1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022-2023 Intel Corporation 4 */ 5 6 #include "i915_drv.h" 7 #include "i915_reg.h" 8 #include "intel_crtc.h" 9 #include "intel_de.h" 10 #include "intel_display_types.h" 11 #include "intel_vblank.h" 12 #include "intel_vrr.h" 13 14 /* 15 * This timing diagram depicts the video signal in and 16 * around the vertical blanking period. 17 * 18 * Assumptions about the fictitious mode used in this example: 19 * vblank_start >= 3 20 * vsync_start = vblank_start + 1 21 * vsync_end = vblank_start + 2 22 * vtotal = vblank_start + 3 23 * 24 * start of vblank: 25 * latch double buffered registers 26 * increment frame counter (ctg+) 27 * generate start of vblank interrupt (gen4+) 28 * | 29 * | frame start: 30 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 31 * | may be shifted forward 1-3 extra lines via TRANSCONF 32 * | | 33 * | | start of vsync: 34 * | | generate vsync interrupt 35 * | | | 36 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 37 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 38 * ----va---> <-----------------vb--------------------> <--------va------------- 39 * | | <----vs-----> | 40 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 41 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 42 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 43 * | | | 44 * last visible pixel first visible pixel 45 * | increment frame counter (gen3/4) 46 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 47 * 48 * x = horizontal active 49 * _ = horizontal blanking 50 * hs = horizontal sync 51 * va = vertical active 52 * vb = vertical blanking 53 * vs = vertical sync 54 * vbs = vblank_start (number) 55 * 56 * Summary: 57 * - most events happen at the start of horizontal sync 58 * - frame start happens at the start of horizontal blank, 1-4 lines 59 * (depending on TRANSCONF settings) after the start of vblank 60 * - gen3/4 pixel and frame counter are synchronized with the start 61 * of horizontal active on the first line of vertical active 62 */ 63 64 /* 65 * Called from drm generic code, passed a 'crtc', which we use as a pipe index. 66 */ 67 u32 i915_get_vblank_counter(struct drm_crtc *crtc) 68 { 69 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 70 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)]; 71 const struct drm_display_mode *mode = &vblank->hwmode; 72 enum pipe pipe = to_intel_crtc(crtc)->pipe; 73 u32 pixel, vbl_start, hsync_start, htotal; 74 u64 frame; 75 76 /* 77 * On i965gm TV output the frame counter only works up to 78 * the point when we enable the TV encoder. After that the 79 * frame counter ceases to work and reads zero. We need a 80 * vblank wait before enabling the TV encoder and so we 81 * have to enable vblank interrupts while the frame counter 82 * is still in a working state. However the core vblank code 83 * does not like us returning non-zero frame counter values 84 * when we've told it that we don't have a working frame 85 * counter. Thus we must stop non-zero values leaking out. 86 */ 87 if (!vblank->max_vblank_count) 88 return 0; 89 90 htotal = mode->crtc_htotal; 91 hsync_start = mode->crtc_hsync_start; 92 vbl_start = mode->crtc_vblank_start; 93 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 94 vbl_start = DIV_ROUND_UP(vbl_start, 2); 95 96 /* Convert to pixel count */ 97 vbl_start *= htotal; 98 99 /* Start of vblank event occurs at start of hsync */ 100 vbl_start -= htotal - hsync_start; 101 102 /* 103 * High & low register fields aren't synchronized, so make sure 104 * we get a low value that's stable across two reads of the high 105 * register. 106 */ 107 frame = intel_de_read64_2x32(dev_priv, PIPEFRAMEPIXEL(pipe), PIPEFRAME(pipe)); 108 109 pixel = frame & PIPE_PIXEL_MASK; 110 frame = (frame >> PIPE_FRAME_LOW_SHIFT) & 0xffffff; 111 112 /* 113 * The frame counter increments at beginning of active. 114 * Cook up a vblank counter by also checking the pixel 115 * counter against vblank start. 116 */ 117 return (frame + (pixel >= vbl_start)) & 0xffffff; 118 } 119 120 u32 g4x_get_vblank_counter(struct drm_crtc *crtc) 121 { 122 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 123 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)]; 124 enum pipe pipe = to_intel_crtc(crtc)->pipe; 125 126 if (!vblank->max_vblank_count) 127 return 0; 128 129 return intel_de_read(dev_priv, PIPE_FRMCOUNT_G4X(pipe)); 130 } 131 132 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc) 133 { 134 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 135 struct drm_vblank_crtc *vblank = 136 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 137 const struct drm_display_mode *mode = &vblank->hwmode; 138 u32 htotal = mode->crtc_htotal; 139 u32 clock = mode->crtc_clock; 140 u32 scan_prev_time, scan_curr_time, scan_post_time; 141 142 /* 143 * To avoid the race condition where we might cross into the 144 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR 145 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR 146 * during the same frame. 