xref: /linux/drivers/gpu/drm/i915/display/intel_vblank.c (revision 815e260a18a3af4dab59025ee99a7156c0e8b5e0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022-2023 Intel Corporation
4  */
5 
6 #include <linux/iopoll.h>
7 
8 #include <drm/drm_print.h>
9 #include <drm/drm_vblank.h>
10 
11 #include "i915_drv.h"
12 #include "intel_color.h"
13 #include "intel_crtc.h"
14 #include "intel_de.h"
15 #include "intel_display_jiffies.h"
16 #include "intel_display_regs.h"
17 #include "intel_display_types.h"
18 #include "intel_display_utils.h"
19 #include "intel_vblank.h"
20 #include "intel_vrr.h"
21 
22 /*
23  * This timing diagram depicts the video signal in and
24  * around the vertical blanking period.
25  *
26  * Assumptions about the fictitious mode used in this example:
27  *  vblank_start >= 3
28  *  vsync_start = vblank_start + 1
29  *  vsync_end = vblank_start + 2
30  *  vtotal = vblank_start + 3
31  *
32  *           start of vblank:
33  *           latch double buffered registers
34  *           increment frame counter (ctg+)
35  *           generate start of vblank interrupt (gen4+)
36  *           |
37  *           |          frame start:
38  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
39  *           |          may be shifted forward 1-3 extra lines via TRANSCONF
40  *           |          |
41  *           |          |  start of vsync:
42  *           |          |  generate vsync interrupt
43  *           |          |  |
44  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
45  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
46  * ----va---> <-----------------vb--------------------> <--------va-------------
47  *       |          |       <----vs----->                     |
48  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
49  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
50  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
51  *       |          |                                         |
52  *       last visible pixel                                   first visible pixel
53  *                  |                                         increment frame counter (gen3/4)
54  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
55  *
56  * x  = horizontal active
57  * _  = horizontal blanking
58  * hs = horizontal sync
59  * va = vertical active
60  * vb = vertical blanking
61  * vs = vertical sync
62  * vbs = vblank_start (number)
63  *
64  * Summary:
65  * - most events happen at the start of horizontal sync
66  * - frame start happens at the start of horizontal blank, 1-4 lines
67  *   (depending on TRANSCONF settings) after the start of vblank
68  * - gen3/4 pixel and frame counter are synchronized with the start
69  *   of horizontal active on the first line of vertical active
70  */
71 
72 /*
73  * Called from drm generic code, passed a 'crtc', which we use as a pipe index.
74  */
75 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
76 {
77 	struct intel_display *display = to_intel_display(crtc->dev);
78 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
79 	const struct drm_display_mode *mode = &vblank->hwmode;
80 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
81 	u32 pixel, vbl_start, hsync_start, htotal;
82 	u64 frame;
83 
84 	/*
85 	 * On i965gm TV output the frame counter only works up to
86 	 * the point when we enable the TV encoder. After that the
87 	 * frame counter ceases to work and reads zero. We need a
88 	 * vblank wait before enabling the TV encoder and so we
89 	 * have to enable vblank interrupts while the frame counter
90 	 * is still in a working state. However the core vblank code
91 	 * does not like us returning non-zero frame counter values
92 	 * when we've told it that we don't have a working frame
93 	 * counter. Thus we must stop non-zero values leaking out.
94 	 */
95 	if (!vblank->max_vblank_count)
96 		return 0;
97 
98 	htotal = mode->crtc_htotal;
99 	hsync_start = mode->crtc_hsync_start;
100 	vbl_start = intel_mode_vblank_start(mode);
101 
102 	/* Convert to pixel count */
103 	vbl_start *= htotal;
104 
105 	/* Start of vblank event occurs at start of hsync */
106 	vbl_start -= htotal - hsync_start;
107 
108 	/*
109 	 * High & low register fields aren't synchronized, so make sure
110 	 * we get a low value that's stable across two reads of the high
111 	 * register.
