xref: /linux/drivers/gpu/drm/i915/display/intel_vblank.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022-2023 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_crtc.h"
9 #include "intel_de.h"
10 #include "intel_display_types.h"
11 #include "intel_vblank.h"
12 #include "intel_vrr.h"
13 
14 /*
15  * This timing diagram depicts the video signal in and
16  * around the vertical blanking period.
17  *
18  * Assumptions about the fictitious mode used in this example:
19  *  vblank_start >= 3
20  *  vsync_start = vblank_start + 1
21  *  vsync_end = vblank_start + 2
22  *  vtotal = vblank_start + 3
23  *
24  *           start of vblank:
25  *           latch double buffered registers
26  *           increment frame counter (ctg+)
27  *           generate start of vblank interrupt (gen4+)
28  *           |
29  *           |          frame start:
30  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
31  *           |          may be shifted forward 1-3 extra lines via TRANSCONF
32  *           |          |
33  *           |          |  start of vsync:
34  *           |          |  generate vsync interrupt
35  *           |          |  |
36  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
37  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
38  * ----va---> <-----------------vb--------------------> <--------va-------------
39  *       |          |       <----vs----->                     |
40  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
41  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
42  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
43  *       |          |                                         |
44  *       last visible pixel                                   first visible pixel
45  *                  |                                         increment frame counter (gen3/4)
46  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
47  *
48  * x  = horizontal active
49  * _  = horizontal blanking
50  * hs = horizontal sync
51  * va = vertical active
52  * vb = vertical blanking
53  * vs = vertical sync
54  * vbs = vblank_start (number)
55  *
56  * Summary:
57  * - most events happen at the start of horizontal sync
58  * - frame start happens at the start of horizontal blank, 1-4 lines
59  *   (depending on TRANSCONF settings) after the start of vblank
60  * - gen3/4 pixel and frame counter are synchronized with the start
61  *   of horizontal active on the first line of vertical active
62  */
63 
64 /*
65  * Called from drm generic code, passed a 'crtc', which we use as a pipe index.
66  */
67 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
68 {
69 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
70 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
71 	const struct drm_display_mode *mode = &vblank->hwmode;
72 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
73 	u32 pixel, vbl_start, hsync_start, htotal;
74 	u64 frame;
75 
76 	/*
77 	 * On i965gm TV output the frame counter only works up to
78 	 * the point when we enable the TV encoder. After that the
79 	 * frame counter ceases to work and reads zero. We need a
80 	 * vblank wait before enabling the TV encoder and so we
81 	 * have to enable vblank interrupts while the frame counter
82 	 * is still in a working state. However the core vblank code
83 	 * does not like us returning non-zero frame counter values
84 	 * when we've told it that we don't have a working frame
85 	 * counter. Thus we must stop non-zero values leaking out.
86 	 */
87 	if (!vblank->max_vblank_count)
88 		return 0;
89 
90 	htotal = mode->crtc_htotal;
91 	hsync_start = mode->crtc_hsync_start;
92 	vbl_start = mode->crtc_vblank_start;
93 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
94 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
95 
96 	/* Convert to pixel count */
97 	vbl_start *= htotal;
98 
99 	/* Start of vblank event occurs at start of hsync */
100 	vbl_start -= htotal - hsync_start;
101 
102 	/*
103 	 * High & low register fields aren't synchronized, so make sure
104 	 * we get a low value that's stable across two reads of the high
105 	 * register.
106 	 */
107 	frame = intel_de_read64_2x32(dev_priv, PIPEFRAMEPIXEL(pipe), PIPEFRAME(pipe));
108 
109 	pixel = frame & PIPE_PIXEL_MASK;
110 	frame = (frame >> PIPE_FRAME_LOW_SHIFT) & 0xffffff;
111 
112 	/*
113 	 * The frame counter increments at beginning of active.
114 	 * Cook up a vblank counter by also checking the pixel
115 	 * counter against vblank start.