147 */ 148 do { 149 /* 150 * This field provides read back of the display 151 * pipe frame time stamp. The time stamp value 152 * is sampled at every start of vertical blank. 153 */ 154 scan_prev_time = intel_de_read_fw(dev_priv, 155 PIPE_FRMTMSTMP(crtc->pipe)); 156 157 /* 158 * The TIMESTAMP_CTR register has the current 159 * time stamp value. 160 */ 161 scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR); 162 163 scan_post_time = intel_de_read_fw(dev_priv, 164 PIPE_FRMTMSTMP(crtc->pipe)); 165 } while (scan_post_time != scan_prev_time); 166 167 return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, 168 clock), 1000 * htotal); 169 } 170 171 /* 172 * On certain encoders on certain platforms, pipe 173 * scanline register will not work to get the scanline, 174 * since the timings are driven from the PORT or issues 175 * with scanline register updates. 176 * This function will use Framestamp and current 177 * timestamp registers to calculate the scanline. 178 */ 179 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) 180 { 181 struct drm_vblank_crtc *vblank = 182 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 183 const struct drm_display_mode *mode = &vblank->hwmode; 184 u32 vblank_start = mode->crtc_vblank_start; 185 u32 vtotal = mode->crtc_vtotal; 186 u32 scanline; 187 188 scanline = intel_crtc_scanlines_since_frame_timestamp(crtc); 189 scanline = min(scanline, vtotal - 1); 190 scanline = (scanline + vblank_start) % vtotal; 191 192 return scanline; 193 } 194 195 /* 196 * intel_de_read_fw(), only for fast reads of display block, no need for 197 * forcewake etc. 198 */ 199 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 200 { 201 struct drm_device *dev = crtc->base.dev; 202 struct drm_i915_private *dev_priv = to_i915(dev); 203 const struct drm_display_mode *mode; 204 struct drm_vblank_crtc *vblank; 205 enum pipe pipe = crtc->pipe; 206 int position, vtotal; 207 208 if (!crtc->active) 209 return 0; 210 211 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 212 mode = &vblank->hwmode; 213 214 if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) 215 return __intel_get_crtc_scanline_from_timestamp(crtc); 216 217 vtotal = mode->crtc_vtotal; 218 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 219 vtotal /= 2; 220 221 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK; 222 223 /* 224 * On HSW, the DSL reg (0x70000) appears to return 0 if we 225 * read it just before the start of vblank. So try it again 226 * so we don't accidentally end up spanning a vblank frame 227 * increment, causing the pipe_update_end() code to squak at us. 228 * 229 * The nature of this problem means we can't simply check the ISR 230 * bit and return the vblank start value; nor can we use the scanline 231 * debug register in the transcoder as it appears to have the same 232 * problem. We may need to extend this to include other platforms, 233 * but so far testing only shows the problem on HSW. 234 */ 235 if (HAS_DDI(dev_priv) && !position) { 236 int i, temp; 237 238 for (i = 0; i < 100; i++) { 239 udelay(1); 240 temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK; 241 if (temp != position) { 242 position = temp; 243 break; 244 } 245 } 246 } 247 248 /* 249 * See update_scanline_offset() for the details on the 250 * scanline_offset adjustment. 251 */ 252 return (position + crtc->scanline_offset) % vtotal; 253 } 254 255 int intel_crtc_scanline_to_hw(struct intel_crtc *crtc, int scanline) 256 { 257 const struct drm_vblank_crtc *vblank = 258 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 259 const struct drm_display_mode *mode = &vblank->hwmode; 260 int vtotal; 261 262 vtotal = mode->crtc_vtotal; 263 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 264 vtotal /= 2; 265 266 return (scanline + vtotal - crtc->scanline_offset) % vtotal; 267 } 268 269 /* 270 * The uncore version of the spin lock functions is used to decide 271 * whether we need to lock the uncore lock or not. This is only 272 * needed in i915, not in Xe. 273 * 274 * This lock in i915 is needed because some old platforms (at least 275 * IVB and possibly HSW as well), which are not supported in Xe, need 276 * all register accesses to the same cacheline to be serialized, 277 * otherwise they may hang. 278 */ 279 static void intel_vblank_section_enter(struct drm_i915_private *i915) 280 __acquires(i915->uncore.lock) 281 { 282 #ifdef I915 283 spin_lock(&i915->uncore.lock); 284 #endif 285 } 286 287 static void intel_vblank_section_exit(struct drm_i915_private *i915) 288 __releases(i915->uncore.lock) 289 { 290 #ifdef I915 291 spin_unlock(&i915->uncore.lock); 292 #endif 293 } 294 295 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc, 296 bool in_vblank_irq, 297 int *vpos, int *hpos, 298 ktime_t *stime, ktime_t *etime, 299 const struct drm_display_mode *mode) 300 { 301 struct drm_device *dev = _crtc->dev; 302 struct drm_i915_private *dev_priv = to_i915(dev); 303 struct intel_crtc *crtc = to_intel_crtc(_crtc); 304 enum pipe pipe = crtc->pipe; 305 int position; 306 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 307 unsigned long irqflags; 308 bool use_scanline_counter = DISPLAY_VER(dev_priv) >= 5 || 309 IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) == 2 || 310 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER; 311 312 if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) { 313 drm_dbg(&dev_priv->drm, 314 "trying to get scanoutpos for disabled pipe %c\n", 315 pipe_name(pipe)); 316 return false; 317 } 318 319 htotal = mode->crtc_htotal; 320 hsync_start = mode->crtc_hsync_start; 321 vtotal = mode->crtc_vtotal; 322 vbl_start = mode->crtc_vblank_start; 323 vbl_end = mode->crtc_vblank_end; 324 325 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 326 vbl_start = DIV_ROUND_UP(vbl_start, 2); 327 vbl_end /= 2; 328 vtotal /= 2; 329 } 330 331 /* 332 * Enter vblank critical section, as we will do multiple 333 * timing critical raw register reads, potentially with 334 * preemption disabled, so the following code must not block. 335 */ 336 local_irq_save(irqflags); 337 intel_vblank_section_enter(dev_priv); 338 339 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 340 341 /* Get optional system timestamp before query. */ 342 if (stime) 343 *stime = ktime_get(); 344 345 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 346 int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc); 347 348 position = __intel_get_crtc_scanline(crtc); 349 350 /* 351 * Already exiting vblank? If so, shift our position 352 * so it looks like we're already apporaching the full 353 * vblank end. This should make the generated timestamp 354 * more or less match when the active portion will start. 355 */ 356 if (position >= vbl_start && scanlines < position) 357 position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1); 358 } else if (use_scanline_counter) { 359 /* No obvious pixelcount register. Only query vertical 360 * scanout position from Display scan line register. 361 */ 362 position = __intel_get_crtc_scanline(crtc); 363 } else { 364 /* 365 * Have access to pixelcount since start of frame. 366 * We can split this into vertical and horizontal 367 * scanout position. 368 */ 369 position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 370 371 /* convert to pixel counts */ 372 vbl_start *= htotal; 373 vbl_end *= htotal; 374 vtotal *= htotal; 375 376 /* 377 * In interlaced modes, the pixel counter counts all pixels, 378 * so one field will have htotal more pixels. In order to avoid 379 * the reported position from jumping backwards when the pixel 380 * counter is beyond the length of the shorter field, just 381 * clamp the position the length of the shorter field. This 382 * matches how the scanline counter based position works since 383 * the scanline counter doesn't count the two half lines. 384 */ 385 position = min(position, vtotal - 1); 386 387 /* 388 * Start of vblank interrupt is triggered at start of hsync, 389 * just prior to the first active line of vblank. However we 390 * consider lines to start at the leading edge of horizontal 391 * active. So, should we get here before we've crossed into 392 * the horizontal active of the first line in vblank, we would 393 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 394 * always add htotal-hsync_start to the current pixel position. 395 */ 396 position = (position + htotal - hsync_start) % vtotal; 397 } 398 399 /* Get optional system timestamp after query. */ 400 if (etime) 401 *etime = ktime_get(); 402 403 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 404 405 intel_vblank_section_exit(dev_priv); 406 local_irq_restore(irqflags); 407 408 /* 409 * While in vblank, position will be negative 410 * counting up towards 0 at vbl_end. And outside 411 * vblank, position will be positive counting 412 * up since vbl_end. 413 */ 414 if (position >= vbl_start) 415 position -= vbl_end; 416 else 417 position += vtotal - vbl_end; 418 419 if (use_scanline_counter) { 420 *vpos = position; 421 *hpos = 0; 422 } else { 423 *vpos = position / htotal; 424 *hpos = position - (*vpos * htotal); 425 } 426 427 return true; 428 } 429 430 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error, 431 ktime_t *vblank_time, bool in_vblank_irq) 432 { 433 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 434 crtc, max_error, vblank_time, in_vblank_irq, 435 