xref: /linux/drivers/gpu/drm/i915/gem/i915_gem_context.c (revision 94cad89ae4505672ae65457d12f77c44ca87655b)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2011-2012 Intel Corporation
5  */
6 
7 /*
8  * This file implements HW context support. On gen5+ a HW context consists of an
9  * opaque GPU object which is referenced at times of context saves and restores.
10  * With RC6 enabled, the context is also referenced as the GPU enters and exists
11  * from RC6 (GPU has it's own internal power context, except on gen5). Though
12  * something like a context does exist for the media ring, the code only
13  * supports contexts for the render ring.
14  *
15  * In software, there is a distinction between contexts created by the user,
16  * and the default HW context. The default HW context is used by GPU clients
17  * that do not request setup of their own hardware context. The default
18  * context's state is never restored to help prevent programming errors. This
19  * would happen if a client ran and piggy-backed off another clients GPU state.
20  * The default context only exists to give the GPU some offset to load as the
21  * current to invoke a save of the context we actually care about. In fact, the
22  * code could likely be constructed, albeit in a more complicated fashion, to
23  * never use the default context, though that limits the driver's ability to
24  * swap out, and/or destroy other contexts.
25  *
26  * All other contexts are created as a request by the GPU client. These contexts
27  * store GPU state, and thus allow GPU clients to not re-emit state (and
28  * potentially query certain state) at any time. The kernel driver makes
29  * certain that the appropriate commands are inserted.
30  *
31  * The context life cycle is semi-complicated in that context BOs may live
32  * longer than the context itself because of the way the hardware, and object
33  * tracking works. Below is a very crude representation of the state machine
34  * describing the context life.
35  *                                         refcount     pincount     active
36  * S0: initial state                          0            0           0
37  * S1: context created                        1            0           0
38  * S2: context is currently running           2            1           X
39  * S3: GPU referenced, but not current        2            0           1
40  * S4: context is current, but destroyed      1            1           0
41  * S5: like S3, but destroyed                 1            0           1
42  *
43  * The most common (but not all) transitions:
44  * S0->S1: client creates a context
45  * S1->S2: client submits execbuf with context
46  * S2->S3: other clients submits execbuf with context
47  * S3->S1: context object was retired
48  * S3->S2: clients submits another execbuf
49  * S2->S4: context destroy called with current context
50  * S3->S5->S0: destroy path
51  * S4->S5->S0: destroy path on current context
52  *
53  * There are two confusing terms used above:
54  *  The "current context" means the context which is currently running on the
55  *  GPU. The GPU has loaded its state already and has stored away the gtt
56  *  offset of the BO. The GPU is not actively referencing the data at this
57  *  offset, but it will on the next context switch. The only way to avoid this
58  *  is to do a GPU reset.
59  *
60  *  An "active context' is one which was previously the "current context" and is
61  *  on the active list waiting for the next context switch to occur. Until this
62  *  happens, the object must remain at the same gtt offset. It is therefore
63  *  possible to destroy a context, but it is still active.
64  *
65  */
66 
67 #include <linux/log2.h>
68 #include <linux/nospec.h>
69 
70 #include "gt/gen6_ppgtt.h"
71 #include "gt/intel_context.h"
72 #include "gt/intel_context_param.h"
73 #include "gt/intel_engine_heartbeat.h"
74 #include "gt/intel_engine_user.h"
75 #include "gt/intel_ring.h"
76 
77 #include "i915_gem_context.h"
78 #include "i915_globals.h"
79 #include "i915_trace.h"
80 #include "i915_user_extensions.h"
81 
82 #define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1
83 
84 static struct i915_global_gem_context {
85 	struct i915_global base;
86 	struct kmem_cache *slab_luts;
87 } global;
88 
89 struct i915_lut_handle *i915_lut_handle_alloc(void)
90 {
91 	return kmem_cache_alloc(global.slab_luts, GFP_KERNEL);
92 }
93 
94 void i915_lut_handle_free(struct i915_lut_handle *lut)
95 {
96 	return kmem_cache_free(global.slab_luts, lut);
97 }
98 
99 static void lut_close(struct i915_gem_context *ctx)
100 {
101 	struct radix_tree_iter iter;
102 	void __rcu **slot;
103 
104 	lockdep_assert_held(&ctx->mutex);
105 
106 	rcu_read_lock();
107 	radix_tree_for_each_slot(slot, &ctx->handles_vma, &iter, 0) {
108 		struct i915_vma *vma = rcu_dereference_raw(*slot);
109 		struct drm_i915_gem_object *obj = vma->obj;
110 		struct i915_lut_handle *lut;
111 
112 		if (!kref_get_unless_zero(&obj->base.refcount))
113 			continue;
114 
115 		spin_lock(&obj->lut_lock);
116 		list_for_each_entry(lut, &obj->lut_list, obj_link) {
117 			if (lut->ctx != ctx)
118 				continue;
119 
120 			if (lut->handle != iter.index)
121 				continue;
122 
123 			list_del(&lut->obj_link);
124 			break;
125 		}
126 		spin_unlock(&obj->lut_lock);
127 
128 		if (&lut->obj_link != &obj->lut_list) {
129 			i915_lut_handle_free(lut);
130 			radix_tree_iter_delete(&ctx->handles_vma, &iter, slot);
131 			i915_vma_close(vma);
132 			i915_gem_object_put(obj);
133 		}
134 
135 		i915_gem_object_put(obj);
136 	}
137 	rcu_read_unlock();
138 }
139 
140 static struct intel_context *
141 lookup_user_engine(struct i915_gem_context *ctx,
142 		   unsigned long flags,
143 		   const struct i915_engine_class_instance *ci)
144 #define LOOKUP_USER_INDEX BIT(0)
145 {
146 	int idx;
147 
148 	if (!!(flags & LOOKUP_USER_INDEX) != i915_gem_context_user_engines(ctx))
149 		return ERR_PTR(-EINVAL);
150 
151 	if (!i915_gem_context_user_engines(ctx)) {
152 		struct intel_engine_cs *engine;
153 
154 		engine = intel_engine_lookup_user(ctx->i915,
155 						  ci->engine_class,
156 						  ci->engine_instance);
157 		if (!engine)
158 			return ERR_PTR(-EINVAL);
159 
160 		idx = engine->legacy_idx;
161 	} else {
162 		idx = ci->engine_instance;
163 	}
164 
165 	return i915_gem_context_get_engine(ctx, idx);
166 }
167 
168 static struct i915_address_space *
169 context_get_vm_rcu(struct i915_gem_context *ctx)
170 {
171 	GEM_BUG_ON(!rcu_access_pointer(ctx->vm));
172 
173 	do {
174 		struct i915_address_space *vm;
175 
176 		/*
177 		 * We do not allow downgrading from full-ppgtt [to a shared
178 		 * global gtt], so ctx->vm cannot become NULL.
179 		 */
180 		vm = rcu_dereference(ctx->vm);
181 		if (!kref_get_unless_zero(&vm->ref))
182 			continue;
183 
184 		/*
185 		 * This ppgtt may have be reallocated between
186 		 * the read and the kref, and reassigned to a third
187 		 * context. In order to avoid inadvertent sharing
188 		 * of this ppgtt with that third context (and not
189 		 * src), we have to confirm that we have the same
190 		 * ppgtt after passing through the strong memory
191 		 * barrier implied by a successful
192 		 * kref_get_unless_zero().
193 		 *
194 		 * Once we have acquired the current ppgtt of ctx,
195 		 * we no longer care if it is released from ctx, as
196 		 * it cannot be reallocated elsewhere.
197 		 */
198 
199 		if (vm == rcu_access_pointer(ctx->vm))
200 			return rcu_pointer_handoff(vm);
201 
202 		i915_vm_put(vm);
203 	} while (1);
204 }
205 
206 static void intel_context_set_gem(struct intel_context *ce,
207 				  struct i915_gem_context *ctx)
208 {
209 	GEM_BUG_ON(rcu_access_pointer(ce->gem_context));
210 	RCU_INIT_POINTER(ce->gem_context, ctx);
211 
212 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags))
213 		ce->ring = __intel_context_ring_size(SZ_16K);
214 
215 	if (rcu_access_pointer(ctx->vm)) {
216 		struct i915_address_space *vm;
217 
218 		rcu_read_lock();
219 		vm = context_get_vm_rcu(ctx); /* hmm */
220 		rcu_read_unlock();
221 
222 		i915_vm_put(ce->vm);
223 		ce->vm = vm;
224 	}
225 
226 	GEM_BUG_ON(ce->timeline);
227 	if (ctx->timeline)
228 		ce->timeline = intel_timeline_get(ctx->timeline);
229 
230 	if (ctx->sched.priority >= I915_PRIORITY_NORMAL &&
231 	    intel_engine_has_timeslices(ce->engine))
232 		__set_bit(CONTEXT_USE_SEMAPHORES, &ce->flags);
233 }
234 
235 static void __free_engines(struct i915_gem_engines *e, unsigned int count)
236 {
237 	while (count--) {
238 		if (!e->engines[count])
239 			continue;
240 
241 		intel_context_put(e->engines[count]);
242 	}
243 	kfree(e);
244 }
245 
246 static void free_engines(struct i915_gem_engines *e)
247 {
248 	__free_engines(e, e->num_engines);
249 }
250 
251 static void free_engines_rcu(struct rcu_head *rcu)
252 {
253 	struct i915_gem_engines *engines =
254 		container_of(rcu, struct i915_gem_engines, rcu);
255 
256 	i915_sw_fence_fini(&engines->fence);
257 	free_engines(engines);
258 }
259 
260 static int __i915_sw_fence_call
261 engines_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
262 {
263 	struct i915_gem_engines *engines =
264 		container_of(fence, typeof(*engines), fence);
265 
266 	switch (state) {
267 	case FENCE_COMPLETE:
268 		if (!list_empty(&engines->link)) {
269 			struct i915_gem_context *ctx = engines->ctx;
270 			unsigned long flags;
271 
272 			spin_lock_irqsave(&ctx->stale.lock, flags);
273 			list_del(&engines->link);
274 			spin_unlock_irqrestore(&ctx->stale.lock, flags);
275 		}
276 		i915_gem_context_put(engines->ctx);
277 		break;
278 
279 	case FENCE_FREE:
280 		init_rcu_head(&engines->rcu);
281 		call_rcu(&engines->rcu, free_engines_rcu);
282 		break;
283 	}
284 
285 	return NOTIFY_DONE;
286 }
287 
288 static struct i915_gem_engines *alloc_engines(unsigned int count)
289 {
290 	struct i915_gem_engines *e;
291 
292 	e = kzalloc(struct_size(e, engines, count), GFP_KERNEL);
293 	if (!e)
294 		return NULL;
295 
296 	i915_sw_fence_init(&e->fence, engines_notify);
297 	return e;
298 }
299 
300 static struct i915_gem_engines *default_engines(struct i915_gem_context *ctx)
301 {
302 	const struct intel_gt *gt = &ctx->i915->gt;
