); 1647 size *= sizeof(struct drm_i915_gem_relocation_entry); 1648 if (!access_ok(addr, size)) 1649 return -EFAULT; 1650 1651 end = addr + size; 1652 for (; addr < end; addr += PAGE_SIZE) { 1653 int err = __get_user(c, addr); 1654 if (err) 1655 return err; 1656 } 1657 return __get_user(c, end - 1); 1658 } 1659 1660 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1661 { 1662 struct drm_i915_gem_relocation_entry *relocs; 1663 const unsigned int count = eb->buffer_count; 1664 unsigned int i; 1665 int err; 1666 1667 for (i = 0; i < count; i++) { 1668 const unsigned int nreloc = eb->exec[i].relocation_count; 1669 struct drm_i915_gem_relocation_entry __user *urelocs; 1670 unsigned long size; 1671 unsigned long copied; 1672 1673 if (nreloc == 0) 1674 continue; 1675 1676 err = check_relocations(&eb->exec[i]); 1677 if (err) 1678 goto err; 1679 1680 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1681 size = nreloc * sizeof(*relocs); 1682 1683 relocs = kvmalloc_array(1, size, GFP_KERNEL); 1684 if (!relocs) { 1685 err = -ENOMEM; 1686 goto err; 1687 } 1688 1689 /* copy_from_user is limited to < 4GiB */ 1690 copied = 0; 1691 do { 1692 unsigned int len = 1693 min_t(u64, BIT_ULL(31), size - copied); 1694 1695 if (__copy_from_user((char *)relocs + copied, 1696 (char __user *)urelocs + copied, 1697 len)) 1698 goto end; 1699 1700 copied += len; 1701 } while (copied < size); 1702 1703 /* 1704 * As we do not update the known relocation offsets after 1705 * relocating (due to the complexities in lock handling), 1706 * we need to mark them as invalid now so that we force the 1707 * relocation processing next time. Just in case the target 1708 * object is evicted and then rebound into its old 1709 * presumed_offset before the next execbuffer - if that 1710 * happened we would make the mistake of assuming that the 1711 * relocations were valid. 1712 */ 1713 if (!user_access_begin(urelocs, size)) 1714 goto end; 1715 1716 for (copied = 0; copied < nreloc; copied++) 1717 unsafe_put_user(-1, 1718 &urelocs[copied].presumed_offset, 1719 end_user); 1720 user_access_end(); 1721 1722 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1723 } 1724 1725 return 0; 1726 1727 end_user: 1728 user_access_end(); 1729 end: 1730 kvfree(relocs); 1731 err = -EFAULT; 1732 err: 1733 while (i--) { 1734 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1735 if (eb->exec[i].relocation_count) 1736 kvfree(relocs); 1737 } 1738 return err; 1739 } 1740 1741 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1742 { 1743 const unsigned int count = eb->buffer_count; 1744 unsigned int i; 1745 1746 for (i = 0; i < count; i++) { 1747 int err; 1748 1749 err = check_relocations(&eb->exec[i]); 1750 if (err) 1751 return err; 1752 } 1753 1754 return 0; 1755 } 1756 1757 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1758 { 1759 const unsigned int count = eb->buffer_count; 1760 unsigned int i; 1761 int ret; 1762 1763 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1764 return 0; 1765 1766 for (i = 0; i < count; i++) { 1767 struct eb_vma *ev = &eb->vma[i]; 1768 1769 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1770 continue; 1771 1772 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1773 if (ret) 1774 return ret; 1775 1776 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1777 } 1778 1779 return 0; 1780 } 1781 1782 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) 1783 { 1784 bool have_copy = false; 1785 struct eb_vma *ev; 1786 int err = 0; 1787 1788 repeat: 1789 if (signal_pending(current)) { 1790 err = -ERESTARTSYS; 1791 goto out; 1792 } 1793 1794 /* We may process another execbuffer during the unlock... */ 1795 eb_release_vmas(eb, false); 1796 i915_gem_ww_ctx_fini(&eb->ww); 1797 1798 /* 1799 * We take 3 passes through the slowpatch. 1800 * 1801 * 1 - we try to just prefault all the user relocation entries and 1802 * then attempt to reuse the atomic pagefault disabled fast path again. 1803 * 1804 * 2 - we copy the user entries to a local buffer here outside of the 1805 * local and allow ourselves to wait upon any rendering before 1806 * relocations 1807 * 1808 * 3 - we already have a local copy of the relocation entries, but 1809 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1810 */ 1811 if (!err) { 1812 err = eb_prefault_relocations(eb); 1813 } else if (!have_copy) { 1814 err = eb_copy_relocations(eb); 1815 have_copy = err == 0; 1816 } else { 1817 cond_resched(); 1818 err = 0; 1819 } 1820 1821 if (!err) 1822 err = eb_reinit_userptr(eb); 1823 1824 i915_gem_ww_ctx_init(&eb->ww, true); 1825 if (err) 1826 goto out; 1827 1828 /* reacquire the objects */ 1829 repeat_validate: 1830 err = eb_pin_engine(eb, false); 1831 if (err) 1832 goto err; 1833 1834 err = eb_validate_vmas(eb); 1835 if (err) 1836 goto err; 1837 1838 GEM_BUG_ON(!eb->batches[0]); 1839 1840 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1841 if (!have_copy) { 1842 err = eb_relocate_vma(eb, ev); 1843 if (err) 1844 break; 1845 } else { 1846 err = eb_relocate_vma_slow(eb, ev); 1847 if (err) 1848 break; 1849 } 1850 } 1851 1852 if (err == -EDEADLK) 1853 goto err; 1854 1855 if (err && !have_copy) 1856 goto repeat; 1857 1858 if (err) 1859 goto err; 1860 1861 /* as last step, parse the command buffer */ 1862 err = eb_parse(eb); 1863 if (err) 1864 goto err; 1865 1866 /* 1867 * Leave the user relocations as are, this is the painfully slow path, 1868 * and we want to avoid the complication of dropping the lock whilst 1869 * having buffers reserved in the aperture and so causing spurious 1870 * ENOSPC for random operations. 1871 */ 1872 1873 err: 1874 if (err == -EDEADLK) { 1875 eb_release_vmas(eb, false); 1876 err = i915_gem_ww_ctx_backoff(&eb->ww); 1877 if (!err) 1878 goto repeat_validate; 1879 } 1880 1881 if (err == -EAGAIN) 1882 goto repeat; 1883 1884 out: 1885 if (have_copy) { 1886 const unsigned int count = eb->buffer_count; 1887 unsigned int i; 1888 1889 for (i = 0; i < count; i++) { 1890 const struct drm_i915_gem_exec_object2 *entry = 1891 &eb->exec[i]; 1892 struct drm_i915_gem_relocation_entry *relocs; 1893 1894 if (!entry->relocation_count) 1895 continue; 1896 1897 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1898 kvfree(relocs); 1899 } 1900 } 1901 1902 return err; 1903 } 1904 1905 static int eb_relocate_parse(struct i915_execbuffer *eb) 1906 { 1907 int err; 1908 bool throttle = true; 1909 1910 retry: 1911 err = eb_pin_engine(eb, throttle); 1912 if (err) { 1913 if (err != -EDEADLK) 1914 return err; 1915 1916 goto err; 1917 } 1918 1919 /* only throttle once, even if we didn't need to throttle */ 1920 throttle = false; 1921 1922 err = eb_validate_vmas(eb); 1923 if (err == -EAGAIN) 1924 goto slow; 1925 else if (err) 1926 goto err; 1927 1928 /* The objects are in their final locations, apply the relocations. */ 1929 if (eb->args->flags & __EXEC_HAS_RELOC) { 1930 struct eb_vma *ev; 1931 1932 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1933 err = eb_relocate_vma(eb, ev); 1934 if (err) 1935 break; 1936 } 1937 1938 if (err == -EDEADLK) 1939 goto err; 1940 else if (err) 1941 goto slow; 1942 } 1943 1944 if (!err) 1945 err = eb_parse(eb); 1946 1947 err: 1948 if (err == -EDEADLK) { 1949 eb_release_vmas(eb, false); 1950 err = i915_gem_ww_ctx_backoff(&eb->ww); 1951 if (!err) 1952 goto retry; 1953 } 1954 1955 return err; 1956 1957 slow: 1958 err = eb_relocate_parse_slow(eb); 1959 if (err) 1960 /* 1961 * If the user expects the execobject.offset and 1962 * reloc.presumed_offset to be an exact match, 1963 * as for using NO_RELOC, then we cannot update 1964 * the execobject.offset until we have completed 1965 * relocation. 1966 */ 1967 eb->args->flags &= ~__EXEC_HAS_RELOC; 1968 1969 return err; 1970 } 1971 1972 /* 1973 * Using two helper loops for the order of which requests / batches are created 1974 * and added the to backend. Requests are created in order from the parent to 1975 * the last child. Requests are added in the reverse order, from the last child 1976 * to parent. This is done for locking reasons as the timeline lock is acquired 1977 * during request creation and released when the request is added to the 1978 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be 1979 * the ordering. 1980 */ 1981 #define for_each_batch_create_order(_eb, _i) \ 1982 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) 1983 #define for_each_batch_add_order(_eb, _i) \ 1984 BUILD_BUG_ON(!typecheck(int, _i)); \ 1985 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) 1986 1987 static struct i915_request * 1988 eb_find_first_request_added(struct i915_execbuffer *eb) 1989 { 1990 int i; 1991 1992 for_each_batch_add_order(eb, i) 1993 if (eb->requests[i]) 1994 return eb->requests[i]; 1995 1996 GEM_BUG_ON("Request not found"); 1997 1998 return NULL; 1999 } 2000 2001 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 2002 2003 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ 2004 static int eb_capture_stage(struct i915_execbuffer *eb) 2005 { 2006 const unsigned int count = eb->buffer_count; 2007 unsigned int i = count, j; 2008 2009 while (i--) { 2010 struct eb_vma *ev = &eb->vma[i]; 2011 struct i915_vma *vma = ev->vma; 2012 unsigned int flags = ev->flags; 2013 2014 if (!(flags & EXEC_OBJECT_CAPTURE)) 2015 continue; 2016 2017 if (i915_gem_context_is_recoverable(eb->gem_context) && 2018 (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0))) 2019 return -EINVAL; 2020 2021 for_each_batch_create_order(eb, j) { 2022 struct i915_capture_list *capture; 2023 2024 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 2025 if (!capture) 2026 continue; 2027 2028 capture->next = eb->capture_lists[j]; 2029 capture->vma_res = i915_vma_resource_get(vma->resource); 2030 eb->capture_lists[j] = capture; 2031 } 2032 } 2033 2034 return 0; 2035 } 2036 2037 /* Commit once we're in the critical path */ 2038 static void eb_capture_commit(struct i915_execbuffer *eb) 2039 { 2040 unsigned int j; 2041 2042 for_each_batch_create_order(eb, j) { 2043 struct i915_request *rq = eb->requests[j]; 2044 2045 if (!rq) 2046 break; 2047 2048 rq->capture_list = eb->capture_lists[j]; 2049 eb->capture_lists[j] = NULL; 2050 } 2051 } 2052 2053 /* 2054 * Release anything that didn't get committed due to errors. 2055 * The capture_list will otherwise be freed at request retire. 2056 */ 2057 static void eb_capture_release(struct i915_execbuffer *eb) 2058 { 2059 unsigned int j; 2060 2061 for_each_batch_create_order(eb, j) { 2062 if (eb->capture_lists[j]) { 2063 i915_request_free_capture_list(eb->capture_lists[j]); 2064 eb->capture_lists[j] = NULL; 2065 } 2066 } 2067 } 2068 2069 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2070 { 2071 memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); 2072 } 2073 2074 #else 2075 2076 static int eb_capture_stage(struct i915_execbuffer *eb) 2077 { 2078 return 0; 2079 } 2080 2081 static void eb_capture_commit(struct i915_execbuffer *eb) 2082 { 2083 } 2084 2085 static void eb_capture_release(struct i915_execbuffer *eb) 2086 { 2087 } 2088 2089 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2090 { 2091 } 2092 2093 #endif 2094 2095 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2096 { 2097 const unsigned int count = eb->buffer_count; 2098 unsigned int i = count; 2099 int err = 0, j; 2100 2101 while (i--) { 2102 struct eb_vma *ev = &eb->vma[i]; 2103 struct i915_vma *vma = ev->vma; 2104 unsigned int flags = ev->flags; 2105 struct drm_i915_gem_object *obj = vma->obj; 2106 2107 assert_vma_held(vma); 2108 2109 /* 2110 * If the GPU is not _reading_ through the CPU cache, we need 2111 * to make sure that any writes (both previous GPU writes from 2112 * before a change in snooping levels and normal CPU writes) 2113 * caught in that cache are flushed to main memory. 2114 * 2115 * We want to say 2116 * obj->cache_dirty && 2117 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2118 * but gcc's optimiser doesn't handle that as well and emits 2119 * two jumps instead of one. Maybe one day... 2120 * 2121 * FIXME: There is also sync flushing in set_pages(), which 2122 * serves a different purpose(some of the time at least). 2123 * 2124 * We should consider: 2125 * 2126 * 1. Rip out the async flush code. 2127 * 2128 * 2. Or make the sync flushing use the async clflush path 2129 * using mandatory fences underneath. Currently the below 2130 * async flush happens after we bind the object. 2131 */ 2132 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2133 if (i915_gem_clflush_object(obj, 0)) 2134 flags &= ~EXEC_OBJECT_ASYNC; 2135 } 2136 2137 /* We only need to await on the first request */ 2138 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2139 err = i915_request_await_object 2140 (eb_find_first_request_added(eb), obj, 2141 flags & EXEC_OBJECT_WRITE); 2142 } 2143 2144 for_each_batch_add_order(eb, j) { 2145 if (err) 2146 break; 2147 if (!eb->requests[j]) 2148 continue; 2149 2150 err = _i915_vma_move_to_active(vma, eb->requests[j], 2151 j ? NULL : 2152 eb->composite_fence ? 