1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022-2023 Intel Corporation 4 */ 5 6 #include <linux/iopoll.h> 7 8 #include <drm/drm_print.h> 9 #include <drm/drm_vblank.h> 10 11 #include "i915_drv.h" 12 #include "intel_color.h" 13 #include "intel_crtc.h" 14 #include "intel_de.h" 15 #include "intel_display_jiffies.h" 16 #include "intel_display_regs.h" 17 #include "intel_display_types.h" 18 #include "intel_display_utils.h" 19 #include "intel_vblank.h" 20 #include "intel_vrr.h" 21 22 /* 23 * This timing diagram depicts the video signal in and 24 * around the vertical blanking period. 25 * 26 * Assumptions about the fictitious mode used in this example: 27 * vblank_start >= 3 28 * vsync_start = vblank_start + 1 29 * vsync_end = vblank_start + 2 30 * vtotal = vblank_start + 3 31 * 32 * start of vblank: 33 * latch double buffered registers 34 * increment frame counter (ctg+) 35 * generate start of vblank interrupt (gen4+) 36 * | 37 * | frame start: 38 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 39 * | may be shifted forward 1-3 extra lines via TRANSCONF 40 * | | 41 * | | start of vsync: 42 * | | generate vsync interrupt 43 * | | | 44 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 45 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 46 * ----va---> <-----------------vb--------------------> <--------va------------- 47 * | | <----vs-----> | 48 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 49 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 50 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 51 * | | | 52 * last visible pixel first visible pixel 53 * | increment frame counter (gen3/4) 54 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 55 * 56 * x = horizontal active 57 * _ = horizontal blanking 58 * hs = horizontal sync 59 * va = vertical active 60 * vb = vertical blanking 61 * vs = vertical sync 62 * vbs = vblank_start (number) 63 * 64 * Summary: 65 * - most events happen at the start of horizontal sync 66 * - frame start happens at the start of horizontal blank, 1-4 lines 67 * (depending on TRANSCONF settings) after the start of vblank 68 * - gen3/4 pixel and frame counter are synchronized with the start 69 * of horizontal active on the first line of vertical active 70 */ 71 72 /* 73 * Called from drm generic code, passed a 'crtc', which we use as a pipe index. 74 */ 75 u32 i915_get_vblank_counter(struct drm_crtc *crtc) 76 { 77 struct intel_display *display = to_intel_display(crtc->dev); 78 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 79 const struct drm_display_mode *mode = &vblank->hwmode; 80 enum pipe pipe = to_intel_crtc(crtc)->pipe; 81 u32 pixel, vbl_start, hsync_start, htotal; 82 u64 frame; 83 84 /* 85 * On i965gm TV output the frame counter only works up to 86 * the point when we enable the TV encoder. After that the 87 * frame counter ceases to work and reads zero. We need a 88 * vblank wait before enabling the TV encoder and so we 89 * have to enable vblank interrupts while the frame counter 90 * is still in a working state. However the core vblank code 91 * does not like us returning non-zero frame counter values 92 * when we've told it that we don't have a working frame 93 * counter. Thus we must stop non-zero values leaking out. 94 */ 95 if (!vblank->max_vblank_count) 96 return 0; 97 98 htotal = mode->crtc_htotal; 99 hsync_start = mode->crtc_hsync_start; 100 vbl_start = intel_mode_vblank_start(mode); 101 102 /* Convert to pixel count */ 103 vbl_start *= htotal; 104 105 /* Start of vblank event occurs at start of hsync */ 106 vbl_start -= htotal - hsync_start; 107 108 /* 109 * High & low register fields aren't synchronized, so make sure 110 * we get a low value that's stable across two reads of the high 111 * register. 112 */ 113 frame = intel_de_read64_2x32(display, PIPEFRAMEPIXEL(display, pipe), 114 PIPEFRAME(display, pipe)); 115 116 pixel = frame & PIPE_PIXEL_MASK; 117 frame = (frame >> PIPE_FRAME_LOW_SHIFT) & 0xffffff; 118 119 /* 120 * The frame counter increments at beginning of active. 121 * Cook up a vblank counter by also checking the pixel 122 * counter against vblank start. 