112 	 */
113 	frame = intel_de_read64_2x32(display, PIPEFRAMEPIXEL(display, pipe),
114 				     PIPEFRAME(display, pipe));
115 
116 	pixel = frame & PIPE_PIXEL_MASK;
117 	frame = (frame >> PIPE_FRAME_LOW_SHIFT) & 0xffffff;
118 
119 	/*
120 	 * The frame counter increments at beginning of active.
121 	 * Cook up a vblank counter by also checking the pixel
122 	 * counter against vblank start.
123 	 */
124 	return (frame + (pixel >= vbl_start)) & 0xffffff;
125 }
126 
127 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
128 {
129 	struct intel_display *display = to_intel_display(crtc->dev);
130 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc);
131 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
132 
133 	if (!vblank->max_vblank_count)
134 		return 0;
135 
136 	return intel_de_read(display, PIPE_FRMCOUNT_G4X(display, pipe));
137 }
138 
139 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc)
140 {
141 	struct intel_display *display = to_intel_display(crtc);
142 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base);
143 	const struct drm_display_mode *mode = &vblank->hwmode;
144 	u32 htotal = mode->crtc_htotal;
145 	u32 clock = mode->crtc_clock;
146 	u32 scan_prev_time, scan_curr_time, scan_post_time;
147 
148 	/*
149 	 * To avoid the race condition where we might cross into the
150 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
151 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
152 	 * during the same frame.
153 	 */
154 	do {
155 		/*
156 		 * This field provides read back of the display
157 		 * pipe frame time stamp. The time stamp value
158 		 * is sampled at every start of vertical blank.
159 		 */
160 		scan_prev_time = intel_de_read_fw(display,
161 						  PIPE_FRMTMSTMP(crtc->pipe));
162 
163 		/*
164 		 * The TIMESTAMP_CTR register has the current
165 		 * time stamp value.
166 		 */
167 		scan_curr_time = intel_de_read_fw(display, IVB_TIMESTAMP_CTR);
168 
169 		scan_post_time = intel_de_read_fw(display,
170 						  PIPE_FRMTMSTMP(crtc->pipe));
171 	} while (scan_post_time != scan_prev_time);
172 
173 	return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
174 				   clock), 1000 * htotal);
175 }
176 
177 /*
178  * On certain encoders on certain platforms, pipe
179  * scanline register will not work to get the scanline,
180  * since the timings are driven from the PORT or issues
181  * with scanline register updates.
182  * This function will use Framestamp and current
183  * timestamp registers to calculate the scanline.
184  */
185 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
186 {
187 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base);
188 	const struct drm_display_mode *mode = &vblank->hwmode;
189 	u32 vblank_start = mode->crtc_vblank_start;
190 	u32 vtotal = mode->crtc_vtotal;
191 	u32 scanline;
192 
193 	scanline = intel_crtc_scanlines_since_frame_timestamp(crtc);
194 	scanline = min(scanline, vtotal - 1);
195 	scanline = (scanline + vblank_start) % vtotal;
196 
197 	return scanline;
198 }
199 
200 int intel_crtc_scanline_offset(const struct intel_crtc_state *crtc_state)
201 {
202 	struct intel_display *display = to_intel_display(crtc_state);
203 
204 	/*
205 	 * The scanline counter increments at the leading edge of hsync.
206 	 *
207 	 * On most platforms it starts counting from vtotal-1 on the
208 	 * first active line. That means the scanline counter value is
209 	 * always one less than what we would expect. Ie. just after
210 	 * start of vblank, which also occurs at start of hsync (on the
211 	 * last active line), the scanline counter will read vblank_start-1.
212 	 *
213 	 * On gen2 the scanline counter starts counting from 1 instead
214 	 * of vtotal-1, so we have to subtract one.
215 	 *
216 	 * On HSW+ the behaviour of the scanline counter depends on the output
217 	 * type. For DP ports it behaves like most other platforms, but on HDMI
218 	 * there's an extra 1 line difference. So we need to add two instead of
219 	 * one to the value.