2153 eb->composite_fence : 2154 &eb->requests[j]->fence, 2155 flags | __EXEC_OBJECT_NO_RESERVE | 2156 __EXEC_OBJECT_NO_REQUEST_AWAIT); 2157 } 2158 } 2159 2160 #ifdef CONFIG_MMU_NOTIFIER 2161 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2162 for (i = 0; i < count; i++) { 2163 struct eb_vma *ev = &eb->vma[i]; 2164 struct drm_i915_gem_object *obj = ev->vma->obj; 2165 2166 if (!i915_gem_object_is_userptr(obj)) 2167 continue; 2168 2169 err = i915_gem_object_userptr_submit_done(obj); 2170 if (err) 2171 break; 2172 } 2173 } 2174 #endif 2175 2176 if (unlikely(err)) 2177 goto err_skip; 2178 2179 /* Unconditionally flush any chipset caches (for streaming writes). */ 2180 intel_gt_chipset_flush(eb->gt); 2181 eb_capture_commit(eb); 2182 2183 return 0; 2184 2185 err_skip: 2186 for_each_batch_create_order(eb, j) { 2187 if (!eb->requests[j]) 2188 break; 2189 2190 i915_request_set_error_once(eb->requests[j], err); 2191 } 2192 return err; 2193 } 2194 2195 static int i915_gem_check_execbuffer(struct drm_i915_private *i915, 2196 struct drm_i915_gem_execbuffer2 *exec) 2197 { 2198 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2199 return -EINVAL; 2200 2201 /* Kernel clipping was a DRI1 misfeature */ 2202 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2203 I915_EXEC_USE_EXTENSIONS))) { 2204 if (exec->num_cliprects || exec->cliprects_ptr) 2205 return -EINVAL; 2206 } 2207 2208 if (exec->DR4 == 0xffffffff) { 2209 drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n"); 2210 exec->DR4 = 0; 2211 } 2212 if (exec->DR1 || exec->DR4) 2213 return -EINVAL; 2214 2215 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2216 return -EINVAL; 2217 2218 return 0; 2219 } 2220 2221 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2222 { 2223 u32 *cs; 2224 int i; 2225 2226 if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) { 2227 drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n"); 2228 return -EINVAL; 2229 } 2230 2231 cs = intel_ring_begin(rq, 4 * 2 + 2); 2232 if (IS_ERR(cs)) 2233 return PTR_ERR(cs); 2234 2235 *cs++ = MI_LOAD_REGISTER_IMM(4); 2236 for (i = 0; i < 4; i++) { 2237 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2238 *cs++ = 0; 2239 } 2240 *cs++ = MI_NOOP; 2241 intel_ring_advance(rq, cs); 2242 2243 return 0; 2244 } 2245 2246 static struct i915_vma * 2247 shadow_batch_pin(struct i915_execbuffer *eb, 2248 struct drm_i915_gem_object *obj, 2249 struct i915_address_space *vm, 2250 unsigned int flags) 2251 { 2252 struct i915_vma *vma; 2253 int err; 2254 2255 vma = i915_vma_instance(obj, vm, NULL); 2256 if (IS_ERR(vma)) 2257 return vma; 2258 2259 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); 2260 if (err) 2261 return ERR_PTR(err); 2262 2263 return vma; 2264 } 2265 2266 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2267 { 2268 /* 2269 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2270 * batch" bit. Hence we need to pin secure batches into the global gtt. 2271 * hsw should have this fixed, but bdw mucks it up again. */ 2272 if (eb->batch_flags & I915_DISPATCH_SECURE) 2273 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); 2274 2275 return NULL; 2276 } 2277 2278 static int eb_parse(struct i915_execbuffer *eb) 2279 { 2280 struct drm_i915_private *i915 = eb->i915; 2281 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2282 struct i915_vma *shadow, *trampoline, *batch; 2283 unsigned long len; 2284 int err; 2285 2286 if (!eb_use_cmdparser(eb)) { 2287 batch = eb_dispatch_secure(eb, eb->batches[0]->vma); 2288 if (IS_ERR(batch)) 2289 return PTR_ERR(batch); 2290 2291 goto secure_batch; 2292 } 2293 2294 if (intel_context_is_parallel(eb->context)) 2295 return -EINVAL; 2296 2297 len = eb->batch_len[0]; 2298 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2299 /* 2300 * ppGTT backed shadow buffers must be mapped RO, to prevent 2301 * post-scan tampering 2302 */ 2303 if (!eb->context->vm->has_read_only) { 2304 drm_dbg(&i915->drm, 2305 "Cannot prevent post-scan tampering without RO capable vm\n"); 2306 return -EINVAL; 2307 } 2308 } else { 2309 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2310 } 2311 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ 2312 return -EINVAL; 2313 2314 if (!pool) { 2315 pool = intel_gt_get_buffer_pool(eb->gt, len, 2316 I915_MAP_WB); 2317 if (IS_ERR(pool)) 2318 return PTR_ERR(pool); 2319 eb->batch_pool = pool; 2320 } 2321 2322 err = i915_gem_object_lock(pool->obj, &eb->ww); 2323 if (err) 2324 return err; 2325 2326 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2327 if (IS_ERR(shadow)) 2328 return PTR_ERR(shadow); 2329 2330 intel_gt_buffer_pool_mark_used(pool); 2331 i915_gem_object_set_readonly(shadow->obj); 2332 shadow->private = pool; 2333 2334 trampoline = NULL; 2335 if (CMDPARSER_USES_GGTT(eb->i915)) { 2336 trampoline = shadow; 2337 2338 shadow = shadow_batch_pin(eb, pool->obj, 2339 &eb->gt->ggtt->vm, 2340 PIN_GLOBAL); 2341 if (IS_ERR(shadow)) 2342 return PTR_ERR(shadow); 2343 2344 shadow->private = pool; 2345 2346 eb->batch_flags |= I915_DISPATCH_SECURE; 2347 } 2348 2349 batch = eb_dispatch_secure(eb, shadow); 2350 if (IS_ERR(batch)) 2351 return PTR_ERR(batch); 2352 2353 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1); 2354 if (err) 2355 return err; 2356 2357 err = intel_engine_cmd_parser(eb->context->engine, 2358 eb->batches[0]->vma, 2359 eb->batch_start_offset, 2360 eb->batch_len[0], 2361 shadow, trampoline); 2362 if (err) 2363 return err; 2364 2365 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2366 eb->batches[0]->vma = i915_vma_get(shadow); 2367 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2368 2369 eb->trampoline = trampoline; 2370 eb->batch_start_offset = 0; 2371 2372 secure_batch: 2373 if (batch) { 2374 if (intel_context_is_parallel(eb->context)) 2375 return -EINVAL; 2376 2377 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2378 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2379 eb->batches[0]->vma = i915_vma_get(batch); 2380 } 2381 return 0; 2382 } 2383 2384 static int eb_request_submit(struct i915_execbuffer *eb, 2385 struct i915_request *rq, 2386 struct i915_vma *batch, 2387 u64 batch_len) 2388 { 2389 int err; 2390 2391 if (intel_context_nopreempt(rq->context)) 2392 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); 2393 2394 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2395 err = i915_reset_gen7_sol_offsets(rq); 2396 if (err) 2397 return err; 2398 } 2399 2400 /* 2401 * After we completed waiting for other engines (using HW semaphores) 2402 * then we can signal that this request/batch is ready to run. This 2403 * allows us to determine if the batch is still waiting on the GPU 2404 * or actually running by checking the breadcrumb. 