123 */ 124 return (frame + (pixel >= vbl_start)) & 0xffffff; 125 } 126 127 u32 g4x_get_vblank_counter(struct drm_crtc *crtc) 128 { 129 struct intel_display *display = to_intel_display(crtc->dev); 130 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 131 enum pipe pipe = to_intel_crtc(crtc)->pipe; 132 133 if (!vblank->max_vblank_count) 134 return 0; 135 136 return intel_de_read(display, PIPE_FRMCOUNT_G4X(display, pipe)); 137 } 138 139 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc) 140 { 141 struct intel_display *display = to_intel_display(crtc); 142 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 143 const struct drm_display_mode *mode = &vblank->hwmode; 144 u32 htotal = mode->crtc_htotal; 145 u32 clock = mode->crtc_clock; 146 u32 scan_prev_time, scan_curr_time, scan_post_time; 147 148 /* 149 * To avoid the race condition where we might cross into the 150 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR 151 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR 152 * during the same frame. 153 */ 154 do { 155 /* 156 * This field provides read back of the display 157 * pipe frame time stamp. The time stamp value 158 * is sampled at every start of vertical blank. 159 */ 160 scan_prev_time = intel_de_read_fw(display, 161 PIPE_FRMTMSTMP(crtc->pipe)); 162 163 /* 164 * The TIMESTAMP_CTR register has the current 165 * time stamp value. 166 */ 167 scan_curr_time = intel_de_read_fw(display, IVB_TIMESTAMP_CTR); 168 169 scan_post_time = intel_de_read_fw(display, 170 PIPE_FRMTMSTMP(crtc->pipe)); 171 } while (scan_post_time != scan_prev_time); 172 173 return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, 174 clock), 1000 * htotal); 175 } 176 177 /* 178 * On certain encoders on certain platforms, pipe 179 * scanline register will not work to get the scanline, 180 * since the timings are driven from the PORT or issues 181 * with scanline register updates. 182 * This function will use Framestamp and current 183 * timestamp registers to calculate the scanline. 184 */ 185 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) 186 { 187 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 188 const struct drm_display_mode *mode = &vblank->hwmode; 189 u32 vblank_start = mode->crtc_vblank_start; 190 u32 vtotal = mode->crtc_vtotal; 191 u32 scanline; 192 193 scanline = intel_crtc_scanlines_since_frame_timestamp(crtc); 194 scanline = min(scanline, vtotal - 1); 195 scanline = (scanline + vblank_start) % vtotal; 196 197 return scanline; 198 } 199 200 int intel_crtc_scanline_offset(const struct intel_crtc_state *crtc_state) 201 { 202 struct intel_display *display = to_intel_display(crtc_state); 203 204 /* 205 * The scanline counter increments at the leading edge of hsync. 206 * 207 * On most platforms it starts counting from vtotal-1 on the 208 * first active line. That means the scanline counter value is 209 * always one less than what we would expect. Ie. just after 210 * start of vblank, which also occurs at start of hsync (on the 211 * last active line), the scanline counter will read vblank_start-1. 212 * 213 * On gen2 the scanline counter starts counting from 1 instead 214 * of vtotal-1, so we have to subtract one. 215 * 216 * On HSW+ the behaviour of the scanline counter depends on the output 217 * type. For DP ports it behaves like most other platforms, but on HDMI 218 * there's an extra 1 line difference. So we need to add two instead of 219 * one to the value. 220 * 221 * On VLV/CHV DSI the scanline counter would appear to increment 222 * approx. 1/3 of a scanline before start of vblank. Unfortunately 223 * that means we can't tell whether we're in vblank or not while 224 * we're on that particular line. We must still set scanline_offset 225 * to 1 so that the vblank timestamps come out correct when we query 226 * the scanline counter from within the vblank interrupt handler. 227 * However if queried just before the start of vblank we'll get an 228 * answer that's slightly in the future. 229 */ 230 if (DISPLAY_VER(display) >= 20 || display->platform.battlemage) 231 return 1; 232 else if (DISPLAY_VER(display) >= 9 || 233 display->platform.broadwell || display->platform.haswell) 234 return intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ? 