1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022-2023 Intel Corporation 4 */ 5 6 #include <drm/drm_vblank.h> 7 8 #include "i915_drv.h" 9 #include "i915_reg.h" 10 #include "intel_color.h" 11 #include "intel_crtc.h" 12 #include "intel_de.h" 13 #include "intel_display_types.h" 14 #include "intel_vblank.h" 15 #include "intel_vrr.h" 16 17 /* 18 * This timing diagram depicts the video signal in and 19 * around the vertical blanking period. 20 * 21 * Assumptions about the fictitious mode used in this example: 22 * vblank_start >= 3 23 * vsync_start = vblank_start + 1 24 * vsync_end = vblank_start + 2 25 * vtotal = vblank_start + 3 26 * 27 * start of vblank: 28 * latch double buffered registers 29 * increment frame counter (ctg+) 30 * generate start of vblank interrupt (gen4+) 31 * | 32 * | frame start: 33 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 34 * | may be shifted forward 1-3 extra lines via TRANSCONF 35 * | | 36 * | | start of vsync: 37 * | | generate vsync interrupt 38 * | | | 39 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 40 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 41 * ----va---> <-----------------vb--------------------> <--------va------------- 42 * | | <----vs-----> | 43 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 44 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 45 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 46 * | | | 47 * last visible pixel first visible pixel 48 * | increment frame counter (gen3/4) 49 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 50 * 51 * x = horizontal active 52 * _ = horizontal blanking 53 * hs = horizontal sync 54 * va = vertical active 55 * vb = vertical blanking 56 * vs = vertical sync 57 * vbs = vblank_start (number) 58 * 59 * Summary: 60 * - most events happen at the start of horizontal sync 61 * - frame start happens at the start of horizontal blank, 1-4 lines 62 * (depending on TRANSCONF settings) after the start of vblank 63 * - gen3/4 pixel and frame counter are synchronized with the start 64 * of horizontal active on the first line of vertical active 65 */ 66 67 /* 68 * Called from drm generic code, passed a 'crtc', which we use as a pipe index. 69 */ 70 u32 i915_get_vblank_counter(struct drm_crtc *crtc) 71 { 72 struct intel_display *display = to_intel_display(crtc->dev); 73 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 74 const struct drm_display_mode *mode = &vblank->hwmode; 75 enum pipe pipe = to_intel_crtc(crtc)->pipe; 76 u32 pixel, vbl_start, hsync_start, htotal; 77 u64 frame; 78 79 /* 80 * On i965gm TV output the frame counter only works up to 81 * the point when we enable the TV encoder. After that the 82 * frame counter ceases to work and reads zero. We need a 83 * vblank wait before enabling the TV encoder and so we 84 * have to enable vblank interrupts while the frame counter 85 * is still in a working state. However the core vblank code 86 * does not like us returning non-zero frame counter values 87 * when we've told it that we don't have a working frame 88 * counter. Thus we must stop non-zero values leaking out. 89 */ 90 if (!vblank->max_vblank_count) 91 return 0; 92 93 htotal = mode->crtc_htotal; 94 hsync_start = mode->crtc_hsync_start; 95 vbl_start = intel_mode_vblank_start(mode); 96 97 /* Convert to pixel count */ 98 vbl_start *= htotal; 99 100 /* Start of vblank event occurs at start of hsync */ 101 vbl_start -= htotal - hsync_start; 102 103 /* 104 * High & low register fields aren't synchronized, so make sure 105 * we get a low value that's stable across two reads of the high 106 * register. 107 */ 108 frame = intel_de_read64_2x32(display, PIPEFRAMEPIXEL(display, pipe), 109 PIPEFRAME(display, pipe)); 110 111 pixel = frame & PIPE_PIXEL_MASK; 112 frame = (frame >> PIPE_FRAME_LOW_SHIFT) & 0xffffff; 113 114 /* 115 * The frame counter increments at beginning of active. 116 * Cook up a vblank counter by also checking the pixel 117 * counter against vblank start. 