2405 */ 2406 if (rq->context->engine->emit_init_breadcrumb) { 2407 err = rq->context->engine->emit_init_breadcrumb(rq); 2408 if (err) 2409 return err; 2410 } 2411 2412 err = rq->context->engine->emit_bb_start(rq, 2413 i915_vma_offset(batch) + 2414 eb->batch_start_offset, 2415 batch_len, 2416 eb->batch_flags); 2417 if (err) 2418 return err; 2419 2420 if (eb->trampoline) { 2421 GEM_BUG_ON(intel_context_is_parallel(rq->context)); 2422 GEM_BUG_ON(eb->batch_start_offset); 2423 err = rq->context->engine->emit_bb_start(rq, 2424 i915_vma_offset(eb->trampoline) + 2425 batch_len, 0, 0); 2426 if (err) 2427 return err; 2428 } 2429 2430 return 0; 2431 } 2432 2433 static int eb_submit(struct i915_execbuffer *eb) 2434 { 2435 unsigned int i; 2436 int err; 2437 2438 err = eb_move_to_gpu(eb); 2439 2440 for_each_batch_create_order(eb, i) { 2441 if (!eb->requests[i]) 2442 break; 2443 2444 trace_i915_request_queue(eb->requests[i], eb->batch_flags); 2445 if (!err) 2446 err = eb_request_submit(eb, eb->requests[i], 2447 eb->batches[i]->vma, 2448 eb->batch_len[i]); 2449 } 2450 2451 return err; 2452 } 2453 2454 /* 2455 * Find one BSD ring to dispatch the corresponding BSD command. 2456 * The engine index is returned. 2457 */ 2458 static unsigned int 2459 gen8_dispatch_bsd_engine(struct drm_i915_private *i915, 2460 struct drm_file *file) 2461 { 2462 struct drm_i915_file_private *file_priv = file->driver_priv; 2463 2464 /* Check whether the file_priv has already selected one ring. */ 2465 if ((int)file_priv->bsd_engine < 0) 2466 file_priv->bsd_engine = 2467 get_random_u32_below(i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]); 2468 2469 return file_priv->bsd_engine; 2470 } 2471 2472 static const enum intel_engine_id user_ring_map[] = { 2473 [I915_EXEC_DEFAULT] = RCS0, 2474 [I915_EXEC_RENDER] = RCS0, 2475 [I915_EXEC_BLT] = BCS0, 2476 [I915_EXEC_BSD] = VCS0, 2477 [I915_EXEC_VEBOX] = VECS0 2478 }; 2479 2480 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2481 { 2482 struct intel_ring *ring = ce->ring; 2483 struct intel_timeline *tl = ce->timeline; 2484 struct i915_request *rq; 2485 2486 /* 2487 * Completely unscientific finger-in-the-air estimates for suitable 2488 * maximum user request size (to avoid blocking) and then backoff. 2489 */ 2490 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2491 return NULL; 2492 2493 /* 2494 * Find a request that after waiting upon, there will be at least half 2495 * the ring available. The hysteresis allows us to compete for the 2496 * shared ring and should mean that we sleep less often prior to 2497 * claiming our resources, but not so long that the ring completely 2498 * drains before we can submit our next request. 2499 */ 2500 list_for_each_entry(rq, &tl->requests, link) { 2501 if (rq->ring != ring) 2502 continue; 2503 2504 if (__intel_ring_space(rq->postfix, 2505 ring->emit, ring->size) > ring->size / 2) 2506 break; 2507 } 2508 if (&rq->link == &tl->requests) 2509 return NULL; /* weird, we will check again later for real */ 2510 2511 return i915_request_get(rq); 2512 } 2513 2514 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, 2515 bool throttle) 2516 { 2517 struct intel_timeline *tl; 2518 struct i915_request *rq = NULL; 2519 2520 /* 2521 * Take a local wakeref for preparing to dispatch the execbuf as 2522 * we expect to access the hardware fairly frequently in the 2523 * process, and require the engine to be kept awake between accesses. 2524 * Upon dispatch, we acquire another prolonged wakeref that we hold 2525 * until the timeline is idle, which in turn releases the wakeref 2526 * taken on the engine, and the parent device. 2527 */ 2528 tl = intel_context_timeline_lock(ce); 2529 if (IS_ERR(tl)) 2530 return PTR_ERR(tl); 2531 2532 intel_context_enter(ce); 2533 if (throttle) 2534 rq = eb_throttle(eb, ce); 2535 intel_context_timeline_unlock(tl); 2536 2537 if (rq) { 2538 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2539 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; 2540 2541 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 2542 timeout) < 0) { 2543 i915_request_put(rq); 2544 2545 /* 2546 * Error path, cannot use intel_context_timeline_lock as 2547 * that is user interruptable and this clean up step 2548 * must be done. 2549 */ 2550 mutex_lock(&ce->timeline->mutex); 2551 intel_context_exit(ce); 2552 mutex_unlock(&ce->timeline->mutex); 2553 2554 if (nonblock) 2555 return -EWOULDBLOCK; 2556 else 2557 return -EINTR; 2558 } 2559 i915_request_put(rq); 2560 } 2561 2562 return 0; 2563 } 2564 2565 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2566 { 2567 struct intel_context *ce = eb->context, *child; 2568 int err; 2569 int i = 0, j = 0; 2570 2571 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2572 2573 if (unlikely(intel_context_is_banned(ce))) 2574 return -EIO; 2575 2576 /* 2577 * Pinning the contexts may generate requests in order to acquire 2578 * GGTT space, so do this first before we reserve a seqno for 2579 * ourselves. 2580 */ 2581 err = intel_context_pin_ww(ce, &eb->ww); 2582 if (err) 2583 return err; 2584 for_each_child(ce, child) { 2585 err = intel_context_pin_ww(child, &eb->ww); 2586 GEM_BUG_ON(err); /* perma-pinned should incr a counter */ 2587 } 2588 2589 for_each_child(ce, child) { 2590 err = eb_pin_timeline(eb, child, throttle); 2591 if (err) 2592 goto unwind; 2593 ++i; 2594 } 2595 err = eb_pin_timeline(eb, ce, throttle); 2596 if (err) 2597 goto unwind; 2598 2599 eb->args->flags |= __EXEC_ENGINE_PINNED; 2600 return 0; 2601 2602 unwind: 2603 for_each_child(ce, child) { 2604 if (j++ < i) { 2605 mutex_lock(&child->timeline->mutex); 2606 intel_context_exit(child); 2607 mutex_unlock(&child->timeline->mutex); 2608 } 2609 } 2610 for_each_child(ce, child) 2611 intel_context_unpin(child); 2612 intel_context_unpin(ce); 2613 return err; 2614 } 2615 2616 static void eb_unpin_engine(struct i915_execbuffer *eb) 2617 { 2618 struct intel_context *ce = eb->context, *child; 2619 2620 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2621 return; 2622 2623 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2624 2625 for_each_child(ce, child) { 2626 mutex_lock(&child->timeline->mutex); 2627 intel_context_exit(child); 2628 mutex_unlock(&child->timeline->mutex); 2629 2630 intel_context_unpin(child); 2631 } 2632 2633 mutex_lock(&ce->timeline->mutex); 2634 intel_context_exit(ce); 2635 mutex_unlock(&ce->timeline->mutex); 2636 2637 intel_context_unpin(ce); 2638 } 2639 2640 static unsigned int 2641 eb_select_legacy_ring(struct i915_execbuffer *eb) 2642 { 2643 struct drm_i915_private *i915 = eb->i915; 2644 struct drm_i915_gem_execbuffer2 *args = eb->args; 2645 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2646 2647 if (user_ring_id != I915_EXEC_BSD && 2648 (args->flags & I915_EXEC_BSD_MASK)) { 2649 drm_dbg(&i915->drm, 2650 "execbuf with non bsd ring but with invalid " 2651 "bsd dispatch flags: %d\n", (int)(args->flags)); 2652 return -1; 2653 } 2654 2655 if (user_ring_id == I915_EXEC_BSD && 2656 i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) { 2657 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2658 2659 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2660 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2661 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2662 bsd_idx <= I915_EXEC_BSD_RING2) { 2663 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2664 bsd_idx--; 2665 } else { 2666 drm_dbg(&i915->drm, 2667 "execbuf with unknown bsd ring: %u\n", 2668 bsd_idx); 2669 return -1; 2670 } 2671 2672 return _VCS(bsd_idx); 2673 } 2674 2675 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2676 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2677 user_ring_id); 2678 return -1; 2679 } 2680 2681 return user_ring_map[user_ring_id]; 2682 } 2683 2684 static int 2685 eb_select_engine(struct i915_execbuffer *eb) 2686 { 2687 struct intel_context *ce, *child; 2688 unsigned int idx; 2689 int err; 2690 2691 if (i915_gem_context_user_engines(eb->gem_context)) 2692 idx = eb->args->flags & I915_EXEC_RING_MASK; 2693 else 2694 idx = eb_select_legacy_ring(eb); 2695 2696 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2697 if (IS_ERR(ce)) 2698 return PTR_ERR(ce); 2699 2700 if (intel_context_is_parallel(ce)) { 2701 if (eb->buffer_count < ce->parallel.number_children + 1) { 2702 intel_context_put(ce); 2703 return -EINVAL; 2704 } 2705 if (eb->batch_start_offset || eb->args->batch_len) { 2706 intel_context_put(ce); 2707 return -EINVAL; 2708 } 2709 } 2710 eb->num_batches = ce->parallel.number_children + 1; 2711 2712 for_each_child(ce, child) 2713 intel_context_get(child); 2714 eb->wakeref = intel_gt_pm_get(ce->engine->gt); 2715 2716 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2717 err = intel_context_alloc_state(ce); 2718 if (err) 2719 goto err; 2720 } 2721 for_each_child(ce, child) { 2722 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { 2723 err = intel_context_alloc_state(child); 2724 if (err) 2725 goto err; 2726 } 2727 } 2728 2729 /* 2730 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2731 * EIO if the GPU is already wedged. 2732 */ 2733 err = intel_gt_terminally_wedged(ce->engine->gt); 2734 if (err) 2735 goto err; 2736 2737 if (!i915_vm_tryget(ce->vm)) { 2738 err = -ENOENT; 2739 goto err; 2740 } 2741 2742 eb->context = ce; 2743 eb->gt = ce->engine->gt; 2744 2745 /* 2746 * Make sure engine pool stays alive even if we call intel_context_put 2747 * during ww handling. The pool is destroyed when last pm reference 2748 * is dropped, which breaks our -EDEADLK handling. 2749 */ 2750 return err; 2751 2752 err: 2753 intel_gt_pm_put(ce->engine->gt, eb->wakeref); 2754 for_each_child(ce, child) 2755 intel_context_put(child); 2756 intel_context_put(ce); 2757 return err; 2758 } 2759 2760 static void 2761 eb_put_engine(struct i915_execbuffer *eb) 2762 { 2763 struct intel_context *child; 2764 2765 i915_vm_put(eb->context->vm); 2766 intel_gt_pm_put(eb->context->engine->gt, eb->wakeref); 2767 for_each_child(eb->context, child) 2768 intel_context_put(child); 2769 intel_context_put(eb->context); 2770 } 2771 2772 static void 2773 __free_fence_array(struct eb_fence *fences, unsigned int n) 2774 { 2775 while (n--) { 2776 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2777 dma_fence_put(fences[n].dma_fence); 2778 dma_fence_chain_free(fences[n].chain_fence); 2779 } 2780 kvfree(fences); 2781 } 2782 2783 static int 2784 add_timeline_fence_array(struct i915_execbuffer *eb, 2785 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2786 { 2787 struct drm_i915_gem_exec_fence __user *user_fences; 2788 u64 __user *user_values; 2789 struct eb_fence *f; 2790 u64 nfences; 2791 int err = 0; 2792 2793 nfences = timeline_fences->fence_count; 2794 if (!nfences) 2795 return 0; 2796 2797 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2798 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2799 if (nfences > min_t(unsigned long, 2800 ULONG_MAX / sizeof(*user_fences), 2801 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2802 return -EINVAL; 2803 2804 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2805 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2806 return -EFAULT; 2807 2808 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2809 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2810 return -EFAULT; 2811 2812 f = krealloc(eb->fences, 2813 (eb->num_fences + nfences) * sizeof(*f), 2814 __GFP_NOWARN | GFP_KERNEL); 2815 if (!f) 2816 return -ENOMEM; 2817 2818 eb->fences = f; 2819 f += eb->num_fences; 2820 2821 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2822 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2823 2824 while (nfences--) { 2825 struct drm_i915_gem_exec_fence user_fence; 2826 struct drm_syncobj *syncobj; 2827 struct dma_fence *fence = NULL; 2828 u64 point; 2829 2830 if (__copy_from_user(&user_fence, 2831 user_fences++, 2832 sizeof(user_fence))) 2833 return -EFAULT; 2834 2835 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2836 return -EINVAL; 2837 2838 if (__get_user(point, user_values++)) 2839 return -EFAULT; 2840 2841 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2842 if (!syncobj) { 2843 drm_dbg(&eb->i915->drm, 2844 "Invalid syncobj handle provided\n"); 2845 return -ENOENT; 2846 } 2847 2848 fence = drm_syncobj_fence_get(syncobj); 2849 2850 if (!fence && user_fence.flags && 2851 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2852 drm_dbg(&eb->i915->drm, 2853 "Syncobj handle has no fence\n"); 2854 drm_syncobj_put(syncobj); 2855 return -EINVAL; 2856 } 2857 2858 if (fence) 2859 err = dma_fence_chain_find_seqno(&fence, point); 2860 2861 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2862 drm_dbg(&eb->i915->drm, 2863 "Syncobj handle missing requested point %llu\n", 2864 point); 2865 dma_fence_put(fence); 2866 drm_syncobj_put(syncobj); 2867 return err; 2868 } 2869 2870 /* 2871 * A point might have been signaled already and 2872 * garbage collected from the timeline. In this case 2873 * just ignore the point and carry on. 2874 */ 2875 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2876 drm_syncobj_put(syncobj); 2877 continue; 2878 } 2879 2880 /* 2881 * For timeline syncobjs we need to preallocate chains for 2882 * later signaling. 2883 */ 2884 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2885 /* 2886 * Waiting and signaling the same point (when point != 2887 * 0) would break the timeline. 