303 	struct intel_engine_cs *engine;
304 	struct i915_gem_engines *e;
305 	enum intel_engine_id id;
306 
307 	e = alloc_engines(I915_NUM_ENGINES);
308 	if (!e)
309 		return ERR_PTR(-ENOMEM);
310 
311 	for_each_engine(engine, gt, id) {
312 		struct intel_context *ce;
313 
314 		if (engine->legacy_idx == INVALID_ENGINE)
315 			continue;
316 
317 		GEM_BUG_ON(engine->legacy_idx >= I915_NUM_ENGINES);
318 		GEM_BUG_ON(e->engines[engine->legacy_idx]);
319 
320 		ce = intel_context_create(engine);
321 		if (IS_ERR(ce)) {
322 			__free_engines(e, e->num_engines + 1);
323 			return ERR_CAST(ce);
324 		}
325 
326 		intel_context_set_gem(ce, ctx);
327 
328 		e->engines[engine->legacy_idx] = ce;
329 		e->num_engines = max(e->num_engines, engine->legacy_idx);
330 	}
331 	e->num_engines++;
332 
333 	return e;
334 }
335 
336 static void i915_gem_context_free(struct i915_gem_context *ctx)
337 {
338 	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
339 
340 	spin_lock(&ctx->i915->gem.contexts.lock);
341 	list_del(&ctx->link);
342 	spin_unlock(&ctx->i915->gem.contexts.lock);
343 
344 	mutex_destroy(&ctx->engines_mutex);
345 
346 	if (ctx->timeline)
347 		intel_timeline_put(ctx->timeline);
348 
349 	put_pid(ctx->pid);
350 	mutex_destroy(&ctx->mutex);
351 
352 	kfree_rcu(ctx, rcu);
353 }
354 
355 static void contexts_free_all(struct llist_node *list)
356 {
357 	struct i915_gem_context *ctx, *cn;
358 
359 	llist_for_each_entry_safe(ctx, cn, list, free_link)
360 		i915_gem_context_free(ctx);
361 }
362 
363 static void contexts_flush_free(struct i915_gem_contexts *gc)
364 {
365 	contexts_free_all(llist_del_all(&gc->free_list));
366 }
367 
368 static void contexts_free_worker(struct work_struct *work)
369 {
370 	struct i915_gem_contexts *gc =
371 		container_of(work, typeof(*gc), free_work);
372 
373 	contexts_flush_free(gc);
374 }
375 
376 void i915_gem_context_release(struct kref *ref)
377 {
378 	struct i915_gem_context *ctx = container_of(ref, typeof(*ctx), ref);
379 	struct i915_gem_contexts *gc = &ctx->i915->gem.contexts;
380 
381 	trace_i915_context_free(ctx);
382 	if (llist_add(&ctx->free_link, &gc->free_list))
383 		schedule_work(&gc->free_work);
384 }
385 
386 static inline struct i915_gem_engines *
387 __context_engines_static(const struct i915_gem_context *ctx)
388 {
389 	return rcu_dereference_protected(ctx->engines, true);
390 }
391 
392 static bool __reset_engine(struct intel_engine_cs *engine)
393 {
394 	struct intel_gt *gt = engine->gt;
395 	bool success = false;
396 
397 	if (!intel_has_reset_engine(gt))
398 		return false;
399 
400 	if (!test_and_set_bit(I915_RESET_ENGINE + engine->id,
401 			      &gt->reset.flags)) {
402 		success = intel_engine_reset(engine, NULL) == 0;
403 		clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
404 				      &gt->reset.flags);
405 	}
406 
407 	return success;
408 }
409 
410 static void __reset_context(struct i915_gem_context *ctx,
411 			    struct intel_engine_cs *engine)
412 {
413 	intel_gt_handle_error(engine->gt, engine->mask, 0,
414 			      "context closure in %s", ctx->name);
415 }
416 
417 static bool __cancel_engine(struct intel_engine_cs *engine)
418 {
419 	/*
420 	 * Send a "high priority pulse" down the engine to cause the
421 	 * current request to be momentarily preempted. (If it fails to
422 	 * be preempted, it will be reset). As we have marked our context
423 	 * as banned, any incomplete request, including any running, will
424 	 * be skipped following the preemption.
425 	 *
426 	 * If there is no hangchecking (one of the reasons why we try to
427 	 * cancel the context) and no forced preemption, there may be no
428 	 * means by which we reset the GPU and evict the persistent hog.
429 	 * Ergo if we are unable to inject a preemptive pulse that can
430 	 * kill the banned context, we fallback to doing a local reset
431 	 * instead.
432 	 */
433 	if (IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT) &&
434 	    !intel_engine_pulse(engine))
435 		return true;
436 
437 	/* If we are unable to send a pulse, try resetting this engine. */
438 	return __reset_engine(engine);
439 }
440 
441 static struct intel_engine_cs *__active_engine(struct i915_request *rq)
442 {
443 	struct intel_engine_cs *engine, *locked;
444 
445 	/*
446 	 * Serialise with __i915_request_submit() so that it sees
447 	 * is-banned?, or we know the request is already inflight.
448 	 */
449 	locked = READ_ONCE(rq->engine);
450 	spin_lock_irq(&locked->active.lock);
451 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
452 		spin_unlock(&locked->active.lock);
453 		spin_lock(&engine->active.lock);
454 		locked = engine;
455 	}
456 
457 	engine = NULL;
458 	if (i915_request_is_active(rq) && rq->fence.error != -EIO)
459 		engine = rq->engine;
460 
461 	spin_unlock_irq(&locked->active.lock);
462 
463 	return engine;
464 }
465 
466 static struct intel_engine_cs *active_engine(struct intel_context *ce)
467 {
468 	struct intel_engine_cs *engine = NULL;
469 	struct i915_request *rq;
470 
471 	if (!ce->timeline)
472 		return NULL;
473 
474 	mutex_lock(&ce->timeline->mutex);
475 	list_for_each_entry_reverse(rq, &ce->timeline->requests, link) {
476 		if (i915_request_completed(rq))
477 			break;
478 
479 		/* Check with the backend if the request is inflight */
480 		engine = __active_engine(rq);
481 		if (engine)
482 			break;
483 	}
484 	mutex_unlock(&ce->timeline->mutex);
485 
486 	return engine;
487 }
488 
489 static void kill_engines(struct i915_gem_engines *engines)
490 {
491 	struct i915_gem_engines_iter it;
492 	struct intel_context *ce;
493 
494 	/*
495 	 * Map the user's engine back to the actual engines; one virtual
496 	 * engine will be mapped to multiple engines, and using ctx->engine[]
497 	 * the same engine may be have multiple instances in the user's map.
498 	 * However, we only care about pending requests, so only include
499 	 * engines on which there are incomplete requests.
500 	 */
501 	for_each_gem_engine(ce, engines, it) {
502 		struct intel_engine_cs *engine;
503 
504 		if (intel_context_set_banned(ce))
505 			continue;
506 
507 		/*
508 		 * Check the current active state of this context; if we
509 		 * are currently executing on the GPU we need to evict
510 		 * ourselves. On the other hand, if we haven't yet been
511 		 * submitted to the GPU or if everything is complete,
512 		 * we have nothing to do.
513 		 */
514 		engine = active_engine(ce);
515 
516 		/* First attempt to gracefully cancel the context */
517 		if (engine && !__cancel_engine(engine))
518 			/*
519 			 * If we are unable to send a preemptive pulse to bump
520 			 * the context from the GPU, we have to resort to a full
521 			 * reset. We hope the collateral damage is worth it.
522 			 */
523 			__reset_context(engines->ctx, engine);
524 	}
525 }
526 
527 static void kill_stale_engines(struct i915_gem_context *ctx)
528 {
529 	struct i915_gem_engines *pos, *next;
530 
531 	spin_lock_irq(&ctx->stale.lock);
532 	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
533 	list_for_each_entry_safe(pos, next, &ctx->stale.engines, link) {
534 		if (!i915_sw_fence_await(&pos->fence)) {
535 			list_del_init(&pos->link);
536 			continue;
537 		}
538 
539 		spin_unlock_irq(&ctx->stale.lock);
540 
541 		kill_engines(pos);
542 
543 		spin_lock_irq(&ctx->stale.lock);
544 		GEM_BUG_ON(i915_sw_fence_signaled(&pos->fence));
545 		list_safe_reset_next(pos, next, link);
546 		list_del_init(&pos->link); /* decouple from FENCE_COMPLETE */
547 
548 		i915_sw_fence_complete(&pos->fence);
549 	}
550 	spin_unlock_irq(&ctx->stale.lock);
551 }
552 
553 static void kill_context(struct i915_gem_context *ctx)
554 {
555 	kill_stale_engines(ctx);
556 }
557 
558 static void engines_idle_release(struct i915_gem_context *ctx,
559 				 struct i915_gem_engines *engines)
560 {
561 	struct i915_gem_engines_iter it;
562 	struct intel_context *ce;
563 
564 	INIT_LIST_HEAD(&engines->link);
565 
566 	engines->ctx = i915_gem_context_get(ctx);
567 
568 	for_each_gem_engine(ce, engines, it) {
569 		int err;
570 
571 		/* serialises with execbuf */
572 		set_bit(CONTEXT_CLOSED_BIT, &ce->flags);
573 		if (!intel_context_pin_if_active(ce))
574 			continue;
575 
576 		/* Wait until context is finally scheduled out and retired */
577 		err = i915_sw_fence_await_active(&engines->fence,
578 						 &ce->active,
579 						 I915_ACTIVE_AWAIT_BARRIER);
580 		intel_context_unpin(ce);
581 		if (err)
582 			goto kill;
583 	}
584 
585 	spin_lock_irq(&ctx->stale.lock);
586 	if (!i915_gem_context_is_closed(ctx))
587 		list_add_tail(&engines->link, &ctx->stale.engines);
588 	spin_unlock_irq(&ctx->stale.lock);
589 
590 kill:
591 	if (list_empty(&engines->link)) /* raced, already closed */
592 		kill_engines(engines);
593 
594 	i915_sw_fence_commit(&engines->fence);
595 }
596 
597 static void set_closed_name(struct i915_gem_context *ctx)
598 {
599 	char *s;
600 
601 	/* Replace '[]' with '<>' to indicate closed in debug prints */
602 
603 	s = strrchr(ctx->name, '[');
604 	if (!s)
605 		return;
606 
607 	*s = '<';
608 
609 	s = strchr(s + 1, ']');
610 	if (s)
611 		*s = '>';
612 }
613 
614 static void context_close(struct i915_gem_context *ctx)
615 {
616 	struct i915_address_space *vm;
617 
618 	/* Flush any concurrent set_engines() */
619 	mutex_lock(&ctx->engines_mutex);
620 	engines_idle_release(ctx, rcu_replace_pointer(ctx->engines, NULL, 1));
621 	i915_gem_context_set_closed(ctx);
622 	mutex_unlock(&ctx->engines_mutex);
623 
624 	mutex_lock(&ctx->mutex);
625 
626 	set_closed_name(ctx);
627 
628 	vm = i915_gem_context_vm(ctx);
629 	if (vm)
630 		i915_vm_close(vm);
631 
632 	ctx->file_priv = ERR_PTR(-EBADF);
633 
634 	/*
635 	 * The LUT uses the VMA as a backpointer to unref the object,
636 	 * so we need to clear the LUT before we close all the VMA (inside
637 	 * the ppgtt).
638 	 */
639 	lut_close(ctx);
640 
641 	mutex_unlock(&ctx->mutex);
642 
643 	/*
644 	 * If the user has disabled hangchecking, we can not be sure that
645 	 * the batches will ever complete after the context is closed,
646 	 * keeping the context and all resources pinned forever. So in this
647 	 * case we opt to forcibly kill off all remaining requests on
648 	 * context close.