116 	 */
117 	return (frame + (pixel >= vbl_start)) & 0xffffff;
118 }
119 
120 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
121 {
122 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
123 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
124 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
125 
126 	if (!vblank->max_vblank_count)
127 		return 0;
128 
129 	return intel_de_read(dev_priv, PIPE_FRMCOUNT_G4X(pipe));
130 }
131 
132 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc)
133 {
134 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
135 	struct drm_vblank_crtc *vblank =
136 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
137 	const struct drm_display_mode *mode = &vblank->hwmode;
138 	u32 htotal = mode->crtc_htotal;
139 	u32 clock = mode->crtc_clock;
140 	u32 scan_prev_time, scan_curr_time, scan_post_time;
141 
142 	/*
143 	 * To avoid the race condition where we might cross into the
144 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
145 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
146 	 * during the same frame.
147 	 */
148 	do {
149 		/*
150 		 * This field provides read back of the display
151 		 * pipe frame time stamp. The time stamp value
152 		 * is sampled at every start of vertical blank.
153 		 */
154 		scan_prev_time = intel_de_read_fw(dev_priv,
155 						  PIPE_FRMTMSTMP(crtc->pipe));
156 
157 		/*
158 		 * The TIMESTAMP_CTR register has the current
159 		 * time stamp value.
160 		 */
161 		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
162 
163 		scan_post_time = intel_de_read_fw(dev_priv,
164 						  PIPE_FRMTMSTMP(crtc->pipe));
165 	} while (scan_post_time != scan_prev_time);
166 
167 	return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
168 				   clock), 1000 * htotal);
169 }
170 
171 /*
172  * On certain encoders on certain platforms, pipe
173  * scanline register will not work to get the scanline,
174  * since the timings are driven from the PORT or issues
175  * with scanline register updates.
176  * This function will use Framestamp and current
177  * timestamp registers to calculate the scanline.
178  */
179 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
180 {
181 	struct drm_vblank_crtc *vblank =
182 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
183 	const struct drm_display_mode *mode = &vblank->hwmode;
184 	u32 vblank_start = mode->crtc_vblank_start;
185 	u32 vtotal = mode->crtc_vtotal;
186 	u32 scanline;
187 
188 	scanline = intel_crtc_scanlines_since_frame_timestamp(crtc);
189 	scanline = min(scanline, vtotal - 1);
190 	scanline = (scanline + vblank_start) % vtotal;
191 
192 	return scanline;
193 }
194 
195 /*
196  * intel_de_read_fw(), only for fast reads of display block, no need for
197  * forcewake etc.
198  */
199 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
200 {
201 	struct drm_device *dev = crtc->base.dev;
202 	struct drm_i915_private *dev_priv = to_i915(dev);
203 	const struct drm_display_mode *mode;
204 	struct drm_vblank_crtc *vblank;
205 	enum pipe pipe = crtc->pipe;
206 	int position, vtotal;
207 
208 	if (!crtc->active)
209 		return 0;
210 
211 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
212 	mode = &vblank->hwmode;
213 
214 	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
215 		return __intel_get_crtc_scanline_from_timestamp(crtc);
216 
217 	vtotal = mode->crtc_vtotal;
218 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
219 		vtotal /= 2;
220 
221 	position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK;
222 
223 	/*
224 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
225 	 * read it just before the start of vblank.  So try it again
226 	 * so we don't accidentally end up spanning a vblank frame
227 	 * increment, causing the pipe_update_end() code to squak at us.
228 	 *
229 	 * The nature of this problem means we can't simply check the ISR
230 	 * bit and return the vblank start value; nor can we use the scanline
231 	 * debug register in the transcoder as it appears to have the same
232 	 * problem.  We may need to extend this to include other platforms,
233 	 * but so far testing only shows the problem on HSW.
234 	 */
235 	if (HAS_DDI(dev_priv) && !position) {
236 		int i, temp;
237 
238 		for (i = 0; i < 100; i++) {
239 			udelay(1);
240 			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK;
241 			if (temp != position) {
242 				position = temp;
243 				break;
244 			}
245 		}
246 	}
247 
248 	/*
249 	 * See update_scanline_offset() for the details on the
250 	 * scanline_offset adjustment.