220 	 *
221 	 * On VLV/CHV DSI the scanline counter would appear to increment
222 	 * approx. 1/3 of a scanline before start of vblank. Unfortunately
223 	 * that means we can't tell whether we're in vblank or not while
224 	 * we're on that particular line. We must still set scanline_offset
225 	 * to 1 so that the vblank timestamps come out correct when we query
226 	 * the scanline counter from within the vblank interrupt handler.
227 	 * However if queried just before the start of vblank we'll get an
228 	 * answer that's slightly in the future.
229 	 */
230 	if (DISPLAY_VER(display) >= 20 || display->platform.battlemage)
231 		return 1;
232 	else if (DISPLAY_VER(display) >= 9 ||
233 		 display->platform.broadwell || display->platform.haswell)
234 		return intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ? 2 : 1;
235 	else if (DISPLAY_VER(display) >= 3)
236 		return 1;
237 	else
238 		return -1;
239 }
240 
241 /*
242  * intel_de_read_fw(), only for fast reads of display block, no need for
243  * forcewake etc.
244  */
245 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
246 {
247 	struct intel_display *display = to_intel_display(crtc);
248 	struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base);
249 	const struct drm_display_mode *mode = &vblank->hwmode;
250 	enum pipe pipe = crtc->pipe;
251 	int position, vtotal;
252 
253 	if (!crtc->active)
254 		return 0;
255 
256 	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
257 		return __intel_get_crtc_scanline_from_timestamp(crtc);
258 
259 	vtotal = intel_mode_vtotal(mode);
260 
261 	position = intel_de_read_fw(display, PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK;
262 
263 	/*
264 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
265 	 * read it just before the start of vblank.  So try it again
266 	 * so we don't accidentally end up spanning a vblank frame
267 	 * increment, causing the pipe_update_end() code to squak at us.
268 	 *
269 	 * The nature of this problem means we can't simply check the ISR
270 	 * bit and return the vblank start value; nor can we use the scanline
271 	 * debug register in the transcoder as it appears to have the same
272 	 * problem.  We may need to extend this to include other platforms,
273 	 * but so far testing only shows the problem on HSW.
274 	 */
275 	if (HAS_DDI(display) && !position) {
276 		int i, temp;
277 
278 		for (i = 0; i < 100; i++) {
279 			udelay(1);
280 			temp = intel_de_read_fw(display,
281 						PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK;
282 			if (temp != position) {
283 				position = temp;
284 				break;
285 			}
286 		}
287 	}
288 
289 	/*
290 	 * See update_scanline_offset() for the details on the
291 	 * scanline_offset adjustment.
292 	 */
293 	return (position + vtotal + crtc->scanline_offset) % vtotal;
294 }
295 
296 /*
297  * The uncore version of the spin lock functions is used to decide
298  * whether we need to lock the uncore lock or not.  This is only
299  * needed in i915, not in Xe.
300  *
301  * This lock in i915 is needed because some old platforms (at least
302  * IVB and possibly HSW as well), which are not supported in Xe, need
303  * all register accesses to the same cacheline to be serialized,
304  * otherwise they may hang.
305  */
306 #ifdef I915
307 static void intel_vblank_section_enter(struct intel_display *display)
308 	__acquires(i915->uncore.lock)
309 {
310 	struct drm_i915_private *i915 = to_i915(display->drm);
311 	spin_lock(&i915->uncore.lock);
312 }
313 
314 static void intel_vblank_section_exit(struct intel_display *display)
315 	__releases(i915->uncore.lock)
316 {
317 	struct drm_i915_private *i915 = to_i915(display->drm);
318 	spin_unlock(&i915->uncore.lock);
319 }
320 #else
321 static void intel_vblank_section_enter(struct intel_display *display)
322 {
323 }
324 
325 static void intel_vblank_section_exit(struct intel_display *display)
326 {
327 }
328 #endif
329 
330 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
331 				     bool in_vblank_irq,
332 				     int *vpos, int *hpos,
333 				     ktime_t *stime, ktime_t *etime,
334 				     const struct drm_display_mode *mode)
335 {
336 	struct intel_display *display = to_intel_display(_crtc->dev);
337 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
338 	enum pipe pipe = crtc->pipe;
339 	int position;
340 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
341 	unsigned long irqflags;
342 	bool use_scanline_counter = DISPLAY_VER(display) >= 5 ||
343 		display->platform.g4x || DISPLAY_VER(display) == 2 ||
344 		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
345 
346 	if (drm_WARN_ON(display->drm, !mode->crtc_clock)) {
347 		drm_dbg(display->drm,
348 			"trying to get scanoutpos for disabled pipe %c\n",
349 			pipe_name(pipe));
350 		return false;
351 	}
352 
353 	htotal = mode->crtc_htotal;
354 	hsync_start = mode->crtc_hsync_start;
355 	vtotal = intel_mode_vtotal(mode);
356 	vbl_start = intel_mode_vblank_start(mode);
357 	vbl_end = intel_mode_vblank_end(mode);
358 
359 	/*
360 	 * Enter vblank critical section, as we will do multiple
361 	 * timing critical raw register reads, potentially with
362 	 * preemption disabled, so the following code must not block.