2888 */ 2889 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2890 drm_dbg(&eb->i915->drm, 2891 "Trying to wait & signal the same timeline point.\n"); 2892 dma_fence_put(fence); 2893 drm_syncobj_put(syncobj); 2894 return -EINVAL; 2895 } 2896 2897 f->chain_fence = dma_fence_chain_alloc(); 2898 if (!f->chain_fence) { 2899 drm_syncobj_put(syncobj); 2900 dma_fence_put(fence); 2901 return -ENOMEM; 2902 } 2903 } else { 2904 f->chain_fence = NULL; 2905 } 2906 2907 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2908 f->dma_fence = fence; 2909 f->value = point; 2910 f++; 2911 eb->num_fences++; 2912 } 2913 2914 return 0; 2915 } 2916 2917 static int add_fence_array(struct i915_execbuffer *eb) 2918 { 2919 struct drm_i915_gem_execbuffer2 *args = eb->args; 2920 struct drm_i915_gem_exec_fence __user *user; 2921 unsigned long num_fences = args->num_cliprects; 2922 struct eb_fence *f; 2923 2924 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2925 return 0; 2926 2927 if (!num_fences) 2928 return 0; 2929 2930 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2931 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2932 if (num_fences > min_t(unsigned long, 2933 ULONG_MAX / sizeof(*user), 2934 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2935 return -EINVAL; 2936 2937 user = u64_to_user_ptr(args->cliprects_ptr); 2938 if (!access_ok(user, num_fences * sizeof(*user))) 2939 return -EFAULT; 2940 2941 f = krealloc(eb->fences, 2942 (eb->num_fences + num_fences) * sizeof(*f), 2943 __GFP_NOWARN | GFP_KERNEL); 2944 if (!f) 2945 return -ENOMEM; 2946 2947 eb->fences = f; 2948 f += eb->num_fences; 2949 while (num_fences--) { 2950 struct drm_i915_gem_exec_fence user_fence; 2951 struct drm_syncobj *syncobj; 2952 struct dma_fence *fence = NULL; 2953 2954 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2955 return -EFAULT; 2956 2957 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2958 return -EINVAL; 2959 2960 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2961 if (!syncobj) { 2962 drm_dbg(&eb->i915->drm, 2963 "Invalid syncobj handle provided\n"); 2964 return -ENOENT; 2965 } 2966 2967 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2968 fence = drm_syncobj_fence_get(syncobj); 2969 if (!fence) { 2970 drm_dbg(&eb->i915->drm, 2971 "Syncobj handle has no fence\n"); 2972 drm_syncobj_put(syncobj); 2973 return -EINVAL; 2974 } 2975 } 2976 2977 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2978 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2979 2980 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2981 f->dma_fence = fence; 2982 f->value = 0; 2983 f->chain_fence = NULL; 2984 f++; 2985 eb->num_fences++; 2986 } 2987 2988 return 0; 2989 } 2990 2991 static void put_fence_array(struct eb_fence *fences, int num_fences) 2992 { 2993 if (fences) 2994 __free_fence_array(fences, num_fences); 2995 } 2996 2997 static int 2998 await_fence_array(struct i915_execbuffer *eb, 2999 struct i915_request *rq) 3000 { 3001 unsigned int n; 3002 int err; 3003 3004 for (n = 0; n < eb->num_fences; n++) { 3005 if (!eb->fences[n].dma_fence) 3006 continue; 3007 3008 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); 3009 if (err < 0) 3010 return err; 3011 } 3012 3013 return 0; 3014 } 3015 3016 static void signal_fence_array(const struct i915_execbuffer *eb, 3017 struct dma_fence * const fence) 3018 { 3019 unsigned int n; 3020 3021 for (n = 0; n < eb->num_fences; n++) { 3022 struct drm_syncobj *syncobj; 3023 unsigned int flags; 3024 3025 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 3026 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 3027 continue; 3028 3029 if (eb->fences[n].chain_fence) { 3030 drm_syncobj_add_point(syncobj, 3031 eb->fences[n].chain_fence, 3032 fence, 3033 eb->fences[n].value); 3034 /* 3035 * The chain's ownership is transferred to the 3036 * timeline. 3037 */ 3038 eb->fences[n].chain_fence = NULL; 3039 } else { 3040 drm_syncobj_replace_fence(syncobj, fence); 3041 } 3042 } 3043 } 3044 3045 static int 3046 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 3047 { 3048 struct i915_execbuffer *eb = data; 3049 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 3050 3051 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3052 return -EFAULT; 3053 3054 return add_timeline_fence_array(eb, &timeline_fences); 3055 } 3056 3057 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3058 { 3059 struct i915_request *rq, *rn; 3060 3061 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3062 if (rq == end || !i915_request_retire(rq)) 3063 break; 3064 } 3065 3066 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, 3067 int err, bool last_parallel) 3068 { 3069 struct intel_timeline * const tl = i915_request_timeline(rq); 3070 struct i915_sched_attr attr = {}; 3071 struct i915_request *prev; 3072 3073 lockdep_assert_held(&tl->mutex); 3074 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3075 3076 trace_i915_request_add(rq); 3077 3078 prev = __i915_request_commit(rq); 3079 3080 /* Check that the context wasn't destroyed before submission */ 3081 if (likely(!intel_context_is_closed(eb->context))) { 3082 attr = eb->gem_context->sched; 3083 } else { 3084 /* Serialise with context_close via the add_to_timeline */ 3085 i915_request_set_error_once(rq, -ENOENT); 3086 __i915_request_skip(rq); 3087 err = -ENOENT; /* override any transient errors */ 3088 } 3089 3090 if (intel_context_is_parallel(eb->context)) { 3091 if (err) { 3092 __i915_request_skip(rq); 3093 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, 3094 &rq->fence.flags); 3095 } 3096 if (last_parallel) 3097 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, 3098 &rq->fence.flags); 3099 } 3100 3101 __i915_request_queue(rq, &attr); 3102 3103 /* Try to clean up the client's timeline after submitting the request */ 3104 if (prev) 3105 retire_requests(tl, prev); 3106 3107 mutex_unlock(&tl->mutex); 3108 3109 return err; 3110 } 3111 3112 static int eb_requests_add(struct i915_execbuffer *eb, int err) 3113 { 3114 int i; 3115 3116 /* 3117 * We iterate in reverse order of creation to release timeline mutexes in 3118 * same order. 