i915_get_crtc_scanoutpos); 436 } 437 438 int intel_get_crtc_scanline(struct intel_crtc *crtc) 439 { 440 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 441 unsigned long irqflags; 442 int position; 443 444 local_irq_save(irqflags); 445 intel_vblank_section_enter(dev_priv); 446 447 position = __intel_get_crtc_scanline(crtc); 448 449 intel_vblank_section_exit(dev_priv); 450 local_irq_restore(irqflags); 451 452 return position; 453 } 454 455 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 456 enum pipe pipe) 457 { 458 i915_reg_t reg = PIPEDSL(pipe); 459 u32 line1, line2; 460 461 line1 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK; 462 msleep(5); 463 line2 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK; 464 465 return line1 != line2; 466 } 467 468 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 469 { 470 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 471 enum pipe pipe = crtc->pipe; 472 473 /* Wait for the display line to settle/start moving */ 474 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 475 drm_err(&dev_priv->drm, 476 "pipe %c scanline %s wait timed out\n", 477 pipe_name(pipe), str_on_off(state)); 478 } 479 480 void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 481 { 482 wait_for_pipe_scanline_moving(crtc, false); 483 } 484 485 void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 486 { 487 wait_for_pipe_scanline_moving(crtc, true); 488 } 489 490 static int intel_crtc_scanline_offset(const struct intel_crtc_state *crtc_state) 491 { 492 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 493 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 494 495 /* 496 * The scanline counter increments at the leading edge of hsync. 497 * 498 * On most platforms it starts counting from vtotal-1 on the 499 * first active line. That means the scanline counter value is 500 * always one less than what we would expect. Ie. just after 501 * start of vblank, which also occurs at start of hsync (on the 502 * last active line), the scanline counter will read vblank_start-1. 503 * 504 * On gen2 the scanline counter starts counting from 1 instead 505 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 506 * to keep the value positive), instead of adding one. 507 * 508 * On HSW+ the behaviour of the scanline counter depends on the output 509 * type. For DP ports it behaves like most other platforms, but on HDMI 510 * there's an extra 1 line difference. So we need to add two instead of 511 * one to the value. 512 * 513 * On VLV/CHV DSI the scanline counter would appear to increment 514 * approx. 1/3 of a scanline before start of vblank. Unfortunately 515 * that means we can't tell whether we're in vblank or not while 516 * we're on that particular line. We must still set scanline_offset 517 * to 1 so that the vblank timestamps come out correct when we query 518 * the scanline counter from within the vblank interrupt handler. 519 * However if queried just before the start of vblank we'll get an 520 * answer that's slightly in the future. 521 */ 522 if (DISPLAY_VER(i915) == 2) { 523 int vtotal; 524 525 vtotal = adjusted_mode->crtc_vtotal; 526 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 527 vtotal /= 2; 528 529 return vtotal - 1; 530 } else if (HAS_DDI(i915) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { 531 return 2; 532 } else { 533 return 1; 534 } 535 } 536 537 void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state, 538 bool vrr_enable) 539 { 540 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 541 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 542 u8 mode_flags = crtc_state->mode_flags; 543 struct drm_display_mode adjusted_mode; 544 int vmax_vblank_start = 0; 545 unsigned long irqflags; 546 547 drm_mode_init(&adjusted_mode, &crtc_state->hw.adjusted_mode); 548 549 if (vrr_enable) { 550 drm_WARN_ON(&i915->drm, (mode_flags & I915_MODE_FLAG_VRR) == 0); 551 552 adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax; 553 adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax; 554 adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 555 vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 556 } else { 557 mode_flags &= ~I915_MODE_FLAG_VRR; 558 } 559 560 /* 561 * Belts and suspenders locking to guarantee everyone sees 100% 562 * consistent state during fastset seamless refresh rate changes. 