649 	 */
650 	if (!i915_gem_context_is_persistent(ctx) ||
651 	    !ctx->i915->params.enable_hangcheck)
652 		kill_context(ctx);
653 
654 	i915_gem_context_put(ctx);
655 }
656 
657 static int __context_set_persistence(struct i915_gem_context *ctx, bool state)
658 {
659 	if (i915_gem_context_is_persistent(ctx) == state)
660 		return 0;
661 
662 	if (state) {
663 		/*
664 		 * Only contexts that are short-lived [that will expire or be
665 		 * reset] are allowed to survive past termination. We require
666 		 * hangcheck to ensure that the persistent requests are healthy.
667 		 */
668 		if (!ctx->i915->params.enable_hangcheck)
669 			return -EINVAL;
670 
671 		i915_gem_context_set_persistence(ctx);
672 	} else {
673 		/* To cancel a context we use "preempt-to-idle" */
674 		if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION))
675 			return -ENODEV;
676 
677 		/*
678 		 * If the cancel fails, we then need to reset, cleanly!
679 		 *
680 		 * If the per-engine reset fails, all hope is lost! We resort
681 		 * to a full GPU reset in that unlikely case, but realistically
682 		 * if the engine could not reset, the full reset does not fare
683 		 * much better. The damage has been done.
684 		 *
685 		 * However, if we cannot reset an engine by itself, we cannot
686 		 * cleanup a hanging persistent context without causing
687 		 * colateral damage, and we should not pretend we can by
688 		 * exposing the interface.
689 		 */
690 		if (!intel_has_reset_engine(&ctx->i915->gt))
691 			return -ENODEV;
692 
693 		i915_gem_context_clear_persistence(ctx);
694 	}
695 
696 	return 0;
697 }
698 
699 static struct i915_gem_context *
700 __create_context(struct drm_i915_private *i915)
701 {
702 	struct i915_gem_context *ctx;
703 	struct i915_gem_engines *e;
704 	int err;
705 	int i;
706 
707 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
708 	if (!ctx)
709 		return ERR_PTR(-ENOMEM);
710 
711 	kref_init(&ctx->ref);
712 	ctx->i915 = i915;
713 	ctx->sched.priority = I915_USER_PRIORITY(I915_PRIORITY_NORMAL);
714 	mutex_init(&ctx->mutex);
715 
716 	spin_lock_init(&ctx->stale.lock);
717 	INIT_LIST_HEAD(&ctx->stale.engines);
718 
719 	mutex_init(&ctx->engines_mutex);
720 	e = default_engines(ctx);
721 	if (IS_ERR(e)) {
722 		err = PTR_ERR(e);
723 		goto err_free;
724 	}
725 	RCU_INIT_POINTER(ctx->engines, e);
726 
727 	INIT_RADIX_TREE(&ctx->handles_vma, GFP_KERNEL);
728 
729 	/* NB: Mark all slices as needing a remap so that when the context first
730 	 * loads it will restore whatever remap state already exists. If there
731 	 * is no remap info, it will be a NOP. */
732 	ctx->remap_slice = ALL_L3_SLICES(i915);
733 
734 	i915_gem_context_set_bannable(ctx);
735 	i915_gem_context_set_recoverable(ctx);
736 	__context_set_persistence(ctx, true /* cgroup hook? */);
737 
738 	for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++)
739 		ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES;
740 
741 	spin_lock(&i915->gem.contexts.lock);
742 	list_add_tail(&ctx->link, &i915->gem.contexts.list);
743 	spin_unlock(&i915->gem.contexts.lock);
744 
745 	return ctx;
746 
747 err_free:
748 	kfree(ctx);
749 	return ERR_PTR(err);
750 }
751 
752 static inline struct i915_gem_engines *
753 __context_engines_await(const struct i915_gem_context *ctx)
754 {
755 	struct i915_gem_engines *engines;
756 
757 	rcu_read_lock();
758 	do {
759 		engines = rcu_dereference(ctx->engines);
760 		GEM_BUG_ON(!engines);
761 
762 		if (unlikely(!i915_sw_fence_await(&engines->fence)))
763 			continue;
764 
765 		if (likely(engines == rcu_access_pointer(ctx->engines)))
766 			break;
767 
768 		i915_sw_fence_complete(&engines->fence);
769 	} while (1);
770 	rcu_read_unlock();
771 
772 	return engines;
773 }
774 
775 static int
776 context_apply_all(struct i915_gem_context *ctx,
777 		  int (*fn)(struct intel_context *ce, void *data),
778 		  void *data)
779 {
780 	struct i915_gem_engines_iter it;
781 	struct i915_gem_engines *e;
782 	struct intel_context *ce;
783 	int err = 0;
784 
785 	e = __context_engines_await(ctx);
786 	for_each_gem_engine(ce, e, it) {
787 		err = fn(ce, data);
788 		if (err)
789 			break;
790 	}
791 	i915_sw_fence_complete(&e->fence);
792 
793 	return err;
794 }
795 
796 static int __apply_ppgtt(struct intel_context *ce, void *vm)
797 {
798 	i915_vm_put(ce->vm);
799 	ce->vm = i915_vm_get(vm);
800 	return 0;
801 }
802 
803 static struct i915_address_space *
804 __set_ppgtt(struct i915_gem_context *ctx, struct i915_address_space *vm)
805 {
806 	struct i915_address_space *old;
807 
808 	old = rcu_replace_pointer(ctx->vm,
809 				  i915_vm_open(vm),
810 				  lockdep_is_held(&ctx->mutex));
811 	GEM_BUG_ON(old && i915_vm_is_4lvl(vm) != i915_vm_is_4lvl(old));
812 
813 	context_apply_all(ctx, __apply_ppgtt, vm);
814 
815 	return old;
816 }
817 
818 static void __assign_ppgtt(struct i915_gem_context *ctx,
819 			   struct i915_address_space *vm)
820 {
821 	if (vm == rcu_access_pointer(ctx->vm))
822 		return;
823 
824 	vm = __set_ppgtt(ctx, vm);
825 	if (vm)
826 		i915_vm_close(vm);
827 }
828 
829 static void __set_timeline(struct intel_timeline **dst,
830 			   struct intel_timeline *src)
831 {
832 	struct intel_timeline *old = *dst;
833 
834 	*dst = src ? intel_timeline_get(src) : NULL;
835 
836 	if (old)
837 		intel_timeline_put(old);
838 }
839 
840 static int __apply_timeline(struct intel_context *ce, void *timeline)
841 {
842 	__set_timeline(&ce->timeline, timeline);
843 	return 0;
844 }
845 
846 static void __assign_timeline(struct i915_gem_context *ctx,
847 			      struct intel_timeline *timeline)
848 {
849 	__set_timeline(&ctx->timeline, timeline);
850 	context_apply_all(ctx, __apply_timeline, timeline);
851 }
852 
853 static struct i915_gem_context *
854 i915_gem_create_context(struct drm_i915_private *i915, unsigned int flags)
855 {
856 	struct i915_gem_context *ctx;
857 
858 	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE &&
859 	    !HAS_EXECLISTS(i915))
860 		return ERR_PTR(-EINVAL);
861 
862 	/* Reap the stale contexts */
863 	contexts_flush_free(&i915->gem.contexts);
864 
865 	ctx = __create_context(i915);
866 	if (IS_ERR(ctx))
867 		return ctx;
868 
869 	if (HAS_FULL_PPGTT(i915)) {
870 		struct i915_ppgtt *ppgtt;
871 
872 		ppgtt = i915_ppgtt_create(&i915->gt);
873 		if (IS_ERR(ppgtt)) {
874 			drm_dbg(&i915->drm, "PPGTT setup failed (%ld)\n",
875 				PTR_ERR(ppgtt));
876 			context_close(ctx);
877 			return ERR_CAST(ppgtt);
878 		}
879 
880 		mutex_lock(&ctx->mutex);
881 		__assign_ppgtt(ctx, &ppgtt->vm);
882 		mutex_unlock(&ctx->mutex);
883 
884 		i915_vm_put(&ppgtt->vm);
885 	}
886 
887 	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE) {
888 		struct intel_timeline *timeline;
889 
890 		timeline = intel_timeline_create(&i915->gt, NULL);
891 		if (IS_ERR(timeline)) {
892 			context_close(ctx);
893 			return ERR_CAST(timeline);
894 		}
895 
896 		__assign_timeline(ctx, timeline);
897 		intel_timeline_put(timeline);
898 	}
899 
900 	trace_i915_context_create(ctx);
901 
902 	return ctx;
903 }
904 
905 static void init_contexts(struct i915_gem_contexts *gc)
906 {
907 	spin_lock_init(&gc->lock);
908 	INIT_LIST_HEAD(&gc->list);
909 
910 	INIT_WORK(&gc->free_work, contexts_free_worker);
911 	init_llist_head(&gc->free_list);
912 }
913 
914 void i915_gem_init__contexts(struct drm_i915_private *i915)
915 {
916 	init_contexts(&i915->gem.contexts);