3119 */ 3120 for_each_batch_add_order(eb, i) { 3121 struct i915_request *rq = eb->requests[i]; 3122 3123 if (!rq) 3124 continue; 3125 err |= eb_request_add(eb, rq, err, i == 0); 3126 } 3127 3128 return err; 3129 } 3130 3131 static const i915_user_extension_fn execbuf_extensions[] = { 3132 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3133 }; 3134 3135 static int 3136 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3137 struct i915_execbuffer *eb) 3138 { 3139 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3140 return 0; 3141 3142 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3143 * have another flag also using it at the same time. 3144 */ 3145 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3146 return -EINVAL; 3147 3148 if (args->num_cliprects != 0) 3149 return -EINVAL; 3150 3151 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3152 execbuf_extensions, 3153 ARRAY_SIZE(execbuf_extensions), 3154 eb); 3155 } 3156 3157 static void eb_requests_get(struct i915_execbuffer *eb) 3158 { 3159 unsigned int i; 3160 3161 for_each_batch_create_order(eb, i) { 3162 if (!eb->requests[i]) 3163 break; 3164 3165 i915_request_get(eb->requests[i]); 3166 } 3167 } 3168 3169 static void eb_requests_put(struct i915_execbuffer *eb) 3170 { 3171 unsigned int i; 3172 3173 for_each_batch_create_order(eb, i) { 3174 if (!eb->requests[i]) 3175 break; 3176 3177 i915_request_put(eb->requests[i]); 3178 } 3179 } 3180 3181 static struct sync_file * 3182 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) 3183 { 3184 struct sync_file *out_fence = NULL; 3185 struct dma_fence_array *fence_array; 3186 struct dma_fence **fences; 3187 unsigned int i; 3188 3189 GEM_BUG_ON(!intel_context_is_parent(eb->context)); 3190 3191 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); 3192 if (!fences) 3193 return ERR_PTR(-ENOMEM); 3194 3195 for_each_batch_create_order(eb, i) { 3196 fences[i] = &eb->requests[i]->fence; 3197 __set_bit(I915_FENCE_FLAG_COMPOSITE, 3198 &eb->requests[i]->fence.flags); 3199 } 3200 3201 fence_array = dma_fence_array_create(eb->num_batches, 3202 fences, 3203 eb->context->parallel.fence_context, 3204 eb->context->parallel.seqno++, 3205 false); 3206 if (!fence_array) { 3207 kfree(fences); 3208 return ERR_PTR(-ENOMEM); 3209 } 3210 3211 /* Move ownership to the dma_fence_array created above */ 3212 for_each_batch_create_order(eb, i) 3213 dma_fence_get(fences[i]); 3214 3215 if (out_fence_fd != -1) { 3216 out_fence = sync_file_create(&fence_array->base); 3217 /* sync_file now owns fence_arry, drop creation ref */ 3218 dma_fence_put(&fence_array->base); 3219 if (!out_fence) 3220 return ERR_PTR(-ENOMEM); 3221 } 3222 3223 eb->composite_fence = &fence_array->base; 3224 3225 return out_fence; 3226 } 3227 3228 static struct sync_file * 3229 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, 3230 struct dma_fence *in_fence, int out_fence_fd) 3231 { 3232 struct sync_file *out_fence = NULL; 3233 int err; 3234 3235 if (unlikely(eb->gem_context->syncobj)) { 3236 struct dma_fence *fence; 3237 3238 fence = drm_syncobj_fence_get(eb->gem_context->syncobj); 3239 err = i915_request_await_dma_fence(rq, fence); 3240 dma_fence_put(fence); 3241 if (err) 3242 return ERR_PTR(err); 3243 } 3244 3245 if (in_fence) { 3246 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) 3247 err = i915_request_await_execution(rq, in_fence); 3248 else 3249 err = i915_request_await_dma_fence(rq, in_fence); 3250 if (err < 0) 3251 return ERR_PTR(err); 3252 } 3253 3254 if (eb->fences) { 3255 err = await_fence_array(eb, rq); 3256 if (err) 3257 return ERR_PTR(err); 3258 } 3259 3260 if (intel_context_is_parallel(eb->context)) { 3261 out_fence = eb_composite_fence_create(eb, out_fence_fd); 3262 if (IS_ERR(out_fence)) 3263 return ERR_PTR(-ENOMEM); 3264 } else if (out_fence_fd != -1) { 3265 out_fence = sync_file_create(&rq->fence); 3266 if (!out_fence) 3267 return ERR_PTR(-ENOMEM); 3268 } 3269 3270 return out_fence; 3271 } 3272 3273 static struct intel_context * 3274 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) 3275 { 3276 struct intel_context *child; 3277 3278 if (likely(context_number == 0)) 3279 return eb->context; 3280 3281 for_each_child(eb->context, child) 3282 if (!--context_number) 3283 return child; 3284 3285 GEM_BUG_ON("Context not found"); 3286 3287 return NULL; 3288 } 3289 3290 static struct sync_file * 3291 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, 3292 int out_fence_fd) 3293 { 3294 struct sync_file *out_fence = NULL; 3295 unsigned int i; 3296 3297 for_each_batch_create_order(eb, i) { 3298 /* Allocate a request for this batch buffer nice and early. */ 3299 eb->requests[i] = i915_request_create(eb_find_context(eb, i)); 3300 if (IS_ERR(eb->requests[i])) { 3301 out_fence = ERR_CAST(eb->requests[i]); 3302 eb->requests[i] = NULL; 3303 return out_fence; 3304 } 3305 3306 /* 3307 * Only the first request added (committed to backend) has to 3308 * take the in fences into account as all subsequent requests 3309 * will have fences inserted inbetween them. 3310 */ 3311 if (i + 1 == eb->num_batches) { 3312 out_fence = eb_fences_add(eb, eb->requests[i], 3313 in_fence, out_fence_fd); 3314 if (IS_ERR(out_fence)) 3315 return out_fence; 3316 } 3317 3318 /* 3319 * Not really on stack, but we don't want to call 3320 * kfree on the batch_snapshot when we put it, so use the 3321 * _onstack interface. 3322 */ 3323 if (eb->batches[i]->vma) 3324 eb->requests[i]->batch_res = 3325 i915_vma_resource_get(eb->batches[i]->vma->resource); 3326 if (eb->batch_pool) { 3327 GEM_BUG_ON(intel_context_is_parallel(eb->context)); 3328 intel_gt_buffer_pool_mark_active(eb->batch_pool, 3329 eb->requests[i]); 3330 } 3331 } 3332 3333 return out_fence; 3334 } 3335 3336 static int 3337 i915_gem_do_execbuffer(struct drm_device *dev, 3338 struct drm_file *file, 3339 struct drm_i915_gem_execbuffer2 *args, 3340 struct drm_i915_gem_exec_object2 *exec) 3341 { 3342 struct drm_i915_private *i915 = to_i915(dev); 3343 struct i915_execbuffer eb; 3344 struct dma_fence *in_fence = NULL; 3345 struct sync_file *out_fence = NULL; 3346 int out_fence_fd = -1; 3347 int err; 3348 3349 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3350 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3351 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3352 3353 eb.i915 = i915; 3354 eb.file = file; 3355 eb.args = args; 3356 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3357 args->flags |= __EXEC_HAS_RELOC; 3358 3359 eb.exec = exec; 3360 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3361 eb.vma[0].vma = NULL; 3362 eb.batch_pool = NULL; 3363 3364 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3365 reloc_cache_init(&eb.reloc_cache, eb.i915); 3366 3367 eb.buffer_count = args->buffer_count; 3368 eb.batch_start_offset = args->batch_start_offset; 3369 eb.trampoline = NULL; 3370 3371 eb.fences = NULL; 3372 eb.num_fences = 0; 3373 3374 eb_capture_list_clear(&eb); 3375 3376 memset(eb.requests, 0, sizeof(struct i915_request *) * 3377 ARRAY_SIZE(eb.requests)); 3378 eb.composite_fence = NULL; 3379 3380 eb.batch_flags = 0; 3381 if (args->flags & I915_EXEC_SECURE) { 3382 if (GRAPHICS_VER(i915) >= 