118 */ 119 return (frame + (pixel >= vbl_start)) & 0xffffff; 120 } 121 122 u32 g4x_get_vblank_counter(struct drm_crtc *crtc) 123 { 124 struct intel_display *display = to_intel_display(crtc->dev); 125 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 126 enum pipe pipe = to_intel_crtc(crtc)->pipe; 127 128 if (!vblank->max_vblank_count) 129 return 0; 130 131 return intel_de_read(display, PIPE_FRMCOUNT_G4X(display, pipe)); 132 } 133 134 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc) 135 { 136 struct intel_display *display = to_intel_display(crtc); 137 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 138 const struct drm_display_mode *mode = &vblank->hwmode; 139 u32 htotal = mode->crtc_htotal; 140 u32 clock = mode->crtc_clock; 141 u32 scan_prev_time, scan_curr_time, scan_post_time; 142 143 /* 144 * To avoid the race condition where we might cross into the 145 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR 146 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR 147 * during the same frame. 148 */ 149 do { 150 /* 151 * This field provides read back of the display 152 * pipe frame time stamp. The time stamp value 153 * is sampled at every start of vertical blank. 154 */ 155 scan_prev_time = intel_de_read_fw(display, 156 PIPE_FRMTMSTMP(crtc->pipe)); 157 158 /* 159 * The TIMESTAMP_CTR register has the current 160 * time stamp value. 161 */ 162 scan_curr_time = intel_de_read_fw(display, IVB_TIMESTAMP_CTR); 163 164 scan_post_time = intel_de_read_fw(display, 165 PIPE_FRMTMSTMP(crtc->pipe)); 166 } while (scan_post_time != scan_prev_time); 167 168 return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, 169 clock), 1000 * htotal); 170 } 171 172 /* 173 * On certain encoders on certain platforms, pipe 174 * scanline register will not work to get the scanline, 175 * since the timings are driven from the PORT or issues 176 * with scanline register updates. 177 * This function will use Framestamp and current 178 * timestamp registers to calculate the scanline. 179 */ 180 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) 181 { 182 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 183 const struct drm_display_mode *mode = &vblank->hwmode; 184 u32 vblank_start = mode->crtc_vblank_start; 185 u32 vtotal = mode->crtc_vtotal; 186 u32 scanline; 187 188 scanline = intel_crtc_scanlines_since_frame_timestamp(crtc); 189 scanline = min(scanline, vtotal - 1); 190 scanline = (scanline + vblank_start) % vtotal; 191 192 return scanline; 193 } 194 195 int intel_crtc_scanline_offset(const struct intel_crtc_state *crtc_state) 196 { 197 struct intel_display *display = to_intel_display(crtc_state); 198 199 /* 200 * The scanline counter increments at the leading edge of hsync. 201 * 202 * On most platforms it starts counting from vtotal-1 on the 203 * first active line. That means the scanline counter value is 204 * always one less than what we would expect. Ie. just after 205 * start of vblank, which also occurs at start of hsync (on the 206 * last active line), the scanline counter will read vblank_start-1. 207 * 208 * On gen2 the scanline counter starts counting from 1 instead 209 * of vtotal-1, so we have to subtract one. 210 * 211 * On HSW+ the behaviour of the scanline counter depends on the output 212 * type. For DP ports it behaves like most other platforms, but on HDMI 213 * there's an extra 1 line difference. So we need to add two instead of 214 * one to the value. 215 * 216 * On VLV/CHV DSI the scanline counter would appear to increment 217 * approx. 1/3 of a scanline before start of vblank. Unfortunately 218 * that means we can't tell whether we're in vblank or not while 219 * we're on that particular line. We must still set scanline_offset 220 * to 1 so that the vblank timestamps come out correct when we query 221 * the scanline counter from within the vblank interrupt handler. 222 * However if queried just before the start of vblank we'll get an 223 * answer that's slightly in the future. 