563 * 564 * vblank_time_lock takes care of all drm_vblank.c stuff, and 565 * uncore.lock takes care of __intel_get_crtc_scanline() which 566 * may get called elsewhere as well. 567 * 568 * TODO maybe just protect everything (including 569 * __intel_get_crtc_scanline()) with vblank_time_lock? 570 * Need to audit everything to make sure it's safe. 571 */ 572 spin_lock_irqsave(&i915->drm.vblank_time_lock, irqflags); 573 intel_vblank_section_enter(i915); 574 575 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); 576 577 crtc->vmax_vblank_start = vmax_vblank_start; 578 579 crtc->mode_flags = mode_flags; 580 581 crtc->scanline_offset = intel_crtc_scanline_offset(crtc_state); 582 intel_vblank_section_exit(i915); 583 spin_unlock_irqrestore(&i915->drm.vblank_time_lock, irqflags); 584 } 585 586 static int intel_mode_vblank_start(const struct drm_display_mode *mode) 587 { 588 int vblank_start = mode->crtc_vblank_start; 589 590 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 591 vblank_start = DIV_ROUND_UP(vblank_start, 2); 592 593 return vblank_start; 594 } 595 596 void intel_vblank_evade_init(const struct intel_crtc_state *old_crtc_state, 597 const struct intel_crtc_state *new_crtc_state, 598 struct intel_vblank_evade_ctx *evade) 599 { 600 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 601 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 602 const struct intel_crtc_state *crtc_state; 603 const struct drm_display_mode *adjusted_mode; 604 605 evade->crtc = crtc; 606 607 evade->need_vlv_dsi_wa = (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) && 608 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI); 609 610 /* 611 * During fastsets/etc. the transcoder is still 612 * running with the old timings at this point. 613 * 614 * TODO: maybe just use the active timings here? 615 */ 616 if (intel_crtc_needs_modeset(new_crtc_state)) 617 crtc_state = new_crtc_state; 618 else 619 crtc_state = old_crtc_state; 620 621 adjusted_mode = &crtc_state->hw.adjusted_mode; 622 623 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 624 /* timing changes should happen with VRR disabled */ 625 drm_WARN_ON(crtc->base.dev, intel_crtc_needs_modeset(new_crtc_state) || 626 new_crtc_state->update_m_n || new_crtc_state->update_lrr); 627 628 if (intel_vrr_is_push_sent(crtc_state)) 629 evade->vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 630 else 631 evade->vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 632 } else { 633 evade->vblank_start = intel_mode_vblank_start(adjusted_mode); 634 } 635 636 /* FIXME needs to be calibrated sensibly */ 637 evade->min = evade->vblank_start - intel_usecs_to_scanlines(adjusted_mode, 638 VBLANK_EVASION_TIME_US); 639 evade->max = evade->vblank_start - 1; 640 641 /* 642 * M/N and TRANS_VTOTAL are double buffered on the transcoder's 643 * undelayed vblank, so with seamless M/N and LRR we must evade 644 * both vblanks. 645 * 646 * DSB execution waits for the transcoder's undelayed vblank, 647 * hence we must kick off the commit before that. 648 */ 649 if (new_crtc_state->dsb || new_crtc_state->update_m_n || new_crtc_state->update_lrr) 650 evade->min -= adjusted_mode->crtc_vblank_start - adjusted_mode->crtc_vdisplay; 651 } 652 653 /* must be called with vblank interrupt already enabled! */ 654 int intel_vblank_evade(struct intel_vblank_evade_ctx *evade) 655 { 656 struct intel_crtc *crtc = evade->crtc; 657 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 658 long timeout = msecs_to_jiffies_timeout(1); 659 wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base); 660 DEFINE_WAIT(wait); 661 int scanline; 662 663 if (evade->min <= 0 || evade->max <= 0) 664 return 0; 665 666 for (;;) { 667 /* 668 * prepare_to_wait() has a memory barrier, which guarantees 669 * other CPUs can see the task state update by the time we 670 * read the scanline. 671 */ 672 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 673 674 scanline = intel_get_crtc_scanline(crtc); 675 if (scanline < evade->min || scanline > evade->max) 676 break; 677 678 if (!timeout) { 679 drm_err(&i915->drm, 680 "Potential atomic update failure on pipe %c\n", 681 pipe_name(crtc->pipe)); 682 break; 683 } 684 685 local_irq_enable(); 686 687 timeout = schedule_timeout(timeout); 688 689 local_irq_disable(); 690 } 691 692 finish_wait(wq, &wait); 693 694 /* 695 * On VLV/CHV DSI the scanline counter would appear to 696 * increment approx. 1/3 of a scanline before start of vblank. 697 * The registers still get latched at start of vblank however. 698 * This means we must not write any registers on the first 699 * line of vblank (since not the whole line is actually in 700 * vblank). And unfortunately we can't use the interrupt to 701 * wait here since it will fire too soon. We could use the 702 * frame start interrupt instead since it will fire after the 703 * critical scanline, but that would require more changes 704 * in the interrupt code. So for now we'll just do the nasty 705 * thing and poll for the bad scanline to pass us by. 706 * 707 * FIXME figure out if BXT+ DSI suffers from this as well 708 */ 709 while (evade->need_vlv_dsi_wa && scanline == evade->vblank_start) 710 scanline = intel_get_crtc_scanline(crtc); 711 712 return scanline; 713 } 714