363 	 */
364 	local_irq_save(irqflags);
365 	intel_vblank_section_enter(display);
366 
367 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
368 
369 	/* Get optional system timestamp before query. */
370 	if (stime)
371 		*stime = ktime_get();
372 
373 	if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
374 		int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc);
375 
376 		position = __intel_get_crtc_scanline(crtc);
377 
378 		/*
379 		 * Already exiting vblank? If so, shift our position
380 		 * so it looks like we're already approaching the full
381 		 * vblank end. This should make the generated timestamp
382 		 * more or less match when the active portion will start.
383 		 */
384 		if (position >= vbl_start && scanlines < position)
385 			position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1);
386 	} else if (use_scanline_counter) {
387 		/* No obvious pixelcount register. Only query vertical
388 		 * scanout position from Display scan line register.
389 		 */
390 		position = __intel_get_crtc_scanline(crtc);
391 	} else {
392 		/*
393 		 * Have access to pixelcount since start of frame.
394 		 * We can split this into vertical and horizontal
395 		 * scanout position.
396 		 */
397 		position = (intel_de_read_fw(display, PIPEFRAMEPIXEL(display, pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
398 
399 		/* convert to pixel counts */
400 		vbl_start *= htotal;
401 		vbl_end *= htotal;
402 		vtotal *= htotal;
403 
404 		/*
405 		 * In interlaced modes, the pixel counter counts all pixels,
406 		 * so one field will have htotal more pixels. In order to avoid
407 		 * the reported position from jumping backwards when the pixel
408 		 * counter is beyond the length of the shorter field, just
409 		 * clamp the position the length of the shorter field. This
410 		 * matches how the scanline counter based position works since
411 		 * the scanline counter doesn't count the two half lines.
412 		 */
413 		position = min(position, vtotal - 1);
414 
415 		/*
416 		 * Start of vblank interrupt is triggered at start of hsync,
417 		 * just prior to the first active line of vblank. However we
418 		 * consider lines to start at the leading edge of horizontal
419 		 * active. So, should we get here before we've crossed into
420 		 * the horizontal active of the first line in vblank, we would
421 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
422 		 * always add htotal-hsync_start to the current pixel position.
423 		 */
424 		position = (position + htotal - hsync_start) % vtotal;
425 	}
426 
427 	/* Get optional system timestamp after query. */
428 	if (etime)
429 		*etime = ktime_get();
430 
431 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
432 
433 	intel_vblank_section_exit(display);
434 	local_irq_restore(irqflags);
435 
436 	/*
437 	 * While in vblank, position will be negative
438 	 * counting up towards 0 at vbl_end. And outside
439 	 * vblank, position will be positive counting
440 	 * up since vbl_end.
