1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022-2023 Intel Corporation 4 */ 5 6 #include <drm/drm_vblank.h> 7 8 #include "i915_drv.h" 9 #include "i915_reg.h" 10 #include "intel_color.h" 11 #include "intel_crtc.h" 12 #include "intel_de.h" 13 #include "intel_display_types.h" 14 #include "intel_vblank.h" 15 #include "intel_vrr.h" 16 17 /* 18 * This timing diagram depicts the video signal in and 19 * around the vertical blanking period. 20 * 21 * Assumptions about the fictitious mode used in this example: 22 * vblank_start >= 3 23 * vsync_start = vblank_start + 1 24 * vsync_end = vblank_start + 2 25 * vtotal = vblank_start + 3 26 * 27 * start of vblank: 28 * latch double buffered registers 29 * increment frame counter (ctg+) 30 * generate start of vblank interrupt (gen4+) 31 * | 32 * | frame start: 33 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 34 * | may be shifted forward 1-3 extra lines via TRANSCONF 35 * | | 36 * | | start of vsync: 37 * | | generate vsync interrupt 38 * | | | 39 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 40 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 41 * ----va---> <-----------------vb--------------------> <--------va------------- 42 * | | <----vs-----> | 43 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 44 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 45 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 46 * | | | 47 * last visible pixel first visible pixel 48 * | increment frame counter (gen3/4) 49 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 50 * 51 * x = horizontal active 52 * _ = horizontal blanking 53 * hs = horizontal sync 54 * va = vertical active 55 * vb = vertical blanking 56 * vs = vertical sync 57 * vbs = vblank_start (number) 58 * 59 * Summary: 60 * - most events happen at the start of horizontal sync 61 * - frame start happens at the start of horizontal blank, 1-4 lines 62 * (depending on TRANSCONF settings) after the start of vblank 63 * - gen3/4 pixel and frame counter are synchronized with the start 64 * of horizontal active on the first line of vertical active 65 */ 66 67 /* 68 * Called from drm generic code, passed a 'crtc', which we use as a pipe index. 69 */ 70 u32 i915_get_vblank_counter(struct drm_crtc *crtc) 71 { 72 struct intel_display *display = to_intel_display(crtc->dev); 73 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 74 const struct drm_display_mode *mode = &vblank->hwmode; 75 enum pipe pipe = to_intel_crtc(crtc)->pipe; 76 u32 pixel, vbl_start, hsync_start, htotal; 77 u64 frame; 78 79 /* 80 * On i965gm TV output the frame counter only works up to 81 * the point when we enable the TV encoder. After that the 82 * frame counter ceases to work and reads zero. We need a 83 * vblank wait before enabling the TV encoder and so we 84 * have to enable vblank interrupts while the frame counter 85 * is still in a working state. However the core vblank code 86 * does not like us returning non-zero frame counter values 87 * when we've told it that we don't have a working frame 88 * counter. Thus we must stop non-zero values leaking out. 89 */ 90 if (!vblank->max_vblank_count) 91 return 0; 92 93 htotal = mode->crtc_htotal; 94 hsync_start = mode->crtc_hsync_start; 95 vbl_start = intel_mode_vblank_start(mode); 96 97 /* Convert to pixel count */ 98 vbl_start *= htotal; 99 100 /* Start of vblank event occurs at start of hsync */ 101 vbl_start -= htotal - hsync_start; 102 103 /* 104 * High & low register fields aren't synchronized, so make sure 105 * we get a low value that's stable across two reads of the high 106 * register. 107 */ 108 frame = intel_de_read64_2x32(display, PIPEFRAMEPIXEL(display, pipe), 109 PIPEFRAME(display, pipe)); 110 111 pixel = frame & PIPE_PIXEL_MASK; 112 frame = (frame >> PIPE_FRAME_LOW_SHIFT) & 0xffffff; 113 114 /* 115 * The frame counter increments at beginning of active. 116 * Cook up a vblank counter by also checking the pixel 117 * counter against vblank start. 