917 	drm_dbg(&i915->drm, "%s context support initialized\n",
918 		DRIVER_CAPS(i915)->has_logical_contexts ?
919 		"logical" : "fake");
920 }
921 
922 void i915_gem_driver_release__contexts(struct drm_i915_private *i915)
923 {
924 	flush_work(&i915->gem.contexts.free_work);
925 	rcu_barrier(); /* and flush the left over RCU frees */
926 }
927 
928 static int gem_context_register(struct i915_gem_context *ctx,
929 				struct drm_i915_file_private *fpriv,
930 				u32 *id)
931 {
932 	struct i915_address_space *vm;
933 	int ret;
934 
935 	ctx->file_priv = fpriv;
936 
937 	mutex_lock(&ctx->mutex);
938 	vm = i915_gem_context_vm(ctx);
939 	if (vm)
940 		WRITE_ONCE(vm->file, fpriv); /* XXX */
941 	mutex_unlock(&ctx->mutex);
942 
943 	ctx->pid = get_task_pid(current, PIDTYPE_PID);
944 	snprintf(ctx->name, sizeof(ctx->name), "%s[%d]",
945 		 current->comm, pid_nr(ctx->pid));
946 
947 	/* And finally expose ourselves to userspace via the idr */
948 	ret = xa_alloc(&fpriv->context_xa, id, ctx, xa_limit_32b, GFP_KERNEL);
949 	if (ret)
950 		put_pid(fetch_and_zero(&ctx->pid));
951 
952 	return ret;
953 }
954 
955 int i915_gem_context_open(struct drm_i915_private *i915,
956 			  struct drm_file *file)
957 {
958 	struct drm_i915_file_private *file_priv = file->driver_priv;
959 	struct i915_gem_context *ctx;
960 	int err;
961 	u32 id;
962 
963 	xa_init_flags(&file_priv->context_xa, XA_FLAGS_ALLOC);
964 
965 	/* 0 reserved for invalid/unassigned ppgtt */
966 	xa_init_flags(&file_priv->vm_xa, XA_FLAGS_ALLOC1);
967 
968 	ctx = i915_gem_create_context(i915, 0);
969 	if (IS_ERR(ctx)) {
970 		err = PTR_ERR(ctx);
971 		goto err;
972 	}
973 
974 	err = gem_context_register(ctx, file_priv, &id);
975 	if (err < 0)
976 		goto err_ctx;
977 
978 	GEM_BUG_ON(id);
979 	return 0;
980 
981 err_ctx:
982 	context_close(ctx);
983 err:
984 	xa_destroy(&file_priv->vm_xa);
985 	xa_destroy(&file_priv->context_xa);
986 	return err;
987 }
988 
989 void i915_gem_context_close(struct drm_file *file)
990 {
991 	struct drm_i915_file_private *file_priv = file->driver_priv;
992 	struct drm_i915_private *i915 = file_priv->dev_priv;
993 	struct i915_address_space *vm;
994 	struct i915_gem_context *ctx;
995 	unsigned long idx;
996 
997 	xa_for_each(&file_priv->context_xa, idx, ctx)
998 		context_close(ctx);
999 	xa_destroy(&file_priv->context_xa);
1000 
1001 	xa_for_each(&file_priv->vm_xa, idx, vm)
1002 		i915_vm_put(vm);
1003 	xa_destroy(&file_priv->vm_xa);
1004 
1005 	contexts_flush_free(&i915->gem.contexts);
1006 }
1007 
1008 int i915_gem_vm_create_ioctl(struct drm_device *dev, void *data,
1009 			     struct drm_file *file)
1010 {
1011 	struct drm_i915_private *i915 = to_i915(dev);
1012 	struct drm_i915_gem_vm_control *args = data;
1013 	struct drm_i915_file_private *file_priv = file->driver_priv;
1014 	struct i915_ppgtt *ppgtt;
1015 	u32 id;
1016 	int err;
1017 
1018 	if (!HAS_FULL_PPGTT(i915))
1019 		return -ENODEV;
1020 
1021 	if (args->flags)
1022 		return -EINVAL;
1023 
1024 	ppgtt = i915_ppgtt_create(&i915->gt);
1025 	if (IS_ERR(ppgtt))
1026 		return PTR_ERR(ppgtt);
1027 
1028 	ppgtt->vm.file = file_priv;
1029 
1030 	if (args->extensions) {
1031 		err = i915_user_extensions(u64_to_user_ptr(args->extensions),
1032 					   NULL, 0,
1033 					   ppgtt);
1034 		if (err)
1035 			goto err_put;
1036 	}
1037 
1038 	err = xa_alloc(&file_priv->vm_xa, &id, &ppgtt->vm,
1039 		       xa_limit_32b, GFP_KERNEL);
1040 	if (err)
1041 		goto err_put;
1042 
1043 	GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */
1044 	args->vm_id = id;
1045 	return 0;
1046 
1047 err_put:
1048 	i915_vm_put(&ppgtt->vm);
1049 	return err;
1050 }
1051 
1052 int i915_gem_vm_destroy_ioctl(struct drm_device *dev, void *data,
1053 			      struct drm_file *file)
1054 {
1055 	struct drm_i915_file_private *file_priv = file->driver_priv;
1056 	struct drm_i915_gem_vm_control *args = data;
1057 	struct i915_address_space *vm;
1058 
1059 	if (args->flags)
1060 		return -EINVAL;
1061 
1062 	if (args->extensions)
1063 		return -EINVAL;
1064 
1065 	vm = xa_erase(&file_priv->vm_xa, args->vm_id);
1066 	if (!vm)
1067 		return -ENOENT;
1068 
1069 	i915_vm_put(vm);
1070 	return 0;
1071 }
1072 
1073 struct context_barrier_task {
1074 	struct i915_active base;
1075 	void (*task)(void *data);
1076 	void *data;
1077 };
1078 
1079 __i915_active_call
1080 static void cb_retire(struct i915_active *base)
1081 {
1082 	struct context_barrier_task *cb = container_of(base, typeof(*cb), base);
1083 
1084 	if (cb->task)
1085 		cb->task(cb->data);
1086 
1087 	i915_active_fini(&cb->base);
1088 	kfree(cb);
1089 }
1090 
1091 I915_SELFTEST_DECLARE(static intel_engine_mask_t context_barrier_inject_fault);
1092 static int context_barrier_task(struct i915_gem_context *ctx,
1093 				intel_engine_mask_t engines,
1094 				bool (*skip)(struct intel_context *ce, void *data),
1095 				int (*emit)(struct i915_request *rq, void *data),
1096 				void (*task)(void *data),
1097 				void *data)
1098 {
1099 	struct context_barrier_task *cb;
1100 	struct i915_gem_engines_iter it;
1101 	struct i915_gem_engines *e;
1102 	struct intel_context *ce;
1103 	int err = 0;
1104 
1105 	GEM_BUG_ON(!task);
1106 
1107 	cb = kmalloc(sizeof(*cb), GFP_KERNEL);
1108 	if (!cb)
1109 		return -ENOMEM;
1110 
1111 	i915_active_init(&cb->base, NULL, cb_retire);
1112 	err = i915_active_acquire(&cb->base);
1113 	if (err) {
1114 		kfree(cb);
1115 		return err;
1116 	}
1117 
1118 	e = __context_engines_await(ctx);
1119 	if (!e) {
1120 		i915_active_release(&cb->base);
1121 		return -ENOENT;
1122 	}
1123 
1124 	for_each_gem_engine(ce, e, it) {
1125 		struct i915_request *rq;
1126 
1127 		if (I915_SELFTEST_ONLY(context_barrier_inject_fault &
1128 				       ce->engine->mask)) {
1129 			err = -ENXIO;
1130 			break;
1131 		}
1132 
1133 		if (!(ce->engine->mask & engines))
1134 			continue;
1135 
1136 		if (skip && skip(ce, data))
1137 			continue;
1138 
1139 		rq = intel_context_create_request(ce);
1140 		if (IS_ERR(rq)) {
1141 			err = PTR_ERR(rq);
1142 			break;
1143 		}
1144 
1145 		err = 0;
1146 		if (emit)
1147 			err = emit(rq, data);
1148 		if (err == 0)
1149 			err = i915_active_add_request(&cb->base, rq);
1150 
1151 		i915_request_add(rq);
1152 		if (err)
1153 			break;
1154 	}
1155 	i915_sw_fence_complete(&e->fence);
1156 
1157 	cb->task = err ? NULL : task; /* caller needs to unwind instead */
1158 	cb->data = data;
1159 
1160 	i915_active_release(&cb->base);
1161 
1162 	return err;
1163 }
1164 
1165 static int get_ppgtt(struct drm_i915_file_private *file_priv,
1166 		     struct i915_gem_context *ctx,
1167 		     struct drm_i915_gem_context_param *args)
1168 {
1169 	struct i915_address_space *vm;
1170 	int err;
1171 	u32 id;
1172 
1173 	if (!rcu_access_pointer(ctx->vm))
1174 		return -ENODEV;
1175 
1176 	rcu_read_lock();
1177 	vm = context_get_vm_rcu(ctx);
1178 	rcu_read_unlock();
1179 	if (!vm)
1180 		return -ENODEV;
1181 
1182 	err = xa_alloc(&file_priv->vm_xa, &id, vm, xa_limit_32b, GFP_KERNEL);
1183 	if (err)
1184 		goto err_put;
1185 
1186 	i915_vm_open(vm);
1187 
1188 	GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */
1189 	args->value = id;
1190 	args->size = 0;
1191 
1192 err_put:
1193 	i915_vm_put(vm);
1194 	return err;
1195 }
1196 
1197 static void set_ppgtt_barrier(void *data)
1198 {
1199 	struct i915_address_space *old = data;
1200 
1201 	if (INTEL_GEN(old->i915) < 8)
1202 		gen6_ppgtt_unpin_all(i915_vm_to_ppgtt(old));
1203 
1204 	i915_vm_close(old);
1205 }
1206 
1207 static int emit_ppgtt_update(struct i915_request *rq, void *data)
1208 {
1209 	struct i915_address_space *vm = rq->context->vm;
1210 	struct intel_engine_cs *engine = rq->engine;
1211 	u32 base = engine->mmio_base;
1212 	u32 *cs;
1213 	int i;
1214 
1215 	if (i915_vm_is_4lvl(vm)) {
1216 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1217 		const dma_addr_t pd_daddr = px_dma(ppgtt->pd);
1218 
1219 		cs = intel_ring_begin(rq, 6);
1220 		if (IS_ERR(cs))
1221 			return PTR_ERR(cs);
1222 
1223 		*cs++ = MI_LOAD_REGISTER_IMM(2);
1224 
1225 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
1226 		*cs++ = upper_32_bits(pd_daddr);
1227 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
1228 		*cs++ = lower_32_bits(pd_daddr);
1229 
1230 		*cs++ = MI_NOOP;
1231 		intel_ring_advance(rq, cs);
1232 	} else if (HAS_LOGICAL_RING_CONTEXTS(engine->i915)) {
1233 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1234 		int err;
1235 
1236 		/* Magic required to prevent forcewake errors! */
1237 		err = engine->emit_flush(rq, EMIT_INVALIDATE);
1238 		if (err)
1239 			return err;
1240 
1241 		cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1242 		if (IS_ERR(cs))
1243 			return PTR_ERR(cs);
1244 
1245 		*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1246 		for (i = GEN8_3LVL_PDPES; i--; ) {
1247 			const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1248 
1249 			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1250 			*cs++ = upper_32_bits(pd_daddr);
1251 			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1252 			*cs++ = lower_32_bits(pd_daddr);
1253 		}
1254 		*cs++ = MI_NOOP;
1255 		intel_ring_advance(rq, cs);
1256 	}
1257 
1258 	return 0;
1259 }
1260 
1261 static bool skip_ppgtt_update(struct intel_context *ce, void *data)
1262 {
1263 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags))
1264 		return true;
1265 
1266 	if (HAS_LOGICAL_RING_CONTEXTS(ce->engine->i915))
1267 		return false;
1268 
1269 	if (!atomic_read(&ce->pin_count))
1270 		return true;
1271 
1272 	/* ppGTT is not part of the legacy context image */
1273 	if (gen6_ppgtt_pin(i915_vm_to_ppgtt(ce->vm)))
1274 		return true;
1275 
1276 	return false;
1277 }
1278 
1279 static int set_ppgtt(struct drm_i915_file_private *file_priv,
1280 		     struct i915_gem_context *ctx,
1281 		     struct drm_i915_gem_context_param *args)
1282 {
1283 	struct i915_address_space *vm, *old;
1284 	int err;
1285 
1286 	if (args->size)
1287 		return -EINVAL;
1288 
1289 	if (!rcu_access_pointer(ctx->vm))
1290 		return -ENODEV;
1291 
1292 	if (upper_32_bits(args->value))
1293 		return -ENOENT;
1294 
1295 	rcu_read_lock();
1296 	vm = xa_load(&file_priv->vm_xa, args->value);
1297 	if (vm && !kref_get_unless_zero(&vm->ref))
1298 		vm = NULL;
1299 	rcu_read_unlock();
1300 	if (!vm)
1301 		return -ENOENT;
1302 
1303 	err = mutex_lock_interruptible(&ctx->mutex);
1304 	if (err)
1305 		goto out;
1306 
1307 	if (i915_gem_context_is_closed(ctx)) {
1308 		err = -ENOENT;
1309 		goto unlock;
1310 	}
1311 
1312 	if (vm == rcu_access_pointer(ctx->vm))
1313 		goto unlock;
1314 
1315 	/* Teardown the existing obj:vma cache, it will have to be rebuilt. */
1316 	lut_close(ctx);
1317 
1318 	old = __set_ppgtt(ctx, vm);
1319 
1320 	/*
1321 	 * We need to flush any requests using the current ppgtt before
1322 	 * we release it as the requests do not hold a reference themselves,
1323 	 * only indirectly through the context.