441 	 */
442 	if (position >= vbl_start)
443 		position -= vbl_end;
444 	else
445 		position += vtotal - vbl_end;
446 
447 	if (use_scanline_counter) {
448 		*vpos = position;
449 		*hpos = 0;
450 	} else {
451 		*vpos = position / htotal;
452 		*hpos = position - (*vpos * htotal);
453 	}
454 
455 	return true;
456 }
457 
458 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
459 				     ktime_t *vblank_time, bool in_vblank_irq)
460 {
461 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
462 		crtc, max_error, vblank_time, in_vblank_irq,
463 		i915_get_crtc_scanoutpos);
464 }
465 
466 int intel_get_crtc_scanline(struct intel_crtc *crtc)
467 {
468 	struct intel_display *display = to_intel_display(crtc);
469 	unsigned long irqflags;
470 	int position;
471 
472 	local_irq_save(irqflags);
473 	intel_vblank_section_enter(display);
474 
475 	position = __intel_get_crtc_scanline(crtc);
476 
477 	intel_vblank_section_exit(display);
478 	local_irq_restore(irqflags);
479 
480 	return position;
481 }
482 
483 static bool pipe_scanline_is_moving(struct intel_display *display,
484 				    enum pipe pipe)
485 {
486 	i915_reg_t reg = PIPEDSL(display, pipe);
487 	u32 line1, line2;
488 
489 	line1 = intel_de_read(display, reg) & PIPEDSL_LINE_MASK;
490 	msleep(5);
491 	line2 = intel_de_read(display, reg) & PIPEDSL_LINE_MASK;
492 
493 	return line1 != line2;
494 }
495 
496 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
497 {
498 	struct intel_display *display = to_intel_display(crtc);
499 	enum pipe pipe = crtc->pipe;
500 	bool is_moving;
501 	int ret;
502 
503 	/* Wait for the display line to settle/start moving */
504 	ret = poll_timeout_us(is_moving = pipe_scanline_is_moving(display, pipe),
505 			      is_moving == state,
506 			      500, 100 * 1000, false);
507 	if (ret)
508 		drm_err(display->drm,
509 			"pipe %c scanline %s wait timed out\n",
510 			pipe_name(pipe), str_on_off(state));
511 }
512 
513 void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
514 {
515 	wait_for_pipe_scanline_moving(crtc, false);
516 }
517 
518 void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
519 {
520 	wait_for_pipe_scanline_moving(crtc, true);
521 }
522 
523 static void intel_crtc_active_timings(struct drm_display_mode *mode,
524 				      int *vmax_vblank_start,
525 				      const struct intel_crtc_state *crtc_state,
526 				      bool vrr_enable)
527 {
528 	drm_mode_init(mode, &crtc_state->hw.adjusted_mode);
529 	*vmax_vblank_start = 0;
530 
531 	if (!vrr_enable)
532 		return;
533 
534 	mode->crtc_vtotal = intel_vrr_vmax_vtotal(crtc_state);
535 	mode->crtc_vblank_end = intel_vrr_vmax_vtotal(crtc_state);
536 	mode->crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state);
537 	*vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state);
538 }
539 
540 void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state,
541 				      bool vrr_enable)
542 {
543 	struct intel_display *display = to_intel_display(crtc_state);
544 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
545 	u8 mode_flags = crtc_state->mode_flags;
546 	struct drm_display_mode adjusted_mode;
547 	int vmax_vblank_start = 0;
548 	unsigned long irqflags;
549 
550 	intel_crtc_active_timings(&adjusted_mode, &vmax_vblank_start,
551 				  crtc_state, vrr_enable);
552 
553 	if (vrr_enable)
554 		drm_WARN_ON(display->drm, (mode_flags & I915_MODE_FLAG_VRR) == 0);
555 	else
556 		mode_flags &= ~I915_MODE_FLAG_VRR;
557 
558 	/*
559 	 * Belts and suspenders locking to guarantee everyone sees 100%
560 	 * consistent state during fastset seamless refresh rate changes.
561 	 *
562 	 * vblank_time_lock takes care of all drm_vblank.c stuff, and
563 	 * uncore.lock takes care of __intel_get_crtc_scanline() which
564 	 * may get called elsewhere as well.
565 	 *
566 	 * TODO maybe just protect everything (including
567 	 * __intel_get_crtc_scanline()) with vblank_time_lock?