118 */ 119 return (frame + (pixel >= vbl_start)) & 0xffffff; 120 } 121 122 u32 g4x_get_vblank_counter(struct drm_crtc *crtc) 123 { 124 struct intel_display *display = to_intel_display(crtc->dev); 125 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 126 enum pipe pipe = to_intel_crtc(crtc)->pipe; 127 128 if (!vblank->max_vblank_count) 129 return 0; 130 131 return intel_de_read(display, PIPE_FRMCOUNT_G4X(display, pipe)); 132 } 133 134 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc) 135 { 136 struct intel_display *display = to_intel_display(crtc); 137 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 138 const struct drm_display_mode *mode = &vblank->hwmode; 139 u32 htotal = mode->crtc_htotal; 140 u32 clock = mode->crtc_clock; 141 u32 scan_prev_time, scan_curr_time, scan_post_time; 142 143 /* 144 * To avoid the race condition where we might cross into the 145 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR 146 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR 147 * during the same frame. 148 */ 149 do { 150 /* 151 * This field provides read back of the display 152 * pipe frame time stamp. The time stamp value 153 * is sampled at every start of vertical blank. 154 */ 155 scan_prev_time = intel_de_read_fw(display, 156 PIPE_FRMTMSTMP(crtc->pipe)); 157 158 /* 159 * The TIMESTAMP_CTR register has the current 160 * time stamp value. 161 */ 162 scan_curr_time = intel_de_read_fw(display, IVB_TIMESTAMP_CTR); 163 164 scan_post_time = intel_de_read_fw(display, 165 PIPE_FRMTMSTMP(crtc->pipe)); 166 } while (scan_post_time != scan_prev_time); 167 168 return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, 169 clock), 1000 * htotal); 170 } 171 172 /* 173 * On certain encoders on certain platforms, pipe 174 * scanline register will not work to get the scanline, 175 * since the timings are driven from the PORT or issues 176 * with scanline register updates. 177 * This function will use Framestamp and current 178 * timestamp registers to calculate the scanline. 179 */ 180 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) 181 { 182 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 183 const struct drm_display_mode *mode = &vblank->hwmode; 184 u32 vblank_start = mode->crtc_vblank_start; 185 u32 vtotal = mode->crtc_vtotal; 186 u32 scanline; 187 188 scanline = intel_crtc_scanlines_since_frame_timestamp(crtc); 189 scanline = min(scanline, vtotal - 1); 190 scanline = (scanline + vblank_start) % vtotal; 191 192 return scanline; 193 } 194 195 int intel_crtc_scanline_offset(const struct intel_crtc_state *crtc_state) 196 { 197 struct intel_display *display = to_intel_display(crtc_state); 198 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 199 200 /* 201 * The scanline counter increments at the leading edge of hsync. 202 * 203 * On most platforms it starts counting from vtotal-1 on the 204 * first active line. That means the scanline counter value is 205 * always one less than what we would expect. Ie. just after 206 * start of vblank, which also occurs at start of hsync (on the 207 * last active line), the scanline counter will read vblank_start-1. 208 * 209 * On gen2 the scanline counter starts counting from 1 instead 210 * of vtotal-1, so we have to subtract one. 211 * 212 * On HSW+ the behaviour of the scanline counter depends on the output 213 * type. For DP ports it behaves like most other platforms, but on HDMI 214 * there's an extra 1 line difference. So we need to add two instead of 215 * one to the value. 216 * 217 * On VLV/CHV DSI the scanline counter would appear to increment 218 * approx. 1/3 of a scanline before start of vblank. Unfortunately 219 * that means we can't tell whether we're in vblank or not while 220 * we're on that particular line. We must still set scanline_offset 221 * to 1 so that the vblank timestamps come out correct when we query 222 * the scanline counter from within the vblank interrupt handler. 223 * However if queried just before the start of vblank we'll get an 224 * answer that's slightly in the future. 