1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022-2023 Intel Corporation 4 */ 5 6 #include "i915_drv.h" 7 #include "i915_reg.h" 8 #include "intel_color.h" 9 #include "intel_crtc.h" 10 #include "intel_de.h" 11 #include "intel_display_types.h" 12 #include "intel_vblank.h" 13 #include "intel_vrr.h" 14 15 /* 16 * This timing diagram depicts the video signal in and 17 * around the vertical blanking period. 18 * 19 * Assumptions about the fictitious mode used in this example: 20 * vblank_start >= 3 21 * vsync_start = vblank_start + 1 22 * vsync_end = vblank_start + 2 23 * vtotal = vblank_start + 3 24 * 25 * start of vblank: 26 * latch double buffered registers 27 * increment frame counter (ctg+) 28 * generate start of vblank interrupt (gen4+) 29 * | 30 * | frame start: 31 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 32 * | may be shifted forward 1-3 extra lines via TRANSCONF 33 * | | 34 * | | start of vsync: 35 * | | generate vsync interrupt 36 * | | | 37 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 38 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 39 * ----va---> <-----------------vb--------------------> <--------va------------- 40 * | | <----vs-----> | 41 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 42 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 43 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 44 * | | | 45 * last visible pixel first visible pixel 46 * | increment frame counter (gen3/4) 47 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 48 * 49 * x = horizontal active 50 * _ = horizontal blanking 51 * hs = horizontal sync 52 * va = vertical active 53 * vb = vertical blanking 54 * vs = vertical sync 55 * vbs = vblank_start (number) 56 * 57 * Summary: 58 * - most events happen at the start of horizontal sync 59 * - frame start happens at the start of horizontal blank, 1-4 lines 60 * (depending on TRANSCONF settings) after the start of vblank 61 * - gen3/4 pixel and frame counter are synchronized with the start 62 * of horizontal active on the first line of vertical active 63 */ 64 65 /* 66 * Called from drm generic code, passed a 'crtc', which we use as a pipe index. 67 */ 68 u32 i915_get_vblank_counter(struct drm_crtc *crtc) 69 { 70 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 71 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)]; 72 const struct drm_display_mode *mode = &vblank->hwmode; 73 enum pipe pipe = to_intel_crtc(crtc)->pipe; 74 u32 pixel, vbl_start, hsync_start, htotal; 75 u64 frame; 76 77 /* 78 * On i965gm TV output the frame counter only works up to 79 * the point when we enable the TV encoder. After that the 80 * frame counter ceases to work and reads zero. We need a 81 * vblank wait before enabling the TV encoder and so we 82 * have to enable vblank interrupts while the frame counter 83 * is still in a working state. However the core vblank code 84 * does not like us returning non-zero frame counter values 85 * when we've told it that we don't have a working frame 86 * counter. Thus we must stop non-zero values leaking out. 87 */ 88 if (!vblank->max_vblank_count) 89 return 0; 90 91 htotal = mode->crtc_htotal; 92 hsync_start = mode->crtc_hsync_start; 93 vbl_start = intel_mode_vblank_start(mode); 94 95 /* Convert to pixel count */ 96 vbl_start *= htotal; 97 98 /* Start of vblank event occurs at start of hsync */ 99 vbl_start -= htotal - hsync_start; 100 101 /* 102 * High & low register fields aren't synchronized, so make sure 103 * we get a low value that's stable across two reads of the high 104 * register. 105 */ 106 frame = intel_de_read64_2x32(dev_priv, PIPEFRAMEPIXEL(dev_priv, pipe), 107 PIPEFRAME(dev_priv, pipe)); 108 109 pixel = frame & PIPE_PIXEL_MASK; 110 frame = (frame >> PIPE_FRAME_LOW_SHIFT) & 0xffffff; 111 112 /* 113 * The frame counter increments at beginning of active. 114 * Cook up a vblank counter by also checking the pixel 115 * counter against vblank start. 116 */ 117 return (frame + (pixel >= vbl_start)) & 0xffffff; 118 } 119 120 u32 g4x_get_vblank_counter(struct drm_crtc *crtc) 121 { 122 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 123 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)]; 124 enum pipe pipe = to_intel_crtc(crtc)->pipe; 125 126 if (!vblank->max_vblank_count) 127 return 0; 128 129 return intel_de_read(dev_priv, PIPE_FRMCOUNT_G4X(dev_priv, pipe)); 130 } 131 132 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc) 133 { 134 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 135 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 136 const struct drm_display_mode *mode = &vblank->hwmode; 137 u32 htotal = mode->crtc_htotal; 138 u32 clock = mode->crtc_clock; 139 u32 scan_prev_time, scan_curr_time, scan_post_time; 140 141 /* 142 * To avoid the race condition where we might cross into the 143 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR 144 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR 145 * during the same frame. 146 */ 147 do { 148 /* 149 * This field provides read back of the display 150 * pipe frame time stamp. The time stamp value 151 * is sampled at every start of vertical blank. 152 */ 153 scan_prev_time = intel_de_read_fw(dev_priv, 154 PIPE_FRMTMSTMP(crtc->pipe)); 155 156 /* 157 * The TIMESTAMP_CTR register has the current 158 * time stamp value. 