224 */ 225 if (DISPLAY_VER(display) >= 20 || display->platform.battlemage) 226 return 1; 227 else if (DISPLAY_VER(display) == 2) 228 return -1; 229 else if (HAS_DDI(display) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 230 return 2; 231 else 232 return 1; 233 } 234 235 /* 236 * intel_de_read_fw(), only for fast reads of display block, no need for 237 * forcewake etc. 238 */ 239 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 240 { 241 struct intel_display *display = to_intel_display(crtc); 242 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 243 const struct drm_display_mode *mode = &vblank->hwmode; 244 enum pipe pipe = crtc->pipe; 245 int position, vtotal; 246 247 if (!crtc->active) 248 return 0; 249 250 if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) 251 return __intel_get_crtc_scanline_from_timestamp(crtc); 252 253 vtotal = intel_mode_vtotal(mode); 254 255 position = intel_de_read_fw(display, PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK; 256 257 /* 258 * On HSW, the DSL reg (0x70000) appears to return 0 if we 259 * read it just before the start of vblank. So try it again 260 * so we don't accidentally end up spanning a vblank frame 261 * increment, causing the pipe_update_end() code to squak at us. 262 * 263 * The nature of this problem means we can't simply check the ISR 264 * bit and return the vblank start value; nor can we use the scanline 265 * debug register in the transcoder as it appears to have the same 266 * problem. We may need to extend this to include other platforms, 267 * but so far testing only shows the problem on HSW. 268 */ 269 if (HAS_DDI(display) && !position) { 270 int i, temp; 271 272 for (i = 0; i < 100; i++) { 273 udelay(1); 274 temp = intel_de_read_fw(display, 275 PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK; 276 if (temp != position) { 277 position = temp; 278 break; 279 } 280 } 281 } 282 283 /* 284 * See update_scanline_offset() for the details on the 285 * scanline_offset adjustment. 286 */ 287 return (position + vtotal + crtc->scanline_offset) % vtotal; 288 } 289 290 /* 291 * The uncore version of the spin lock functions is used to decide 292 * whether we need to lock the uncore lock or not. This is only 293 * needed in i915, not in Xe. 294 * 295 * This lock in i915 is needed because some old platforms (at least 296 * IVB and possibly HSW as well), which are not supported in Xe, need 297 * all register accesses to the same cacheline to be serialized, 298 * otherwise they may hang. 299 */ 300 #ifdef I915 301 static void intel_vblank_section_enter(struct intel_display *display) 302 __acquires(i915->uncore.lock) 303 { 304 struct drm_i915_private *i915 = to_i915(display->drm); 305 spin_lock(&i915->uncore.lock); 306 } 307 308 static void intel_vblank_section_exit(struct intel_display *display) 309 __releases(i915->uncore.lock) 310 { 311 struct drm_i915_private *i915 = to_i915(display->drm); 312 spin_unlock(&i915->uncore.lock); 313 } 314 #else 315 static void intel_vblank_section_enter(struct intel_display *display) 316 { 317 } 318 319 static void intel_vblank_section_exit(struct intel_display *display) 320 { 321 } 322 #endif 323 324 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc, 325 bool in_vblank_irq, 326 int *vpos, int *hpos, 327 ktime_t *stime, ktime_t *etime, 328 const struct drm_display_mode *mode) 329 { 330 struct intel_display *display = to_intel_display(_crtc->dev); 331 struct intel_crtc *crtc = to_intel_crtc(_crtc); 332 enum pipe pipe = crtc->pipe; 333 int position; 334 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 335 unsigned long irqflags; 336 bool use_scanline_counter = DISPLAY_VER(display) >= 5 || 337 display->platform.g4x || DISPLAY_VER(display) == 2 || 338 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER; 339 340 if (drm_WARN_ON(display->drm, !mode->crtc_clock)) { 341 drm_dbg(display->drm, 342 "trying to get scanoutpos for disabled pipe %c\n", 343 pipe_name(pipe)); 344 return false; 345 } 346 347 htotal = mode->crtc_htotal; 348 hsync_start = mode->crtc_hsync_start; 349 vtotal = intel_mode_vtotal(mode); 350 vbl_start = intel_mode_vblank_start(mode); 351 vbl_end = intel_mode_vblank_end(mode); 352 353 /* 354 * Enter vblank critical section, as we will do multiple 355 * timing critical raw register reads, potentially with 356 * preemption disabled, so the following code must not block. 357 */ 358 local_irq_save(irqflags); 359 intel_vblank_section_enter(display); 360 361 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 362 363 /* Get optional system timestamp before query. */ 364 if (stime) 365 *stime = ktime_get(); 366 367 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 368 int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc); 369 370 position = __intel_get_crtc_scanline(crtc); 371 372 /* 373 * Already exiting vblank? If so, shift our position 374 * so it looks like we're already approaching the full 375 * vblank end. This should make the generated timestamp 376 * more or less match when the active portion will start. 