2 : 1; 235 else if (DISPLAY_VER(display) >= 3) 236 return 1; 237 else 238 return -1; 239 } 240 241 /* 242 * intel_de_read_fw(), only for fast reads of display block, no need for 243 * forcewake etc. 244 */ 245 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 246 { 247 struct intel_display *display = to_intel_display(crtc); 248 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 249 const struct drm_display_mode *mode = &vblank->hwmode; 250 enum pipe pipe = crtc->pipe; 251 int position, vtotal; 252 253 if (!crtc->active) 254 return 0; 255 256 if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) 257 return __intel_get_crtc_scanline_from_timestamp(crtc); 258 259 vtotal = intel_mode_vtotal(mode); 260 261 position = intel_de_read_fw(display, PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK; 262 263 /* 264 * On HSW, the DSL reg (0x70000) appears to return 0 if we 265 * read it just before the start of vblank. So try it again 266 * so we don't accidentally end up spanning a vblank frame 267 * increment, causing the pipe_update_end() code to squak at us. 268 * 269 * The nature of this problem means we can't simply check the ISR 270 * bit and return the vblank start value; nor can we use the scanline 271 * debug register in the transcoder as it appears to have the same 272 * problem. We may need to extend this to include other platforms, 273 * but so far testing only shows the problem on HSW. 274 */ 275 if (HAS_DDI(display) && !position) { 276 int i, temp; 277 278 for (i = 0; i < 100; i++) { 279 udelay(1); 280 temp = intel_de_read_fw(display, 281 PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK; 282 if (temp != position) { 283 position = temp; 284 break; 285 } 286 } 287 } 288 289 /* 290 * See update_scanline_offset() for the details on the 291 * scanline_offset adjustment. 292 */ 293 return (position + vtotal + crtc->scanline_offset) % vtotal; 294 } 295 296 /* 297 * The uncore version of the spin lock functions is used to decide 298 * whether we need to lock the uncore lock or not. This is only 299 * needed in i915, not in Xe. 300 * 301 * This lock in i915 is needed because some old platforms (at least 302 * IVB and possibly HSW as well), which are not supported in Xe, need 303 * all register accesses to the same cacheline to be serialized, 304 * otherwise they may hang. 305 */ 306 #ifdef I915 307 static void intel_vblank_section_enter(struct intel_display *display) 308 __acquires(i915->uncore.lock) 309 { 310 struct drm_i915_private *i915 = to_i915(display->drm); 311 spin_lock(&i915->uncore.lock); 312 } 313 314 static void intel_vblank_section_exit(struct intel_display *display) 315 __releases(i915->uncore.lock) 316 { 317 struct drm_i915_private *i915 = to_i915(display->drm); 318 spin_unlock(&i915->uncore.lock); 319 } 320 #else 321 static void intel_vblank_section_enter(struct intel_display *display) 322 { 323 } 324 325 static void intel_vblank_section_exit(struct intel_display *display) 326 { 327 } 328 #endif 329 330 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc, 331 bool in_vblank_irq, 332 int *vpos, int *hpos, 333 ktime_t *stime, ktime_t *etime, 334 const struct drm_display_mode *mode) 335 { 336 struct intel_display *display = to_intel_display(_crtc->dev); 337 struct intel_crtc *crtc = to_intel_crtc(_crtc); 338 enum pipe pipe = crtc->pipe; 339 int position; 340 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 341 unsigned long irqflags; 342 bool use_scanline_counter = DISPLAY_VER(display) >= 5 || 343 display->platform.g4x || DISPLAY_VER(display) == 2 || 344 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER; 345 346 if (drm_WARN_ON(display->drm, !mode->crtc_clock)) { 347 drm_dbg(display->drm, 348 "trying to get scanoutpos for disabled pipe %c\n", 349 pipe_name(pipe)); 350 return false; 351 } 352 353 htotal = mode->crtc_htotal; 354 hsync_start = mode->crtc_hsync_start; 355 vtotal = intel_mode_vtotal(mode); 356 vbl_start = intel_mode_vblank_start(mode); 357 vbl_end = intel_mode_vblank_end(mode); 358 359 /* 360 * Enter vblank critical section, as we will do multiple 361 * timing critical raw register reads, potentially with 362 * preemption disabled, so the following code must not block. 363 */ 364 local_irq_save(irqflags); 365 intel_vblank_section_enter(display); 366 367 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 368 369 /* Get optional system timestamp before query. */ 370 if (stime) 371 *stime = ktime_get(); 372 373 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 374 int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc); 375 376 position = __intel_get_crtc_scanline(crtc); 377 378 /* 379 * Already exiting vblank? If so, shift our position 380 * so it looks like we're already approaching the full 381 * vblank end. This should make the generated timestamp 382 * more or less match when the active portion will start. 