225 */ 226 if (DISPLAY_VER(display) == 2) 227 return -1; 228 else if (HAS_DDI(i915) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 229 return 2; 230 else 231 return 1; 232 } 233 234 /* 235 * intel_de_read_fw(), only for fast reads of display block, no need for 236 * forcewake etc. 237 */ 238 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 239 { 240 struct intel_display *display = to_intel_display(crtc); 241 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 242 const struct drm_display_mode *mode = &vblank->hwmode; 243 enum pipe pipe = crtc->pipe; 244 int position, vtotal; 245 246 if (!crtc->active) 247 return 0; 248 249 if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) 250 return __intel_get_crtc_scanline_from_timestamp(crtc); 251 252 vtotal = intel_mode_vtotal(mode); 253 254 position = intel_de_read_fw(display, PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK; 255 256 /* 257 * On HSW, the DSL reg (0x70000) appears to return 0 if we 258 * read it just before the start of vblank. So try it again 259 * so we don't accidentally end up spanning a vblank frame 260 * increment, causing the pipe_update_end() code to squak at us. 261 * 262 * The nature of this problem means we can't simply check the ISR 263 * bit and return the vblank start value; nor can we use the scanline 264 * debug register in the transcoder as it appears to have the same 265 * problem. We may need to extend this to include other platforms, 266 * but so far testing only shows the problem on HSW. 267 */ 268 if (HAS_DDI(display) && !position) { 269 int i, temp; 270 271 for (i = 0; i < 100; i++) { 272 udelay(1); 273 temp = intel_de_read_fw(display, 274 PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK; 275 if (temp != position) { 276 position = temp; 277 break; 278 } 279 } 280 } 281 282 /* 283 * See update_scanline_offset() for the details on the 284 * scanline_offset adjustment. 285 */ 286 return (position + vtotal + crtc->scanline_offset) % vtotal; 287 } 288 289 /* 290 * The uncore version of the spin lock functions is used to decide 291 * whether we need to lock the uncore lock or not. This is only 292 * needed in i915, not in Xe. 293 * 294 * This lock in i915 is needed because some old platforms (at least 295 * IVB and possibly HSW as well), which are not supported in Xe, need 296 * all register accesses to the same cacheline to be serialized, 297 * otherwise they may hang. 298 */ 299 #ifdef I915 300 static void intel_vblank_section_enter(struct intel_display *display) 301 __acquires(i915->uncore.lock) 302 { 303 struct drm_i915_private *i915 = to_i915(display->drm); 304 spin_lock(&i915->uncore.lock); 305 } 306 307 static void intel_vblank_section_exit(struct intel_display *display) 308 __releases(i915->uncore.lock) 309 { 310 struct drm_i915_private *i915 = to_i915(display->drm); 311 spin_unlock(&i915->uncore.lock); 312 } 313 #else 314 static void intel_vblank_section_enter(struct intel_display *display) 315 { 316 } 317 318 static void intel_vblank_section_exit(struct intel_display *display) 319 { 320 } 321 #endif 322 323 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc, 324 bool in_vblank_irq, 325 int *vpos, int *hpos, 326 ktime_t *stime, ktime_t *etime, 327 const struct drm_display_mode *mode) 328 { 329 struct intel_display *display = to_intel_display(_crtc->dev); 330 struct drm_i915_private *dev_priv = to_i915(display->drm); 331 struct intel_crtc *crtc = to_intel_crtc(_crtc); 332 enum pipe pipe = crtc->pipe; 333 int position; 334 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 335 unsigned long irqflags; 336 bool use_scanline_counter = DISPLAY_VER(display) >= 5 || 337 IS_G4X(dev_priv) || DISPLAY_VER(display) == 2 || 338 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER; 339 340 if (drm_WARN_ON(display->drm, !mode->crtc_clock)) { 341 drm_dbg(display->drm, 342 "trying to get scanoutpos for disabled pipe %c\n", 343 pipe_name(pipe)); 344 return false; 345 } 346 347 htotal = mode->crtc_htotal; 348 hsync_start = mode->crtc_hsync_start; 349 vtotal = intel_mode_vtotal(mode); 350 vbl_start = intel_mode_vblank_start(mode); 351 vbl_end = intel_mode_vblank_end(mode); 352 353 /* 354 * Enter vblank critical section, as we will do multiple 355 * timing critical raw register reads, potentially with 356 * preemption disabled, so the following code must not block. 