377 */ 378 if (position >= vbl_start && scanlines < position) 379 position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1); 380 } else if (use_scanline_counter) { 381 /* No obvious pixelcount register. Only query vertical 382 * scanout position from Display scan line register. 383 */ 384 position = __intel_get_crtc_scanline(crtc); 385 } else { 386 /* 387 * Have access to pixelcount since start of frame. 388 * We can split this into vertical and horizontal 389 * scanout position. 390 */ 391 position = (intel_de_read_fw(display, PIPEFRAMEPIXEL(display, pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 392 393 /* convert to pixel counts */ 394 vbl_start *= htotal; 395 vbl_end *= htotal; 396 vtotal *= htotal; 397 398 /* 399 * In interlaced modes, the pixel counter counts all pixels, 400 * so one field will have htotal more pixels. In order to avoid 401 * the reported position from jumping backwards when the pixel 402 * counter is beyond the length of the shorter field, just 403 * clamp the position the length of the shorter field. This 404 * matches how the scanline counter based position works since 405 * the scanline counter doesn't count the two half lines. 406 */ 407 position = min(position, vtotal - 1); 408 409 /* 410 * Start of vblank interrupt is triggered at start of hsync, 411 * just prior to the first active line of vblank. However we 412 * consider lines to start at the leading edge of horizontal 413 * active. So, should we get here before we've crossed into 414 * the horizontal active of the first line in vblank, we would 415 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 416 * always add htotal-hsync_start to the current pixel position. 417 */ 418 position = (position + htotal - hsync_start) % vtotal; 419 } 420 421 /* Get optional system timestamp after query. */ 422 if (etime) 423 *etime = ktime_get(); 424 425 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 426 427 intel_vblank_section_exit(display); 428 local_irq_restore(irqflags); 429 430 /* 431 * While in vblank, position will be negative 432 * counting up towards 0 at vbl_end. And outside 433 * vblank, position will be positive counting 434 * up since vbl_end. 435 */ 436 if (position >= vbl_start) 437 position -= vbl_end; 438 else 439 position += vtotal - vbl_end; 440 441 if (use_scanline_counter) { 442 *vpos = position; 443 *hpos = 0; 444 } else { 445 *vpos = position / htotal; 446 *hpos = position - (*vpos * htotal); 447 } 448 449 return true; 450 } 451 452 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error, 453 ktime_t *vblank_time, bool in_vblank_irq) 454 { 455 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 456 crtc, max_error, vblank_time, in_vblank_irq, 457 i915_get_crtc_scanoutpos); 458 } 459 460 int intel_get_crtc_scanline(struct intel_crtc *crtc) 461 { 462 struct intel_display *display = to_intel_display(crtc); 463 unsigned long irqflags; 464 int position; 465 466 local_irq_save(irqflags); 467 intel_vblank_section_enter(display); 468 469 position = __intel_get_crtc_scanline(crtc); 470 471 intel_vblank_section_exit(display); 472 local_irq_restore(irqflags); 473 474 return position; 475 } 476 477 static bool pipe_scanline_is_moving(struct intel_display *display, 478 enum pipe pipe) 479 { 480 i915_reg_t reg = PIPEDSL(display, pipe); 481 u32 line1, line2; 482 483 line1 = intel_de_read(display, reg) & PIPEDSL_LINE_MASK; 484 msleep(5); 485 line2 = intel_de_read(display, reg) & PIPEDSL_LINE_MASK; 486 487 return line1 != line2; 488 } 489 490 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 491 { 492 struct intel_display *display = to_intel_display(crtc); 493 enum pipe pipe = crtc->pipe; 494 495 /* Wait for the display line to settle/start moving */ 496 if (wait_for(pipe_scanline_is_moving(display, pipe) == state, 100)) 497 drm_err(display->drm, 498 "pipe %c scanline %s wait timed out\n", 499 pipe_name(pipe), str_on_off(state)); 500 } 501 502 