251 	 */
252 	return (position + crtc->scanline_offset) % vtotal;
253 }
254 
255 int intel_crtc_scanline_to_hw(struct intel_crtc *crtc, int scanline)
256 {
257 	const struct drm_vblank_crtc *vblank =
258 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
259 	const struct drm_display_mode *mode = &vblank->hwmode;
260 	int vtotal;
261 
262 	vtotal = mode->crtc_vtotal;
263 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
264 		vtotal /= 2;
265 
266 	return (scanline + vtotal - crtc->scanline_offset) % vtotal;
267 }
268 
269 /*
270  * The uncore version of the spin lock functions is used to decide
271  * whether we need to lock the uncore lock or not.  This is only
272  * needed in i915, not in Xe.
273  *
274  * This lock in i915 is needed because some old platforms (at least
275  * IVB and possibly HSW as well), which are not supported in Xe, need
276  * all register accesses to the same cacheline to be serialized,
277  * otherwise they may hang.
278  */
279 static void intel_vblank_section_enter(struct drm_i915_private *i915)
280 	__acquires(i915->uncore.lock)
281 {
282 #ifdef I915
283 	spin_lock(&i915->uncore.lock);
284 #endif
285 }
286 
287 static void intel_vblank_section_exit(struct drm_i915_private *i915)
288 	__releases(i915->uncore.lock)
289 {
290 #ifdef I915
291 	spin_unlock(&i915->uncore.lock);
292 #endif
293 }
294 
295 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
296 				     bool in_vblank_irq,
297 				     int *vpos, int *hpos,
298 				     ktime_t *stime, ktime_t *etime,
299 				     const struct drm_display_mode *mode)
300 {
301 	struct drm_device *dev = _crtc->dev;
302 	struct drm_i915_private *dev_priv = to_i915(dev);
303 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
304 	enum pipe pipe = crtc->pipe;
305 	int position;
306 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
307 	unsigned long irqflags;
308 	bool use_scanline_counter = DISPLAY_VER(dev_priv) >= 5 ||
309 		IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) == 2 ||
310 		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
311 
312 	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
313 		drm_dbg(&dev_priv->drm,
314 			"trying to get scanoutpos for disabled pipe %c\n",
315 			pipe_name(pipe));
316 		return false;
317 	}
318 
319 	htotal = mode->crtc_htotal;
320 	hsync_start = mode->crtc_hsync_start;
321 	vtotal = mode->crtc_vtotal;
322 	vbl_start = mode->crtc_vblank_start;
323 	vbl_end = mode->crtc_vblank_end;
324 
325 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
326 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
327 		vbl_end /= 2;
328 		vtotal /= 2;
329 	}
330 
331 	/*
332 	 * Enter vblank critical section, as we will do multiple
333 	 * timing critical raw register reads, potentially with
334 	 * preemption disabled, so the following code must not block.
335 	 */
336 	local_irq_save(irqflags);
337 	intel_vblank_section_enter(dev_priv);
338 
339 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
340 
341 	/* Get optional system timestamp before query. */
342 	if (stime)
343 		*stime = ktime_get();
344 
345 	if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
346 		int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc);
347 
348 		position = __intel_get_crtc_scanline(crtc);
349 
350 		/*
351 		 * Already exiting vblank? If so, shift our position
352 		 * so it looks like we're already apporaching the full
353 		 * vblank end. This should make the generated timestamp
354 		 * more or less match when the active portion will start.
355 		 */
356 		if (position >= vbl_start && scanlines < position)
357 			position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1);
358 	} else if (use_scanline_counter) {
359 		/* No obvious pixelcount register. Only query vertical
360 		 * scanout position from Display scan line register.
361 		 */
362 		position = __intel_get_crtc_scanline(crtc);
363 	} else {
364 		/*
365 		 * Have access to pixelcount since start of frame.
366 		 * We can split this into vertical and horizontal
367 		 * scanout position.