357 */ 358 local_irq_save(irqflags); 359 intel_vblank_section_enter(display); 360 361 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 362 363 /* Get optional system timestamp before query. */ 364 if (stime) 365 *stime = ktime_get(); 366 367 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 368 int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc); 369 370 position = __intel_get_crtc_scanline(crtc); 371 372 /* 373 * Already exiting vblank? If so, shift our position 374 * so it looks like we're already apporaching the full 375 * vblank end. This should make the generated timestamp 376 * more or less match when the active portion will start. 377 */ 378 if (position >= vbl_start && scanlines < position) 379 position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1); 380 } else if (use_scanline_counter) { 381 /* No obvious pixelcount register. Only query vertical 382 * scanout position from Display scan line register. 383 */ 384 position = __intel_get_crtc_scanline(crtc); 385 } else { 386 /* 387 * Have access to pixelcount since start of frame. 388 * We can split this into vertical and horizontal 389 * scanout position. 390 */ 391 position = (intel_de_read_fw(display, PIPEFRAMEPIXEL(display, pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 392 393 /* convert to pixel counts */ 394 vbl_start *= htotal; 395 vbl_end *= htotal; 396 vtotal *= htotal; 397 398 /* 399 * In interlaced modes, the pixel counter counts all pixels, 400 * so one field will have htotal more pixels. In order to avoid 401 * the reported position from jumping backwards when the pixel 402 * counter is beyond the length of the shorter field, just 403 * clamp the position the length of the shorter field. This 404 * matches how the scanline counter based position works since 405 * the scanline counter doesn't count the two half lines. 406 */ 407 position = min(position, vtotal - 1); 408 409 /* 410 * Start of vblank interrupt is triggered at start of hsync, 411 * just prior to the first active line of vblank. However we 412 * consider lines to start at the leading edge of horizontal 413 * active. So, should we get here before we've crossed into 414 * the horizontal active of the first line in vblank, we would 415 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 416 * always add htotal-hsync_start to the current pixel position. 417 */ 418 position = (position + htotal - hsync_start) % vtotal; 419 } 420 421 /* Get optional system timestamp after query. */ 422 if (etime) 423 *etime = ktime_get(); 424 425 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 426 427 intel_vblank_section_exit(display); 428 local_irq_restore(irqflags); 429 430 /* 431 * While in vblank, position will be negative 432 * counting up towards 0 at vbl_end. And outside 433 * vblank, position will be positive counting 434 * up since vbl_end. 435 */ 436 if (position >= vbl_start) 437 position -= vbl_end; 438 else 439 position += vtotal - vbl_end; 440 441 if (use_scanline_counter) { 442 *vpos = position; 443 *hpos = 0; 444 } else { 445 *vpos = position / htotal; 446 *hpos = position - (*vpos * htotal); 447 } 448 449 return true; 450 } 451 452 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error, 453 ktime_t *vblank_time, bool in_vblank_irq) 454 { 455 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 456 crtc, max_error, vblank_time, in_vblank_irq, 457 i915_get_crtc_scanoutpos); 458 } 459 460 int intel_get_crtc_scanline(struct intel_crtc *crtc) 461 { 462 struct intel_display *display = to_intel_display(crtc); 463 unsigned long irqflags; 464 int position; 465 466 local_irq_save(irqflags); 467 intel_vblank_section_enter(display); 468 469 position = __intel_get_crtc_scanline(crtc); 470 471 intel_vblank_section_exit(display); 472 