void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 503 { 504 wait_for_pipe_scanline_moving(crtc, false); 505 } 506 507 void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 508 { 509 wait_for_pipe_scanline_moving(crtc, true); 510 } 511 512 static void intel_crtc_active_timings(struct drm_display_mode *mode, 513 int *vmax_vblank_start, 514 const struct intel_crtc_state *crtc_state, 515 bool vrr_enable) 516 { 517 drm_mode_init(mode, &crtc_state->hw.adjusted_mode); 518 *vmax_vblank_start = 0; 519 520 if (!vrr_enable) 521 return; 522 523 mode->crtc_vtotal = intel_vrr_vmax_vtotal(crtc_state); 524 mode->crtc_vblank_end = intel_vrr_vmax_vtotal(crtc_state); 525 mode->crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 526 *vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 527 } 528 529 void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state, 530 bool vrr_enable) 531 { 532 struct intel_display *display = to_intel_display(crtc_state); 533 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 534 u8 mode_flags = crtc_state->mode_flags; 535 struct drm_display_mode adjusted_mode; 536 int vmax_vblank_start = 0; 537 unsigned long irqflags; 538 539 intel_crtc_active_timings(&adjusted_mode, &vmax_vblank_start, 540 crtc_state, vrr_enable); 541 542 if (vrr_enable) 543 drm_WARN_ON(display->drm, (mode_flags & I915_MODE_FLAG_VRR) == 0); 544 else 545 mode_flags &= ~I915_MODE_FLAG_VRR; 546 547 /* 548 * Belts and suspenders locking to guarantee everyone sees 100% 549 * consistent state during fastset seamless refresh rate changes. 550 * 551 * vblank_time_lock takes care of all drm_vblank.c stuff, and 552 * uncore.lock takes care of __intel_get_crtc_scanline() which 553 * may get called elsewhere as well. 554 * 555 * TODO maybe just protect everything (including 556 * __intel_get_crtc_scanline()) with vblank_time_lock? 557 * Need to audit everything to make sure it's safe. 558 */ 559 spin_lock_irqsave(&display->drm->vblank_time_lock, irqflags); 560 intel_vblank_section_enter(display); 561 562 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); 563 564 crtc->vmax_vblank_start = vmax_vblank_start; 565 566 crtc->mode_flags = mode_flags; 567 568 crtc->scanline_offset = intel_crtc_scanline_offset(crtc_state); 569 intel_vblank_section_exit(display); 570 spin_unlock_irqrestore(&display->drm->vblank_time_lock, irqflags); 571 } 572 573 int intel_mode_vdisplay(const struct drm_display_mode *mode) 574 { 575 int vdisplay = mode->crtc_vdisplay; 576 577 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 578 vdisplay = DIV_ROUND_UP(vdisplay, 2); 579 580 return vdisplay; 581 } 582 583 int intel_mode_vblank_start(const struct drm_display_mode *mode) 584 { 585 int vblank_start = mode->crtc_vblank_start; 586 587 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 588 vblank_start = DIV_ROUND_UP(vblank_start, 2); 589 590 return vblank_start; 591 } 592 593 int intel_mode_vblank_end(const struct drm_display_mode *mode) 594 { 595 int vblank_end = mode->crtc_vblank_end; 596 597 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 598 vblank_end /= 2; 599 600 return vblank_end; 601 } 602 603 int intel_mode_vtotal(const struct drm_display_mode *mode) 604 { 605 int vtotal = mode->crtc_vtotal; 606 607 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 608 vtotal /= 2; 609 610 return vtotal; 611 } 612 613 int intel_mode_vblank_delay(const struct drm_display_mode *mode) 614 { 615 return intel_mode_vblank_start(mode) - intel_mode_vdisplay(mode); 616 } 617 618 static const struct intel_crtc_state * 619 pre_commit_crtc_state(const struct intel_crtc_state *old_crtc_state, 620 const struct intel_crtc_state *new_crtc_state) 621 { 622 /* 623 * During fastsets/etc. the transcoder is still 624 * running with the old timings at this point. 