11) 3383 return -ENODEV; 3384 3385 /* Return -EPERM to trigger fallback code on old binaries. */ 3386 if (!HAS_SECURE_BATCHES(i915)) 3387 return -EPERM; 3388 3389 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3390 return -EPERM; 3391 3392 eb.batch_flags |= I915_DISPATCH_SECURE; 3393 } 3394 if (args->flags & I915_EXEC_IS_PINNED) 3395 eb.batch_flags |= I915_DISPATCH_PINNED; 3396 3397 err = parse_execbuf2_extensions(args, &eb); 3398 if (err) 3399 goto err_ext; 3400 3401 err = add_fence_array(&eb); 3402 if (err) 3403 goto err_ext; 3404 3405 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3406 if (args->flags & IN_FENCES) { 3407 if ((args->flags & IN_FENCES) == IN_FENCES) 3408 return -EINVAL; 3409 3410 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3411 if (!in_fence) { 3412 err = -EINVAL; 3413 goto err_ext; 3414 } 3415 } 3416 #undef IN_FENCES 3417 3418 if (args->flags & I915_EXEC_FENCE_OUT) { 3419 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3420 if (out_fence_fd < 0) { 3421 err = out_fence_fd; 3422 goto err_in_fence; 3423 } 3424 } 3425 3426 err = eb_create(&eb); 3427 if (err) 3428 goto err_out_fence; 3429 3430 GEM_BUG_ON(!eb.lut_size); 3431 3432 err = eb_select_context(&eb); 3433 if (unlikely(err)) 3434 goto err_destroy; 3435 3436 err = eb_select_engine(&eb); 3437 if (unlikely(err)) 3438 goto err_context; 3439 3440 err = eb_lookup_vmas(&eb); 3441 if (err) { 3442 eb_release_vmas(&eb, true); 3443 goto err_engine; 3444 } 3445 3446 i915_gem_ww_ctx_init(&eb.ww, true); 3447 3448 err = eb_relocate_parse(&eb); 3449 if (err) { 3450 /* 3451 * If the user expects the execobject.offset and 3452 * reloc.presumed_offset to be an exact match, 3453 * as for using NO_RELOC, then we cannot update 3454 * the execobject.offset until we have completed 3455 * relocation. 3456 */ 3457 args->flags &= ~__EXEC_HAS_RELOC; 3458 goto err_vma; 3459 } 3460 3461 ww_acquire_done(&eb.ww.ctx); 3462 err = eb_capture_stage(&eb); 3463 if (err) 3464 goto err_vma; 3465 3466 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); 3467 if (IS_ERR(out_fence)) { 3468 err = PTR_ERR(out_fence); 3469 out_fence = NULL; 3470 if (eb.requests[0]) 3471 goto err_request; 3472 else 3473 goto err_vma; 3474 } 3475 3476 err = eb_submit(&eb); 3477 3478 err_request: 3479 eb_requests_get(&eb); 3480 err = eb_requests_add(&eb, err); 3481 3482 if (eb.fences) 3483 signal_fence_array(&eb, eb.composite_fence ? 3484 eb.composite_fence : 3485 &eb.requests[0]->fence); 3486 3487 if (unlikely(eb.gem_context->syncobj)) { 3488 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3489 eb.composite_fence ? 3490 eb.composite_fence : 3491 &eb.requests[0]->fence); 3492 } 3493 3494 if (out_fence) { 3495 if (err == 0) { 3496 fd_install(out_fence_fd, out_fence->file); 3497 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3498 args->rsvd2 |= (u64)out_fence_fd << 32; 3499 out_fence_fd = -1; 3500 } else { 3501 fput(out_fence->file); 3502 } 3503 } 3504 3505 if (!out_fence && eb.composite_fence) 3506 dma_fence_put(eb.composite_fence); 3507 3508 eb_requests_put(&eb); 3509 3510 err_vma: 3511 eb_release_vmas(&eb, true); 3512 WARN_ON(err == -EDEADLK); 3513 i915_gem_ww_ctx_fini(&eb.ww); 3514 3515 if (eb.batch_pool) 3516 intel_gt_buffer_pool_put(eb.batch_pool); 3517 err_engine: 3518 eb_put_engine(&eb); 3519 err_context: 3520 i915_gem_context_put(eb.gem_context); 3521 err_destroy: 3522 eb_destroy(&eb); 3523 err_out_fence: 3524 if (out_fence_fd != -1) 3525 put_unused_fd(out_fence_fd); 3526 err_in_fence: 3527 dma_fence_put(in_fence); 3528 err_ext: 3529 put_fence_array(eb.fences, eb.num_fences); 3530 return err; 3531 } 3532 3533 static size_t eb_element_size(void) 3534 { 3535 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3536 } 3537 3538 static bool check_buffer_count(size_t count) 3539 { 3540 const size_t sz = eb_element_size(); 3541 3542 /* 3543 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3544 * array size (see eb_create()). Otherwise, we can accept an array as 3545 * large as can be addressed (though use large arrays at your peril)! 3546 */ 3547 3548 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3549 } 3550 3551 int 3552 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3553 struct drm_file *file) 3554 { 3555 struct drm_i915_private *i915 = to_i915(dev); 3556 struct drm_i915_gem_execbuffer2 *args = data; 3557 struct drm_i915_gem_exec_object2 *exec2_list; 3558 const size_t count = args->buffer_count; 3559 int err; 3560 3561 if (!check_buffer_count(count)) { 3562 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3563 return -EINVAL; 3564 } 3565 3566 err = i915_gem_check_execbuffer(i915, args); 3567 if (err) 3568 return err; 3569 3570 /* Allocate extra slots for use by the command parser */ 3571 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3572 __GFP_NOWARN | GFP_KERNEL); 3573 if (exec2_list == NULL) { 3574 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3575 count); 3576 return -ENOMEM; 3577 } 3578 if (copy_from_user(exec2_list, 3579 u64_to_user_ptr(args->buffers_ptr), 3580 sizeof(*exec2_list) * count)) { 3581 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3582 kvfree(exec2_list); 3583 return -EFAULT; 3584 } 3585 3586 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3587 3588 /* 3589 * Now that we have begun execution of the batchbuffer, we ignore 3590 * any new error after this point. Also given that we have already 3591 * updated the associated relocations, we try to write out the current 3592 * object locations irrespective of any error. 3593 */ 3594 if (args->flags & __EXEC_HAS_RELOC) { 3595 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3596 u64_to_user_ptr(args->buffers_ptr); 3597 unsigned int i; 3598 3599 /* Copy the new buffer offsets back to the user's exec list. */ 3600 /* 3601 * Note: count * sizeof(*user_exec_list) does not overflow, 3602 * because we checked 'count' in check_buffer_count(). 3603 * 3604 * And this range already got effectively checked earlier 3605 * when we did the "copy_from_user()" above. 3606 */ 3607 if (!user_write_access_begin(user_exec_list, 3608 count * sizeof(*user_exec_list))) 3609 goto end; 3610 3611 for (i = 0; i < args->buffer_count; i++) { 3612 if (!(exec2_list[i].offset & UPDATE)) 3613 continue; 3614 3615 exec2_list[i].offset = 3616 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3617 unsafe_put_user(exec2_list[i].offset, 3618 &user_exec_list[i].offset, 3619 end_user); 3620 } 3621 end_user: 3622 user_write_access_end(); 3623 end:; 3624 } 3625 3626 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3627 kvfree(exec2_list); 3628 return err; 3629 } 3630