368 		 */
369 		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
370 
371 		/* convert to pixel counts */
372 		vbl_start *= htotal;
373 		vbl_end *= htotal;
374 		vtotal *= htotal;
375 
376 		/*
377 		 * In interlaced modes, the pixel counter counts all pixels,
378 		 * so one field will have htotal more pixels. In order to avoid
379 		 * the reported position from jumping backwards when the pixel
380 		 * counter is beyond the length of the shorter field, just
381 		 * clamp the position the length of the shorter field. This
382 		 * matches how the scanline counter based position works since
383 		 * the scanline counter doesn't count the two half lines.
384 		 */
385 		position = min(position, vtotal - 1);
386 
387 		/*
388 		 * Start of vblank interrupt is triggered at start of hsync,
389 		 * just prior to the first active line of vblank. However we
390 		 * consider lines to start at the leading edge of horizontal
391 		 * active. So, should we get here before we've crossed into
392 		 * the horizontal active of the first line in vblank, we would
393 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
394 		 * always add htotal-hsync_start to the current pixel position.
395 		 */
396 		position = (position + htotal - hsync_start) % vtotal;
397 	}
398 
399 	/* Get optional system timestamp after query. */
400 	if (etime)
401 		*etime = ktime_get();
402 
403 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
404 
405 	intel_vblank_section_exit(dev_priv);
406 	local_irq_restore(irqflags);
407 
408 	/*
409 	 * While in vblank, position will be negative
410 	 * counting up towards 0 at vbl_end. And outside
411 	 * vblank, position will be positive counting
412 	 * up since vbl_end.
413 	 */
414 	if (position >= vbl_start)
415 		position -= vbl_end;
416 	else
417 		position += vtotal - vbl_end;
418 
419 	if (use_scanline_counter) {
420 		*vpos = position;
421 		*hpos = 0;
422 	} else {
423 		*vpos = position / htotal;
424 		*hpos = position - (*vpos * htotal);
425 	}
426 
427 	return true;
428 }
429 
430 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
431 				     ktime_t *vblank_time, bool in_vblank_irq)
432 {
433 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
434 		crtc, max_error, vblank_time, in_vblank_irq,
435 		i915_get_crtc_scanoutpos);
436 }
437 
438 int intel_get_crtc_scanline(struct intel_crtc *crtc)
439 {
440 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
441 	unsigned long irqflags;
442 	int position;
443 
444 	local_irq_save(irqflags);
445 	intel_vblank_section_enter(dev_priv);
446 
447 	position = __intel_get_crtc_scanline(crtc);
448 
449 	intel_vblank_section_exit(dev_priv);
450 	local_irq_restore(irqflags);
451 
452 	return position;
453 }
454 
455 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
456 				    enum pipe pipe)
457 {
458 	i915_reg_t reg = PIPEDSL(pipe);
459 	u32 line1, line2;
460 
461 	line1 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK;
462 	msleep(5);
463 	line2 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK;
464 
465 	return line1 != line2;
466 }
467 
468 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
469 {
470 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
471 	enum pipe pipe = crtc->pipe;
472 
473 	/* Wait for the display line to settle/start moving */
474 	if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
475 		drm_err(&dev_priv->drm,
476 			"pipe %c scanline %s wait timed out\n",
477 			pipe_name(pipe), str_on_off(state));
478 }
479 
480 void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
481 {
482 	wait_for_pipe_scanline_moving(crtc, false);
483 }
484 
485 void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
486 {
487 	wait_for_pipe_scanline_moving(crtc, true);
488 }
489 
490 static int intel_crtc_scanline_offset(const struct intel_crtc_state *crtc_state)
491 {
492 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
493 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
494 
495 	/*
496 	 * The scanline counter increments at the leading edge of hsync.
497 	 *
498 	 * On most platforms it starts counting from vtotal-1 on the
499 	 * first active line. That means the scanline counter value is
500 	 * always one less than what we would expect. Ie. just after
501 	 * start of vblank, which also occurs at start of hsync (on the
502 	 * last active line), the scanline counter will read vblank_start-1.
503 	 *
504 	 * On gen2 the scanline counter starts counting from 1 instead
505 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
506 	 * to keep the value positive), instead of adding one.