383 */ 384 if (position >= vbl_start && scanlines < position) 385 position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1); 386 } else if (use_scanline_counter) { 387 /* No obvious pixelcount register. Only query vertical 388 * scanout position from Display scan line register. 389 */ 390 position = __intel_get_crtc_scanline(crtc); 391 } else { 392 /* 393 * Have access to pixelcount since start of frame. 394 * We can split this into vertical and horizontal 395 * scanout position. 396 */ 397 position = (intel_de_read_fw(display, PIPEFRAMEPIXEL(display, pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 398 399 /* convert to pixel counts */ 400 vbl_start *= htotal; 401 vbl_end *= htotal; 402 vtotal *= htotal; 403 404 /* 405 * In interlaced modes, the pixel counter counts all pixels, 406 * so one field will have htotal more pixels. In order to avoid 407 * the reported position from jumping backwards when the pixel 408 * counter is beyond the length of the shorter field, just 409 * clamp the position the length of the shorter field. This 410 * matches how the scanline counter based position works since 411 * the scanline counter doesn't count the two half lines. 412 */ 413 position = min(position, vtotal - 1); 414 415 /* 416 * Start of vblank interrupt is triggered at start of hsync, 417 * just prior to the first active line of vblank. However we 418 * consider lines to start at the leading edge of horizontal 419 * active. So, should we get here before we've crossed into 420 * the horizontal active of the first line in vblank, we would 421 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 422 * always add htotal-hsync_start to the current pixel position. 423 */ 424 position = (position + htotal - hsync_start) % vtotal; 425 } 426 427 /* Get optional system timestamp after query. */ 428 if (etime) 429 *etime = ktime_get(); 430 431 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 432 433 intel_vblank_section_exit(display); 434 local_irq_restore(irqflags); 435 436 /* 437 * While in vblank, position will be negative 438 * counting up towards 0 at vbl_end. And outside 439 * vblank, position will be positive counting 440 * up since vbl_end. 441 */ 442 if (position >= vbl_start) 443 position -= vbl_end; 444 else 445 position += vtotal - vbl_end; 446 447 if (use_scanline_counter) { 448 *vpos = position; 449 *hpos = 0; 450 } else { 451 *vpos = position / htotal; 452 *hpos = position - (*vpos * htotal); 453 } 454 455 return true; 456 } 457 458 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error, 459 ktime_t *vblank_time, bool in_vblank_irq) 460 { 461 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 462 crtc, max_error, vblank_time, in_vblank_irq, 463 i915_get_crtc_scanoutpos); 464 } 465 466 int intel_get_crtc_scanline(struct intel_crtc *crtc) 467 { 468 struct intel_display *display = to_intel_display(crtc); 469 unsigned long irqflags; 470 int position; 471 472 local_irq_save(irqflags); 473 intel_vblank_section_enter(display); 474 475 position = __intel_get_crtc_scanline(crtc); 476 477 intel_vblank_section_exit(display); 478 local_irq_restore(irqflags); 479 480 return position; 481 } 482 483 static bool pipe_scanline_is_moving(struct intel_display *display, 484 enum pipe pipe) 485 { 486 i915_reg_t reg = PIPEDSL(display, pipe); 487 u32 line1, line2; 488 489 line1 = intel_de_read(display, reg) & PIPEDSL_LINE_MASK; 490 msleep(5); 491 line2 = intel_de_read(display, reg) & PIPEDSL_LINE_MASK; 492 493 return line1 != line2; 494 } 495 496 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 497 { 498 struct intel_display *display = to_intel_display(crtc); 499 enum pipe pipe = crtc->pipe; 500 bool is_moving; 501 int ret; 502 503 /* Wait for the display line to settle/start moving */ 504 ret = poll_timeout_us(is_moving = pipe_scanline_is_moving(display, pipe), 505 is_moving == state, 506 500, 100 * 1000, false); 507 if (ret) 508 drm_err(display->drm, 509 "pipe %c scanline %s wait timed out\n", 510 pipe_name(pipe), str_on_off(state)); 511 } 512 513 void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 514 { 515 wait_for_pipe_scanline_moving(crtc, false); 