local_irq_restore(irqflags); 473 474 return position; 475 } 476 477 static bool pipe_scanline_is_moving(struct intel_display *display, 478 enum pipe pipe) 479 { 480 i915_reg_t reg = PIPEDSL(display, pipe); 481 u32 line1, line2; 482 483 line1 = intel_de_read(display, reg) & PIPEDSL_LINE_MASK; 484 msleep(5); 485 line2 = intel_de_read(display, reg) & PIPEDSL_LINE_MASK; 486 487 return line1 != line2; 488 } 489 490 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 491 { 492 struct intel_display *display = to_intel_display(crtc); 493 enum pipe pipe = crtc->pipe; 494 495 /* Wait for the display line to settle/start moving */ 496 if (wait_for(pipe_scanline_is_moving(display, pipe) == state, 100)) 497 drm_err(display->drm, 498 "pipe %c scanline %s wait timed out\n", 499 pipe_name(pipe), str_on_off(state)); 500 } 501 502 void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 503 { 504 wait_for_pipe_scanline_moving(crtc, false); 505 } 506 507 void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 508 { 509 wait_for_pipe_scanline_moving(crtc, true); 510 } 511 512 void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state, 513 bool vrr_enable) 514 { 515 struct intel_display *display = to_intel_display(crtc_state); 516 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 517 u8 mode_flags = crtc_state->mode_flags; 518 struct drm_display_mode adjusted_mode; 519 int vmax_vblank_start = 0; 520 unsigned long irqflags; 521 522 drm_mode_init(&adjusted_mode, &crtc_state->hw.adjusted_mode); 523 524 if (vrr_enable) { 525 drm_WARN_ON(display->drm, 526 (mode_flags & I915_MODE_FLAG_VRR) == 0); 527 528 adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax; 529 adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax; 530 adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 531 vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 532 } else { 533 mode_flags &= ~I915_MODE_FLAG_VRR; 534 } 535 536 /* 537 * Belts and suspenders locking to guarantee everyone sees 100% 538 * consistent state during fastset seamless refresh rate changes. 539 * 540 * vblank_time_lock takes care of all drm_vblank.c stuff, and 541 * uncore.lock takes care of __intel_get_crtc_scanline() which 542 * may get called elsewhere as well. 543 * 544 * TODO maybe just protect everything (including 545 * __intel_get_crtc_scanline()) with vblank_time_lock? 546 * Need to audit everything to make sure it's safe. 547 */ 548 spin_lock_irqsave(&display->drm->vblank_time_lock, irqflags); 549 intel_vblank_section_enter(display); 550 551 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); 552 553 crtc->vmax_vblank_start = vmax_vblank_start; 554 555 crtc->mode_flags = mode_flags; 556 557 crtc->scanline_offset = intel_crtc_scanline_offset(crtc_state); 558 intel_vblank_section_exit(display); 559 spin_unlock_irqrestore(&display->drm->vblank_time_lock, irqflags); 560 } 561 562 int intel_mode_vdisplay(const struct drm_display_mode *mode) 563 { 564 int vdisplay = mode->crtc_vdisplay; 565 566 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 567 vdisplay = DIV_ROUND_UP(vdisplay, 2); 568 569 return vdisplay; 570 } 571 572 int intel_mode_vblank_start(const struct drm_display_mode *mode) 573 { 574 int vblank_start = mode->crtc_vblank_start; 575 576 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 577 vblank_start = DIV_ROUND_UP(vblank_start, 2); 578 579 return vblank_start; 580 } 581 582 int intel_mode_vblank_end(const struct drm_display_mode *mode) 583 { 584 int vblank_end = mode->crtc_vblank_end; 585 586 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 587 vblank_end /= 2; 588 589 return vblank_end; 590 } 591 592 int intel_mode_vtotal(const struct drm_display_mode *mode) 593 { 594 int vtotal = mode->crtc_vtotal; 595 596 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 597 vtotal /= 2; 598 599 return vtotal; 600 } 601 602 void intel_vblank_evade_init(const struct intel_crtc_state *old_crtc_state, 603 const struct intel_crtc_state *new_crtc_state, 604 struct intel_vblank_evade_ctx *evade) 605 { 606 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 607 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 608 const struct intel_crtc_state *crtc_state; 609 const struct drm_display_mode *adjusted_mode; 610 611 evade->crtc = crtc; 612 613 evade->need_vlv_dsi_wa = (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) && 614 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI); 615 616 /* 617 * During fastsets/etc. the transcoder is still 618 * running with the old timings at this point. 