1324 	 */
1325 	err = context_barrier_task(ctx, ALL_ENGINES,
1326 				   skip_ppgtt_update,
1327 				   emit_ppgtt_update,
1328 				   set_ppgtt_barrier,
1329 				   old);
1330 	if (err) {
1331 		i915_vm_close(__set_ppgtt(ctx, old));
1332 		i915_vm_close(old);
1333 	}
1334 
1335 unlock:
1336 	mutex_unlock(&ctx->mutex);
1337 out:
1338 	i915_vm_put(vm);
1339 	return err;
1340 }
1341 
1342 static int __apply_ringsize(struct intel_context *ce, void *sz)
1343 {
1344 	return intel_context_set_ring_size(ce, (unsigned long)sz);
1345 }
1346 
1347 static int set_ringsize(struct i915_gem_context *ctx,
1348 			struct drm_i915_gem_context_param *args)
1349 {
1350 	if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915))
1351 		return -ENODEV;
1352 
1353 	if (args->size)
1354 		return -EINVAL;
1355 
1356 	if (!IS_ALIGNED(args->value, I915_GTT_PAGE_SIZE))
1357 		return -EINVAL;
1358 
1359 	if (args->value < I915_GTT_PAGE_SIZE)
1360 		return -EINVAL;
1361 
1362 	if (args->value > 128 * I915_GTT_PAGE_SIZE)
1363 		return -EINVAL;
1364 
1365 	return context_apply_all(ctx,
1366 				 __apply_ringsize,
1367 				 __intel_context_ring_size(args->value));
1368 }
1369 
1370 static int __get_ringsize(struct intel_context *ce, void *arg)
1371 {
1372 	long sz;
1373 
1374 	sz = intel_context_get_ring_size(ce);
1375 	GEM_BUG_ON(sz > INT_MAX);
1376 
1377 	return sz; /* stop on first engine */
1378 }
1379 
1380 static int get_ringsize(struct i915_gem_context *ctx,
1381 			struct drm_i915_gem_context_param *args)
1382 {
1383 	int sz;
1384 
1385 	if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915))
1386 		return -ENODEV;
1387 
1388 	if (args->size)
1389 		return -EINVAL;
1390 
1391 	sz = context_apply_all(ctx, __get_ringsize, NULL);
1392 	if (sz < 0)
1393 		return sz;
1394 
1395 	args->value = sz;
1396 	return 0;
1397 }
1398 
1399 int
1400 i915_gem_user_to_context_sseu(struct drm_i915_private *i915,
1401 			      const struct drm_i915_gem_context_param_sseu *user,
1402 			      struct intel_sseu *context)
1403 {
1404 	const struct sseu_dev_info *device = &RUNTIME_INFO(i915)->sseu;
1405 
1406 	/* No zeros in any field. */
1407 	if (!user->slice_mask || !user->subslice_mask ||
1408 	    !user->min_eus_per_subslice || !user->max_eus_per_subslice)
1409 		return -EINVAL;
1410 
1411 	/* Max > min. */
1412 	if (user->max_eus_per_subslice < user->min_eus_per_subslice)
1413 		return -EINVAL;
1414 
1415 	/*
1416 	 * Some future proofing on the types since the uAPI is wider than the
1417 	 * current internal implementation.
1418 	 */
1419 	if (overflows_type(user->slice_mask, context->slice_mask) ||
1420 	    overflows_type(user->subslice_mask, context->subslice_mask) ||
1421 	    overflows_type(user->min_eus_per_subslice,
1422 			   context->min_eus_per_subslice) ||
1423 	    overflows_type(user->max_eus_per_subslice,
1424 			   context->max_eus_per_subslice))
1425 		return -EINVAL;
1426 
1427 	/* Check validity against hardware. */
1428 	if (user->slice_mask & ~device->slice_mask)
1429 		return -EINVAL;
1430 
1431 	if (user->subslice_mask & ~device->subslice_mask[0])
1432 		return -EINVAL;
1433 
1434 	if (user->max_eus_per_subslice > device->max_eus_per_subslice)
1435 		return -EINVAL;
1436 
1437 	context->slice_mask = user->slice_mask;
1438 	context->subslice_mask = user->subslice_mask;
1439 	context->min_eus_per_subslice = user->min_eus_per_subslice;
1440 	context->max_eus_per_subslice = user->max_eus_per_subslice;
1441 
1442 	/* Part specific restrictions. */
1443 	if (IS_GEN(i915, 11)) {
1444 		unsigned int hw_s = hweight8(device->slice_mask);
1445 		unsigned int hw_ss_per_s = hweight8(device->subslice_mask[0]);
1446 		unsigned int req_s = hweight8(context->slice_mask);
1447 		unsigned int req_ss = hweight8(context->subslice_mask);
1448 
1449 		/*
1450 		 * Only full subslice enablement is possible if more than one
1451 		 * slice is turned on.
1452 		 */
1453 		if (req_s > 1 && req_ss != hw_ss_per_s)
1454 			return -EINVAL;
1455 
1456 		/*
1457 		 * If more than four (SScount bitfield limit) subslices are
1458 		 * requested then the number has to be even.
1459 		 */
1460 		if (req_ss > 4 && (req_ss & 1))
1461 			return -EINVAL;
1462 
1463 		/*
1464 		 * If only one slice is enabled and subslice count is below the
1465 		 * device full enablement, it must be at most half of the all
1466 		 * available subslices.
1467 		 */
1468 		if (req_s == 1 && req_ss < hw_ss_per_s &&
1469 		    req_ss > (hw_ss_per_s / 2))
1470 			return -EINVAL;
1471 
1472 		/* ABI restriction - VME use case only. */
1473 
1474 		/* All slices or one slice only. */
1475 		if (req_s != 1 && req_s != hw_s)
1476 			return -EINVAL;
1477 
1478 		/*
1479 		 * Half subslices or full enablement only when one slice is
1480 		 * enabled.
1481 		 */
1482 		if (req_s == 1 &&
1483 		    (req_ss != hw_ss_per_s && req_ss != (hw_ss_per_s / 2)))
1484 			return -EINVAL;
1485 
1486 		/* No EU configuration changes. */
1487 		if ((user->min_eus_per_subslice !=
1488 		     device->max_eus_per_subslice) ||
1489 		    (user->max_eus_per_subslice !=
1490 		     device->max_eus_per_subslice))
1491 			return -EINVAL;
1492 	}
1493 
1494 	return 0;
1495 }
1496 
1497 static int set_sseu(struct i915_gem_context *ctx,
1498 		    struct drm_i915_gem_context_param *args)
1499 {
1500 	struct drm_i915_private *i915 = ctx->i915;
1501 	struct drm_i915_gem_context_param_sseu user_sseu;
1502 	struct intel_context *ce;
1503 	struct intel_sseu sseu;
1504 	unsigned long lookup;
1505 	int ret;
1506 
1507 	if (args->size < sizeof(user_sseu))
1508 		return -EINVAL;
1509 
1510 	if (!IS_GEN(i915, 11))
1511 		return -ENODEV;
1512 
1513 	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
1514 			   sizeof(user_sseu)))
1515 		return -EFAULT;
1516 
1517 	if (user_sseu.rsvd)
1518 		return -EINVAL;
1519 
1520 	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
1521 		return -EINVAL;
1522 
1523 	lookup = 0;
1524 	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
1525 		lookup |= LOOKUP_USER_INDEX;
1526 
1527 	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
1528 	if (IS_ERR(ce))
1529 		return PTR_ERR(ce);
1530 
1531 	/* Only render engine supports RPCS configuration. */
1532 	if (ce->engine->class != RENDER_CLASS) {
1533 		ret = -ENODEV;
1534 		goto out_ce;
1535 	}
1536 
1537 	ret = i915_gem_user_to_context_sseu(i915, &user_sseu, &sseu);
1538 	if (ret)
1539 		goto out_ce;
1540 
1541 	ret = intel_context_reconfigure_sseu(ce, sseu);
1542 	if (ret)
1543 		goto out_ce;
1544 
1545 	args->size = sizeof(user_sseu);
1546 
1547 out_ce:
1548 	intel_context_put(ce);
1549 	return ret;
1550 }
1551 
1552 struct set_engines {
1553 	struct i915_gem_context *ctx;
1554 	struct i915_gem_engines *engines;
1555 };
1556 
1557 static int
1558 set_engines__load_balance(struct i915_user_extension __user *base, void *data)
1559 {
1560 	struct i915_context_engines_load_balance __user *ext =
1561 		container_of_user(base, typeof(*ext), base);
1562 	const struct set_engines *set = data;
1563 	struct drm_i915_private *i915 = set->ctx->i915;
1564 	struct intel_engine_cs *stack[16];
1565 	struct intel_engine_cs **siblings;
1566 	struct intel_context *ce;
1567 	u16 num_siblings, idx;
1568 	unsigned int n;
1569 	int err;
1570 
1571 	if (!HAS_EXECLISTS(i915))
1572 		return -ENODEV;
1573 
1574 	if (intel_uc_uses_guc_submission(&i915->gt.uc))
1575 		return -ENODEV; /* not implement yet */
1576 
1577 	if (get_user(idx, &ext->engine_index))
1578 		return -EFAULT;
1579 
1580 	if (idx >= set->engines->num_engines) {
1581 		drm_dbg(&i915->drm, "Invalid placement value, %d >= %d\n",
1582 			idx, set->engines->num_engines);
1583 		return -EINVAL;
1584 	}
1585 
1586 	idx = array_index_nospec(idx, set->engines->num_engines);
1587 	if (set->engines->engines[idx]) {
1588 		drm_dbg(&i915->drm,
1589 			"Invalid placement[%d], already occupied\n", idx);
1590 		return -EEXIST;
1591 	}
1592 
1593 	if (get_user(num_siblings, &ext->num_siblings))
1594 		return -EFAULT;
1595 
1596 	err = check_user_mbz(&ext->flags);
1597 	if (err)
1598 		return err;
1599 
1600 	err = check_user_mbz(&ext->mbz64);
1601 	if (err)
1602 		return err;
1603 
1604 	siblings = stack;
1605 	if (num_siblings > ARRAY_SIZE(stack)) {
1606 		siblings = kmalloc_array(num_siblings,
1607 					 sizeof(*siblings),
1608 					 GFP_KERNEL);
1609 		if (!siblings)
1610 			return -ENOMEM;
1611 	}
1612 
1613 	for (n = 0; n < num_siblings; n++) {
1614 		struct i915_engine_class_instance ci;
1615 
1616 		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) {
1617 			err = -EFAULT;
1618 			goto out_siblings;
1619 		}
1620 
1621 		siblings[n] = intel_engine_lookup_user(i915,
1622 						       ci.engine_class,
1623 						       ci.engine_instance);
1624 		if (!siblings[n]) {
1625 			drm_dbg(&i915->drm,
1626 				"Invalid sibling[%d]: { class:%d, inst:%d }\n",
1627 				n, ci.engine_class, ci.engine_instance);
1628 			err = -EINVAL;
1629 			goto out_siblings;
1630 		}
1631 	}
1632 
1633 	ce = intel_execlists_create_virtual(siblings, n);
1634 	if (IS_ERR(ce)) {
1635 		err = PTR_ERR(ce);
1636 		goto out_siblings;
1637 	}
1638 
1639 	intel_context_set_gem(ce, set->ctx);
1640 
1641 	if (cmpxchg(&set->engines->engines[idx], NULL, ce)) {
1642 		intel_context_put(ce);
1643 		err = -EEXIST;
1644 		goto out_siblings;
1645 	}
1646 
1647 out_siblings:
1648 	if (siblings != stack)
1649 		kfree(siblings);
1650 
1651 	return err;
1652 }
1653 
1654 static int
1655 set_engines__bond(struct i915_user_extension __user *base, void *data)
1656 {
1657 	struct i915_context_engines_bond __user *ext =
1658 		container_of_user(base, typeof(*ext), base);
1659 	const struct set_engines *set = data;
1660 	struct drm_i915_private *i915 = set->ctx->i915;
1661 	struct i915_engine_class_instance ci;
1662 	struct intel_engine_cs *virtual;
1663 	struct intel_engine_cs *master;
1664 	u16 idx, num_bonds;
1665 	int err, n;
1666 
1667 	if (get_user(idx, &ext->virtual_index))
1668 		return -EFAULT;
1669 
1670 	if (idx >= set->engines->num_engines) {
1671 		drm_dbg(&i915->drm,
1672 			"Invalid index for virtual engine: %d >= %d\n",
1673 			idx, set->engines->num_engines);
1674 		return -EINVAL;
1675 	}
1676 
1677 	idx = array_index_nospec(idx, set->engines->num_engines);
1678 	if (!set->engines->engines[idx]) {
1679 		drm_dbg(&i915->drm, "Invalid engine at %d\n", idx);
1680 		return -EINVAL;
1681 	}
1682 	virtual = set->engines->engines[idx]->engine;
1683 
1684 	err = check_user_mbz(&ext->flags);
1685 	if (err)
1686 		return err;
1687 
1688 	for (n = 0; n < ARRAY_SIZE(ext->mbz64); n++) {
1689 		err = check_user_mbz(&ext->mbz64[n]);
1690 		if (err)
1691 			return err;
1692 	}
1693 
1694 	if (copy_from_user(&ci, &ext->master, sizeof(ci)))
1695 		return -EFAULT;
1696 
1697 	master = intel_engine_lookup_user(i915,
1698 					  ci.engine_class, ci.engine_instance);
1699 	if (!master) {
1700 		drm_dbg(&i915->drm,
1701 			"Unrecognised master engine: { class:%u, instance:%u }\n",
1702 			ci.engine_class, ci.engine_instance);
1703 		return -EINVAL;
1704 	}
1705 
1706 	if (get_user(num_bonds, &ext->num_bonds))
1707 		return -EFAULT;
1708 
1709 	for (n = 0; n < num_bonds; n++) {
1710 		struct intel_engine_cs *bond;
1711 
1712 		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci)))
1713 			return -EFAULT;
1714 
1715 		bond = intel_engine_lookup_user(i915,
1716 						ci.engine_class,
1717 						ci.engine_instance);
1718 		if (!bond) {
1719 			drm_dbg(&i915->drm,
1720 				"Unrecognised engine[%d] for bonding: { class:%d, instance: %d }\n",
1721 				n, ci.engine_class, ci.engine_instance);
1722 			return -EINVAL;
1723 		}
1724 
1725 		/*
1726 		 * A non-virtual engine has no siblings to choose between; and
1727 		 * a submit fence will always be directed to the one engine.