516 } 517 518 void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 519 { 520 wait_for_pipe_scanline_moving(crtc, true); 521 } 522 523 static void intel_crtc_active_timings(struct drm_display_mode *mode, 524 int *vmax_vblank_start, 525 const struct intel_crtc_state *crtc_state, 526 bool vrr_enable) 527 { 528 drm_mode_init(mode, &crtc_state->hw.adjusted_mode); 529 *vmax_vblank_start = 0; 530 531 if (!vrr_enable) 532 return; 533 534 mode->crtc_vtotal = intel_vrr_vmax_vtotal(crtc_state); 535 mode->crtc_vblank_end = intel_vrr_vmax_vtotal(crtc_state); 536 mode->crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 537 *vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 538 } 539 540 void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state, 541 bool vrr_enable) 542 { 543 struct intel_display *display = to_intel_display(crtc_state); 544 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 545 u8 mode_flags = crtc_state->mode_flags; 546 struct drm_display_mode adjusted_mode; 547 int vmax_vblank_start = 0; 548 unsigned long irqflags; 549 550 intel_crtc_active_timings(&adjusted_mode, &vmax_vblank_start, 551 crtc_state, vrr_enable); 552 553 if (vrr_enable) 554 drm_WARN_ON(display->drm, (mode_flags & I915_MODE_FLAG_VRR) == 0); 555 else 556 mode_flags &= ~I915_MODE_FLAG_VRR; 557 558 /* 559 * Belts and suspenders locking to guarantee everyone sees 100% 560 * consistent state during fastset seamless refresh rate changes. 561 * 562 * vblank_time_lock takes care of all drm_vblank.c stuff, and 563 * uncore.lock takes care of __intel_get_crtc_scanline() which 564 * may get called elsewhere as well. 565 * 566 * TODO maybe just protect everything (including 567 * __intel_get_crtc_scanline()) with vblank_time_lock? 568 * Need to audit everything to make sure it's safe. 569 */ 570 spin_lock_irqsave(&display->drm->vblank_time_lock, irqflags); 571 intel_vblank_section_enter(display); 572 573 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); 574 575 crtc->vmax_vblank_start = vmax_vblank_start; 576 577 crtc->mode_flags = mode_flags; 578 579 crtc->scanline_offset = intel_crtc_scanline_offset(crtc_state); 580 intel_vblank_section_exit(display); 581 spin_unlock_irqrestore(&display->drm->vblank_time_lock, irqflags); 582 } 583 584 int intel_mode_vdisplay(const struct drm_display_mode *mode) 585 { 586 int vdisplay = mode->crtc_vdisplay; 587 588 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 589 vdisplay = DIV_ROUND_UP(vdisplay, 2); 590 591 return vdisplay; 592 } 593 594 int intel_mode_vblank_start(const struct drm_display_mode *mode) 595 { 596 int vblank_start = mode->crtc_vblank_start; 597 598 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 599 vblank_start = DIV_ROUND_UP(vblank_start, 2); 600 601 return vblank_start; 602 } 603 604 int intel_mode_vblank_end(const struct drm_display_mode *mode) 605 { 606 int vblank_end = mode->crtc_vblank_end; 607 608 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 609 vblank_end /= 2; 610 611 return vblank_end; 612 } 613 614 int intel_mode_vtotal(const struct drm_display_mode *mode) 615 { 616 int vtotal = mode->crtc_vtotal; 617 618 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 619 vtotal /= 2; 620 621 return vtotal; 622 } 623 624 int intel_mode_vblank_delay(const struct drm_display_mode *mode) 625 { 626 return intel_mode_vblank_start(mode) - intel_mode_vdisplay(mode); 627 } 628 629 static const struct intel_crtc_state * 630 pre_commit_crtc_state(const struct intel_crtc_state *old_crtc_state, 631 const struct intel_crtc_state *new_crtc_state) 632 { 633 /* 634 * During fastsets/etc. the transcoder is still 635 * running with the old timings at this point. 636 */ 637 if (intel_crtc_needs_modeset(new_crtc_state)) 638 return new_crtc_state; 639 else 640 return old_crtc_state; 641 } 642 643 const struct intel_crtc_state * 644 intel_pre_commit_crtc_state(struct intel_atomic_state *state, 645 struct intel_crtc *crtc) 646 { 647 const struct intel_crtc_state *old_crtc_state = 648 intel_atomic_get_old_crtc_state(state, crtc); 649 const struct intel_crtc_state *new_crtc_state = 650 intel_atomic_get_new_crtc_state(state, crtc); 651 652 return pre_commit_crtc_state(old_crtc_state, new_crtc_state); 653 } 654 655 void intel_vblank_evade_init(const struct intel_crtc_state *old_crtc_state, 656 const struct