568 	 * Need to audit everything to make sure it's safe.
569 	 */
570 	spin_lock_irqsave(&display->drm->vblank_time_lock, irqflags);
571 	intel_vblank_section_enter(display);
572 
573 	drm_calc_timestamping_constants(&crtc->base, &adjusted_mode);
574 
575 	crtc->vmax_vblank_start = vmax_vblank_start;
576 
577 	crtc->mode_flags = mode_flags;
578 
579 	crtc->scanline_offset = intel_crtc_scanline_offset(crtc_state);
580 	intel_vblank_section_exit(display);
581 	spin_unlock_irqrestore(&display->drm->vblank_time_lock, irqflags);
582 }
583 
584 int intel_mode_vdisplay(const struct drm_display_mode *mode)
585 {
586 	int vdisplay = mode->crtc_vdisplay;
587 
588 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
589 		vdisplay = DIV_ROUND_UP(vdisplay, 2);
590 
591 	return vdisplay;
592 }
593 
594 int intel_mode_vblank_start(const struct drm_display_mode *mode)
595 {
596 	int vblank_start = mode->crtc_vblank_start;
597 
598 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
599 		vblank_start = DIV_ROUND_UP(vblank_start, 2);
600 
601 	return vblank_start;
602 }
603 
604 int intel_mode_vblank_end(const struct drm_display_mode *mode)
605 {
606 	int vblank_end = mode->crtc_vblank_end;
607 
608 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
609 		vblank_end /= 2;
610 
611 	return vblank_end;
612 }
613 
614 int intel_mode_vtotal(const struct drm_display_mode *mode)
615 {
616 	int vtotal = mode->crtc_vtotal;
617 
618 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
619 		vtotal /= 2;
620 
621 	return vtotal;
622 }
623 
624 int intel_mode_vblank_delay(const struct drm_display_mode *mode)
625 {
626 	return intel_mode_vblank_start(mode) - intel_mode_vdisplay(mode);
627 }
628 
629 static const struct intel_crtc_state *
630 pre_commit_crtc_state(const struct intel_crtc_state *old_crtc_state,
631 		      const struct intel_crtc_state *new_crtc_state)
632 {
633 	/*
634 	 * During fastsets/etc. the transcoder is still
635 	 * running with the old timings at this point.
636 	 */
637 	if (intel_crtc_needs_modeset(new_crtc_state))
638 		return new_crtc_state;
639 	else
640 		return old_crtc_state;
641 }
642 
643 const struct intel_crtc_state *
644 intel_pre_commit_crtc_state(struct intel_atomic_state *state,
645 			    struct intel_crtc *crtc)
646 {
647 	const struct intel_crtc_state *old_crtc_state =
648 		intel_atomic_get_old_crtc_state(state, crtc);
649 	const struct intel_crtc_state *new_crtc_state =
650 		intel_atomic_get_new_crtc_state(state, crtc);
651 
652 	return pre_commit_crtc_state(old_crtc_state, new_crtc_state);
653 }
654 
655 void intel_vblank_evade_init(const struct intel_crtc_state *old_crtc_state,
656 			     const struct intel_crtc_state *new_crtc_state,
657 			     struct intel_vblank_evade_ctx *evade)
658 {
659 	struct intel_display *display = to_intel_display(new_crtc_state);
660 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
661 	const struct intel_crtc_state *crtc_state;
662 	const struct drm_display_mode *adjusted_mode;
663 	int vblank_delay;
664 
665 	evade->crtc = crtc;
666 
667 	evade->need_vlv_dsi_wa = (display->platform.valleyview ||
668 				  display->platform.cherryview) &&
669 		intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI);
670 
671 	/* TODO: maybe just use the active timings here? */
672 	crtc_state = pre_commit_crtc_state(old_crtc_state, new_crtc_state);
673 
674 	adjusted_mode = &crtc_state->hw.adjusted_mode;
675 
676 	if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
677 		/* timing changes should happen with VRR disabled */
678 		drm_WARN_ON(crtc->base.dev, intel_crtc_needs_modeset(new_crtc_state) ||
679 			    new_crtc_state->update_m_n || new_crtc_state->update_lrr);
680 
681 		if (intel_vrr_is_push_sent(crtc_state))
682 			evade->vblank_start = intel_vrr_vmin_vblank_start(crtc_state);
683 		else
684 			evade->vblank_start = intel_vrr_vmax_vblank_start(crtc_state);
685 
686 		vblank_delay = crtc_state->set_context_latency;
687 	} else {
688 		evade->vblank_start = intel_mode_vblank_start(adjusted_mode);
689 
690 		vblank_delay = intel_mode_vblank_delay(adjusted_mode);
691 	}
692 
693 	/* FIXME needs to be calibrated sensibly */
694 	evade->min = evade->vblank_start - intel_usecs_to_scanlines(adjusted_mode,
695 								    VBLANK_EVASION_TIME_US);
696 	evade->max = evade->vblank_start - 1;
697 
698 	/*
699 	 * M/N and TRANS_VTOTAL are double buffered on the transcoder's
700 	 * undelayed vblank, so with seamless M/N and LRR we must evade
701 	 * both vblanks.