1728 		 */
1729 		if (intel_engine_is_virtual(virtual)) {
1730 			err = intel_virtual_engine_attach_bond(virtual,
1731 							       master,
1732 							       bond);
1733 			if (err)
1734 				return err;
1735 		}
1736 	}
1737 
1738 	return 0;
1739 }
1740 
1741 static const i915_user_extension_fn set_engines__extensions[] = {
1742 	[I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE] = set_engines__load_balance,
1743 	[I915_CONTEXT_ENGINES_EXT_BOND] = set_engines__bond,
1744 };
1745 
1746 static int
1747 set_engines(struct i915_gem_context *ctx,
1748 	    const struct drm_i915_gem_context_param *args)
1749 {
1750 	struct drm_i915_private *i915 = ctx->i915;
1751 	struct i915_context_param_engines __user *user =
1752 		u64_to_user_ptr(args->value);
1753 	struct set_engines set = { .ctx = ctx };
1754 	unsigned int num_engines, n;
1755 	u64 extensions;
1756 	int err;
1757 
1758 	if (!args->size) { /* switch back to legacy user_ring_map */
1759 		if (!i915_gem_context_user_engines(ctx))
1760 			return 0;
1761 
1762 		set.engines = default_engines(ctx);
1763 		if (IS_ERR(set.engines))
1764 			return PTR_ERR(set.engines);
1765 
1766 		goto replace;
1767 	}
1768 
1769 	BUILD_BUG_ON(!IS_ALIGNED(sizeof(*user), sizeof(*user->engines)));
1770 	if (args->size < sizeof(*user) ||
1771 	    !IS_ALIGNED(args->size, sizeof(*user->engines))) {
1772 		drm_dbg(&i915->drm, "Invalid size for engine array: %d\n",
1773 			args->size);
1774 		return -EINVAL;
1775 	}
1776 
1777 	/*
1778 	 * Note that I915_EXEC_RING_MASK limits execbuf to only using the
1779 	 * first 64 engines defined here.
1780 	 */
1781 	num_engines = (args->size - sizeof(*user)) / sizeof(*user->engines);
1782 	set.engines = alloc_engines(num_engines);
1783 	if (!set.engines)
1784 		return -ENOMEM;
1785 
1786 	for (n = 0; n < num_engines; n++) {
1787 		struct i915_engine_class_instance ci;
1788 		struct intel_engine_cs *engine;
1789 		struct intel_context *ce;
1790 
1791 		if (copy_from_user(&ci, &user->engines[n], sizeof(ci))) {
1792 			__free_engines(set.engines, n);
1793 			return -EFAULT;
1794 		}
1795 
1796 		if (ci.engine_class == (u16)I915_ENGINE_CLASS_INVALID &&
1797 		    ci.engine_instance == (u16)I915_ENGINE_CLASS_INVALID_NONE) {
1798 			set.engines->engines[n] = NULL;
1799 			continue;
1800 		}
1801 
1802 		engine = intel_engine_lookup_user(ctx->i915,
1803 						  ci.engine_class,
1804 						  ci.engine_instance);
1805 		if (!engine) {
1806 			drm_dbg(&i915->drm,
1807 				"Invalid engine[%d]: { class:%d, instance:%d }\n",
1808 				n, ci.engine_class, ci.engine_instance);
1809 			__free_engines(set.engines, n);
1810 			return -ENOENT;
1811 		}
1812 
1813 		ce = intel_context_create(engine);
1814 		if (IS_ERR(ce)) {
1815 			__free_engines(set.engines, n);
1816 			return PTR_ERR(ce);
1817 		}
1818 
1819 		intel_context_set_gem(ce, ctx);
1820 
1821 		set.engines->engines[n] = ce;
1822 	}
1823 	set.engines->num_engines = num_engines;
1824 
1825 	err = -EFAULT;
1826 	if (!get_user(extensions, &user->extensions))
1827 		err = i915_user_extensions(u64_to_user_ptr(extensions),
1828 					   set_engines__extensions,
1829 					   ARRAY_SIZE(set_engines__extensions),
1830 					   &set);
1831 	if (err) {
1832 		free_engines(set.engines);
1833 		return err;
1834 	}
1835 
1836 replace:
1837 	mutex_lock(&ctx->engines_mutex);
1838 	if (i915_gem_context_is_closed(ctx)) {
1839 		mutex_unlock(&ctx->engines_mutex);
1840 		free_engines(set.engines);
1841 		return -ENOENT;
1842 	}
1843 	if (args->size)
1844 		i915_gem_context_set_user_engines(ctx);
1845 	else
1846 		i915_gem_context_clear_user_engines(ctx);
1847 	set.engines = rcu_replace_pointer(ctx->engines, set.engines, 1);
1848 	mutex_unlock(&ctx->engines_mutex);
1849 
1850 	/* Keep track of old engine sets for kill_context() */
1851 	engines_idle_release(ctx, set.engines);
1852 
1853 	return 0;
1854 }
1855 
1856 static struct i915_gem_engines *
1857 __copy_engines(struct i915_gem_engines *e)
1858 {
1859 	struct i915_gem_engines *copy;
1860 	unsigned int n;
1861 
1862 	copy = alloc_engines(e->num_engines);
1863 	if (!copy)
1864 		return ERR_PTR(-ENOMEM);
1865 
1866 	for (n = 0; n < e->num_engines; n++) {
1867 		if (e->engines[n])
1868 			copy->engines[n] = intel_context_get(e->engines[n]);
1869 		else
1870 			copy->engines[n] = NULL;
1871 	}
1872 	copy->num_engines = n;
1873 
1874 	return copy;
1875 }
1876 
1877 static int
1878 get_engines(struct i915_gem_context *ctx,
1879 	    struct drm_i915_gem_context_param *args)
1880 {
1881 	struct i915_context_param_engines __user *user;
1882 	struct i915_gem_engines *e;
1883 	size_t n, count, size;
1884 	int err = 0;
1885 
1886 	err = mutex_lock_interruptible(&ctx->engines_mutex);
1887 	if (err)
1888 		return err;
1889 
1890 	e = NULL;
1891 	if (i915_gem_context_user_engines(ctx))
1892 		e = __copy_engines(i915_gem_context_engines(ctx));
1893 	mutex_unlock(&ctx->engines_mutex);
1894 	if (IS_ERR_OR_NULL(e)) {
1895 		args->size = 0;
1896 		return PTR_ERR_OR_ZERO(e);
1897 	}
1898 
1899 	count = e->num_engines;
1900 
1901 	/* Be paranoid in case we have an impedance mismatch */
1902 	if (!check_struct_size(user, engines, count, &size)) {
1903 		err = -EINVAL;
1904 		goto err_free;
1905 	}
1906 	if (overflows_type(size, args->size)) {
1907 		err = -EINVAL;
1908 		goto err_free;
1909 	}
1910 
1911 	if (!args->size) {
1912 		args->size = size;
1913 		goto err_free;
1914 	}
1915 
1916 	if (args->size < size) {
1917 		err = -EINVAL;
1918 		goto err_free;
1919 	}
1920 
1921 	user = u64_to_user_ptr(args->value);
1922 	if (put_user(0, &user->extensions)) {
1923 		err = -EFAULT;
1924 		goto err_free;
1925 	}
1926 
1927 	for (n = 0; n < count; n++) {
1928 		struct i915_engine_class_instance ci = {
1929 			.engine_class = I915_ENGINE_CLASS_INVALID,
1930 			.engine_instance = I915_ENGINE_CLASS_INVALID_NONE,
1931 		};
1932 
1933 		if (e->engines[n]) {
1934 			ci.engine_class = e->engines[n]->engine->uabi_class;
1935 			ci.engine_instance = e->engines[n]->engine->uabi_instance;
1936 		}
1937 
1938 		if (copy_to_user(&user->engines[n], &ci, sizeof(ci))) {
1939 			err = -EFAULT;
1940 			goto err_free;
1941 		}
1942 	}
1943 
1944 	args->size = size;
1945 
1946 err_free:
1947 	free_engines(e);
1948 	return err;
1949 }
1950 
1951 static int
1952 set_persistence(struct i915_gem_context *ctx,
1953 		const struct drm_i915_gem_context_param *args)
1954 {
1955 	if (args->size)
1956 		return -EINVAL;
1957 
1958 	return __context_set_persistence(ctx, args->value);
1959 }
1960 
1961 static int __apply_priority(struct intel_context *ce, void *arg)
1962 {
1963 	struct i915_gem_context *ctx = arg;
1964 
1965 	if (!intel_engine_has_timeslices(ce->engine))
1966 		return 0;
1967 
1968 	if (ctx->sched.priority >= I915_PRIORITY_NORMAL)
1969 		intel_context_set_use_semaphores(ce);
1970 	else
1971 		intel_context_clear_use_semaphores(ce);
1972 
1973 	return 0;
1974 }
1975 
1976 static int set_priority(struct i915_gem_context *ctx,
1977 			const struct drm_i915_gem_context_param *args)
1978 {
1979 	s64 priority = args->value;
1980 
1981 	if (args->size)
1982 		return -EINVAL;
1983 
1984 	if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY))
1985 		return -ENODEV;
1986 
1987 	if (priority > I915_CONTEXT_MAX_USER_PRIORITY ||
1988 	    priority < I915_CONTEXT_MIN_USER_PRIORITY)
1989 		return -EINVAL;
1990 
1991 	if (priority > I915_CONTEXT_DEFAULT_PRIORITY &&
1992 	    !capable(CAP_SYS_NICE))
1993 		return -EPERM;
1994 
1995 	ctx->sched.priority = I915_USER_PRIORITY(priority);
1996 	context_apply_all(ctx, __apply_priority, ctx);
1997 
1998 	return 0;
1999 }
2000 
2001 static int ctx_setparam(struct drm_i915_file_private *fpriv,
2002 			struct i915_gem_context *ctx,
2003 			struct drm_i915_gem_context_param *args)
2004 {
2005 	int ret = 0;
2006 
2007 	switch (args->param) {
2008 	case I915_CONTEXT_PARAM_NO_ZEROMAP:
2009 		if (args->size)
2010 			ret = -EINVAL;
2011 		else if (args->value)
2012 			set_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
2013 		else
2014 			clear_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
2015 		break;
2016 
2017 	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
2018 		if (args->size)
2019 			ret = -EINVAL;
2020 		else if (args->value)
2021 			i915_gem_context_set_no_error_capture(ctx);
2022 		else
2023 			i915_gem_context_clear_no_error_capture(ctx);
2024 		break;
2025 
2026 	case I915_CONTEXT_PARAM_BANNABLE:
2027 		if (args->size)