619 * 620 * TODO: maybe just use the active timings here? 621 */ 622 if (intel_crtc_needs_modeset(new_crtc_state)) 623 crtc_state = new_crtc_state; 624 else 625 crtc_state = old_crtc_state; 626 627 adjusted_mode = &crtc_state->hw.adjusted_mode; 628 629 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 630 /* timing changes should happen with VRR disabled */ 631 drm_WARN_ON(crtc->base.dev, intel_crtc_needs_modeset(new_crtc_state) || 632 new_crtc_state->update_m_n || new_crtc_state->update_lrr); 633 634 if (intel_vrr_is_push_sent(crtc_state)) 635 evade->vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 636 else 637 evade->vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 638 } else { 639 evade->vblank_start = intel_mode_vblank_start(adjusted_mode); 640 } 641 642 /* FIXME needs to be calibrated sensibly */ 643 evade->min = evade->vblank_start - intel_usecs_to_scanlines(adjusted_mode, 644 VBLANK_EVASION_TIME_US); 645 evade->max = evade->vblank_start - 1; 646 647 /* 648 * M/N and TRANS_VTOTAL are double buffered on the transcoder's 649 * undelayed vblank, so with seamless M/N and LRR we must evade 650 * both vblanks. 651 * 652 * DSB execution waits for the transcoder's undelayed vblank, 653 * hence we must kick off the commit before that. 654 */ 655 if (intel_color_uses_dsb(new_crtc_state) || 656 new_crtc_state->update_m_n || new_crtc_state->update_lrr) 657 evade->min -= intel_mode_vblank_start(adjusted_mode) - 658 intel_mode_vdisplay(adjusted_mode); 659 } 660 661 /* must be called with vblank interrupt already enabled! */ 662 int intel_vblank_evade(struct intel_vblank_evade_ctx *evade) 663 { 664 struct intel_crtc *crtc = evade->crtc; 665 struct intel_display *display = to_intel_display(crtc); 666 long timeout = msecs_to_jiffies_timeout(1); 667 wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base); 668 DEFINE_WAIT(wait); 669 int scanline; 670 671 if (evade->min <= 0 || evade->max <= 0) 672 return 0; 673 674 for (;;) { 675 /* 676 * prepare_to_wait() has a memory barrier, which guarantees 677 * other CPUs can see the task state update by the time we 678 * read the scanline. 679 */ 680 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 681 682 scanline = intel_get_crtc_scanline(crtc); 683 if (scanline < evade->min || scanline > evade->max) 684 break; 685 686 if (!timeout) { 687 drm_err(display->drm, 688 "Potential atomic update failure on pipe %c\n", 689 pipe_name(crtc->pipe)); 690 break; 691 } 692 693 local_irq_enable(); 694 695 timeout = schedule_timeout(timeout); 696 697 local_irq_disable(); 698 } 699 700 finish_wait(wq, &wait); 701 702 /* 703 * On VLV/CHV DSI the scanline counter would appear to 704 * increment approx. 1/3 of a scanline before start of vblank. 705 * The registers still get latched at start of vblank however. 706 * This means we must not write any registers on the first 707 * line of vblank (since not the whole line is actually in 708 * vblank). And unfortunately we can't use the interrupt to 709 * wait here since it will fire too soon. We could use the 710 * frame start interrupt instead since it will fire after the 711 * critical scanline, but that would require more changes 712 * in the interrupt code. So for now we'll just do the nasty 713 * thing and poll for the bad scanline to pass us by. 714 * 715 * FIXME figure out if BXT+ DSI suffers from this as well 716 */ 717 while (evade->need_vlv_dsi_wa && scanline == evade->vblank_start) 718 scanline = intel_get_crtc_scanline(crtc); 719 720 return scanline; 721 } 722