intel_crtc_state *new_crtc_state, 657 struct intel_vblank_evade_ctx *evade) 658 { 659 struct intel_display *display = to_intel_display(new_crtc_state); 660 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 661 const struct intel_crtc_state *crtc_state; 662 const struct drm_display_mode *adjusted_mode; 663 int vblank_delay; 664 665 evade->crtc = crtc; 666 667 evade->need_vlv_dsi_wa = (display->platform.valleyview || 668 display->platform.cherryview) && 669 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI); 670 671 /* TODO: maybe just use the active timings here? */ 672 crtc_state = pre_commit_crtc_state(old_crtc_state, new_crtc_state); 673 674 adjusted_mode = &crtc_state->hw.adjusted_mode; 675 676 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 677 /* timing changes should happen with VRR disabled */ 678 drm_WARN_ON(crtc->base.dev, intel_crtc_needs_modeset(new_crtc_state) || 679 new_crtc_state->update_m_n || new_crtc_state->update_lrr); 680 681 if (intel_vrr_is_push_sent(crtc_state)) 682 evade->vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 683 else 684 evade->vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 685 686 vblank_delay = crtc_state->set_context_latency; 687 } else { 688 evade->vblank_start = intel_mode_vblank_start(adjusted_mode); 689 690 vblank_delay = intel_mode_vblank_delay(adjusted_mode); 691 } 692 693 /* FIXME needs to be calibrated sensibly */ 694 evade->min = evade->vblank_start - intel_usecs_to_scanlines(adjusted_mode, 695 VBLANK_EVASION_TIME_US); 696 evade->max = evade->vblank_start - 1; 697 698 /* 699 * M/N and TRANS_VTOTAL are double buffered on the transcoder's 700 * undelayed vblank, so with seamless M/N and LRR we must evade 701 * both vblanks. 702 * 703 * DSB execution waits for the transcoder's undelayed vblank, 704 * hence we must kick off the commit before that. 705 */ 706 if (intel_color_uses_dsb(new_crtc_state) || 707 new_crtc_state->update_m_n || new_crtc_state->update_lrr) 708 evade->min -= vblank_delay; 709 } 710 711 /* must be called with vblank interrupt already enabled! */ 712 int intel_vblank_evade(struct intel_vblank_evade_ctx *evade) 713 { 714 struct intel_crtc *crtc = evade->crtc; 715 struct intel_display *display = to_intel_display(crtc); 716 long timeout = msecs_to_jiffies_timeout(1); 717 wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base); 718 DEFINE_WAIT(wait); 719 int scanline; 720 721 if (evade->min <= 0 || evade->max <= 0) 722 return 0; 723 724 for (;;) { 725 /* 726 * prepare_to_wait() has a memory barrier, which guarantees 727 * other CPUs can see the task state update by the time we 728 * read the scanline. 729 */ 730 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 731 732 scanline = intel_get_crtc_scanline(crtc); 733 if (scanline < evade->min || scanline > evade->max) 734 break; 735 736 if (!timeout) { 737 drm_dbg_kms(display->drm, 738 "Potential atomic update failure on pipe %c\n", 739 pipe_name(crtc->pipe)); 740 break; 741 } 742 743 local_irq_enable(); 744 745 timeout = schedule_timeout(timeout); 746 747 local_irq_disable(); 748 } 749 750 finish_wait(wq, &wait); 751 752 /* 753 * On VLV/CHV DSI the scanline counter would appear to 754 * increment approx. 1/3 of a scanline before start of vblank. 755 * The registers still get latched at start of vblank however. 756 * This means we must not write any registers on the first 757 * line of vblank (since not the whole line is actually in 758 * vblank). And unfortunately we can't use the interrupt to 759 * wait here since it will fire too soon. We could use the 760 * frame start interrupt instead since it will fire after the 761 * critical scanline, but that would require more changes 762 * in the interrupt code. So for now we'll just do the nasty 763 * thing and poll for the bad scanline to pass us by. 764 * 765 * FIXME figure out if BXT+ DSI suffers from this as well 766 */ 767 while (evade->need_vlv_dsi_wa && scanline == evade->vblank_start) 768 scanline = intel_get_crtc_scanline(crtc); 769 770 return scanline; 771 } 772 773 int intel_crtc_vblank_length(const struct intel_crtc_state *crtc_state) 774 { 775 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 776 777 if (crtc_state->vrr.enable) 778 return crtc_state->vrr.guardband; 779 else 780 return adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vblank_start; 781 } 782