2028 			ret = -EINVAL;
2029 		else if (!capable(CAP_SYS_ADMIN) && !args->value)
2030 			ret = -EPERM;
2031 		else if (args->value)
2032 			i915_gem_context_set_bannable(ctx);
2033 		else
2034 			i915_gem_context_clear_bannable(ctx);
2035 		break;
2036 
2037 	case I915_CONTEXT_PARAM_RECOVERABLE:
2038 		if (args->size)
2039 			ret = -EINVAL;
2040 		else if (args->value)
2041 			i915_gem_context_set_recoverable(ctx);
2042 		else
2043 			i915_gem_context_clear_recoverable(ctx);
2044 		break;
2045 
2046 	case I915_CONTEXT_PARAM_PRIORITY:
2047 		ret = set_priority(ctx, args);
2048 		break;
2049 
2050 	case I915_CONTEXT_PARAM_SSEU:
2051 		ret = set_sseu(ctx, args);
2052 		break;
2053 
2054 	case I915_CONTEXT_PARAM_VM:
2055 		ret = set_ppgtt(fpriv, ctx, args);
2056 		break;
2057 
2058 	case I915_CONTEXT_PARAM_ENGINES:
2059 		ret = set_engines(ctx, args);
2060 		break;
2061 
2062 	case I915_CONTEXT_PARAM_PERSISTENCE:
2063 		ret = set_persistence(ctx, args);
2064 		break;
2065 
2066 	case I915_CONTEXT_PARAM_RINGSIZE:
2067 		ret = set_ringsize(ctx, args);
2068 		break;
2069 
2070 	case I915_CONTEXT_PARAM_BAN_PERIOD:
2071 	default:
2072 		ret = -EINVAL;
2073 		break;
2074 	}
2075 
2076 	return ret;
2077 }
2078 
2079 struct create_ext {
2080 	struct i915_gem_context *ctx;
2081 	struct drm_i915_file_private *fpriv;
2082 };
2083 
2084 static int create_setparam(struct i915_user_extension __user *ext, void *data)
2085 {
2086 	struct drm_i915_gem_context_create_ext_setparam local;
2087 	const struct create_ext *arg = data;
2088 
2089 	if (copy_from_user(&local, ext, sizeof(local)))
2090 		return -EFAULT;
2091 
2092 	if (local.param.ctx_id)
2093 		return -EINVAL;
2094 
2095 	return ctx_setparam(arg->fpriv, arg->ctx, &local.param);
2096 }
2097 
2098 static int copy_ring_size(struct intel_context *dst,
2099 			  struct intel_context *src)
2100 {
2101 	long sz;
2102 
2103 	sz = intel_context_get_ring_size(src);
2104 	if (sz < 0)
2105 		return sz;
2106 
2107 	return intel_context_set_ring_size(dst, sz);
2108 }
2109 
2110 static int clone_engines(struct i915_gem_context *dst,
2111 			 struct i915_gem_context *src)
2112 {
2113 	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
2114 	struct i915_gem_engines *clone;
2115 	bool user_engines;
2116 	unsigned long n;
2117 
2118 	clone = alloc_engines(e->num_engines);
2119 	if (!clone)
2120 		goto err_unlock;
2121 
2122 	for (n = 0; n < e->num_engines; n++) {
2123 		struct intel_engine_cs *engine;
2124 
2125 		if (!e->engines[n]) {
2126 			clone->engines[n] = NULL;
2127 			continue;
2128 		}
2129 		engine = e->engines[n]->engine;
2130 
2131 		/*
2132 		 * Virtual engines are singletons; they can only exist
2133 		 * inside a single context, because they embed their
2134 		 * HW context... As each virtual context implies a single
2135 		 * timeline (each engine can only dequeue a single request
2136 		 * at any time), it would be surprising for two contexts
2137 		 * to use the same engine. So let's create a copy of
2138 		 * the virtual engine instead.
2139 		 */
2140 		if (intel_engine_is_virtual(engine))
2141 			clone->engines[n] =
2142 				intel_execlists_clone_virtual(engine);
2143 		else
2144 			clone->engines[n] = intel_context_create(engine);
2145 		if (IS_ERR_OR_NULL(clone->engines[n])) {
2146 			__free_engines(clone, n);
2147 			goto err_unlock;
2148 		}
2149 
2150 		intel_context_set_gem(clone->engines[n], dst);
2151 
2152 		/* Copy across the preferred ringsize */
2153 		if (copy_ring_size(clone->engines[n], e->engines[n])) {
2154 			__free_engines(clone, n + 1);
2155 			goto err_unlock;
2156 		}
2157 	}
2158 	clone->num_engines = n;
2159 
2160 	user_engines = i915_gem_context_user_engines(src);
2161 	i915_gem_context_unlock_engines(src);
2162 
2163 	/* Serialised by constructor */
2164 	engines_idle_release(dst, rcu_replace_pointer(dst->engines, clone, 1));
2165 	if (user_engines)
2166 		i915_gem_context_set_user_engines(dst);
2167 	else
2168 		i915_gem_context_clear_user_engines(dst);
2169 	return 0;
2170 
2171 err_unlock:
2172 	i915_gem_context_unlock_engines(src);
2173 	return -ENOMEM;
2174 }
2175 
2176 static int clone_flags(struct i915_gem_context *dst,
2177 		       struct i915_gem_context *src)
2178 {
2179 	dst->user_flags = src->user_flags;
2180 	return 0;
2181 }
2182 
2183 static int clone_schedattr(struct i915_gem_context *dst,
2184 			   struct i915_gem_context *src)
2185 {
2186 	dst->sched = src->sched;
2187 	return 0;
2188 }
2189 
2190 static int clone_sseu(struct i915_gem_context *dst,
2191 		      struct i915_gem_context *src)
2192 {
2193 	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
2194 	struct i915_gem_engines *clone;
2195 	unsigned long n;
2196 	int err;
2197 
2198 	/* no locking required; sole access under constructor*/
2199 	clone = __context_engines_static(dst);
2200 	if (e->num_engines != clone->num_engines) {
2201 		err = -EINVAL;
2202 		goto unlock;
2203 	}
2204 
2205 	for (n = 0; n < e->num_engines; n++) {
2206 		struct intel_context *ce = e->engines[n];
2207 
2208 		if (clone->engines[n]->engine->class != ce->engine->class) {
2209 			/* Must have compatible engine maps! */
2210 			err = -EINVAL;
2211 			goto unlock;
2212 		}
2213 
2214 		/* serialises with set_sseu */
2215 		err = intel_context_lock_pinned(ce);
2216 		if (err)
2217 			goto unlock;
2218 
2219 		clone->engines[n]->sseu = ce->sseu;
2220 		intel_context_unlock_pinned(ce);
2221 	}
2222 
2223 	err = 0;
2224 unlock:
2225 	i915_gem_context_unlock_engines(src);
2226 	return err;
2227 }
2228 
2229 static int clone_timeline(struct i915_gem_context *dst,
2230 			  struct i915_gem_context *src)
2231 {
2232 	if (src->timeline)
2233 		__assign_timeline(dst, src->timeline);
2234 
2235 	return 0;
2236 }
2237 
2238 static int clone_vm(struct i915_gem_context *dst,
2239 		    struct i915_gem_context *src)
2240 {
2241 	struct i915_address_space *vm;
2242 	int err = 0;
2243 
2244 	if (!rcu_access_pointer(src->vm))
2245 		return 0;
2246 
2247 	rcu_read_lock();
2248 	vm = context_get_vm_rcu(src);
2249 	rcu_read_unlock();
2250 
2251 	if (!mutex_lock_interruptible(&dst->mutex)) {
2252 		__assign_ppgtt(dst, vm);
2253 		mutex_unlock(&dst->mutex);
2254 	} else {
2255 		err = -EINTR;
2256 	}
2257 
2258 	i915_vm_put(vm);
2259 	return err;
2260 }
2261 
2262 static int create_clone(struct i915_user_extension __user *ext, void *data)
2263 {
2264 	static int (* const fn[])(struct i915_gem_context *dst,
2265 				  struct i915_gem_context *src) = {
2266 #define MAP(x, y) [ilog2(I915_CONTEXT_CLONE_##x)] = y
2267 		MAP(ENGINES, clone_engines),
2268 		MAP(FLAGS, clone_flags),
2269 		MAP(SCHEDATTR, clone_schedattr),
2270 		MAP(SSEU, clone_sseu),
2271 		MAP(TIMELINE, clone_timeline),
2272 		MAP(VM, clone_vm),
2273 #undef MAP
2274 	};
2275 	struct drm_i915_gem_context_create_ext_clone local;
2276 	const struct create_ext *arg = data;
2277 	struct i915_gem_context *dst = arg->ctx;
2278 	struct i915_gem_context *src;
2279 	int err, bit;
2280 
2281 	if (copy_from_user(&local, ext, sizeof(local)))
2282 		return -EFAULT;
2283 
2284 	BUILD_BUG_ON(GENMASK(BITS_PER_TYPE(local.flags) - 1, ARRAY_SIZE(fn)) !=
2285 		     I915_CONTEXT_CLONE_UNKNOWN);
2286 
2287 	if (local.flags & I915_CONTEXT_CLONE_UNKNOWN)
2288 		return -EINVAL;
2289 
2290 	if (local.rsvd)
2291 		return -EINVAL;
2292 
2293 	rcu_read_lock();
2294 	src = __i915_gem_context_lookup_rcu(arg->fpriv, local.clone_id);
2295 	rcu_read_unlock();
2296 	if (!src)
2297 		return -ENOENT;
2298 
2299 	GEM_BUG_ON(src == dst);
2300 
2301 	for (bit = 0; bit < ARRAY_SIZE(fn); bit++) {
2302 		if (!(local.flags & BIT(bit)))
2303 			continue;
2304 
2305 		err = fn[bit](dst, src);
2306 		if (err)
2307 			return err;
2308 	}
2309 
2310 	return 0;
2311 }
2312 
2313 static const i915_user_extension_fn create_extensions[] = {
2314 	[I915_CONTEXT_CREATE_EXT_SETPARAM] = create_setparam,
2315 	[I915_CONTEXT_CREATE_EXT_CLONE] = create_clone,
2316 };
2317 
2318 static bool client_is_banned(struct drm_i915_file_private *file_priv)
2319 {
2320 	return atomic_read(&file_priv->ban_score) >= I915_CLIENT_SCORE_BANNED;
2321 }
2322 
2323 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
2324 				  struct drm_file *file)
2325 {
2326 	struct drm_i915_private *i915 = to_i915(dev);
2327 	struct drm_i915_gem_context_create_ext *args = data;
2328 	struct create_ext ext_data;
2329 	int ret;
2330 	u32 id;
2331 
2332 	if (!DRIVER_CAPS(i915)->has_logical_contexts)