702 	 *
703 	 * DSB execution waits for the transcoder's undelayed vblank,
704 	 * hence we must kick off the commit before that.
705 	 */
706 	if (intel_color_uses_dsb(new_crtc_state) ||
707 	    new_crtc_state->update_m_n || new_crtc_state->update_lrr)
708 		evade->min -= vblank_delay;
709 }
710 
711 /* must be called with vblank interrupt already enabled! */
712 int intel_vblank_evade(struct intel_vblank_evade_ctx *evade)
713 {
714 	struct intel_crtc *crtc = evade->crtc;
715 	struct intel_display *display = to_intel_display(crtc);
716 	long timeout = msecs_to_jiffies_timeout(1);
717 	wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base);
718 	DEFINE_WAIT(wait);
719 	int scanline;
720 
721 	if (evade->min <= 0 || evade->max <= 0)
722 		return 0;
723 
724 	for (;;) {
725 		/*
726 		 * prepare_to_wait() has a memory barrier, which guarantees
727 		 * other CPUs can see the task state update by the time we
728 		 * read the scanline.
729 		 */
730 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
731 
732 		scanline = intel_get_crtc_scanline(crtc);
733 		if (scanline < evade->min || scanline > evade->max)
734 			break;
735 
736 		if (!timeout) {
737 			drm_dbg_kms(display->drm,
738 				    "Potential atomic update failure on pipe %c\n",
739 				    pipe_name(crtc->pipe));
740 			break;
741 		}
742 
743 		local_irq_enable();
744 
745 		timeout = schedule_timeout(timeout);
746 
747 		local_irq_disable();
748 	}
749 
750 	finish_wait(wq, &wait);
751 
752 	/*
753 	 * On VLV/CHV DSI the scanline counter would appear to
754 	 * increment approx. 1/3 of a scanline before start of vblank.
755 	 * The registers still get latched at start of vblank however.
756 	 * This means we must not write any registers on the first
757 	 * line of vblank (since not the whole line is actually in
758 	 * vblank). And unfortunately we can't use the interrupt to
759 	 * wait here since it will fire too soon. We could use the
760 	 * frame start interrupt instead since it will fire after the
761 	 * critical scanline, but that would require more changes
762 	 * in the interrupt code. So for now we'll just do the nasty
763 	 * thing and poll for the bad scanline to pass us by.
764 	 *
765 	 * FIXME figure out if BXT+ DSI suffers from this as well
766 	 */
767 	while (evade->need_vlv_dsi_wa && scanline == evade->vblank_start)
768 		scanline = intel_get_crtc_scanline(crtc);
769 
770 	return scanline;
771 }
772 
773 int intel_crtc_vblank_length(const struct intel_crtc_state *crtc_state)
774 {
775 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
776 
777 	if (crtc_state->vrr.enable)
778 		return crtc_state->vrr.guardband;
779 	else
780 		return adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vblank_start;
781 }
782