625 */ 626 if (intel_crtc_needs_modeset(new_crtc_state)) 627 return new_crtc_state; 628 else 629 return old_crtc_state; 630 } 631 632 const struct intel_crtc_state * 633 intel_pre_commit_crtc_state(struct intel_atomic_state *state, 634 struct intel_crtc *crtc) 635 { 636 const struct intel_crtc_state *old_crtc_state = 637 intel_atomic_get_old_crtc_state(state, crtc); 638 const struct intel_crtc_state *new_crtc_state = 639 intel_atomic_get_new_crtc_state(state, crtc); 640 641 return pre_commit_crtc_state(old_crtc_state, new_crtc_state); 642 } 643 644 void intel_vblank_evade_init(const struct intel_crtc_state *old_crtc_state, 645 const struct intel_crtc_state *new_crtc_state, 646 struct intel_vblank_evade_ctx *evade) 647 { 648 struct intel_display *display = to_intel_display(new_crtc_state); 649 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 650 const struct intel_crtc_state *crtc_state; 651 const struct drm_display_mode *adjusted_mode; 652 int vblank_delay; 653 654 evade->crtc = crtc; 655 656 evade->need_vlv_dsi_wa = (display->platform.valleyview || 657 display->platform.cherryview) && 658 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI); 659 660 /* TODO: maybe just use the active timings here? */ 661 crtc_state = pre_commit_crtc_state(old_crtc_state, new_crtc_state); 662 663 adjusted_mode = &crtc_state->hw.adjusted_mode; 664 665 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 666 /* timing changes should happen with VRR disabled */ 667 drm_WARN_ON(crtc->base.dev, intel_crtc_needs_modeset(new_crtc_state) || 668 new_crtc_state->update_m_n || new_crtc_state->update_lrr); 669 670 if (intel_vrr_is_push_sent(crtc_state)) 671 evade->vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 672 else 673 evade->vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 674 675 vblank_delay = intel_vrr_vblank_delay(crtc_state); 676 } else { 677 evade->vblank_start = intel_mode_vblank_start(adjusted_mode); 678 679 vblank_delay = intel_mode_vblank_delay(adjusted_mode); 680 } 681 682 /* FIXME needs to be calibrated sensibly */ 683 evade->min = evade->vblank_start - intel_usecs_to_scanlines(adjusted_mode, 684 VBLANK_EVASION_TIME_US); 685 evade->max = evade->vblank_start - 1; 686 687 /* 688 * M/N and TRANS_VTOTAL are double buffered on the transcoder's 689 * undelayed vblank, so with seamless M/N and LRR we must evade 690 * both vblanks. 691 * 692 * DSB execution waits for the transcoder's undelayed vblank, 693 * hence we must kick off the commit before that. 694 */ 695 if (intel_color_uses_dsb(new_crtc_state) || 696 new_crtc_state->update_m_n || new_crtc_state->update_lrr) 697 evade->min -= vblank_delay; 698 } 699 700 /* must be called with vblank interrupt already enabled! */ 701 int intel_vblank_evade(struct intel_vblank_evade_ctx *evade) 702 { 703 struct intel_crtc *crtc = evade->crtc; 704 struct intel_display *display = to_intel_display(crtc); 705 long timeout = msecs_to_jiffies_timeout(1); 706 wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base); 707 DEFINE_WAIT(wait); 708 int scanline; 709 710 if (evade->min <= 0 || evade->max <= 0) 711 return 0; 712 713 for (;;) { 714 /* 715 * prepare_to_wait() has a memory barrier, which guarantees 716 * other CPUs can see the task state update by the time we 717 * read the scanline. 718 */ 719 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 720 721 scanline = intel_get_crtc_scanline(crtc); 722 if (scanline < evade->min || scanline > evade->max) 723 break; 724 725 if (!timeout) { 726 drm_err(display->drm, 727 "Potential atomic update failure on pipe %c\n", 728 pipe_name(crtc->pipe)); 729 break; 730 } 731 732 local_irq_enable(); 733 734 timeout = schedule_timeout(timeout); 735 736 local_irq_disable(); 737 } 738 739 finish_wait(wq, &wait); 740 741 /* 742 * On VLV/CHV DSI the scanline counter would appear to 743 * increment approx. 1/3 of a scanline before start of vblank. 744 * The registers still get latched at start of vblank however. 745 * This means we must not write any registers on the first 746 * line of vblank (since not the whole line is actually in 747 * vblank). And unfortunately we can't use the interrupt to 748 * wait here since it will fire too soon. We could use the 749 * frame start interrupt instead since it will fire after the 750 * critical scanline, but that would require more changes 751 * in the interrupt code. So for now we'll just do the nasty 752 * thing and poll for the bad scanline to pass us by. 753 * 754 * FIXME figure out if BXT+ DSI suffers from this as well 755 */ 756 while (evade->need_vlv_dsi_wa && scanline == evade->vblank_start) 757 scanline = intel_get_crtc_scanline(crtc); 758 759 return scanline; 760 } 761