2333 		return -ENODEV;
2334 
2335 	if (args->flags & I915_CONTEXT_CREATE_FLAGS_UNKNOWN)
2336 		return -EINVAL;
2337 
2338 	ret = intel_gt_terminally_wedged(&i915->gt);
2339 	if (ret)
2340 		return ret;
2341 
2342 	ext_data.fpriv = file->driver_priv;
2343 	if (client_is_banned(ext_data.fpriv)) {
2344 		drm_dbg(&i915->drm,
2345 			"client %s[%d] banned from creating ctx\n",
2346 			current->comm, task_pid_nr(current));
2347 		return -EIO;
2348 	}
2349 
2350 	ext_data.ctx = i915_gem_create_context(i915, args->flags);
2351 	if (IS_ERR(ext_data.ctx))
2352 		return PTR_ERR(ext_data.ctx);
2353 
2354 	if (args->flags & I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS) {
2355 		ret = i915_user_extensions(u64_to_user_ptr(args->extensions),
2356 					   create_extensions,
2357 					   ARRAY_SIZE(create_extensions),
2358 					   &ext_data);
2359 		if (ret)
2360 			goto err_ctx;
2361 	}
2362 
2363 	ret = gem_context_register(ext_data.ctx, ext_data.fpriv, &id);
2364 	if (ret < 0)
2365 		goto err_ctx;
2366 
2367 	args->ctx_id = id;
2368 	drm_dbg(&i915->drm, "HW context %d created\n", args->ctx_id);
2369 
2370 	return 0;
2371 
2372 err_ctx:
2373 	context_close(ext_data.ctx);
2374 	return ret;
2375 }
2376 
2377 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
2378 				   struct drm_file *file)
2379 {
2380 	struct drm_i915_gem_context_destroy *args = data;
2381 	struct drm_i915_file_private *file_priv = file->driver_priv;
2382 	struct i915_gem_context *ctx;
2383 
2384 	if (args->pad != 0)
2385 		return -EINVAL;
2386 
2387 	if (!args->ctx_id)
2388 		return -ENOENT;
2389 
2390 	ctx = xa_erase(&file_priv->context_xa, args->ctx_id);
2391 	if (!ctx)
2392 		return -ENOENT;
2393 
2394 	context_close(ctx);
2395 	return 0;
2396 }
2397 
2398 static int get_sseu(struct i915_gem_context *ctx,
2399 		    struct drm_i915_gem_context_param *args)
2400 {
2401 	struct drm_i915_gem_context_param_sseu user_sseu;
2402 	struct intel_context *ce;
2403 	unsigned long lookup;
2404 	int err;
2405 
2406 	if (args->size == 0)
2407 		goto out;
2408 	else if (args->size < sizeof(user_sseu))
2409 		return -EINVAL;
2410 
2411 	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
2412 			   sizeof(user_sseu)))
2413 		return -EFAULT;
2414 
2415 	if (user_sseu.rsvd)
2416 		return -EINVAL;
2417 
2418 	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
2419 		return -EINVAL;
2420 
2421 	lookup = 0;
2422 	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
2423 		lookup |= LOOKUP_USER_INDEX;
2424 
2425 	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
2426 	if (IS_ERR(ce))
2427 		return PTR_ERR(ce);
2428 
2429 	err = intel_context_lock_pinned(ce); /* serialises with set_sseu */
2430 	if (err) {
2431 		intel_context_put(ce);
2432 		return err;
2433 	}
2434 
2435 	user_sseu.slice_mask = ce->sseu.slice_mask;
2436 	user_sseu.subslice_mask = ce->sseu.subslice_mask;
2437 	user_sseu.min_eus_per_subslice = ce->sseu.min_eus_per_subslice;
2438 	user_sseu.max_eus_per_subslice = ce->sseu.max_eus_per_subslice;
2439 
2440 	intel_context_unlock_pinned(ce);
2441 	intel_context_put(ce);
2442 
2443 	if (copy_to_user(u64_to_user_ptr(args->value), &user_sseu,
2444 			 sizeof(user_sseu)))
2445 		return -EFAULT;
2446 
2447 out:
2448 	args->size = sizeof(user_sseu);
2449 
2450 	return 0;
2451 }
2452 
2453 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
2454 				    struct drm_file *file)
2455 {
2456 	struct drm_i915_file_private *file_priv = file->driver_priv;
2457 	struct drm_i915_gem_context_param *args = data;
2458 	struct i915_gem_context *ctx;
2459 	int ret = 0;
2460 
2461 	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
2462 	if (!ctx)
2463 		return -ENOENT;
2464 
2465 	switch (args->param) {
2466 	case I915_CONTEXT_PARAM_NO_ZEROMAP:
2467 		args->size = 0;
2468 		args->value = test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
2469 		break;
2470 
2471 	case I915_CONTEXT_PARAM_GTT_SIZE:
2472 		args->size = 0;
2473 		rcu_read_lock();
2474 		if (rcu_access_pointer(ctx->vm))
2475 			args->value = rcu_dereference(ctx->vm)->total;
2476 		else
2477 			args->value = to_i915(dev)->ggtt.vm.total;
2478 		rcu_read_unlock();
2479 		break;
2480 
2481 	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
2482 		args->size = 0;
2483 		args->value = i915_gem_context_no_error_capture(ctx);
2484 		break;
2485 
2486 	case I915_CONTEXT_PARAM_BANNABLE:
2487 		args->size = 0;
2488 		args->value = i915_gem_context_is_bannable(ctx);
2489 		break;
2490 
2491 	case I915_CONTEXT_PARAM_RECOVERABLE:
2492 		args->size = 0;
2493 		args->value = i915_gem_context_is_recoverable(ctx);
2494 		break;
2495 
2496 	case I915_CONTEXT_PARAM_PRIORITY:
2497 		args->size = 0;
2498 		args->value = ctx->sched.priority >> I915_USER_PRIORITY_SHIFT;
2499 		break;
2500 
2501 	case I915_CONTEXT_PARAM_SSEU:
2502 		ret = get_sseu(ctx, args);
2503 		break;
2504 
2505 	case I915_CONTEXT_PARAM_VM:
2506 		ret = get_ppgtt(file_priv, ctx, args);
2507 		break;
2508 
2509 	case I915_CONTEXT_PARAM_ENGINES:
2510 		ret = get_engines(ctx, args);
2511 		break;
2512 
2513 	case I915_CONTEXT_PARAM_PERSISTENCE:
2514 		args->size = 0;
2515 		args->value = i915_gem_context_is_persistent(ctx);
2516 		break;
2517 
2518 	case I915_CONTEXT_PARAM_RINGSIZE:
2519 		ret = get_ringsize(ctx, args);
2520 		break;
2521 
2522 	case I915_CONTEXT_PARAM_BAN_PERIOD:
2523 	default:
2524 		ret = -EINVAL;
2525 		break;
2526 	}
2527 
2528 	i915_gem_context_put(ctx);
2529 	return ret;
2530 }
2531 
2532 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
2533 				    struct drm_file *file)
2534 {
2535 	struct drm_i915_file_private *file_priv = file->driver_priv;
2536 	struct drm_i915_gem_context_param *args = data;
2537 	struct i915_gem_context *ctx;
2538 	int ret;
2539 
2540 	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
2541 	if (!ctx)
2542 		return -ENOENT;
2543 
2544 	ret = ctx_setparam(file_priv, ctx, args);
2545 
2546 	i915_gem_context_put(ctx);
2547 	return ret;
2548 }
2549 
2550 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev,
2551 				       void *data, struct drm_file *file)
2552 {
2553 	struct drm_i915_private *i915 = to_i915(dev);
2554 	struct drm_i915_reset_stats *args = data;
2555 	struct i915_gem_context *ctx;
2556 	int ret;
2557 
2558 	if (args->flags || args->pad)
2559 		return -EINVAL;
2560 
2561 	ret = -ENOENT;
2562 	rcu_read_lock();
2563 	ctx = __i915_gem_context_lookup_rcu(file->driver_priv, args->ctx_id);
2564 	if (!ctx)
2565 		goto out;
2566 
2567 	/*
2568 	 * We opt for unserialised reads here. This may result in tearing
2569 	 * in the extremely unlikely event of a GPU hang on this context
2570 	 * as we are querying them. If we need that extra layer of protection,
2571 	 * we should wrap the hangstats with a seqlock.
2572 	 */
2573 
2574 	if (capable(CAP_SYS_ADMIN))
2575 		args->reset_count = i915_reset_count(&i915->gpu_error);
2576 	else
2577 		args->reset_count = 0;
2578 
2579 	args->batch_active = atomic_read(&ctx->guilty_count);
2580 	args->batch_pending = atomic_read(&ctx->active_count);
2581 
2582 	ret = 0;
2583 out:
2584 	rcu_read_unlock();
2585 	return ret;
2586 }
2587 
2588 /* GEM context-engines iterator: for_each_gem_engine() */
2589 struct intel_context *
2590 i915_gem_engines_iter_next(struct i915_gem_engines_iter *it)
2591 {
2592 	const struct i915_gem_engines *e = it->engines;
2593 	struct intel_context *ctx;
2594 
2595 	if (unlikely(!e))
2596 		return NULL;
2597 
2598 	do {
2599 		if (it->idx >= e->num_engines)
2600 			return NULL;
2601 
2602 		ctx = e->engines[it->idx++];
2603 	} while (!ctx);
2604 
2605 	return ctx;
2606 }
2607 
2608 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2609 #include "selftests/mock_context.c"
2610 #include "selftests/i915_gem_context.c"
2611 #endif
2612 
2613 static void i915_global_gem_context_shrink(void)
2614 {
2615 	kmem_cache_shrink(global.slab_luts);
2616 }
2617 
2618 static void i915_global_gem_context_exit(void)
2619 {
2620 	kmem_cache_destroy(global.slab_luts);
2621 }
2622 
2623 static struct i915_global_gem_context global = { {
2624 	.shrink = i915_global_gem_context_shrink,
2625 	.exit = i915_global_gem_context_exit,
2626 } };
2627 
2628 int __init i915_global_gem_context_init(void)
2629 {
2630 	global.slab_luts = KMEM_CACHE(i915_lut_handle, 0);
2631 	if (!global.slab_luts)
2632 		return -ENOMEM;
2633 
2634 	i915_global_register(&global.base);
2635 	return 0;
2636 }
2637