507 	 *
508 	 * On HSW+ the behaviour of the scanline counter depends on the output
509 	 * type. For DP ports it behaves like most other platforms, but on HDMI
510 	 * there's an extra 1 line difference. So we need to add two instead of
511 	 * one to the value.
512 	 *
513 	 * On VLV/CHV DSI the scanline counter would appear to increment
514 	 * approx. 1/3 of a scanline before start of vblank. Unfortunately
515 	 * that means we can't tell whether we're in vblank or not while
516 	 * we're on that particular line. We must still set scanline_offset
517 	 * to 1 so that the vblank timestamps come out correct when we query
518 	 * the scanline counter from within the vblank interrupt handler.
519 	 * However if queried just before the start of vblank we'll get an
520 	 * answer that's slightly in the future.
521 	 */
522 	if (DISPLAY_VER(i915) == 2) {
523 		int vtotal;
524 
525 		vtotal = adjusted_mode->crtc_vtotal;
526 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
527 			vtotal /= 2;
528 
529 		return vtotal - 1;
530 	} else if (HAS_DDI(i915) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
531 		return 2;
532 	} else {
533 		return 1;
534 	}
535 }
536 
537 void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state,
538 				      bool vrr_enable)
539 {
540 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
541 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
542 	u8 mode_flags = crtc_state->mode_flags;
543 	struct drm_display_mode adjusted_mode;
544 	int vmax_vblank_start = 0;
545 	unsigned long irqflags;
546 
547 	drm_mode_init(&adjusted_mode, &crtc_state->hw.adjusted_mode);
548 
549 	if (vrr_enable) {
550 		drm_WARN_ON(&i915->drm, (mode_flags & I915_MODE_FLAG_VRR) == 0);
551 
552 		adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax;
553 		adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax;
554 		adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state);
555 		vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state);
556 	} else {
557 		mode_flags &= ~I915_MODE_FLAG_VRR;
558 	}
559 
560 	/*
561 	 * Belts and suspenders locking to guarantee everyone sees 100%
562 	 * consistent state during fastset seamless refresh rate changes.
563 	 *
564 	 * vblank_time_lock takes care of all drm_vblank.c stuff, and
565 	 * uncore.lock takes care of __intel_get_crtc_scanline() which
566 	 * may get called elsewhere as well.
567 	 *
568 	 * TODO maybe just protect everything (including
569 	 * __intel_get_crtc_scanline()) with vblank_time_lock?
570 	 * Need to audit everything to make sure it's safe.
571 	 */
572 	spin_lock_irqsave(&i915->drm.vblank_time_lock, irqflags);
573 	intel_vblank_section_enter(i915);
574 
575 	drm_calc_timestamping_constants(&crtc->base, &adjusted_mode);
576 
577 	crtc->vmax_vblank_start = vmax_vblank_start;
578 
579 	crtc->mode_flags = mode_flags;
580 
581 	crtc->scanline_offset = intel_crtc_scanline_offset(crtc_state);
582 	intel_vblank_section_exit(i915);
583 	spin_unlock_irqrestore(&i915->drm.vblank_time_lock, irqflags);
584 }
585 
586 static int intel_mode_vblank_start(const struct drm_display_mode *mode)
587 {
588 	int vblank_start = mode->crtc_vblank_start;
589 
590 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
591 		vblank_start = DIV_ROUND_UP(vblank_start, 2);
592 
593 	return vblank_start;
594 }
595 
596 void intel_vblank_evade_init(const struct intel_crtc_state *old_crtc_state,
597 			     const struct intel_crtc_state *new_crtc_state,
598 			     struct intel_vblank_evade_ctx *evade)
599 {
600 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
601 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
602 	const struct intel_crtc_state *crtc_state;
603 	const struct drm_display_mode *adjusted_mode;
604 
605 	evade->crtc = crtc;
606 
607 	evade->need_vlv_dsi_wa = (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) &&
608 		intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI);
609 
610 	/*
611 	 * During fastsets/etc. the transcoder is still
612 	 * running with the old timings at this point.
613 	 *
614 	 * TODO: maybe just use the active timings here?
615 	 */
616 	if (intel_crtc_needs_modeset(new_crtc_state))
617 		crtc_state = new_crtc_state;
618 	else
619 		crtc_state = old_crtc_state;
620 
621 	adjusted_mode = &crtc_state->hw.adjusted_mode;
622 
623 	if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
624 		/* timing changes should happen with VRR disabled */
625 		drm_WARN_ON(crtc->base.dev, intel_crtc_needs_modeset(new_crtc_state) ||
626 			    new_crtc_state->update_m_n || new_crtc_state->update_lrr);
627 
628 		if (intel_vrr_is_push_sent(crtc_state))
629 			evade->vblank_start = intel_vrr_vmin_vblank_start(crtc_state);
630 		else
631 			evade->vblank_start = intel_vrr_vmax_vblank_start(crtc_state);
632 	} else {
633 		evade->vblank_start = intel_mode_vblank_start(adjusted_mode);
634 	}
635 
636 	/* FIXME needs to be calibrated sensibly */
637 	evade->min = evade->vblank_start - intel_usecs_to_scanlines(adjusted_mode,
638 								    VBLANK_EVASION_TIME_US);
639 	evade->max = evade->vblank_start - 1;
640 
641 	/*
642 	 * M/N and TRANS_VTOTAL are double buffered on the transcoder's
643 	 * undelayed vblank, so with seamless M/N and LRR we must evade
644 	 * both vblanks.
645 	 *
646 	 * DSB execution waits for the transcoder's undelayed vblank,
647 	 * hence we must kick off the commit before that.
648 	 */
649 	if (new_crtc_state->dsb || new_crtc_state->update_m_n || new_crtc_state->update_lrr)
650 		evade->min -= adjusted_mode->crtc_vblank_start - adjusted_mode->crtc_vdisplay;
651 }
652 
653 /* must be called with vblank interrupt already enabled! */
654 int intel_vblank_evade(struct intel_vblank_evade_ctx *evade)
655 {
656 	struct intel_crtc *crtc = evade->crtc;
657 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
658 	long timeout = msecs_to_jiffies_timeout(1);
659 	wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base);
660 	DEFINE_WAIT(wait);
661 	int scanline;
662 
663 	if (evade->min <= 0 || evade->max <= 0)
664 		return 0;
665 
666 	for (;;) {
667 		/*
668 		 * prepare_to_wait() has a memory barrier, which guarantees
669 		 * other CPUs can see the task state update by the time we
670 		 * read the scanline.
671 		 */
672 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
673 
674 		scanline = intel_get_crtc_scanline(crtc);
675 		if (scanline < evade->min || scanline > evade->max)
676 			break;
677 
678 		if (!timeout) {
679 			drm_err(&i915->drm,
680 				"Potential atomic update failure on pipe %c\n",
681 				pipe_name(crtc->pipe));
682 			break;
683 		}
684 
685 		local_irq_enable();
686 
687 		timeout = schedule_timeout(timeout);
688 
689 		local_irq_disable();
690 	}
691 
692 	finish_wait(wq, &wait);
693 
694 	/*
695 	 * On VLV/CHV DSI the scanline counter would appear to
696 	 * increment approx. 1/3 of a scanline before start of vblank.
697 	 * The registers still get latched at start of vblank however.
698 	 * This means we must not write any registers on the first
699 	 * line of vblank (since not the whole line is actually in
700 	 * vblank). And unfortunately we can't use the interrupt to
701 	 * wait here since it will fire too soon. We could use the
702 	 * frame start interrupt instead since it will fire after the
703 	 * critical scanline, but that would require more changes
704 	 * in the interrupt code. So for now we'll just do the nasty
705 	 * thing and poll for the bad scanline to pass us by.
706 	 *
707 	 * FIXME figure out if BXT+ DSI suffers from this as well
708 	 */
709 	while (evade->need_vlv_dsi_wa && scanline == evade->vblank_start)
710 		scanline = intel_get_crtc_scanline(crtc);
711 
712 	return scanline;
713 }
714