159 */ 160 scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR); 161 162 scan_post_time = intel_de_read_fw(dev_priv, 163 PIPE_FRMTMSTMP(crtc->pipe)); 164 } while (scan_post_time != scan_prev_time); 165 166 return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, 167 clock), 1000 * htotal); 168 } 169 170 /* 171 * On certain encoders on certain platforms, pipe 172 * scanline register will not work to get the scanline, 173 * since the timings are driven from the PORT or issues 174 * with scanline register updates. 175 * This function will use Framestamp and current 176 * timestamp registers to calculate the scanline. 177 */ 178 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) 179 { 180 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 181 const struct drm_display_mode *mode = &vblank->hwmode; 182 u32 vblank_start = mode->crtc_vblank_start; 183 u32 vtotal = mode->crtc_vtotal; 184 u32 scanline; 185 186 scanline = intel_crtc_scanlines_since_frame_timestamp(crtc); 187 scanline = min(scanline, vtotal - 1); 188 scanline = (scanline + vblank_start) % vtotal; 189 190 return scanline; 191 } 192 193 static int intel_crtc_scanline_offset(const struct intel_crtc_state *crtc_state) 194 { 195 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 196 197 /* 198 * The scanline counter increments at the leading edge of hsync. 199 * 200 * On most platforms it starts counting from vtotal-1 on the 201 * first active line. That means the scanline counter value is 202 * always one less than what we would expect. Ie. just after 203 * start of vblank, which also occurs at start of hsync (on the 204 * last active line), the scanline counter will read vblank_start-1. 205 * 206 * On gen2 the scanline counter starts counting from 1 instead 207 * of vtotal-1, so we have to subtract one. 208 * 209 * On HSW+ the behaviour of the scanline counter depends on the output 210 * type. For DP ports it behaves like most other platforms, but on HDMI 211 * there's an extra 1 line difference. So we need to add two instead of 212 * one to the value. 213 * 214 * On VLV/CHV DSI the scanline counter would appear to increment 215 * approx. 1/3 of a scanline before start of vblank. Unfortunately 216 * that means we can't tell whether we're in vblank or not while 217 * we're on that particular line. We must still set scanline_offset 218 * to 1 so that the vblank timestamps come out correct when we query 219 * the scanline counter from within the vblank interrupt handler. 220 * However if queried just before the start of vblank we'll get an 221 * answer that's slightly in the future. 222 */ 223 if (DISPLAY_VER(i915) == 2) 224 return -1; 225 else if (HAS_DDI(i915) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 226 return 2; 227 else 228 return 1; 229 } 230 231 /* 232 * intel_de_read_fw(), only for fast reads of display block, no need for 233 * forcewake etc. 234 */ 235 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 236 { 237 struct drm_device *dev = crtc->base.dev; 238 struct drm_i915_private *dev_priv = to_i915(dev); 239 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 240 const struct drm_display_mode *mode = &vblank->hwmode; 241 enum pipe pipe = crtc->pipe; 242 int position, vtotal; 243 244 if (!crtc->active) 245 return 0; 246 247 if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) 248 return __intel_get_crtc_scanline_from_timestamp(crtc); 249 250 vtotal = intel_mode_vtotal(mode); 251 252 position = intel_de_read_fw(dev_priv, PIPEDSL(dev_priv, pipe)) & PIPEDSL_LINE_MASK; 253 254 /* 255 * On HSW, the DSL reg (0x70000) appears to return 0 if we 256 * read it just before the start of vblank. So try it again 257 * so we don't accidentally end up spanning a vblank frame 258 * increment, causing the pipe_update_end() code to squak at us. 259 * 260 * The nature of this problem means we can't simply check the ISR 261 * bit and return the vblank start value; nor can we use the scanline 262 * debug register in the transcoder as it appears to have the same 263 * problem. We may need to extend this to include other platforms, 264 * but so far testing only shows the problem on HSW. 265 */ 266 if (HAS_DDI(dev_priv) && !position) { 267 int i, temp; 268 269 for (i = 0; i < 100; i++) { 270 udelay(1); 271 temp = intel_de_read_fw(dev_priv, 272 PIPEDSL(dev_priv, pipe)) & PIPEDSL_LINE_MASK; 273 if (temp != position) { 274 position = temp; 275 break; 276 } 277 } 278 } 279 280 /* 281 * See update_scanline_offset() for the details on the 282 * scanline_offset adjustment. 283 */ 284 return (position + vtotal + crtc->scanline_offset) % vtotal; 285 } 286 287 int intel_crtc_scanline_to_hw(struct intel_crtc *crtc, int scanline) 288 { 289 const struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 290 const struct drm_display_mode *mode = &vblank->hwmode; 291 int vtotal = intel_mode_vtotal(mode); 292 293 return (scanline + vtotal - crtc->scanline_offset) % vtotal; 294 } 295 296 /* 297 * The uncore version of the spin lock functions is used to decide 298 * whether we need to lock the uncore lock or not. This is only 299 * needed in i915, not in Xe. 300 * 301 * This lock in i915 is needed because some old platforms (at least 302 * IVB and possibly HSW as well), which are not supported in Xe, need 303 * all register accesses to the same cacheline to be serialized, 304 * otherwise they may hang. 305 */ 306 static void intel_vblank_section_enter(struct drm_i915_private *i915) 307 __acquires(i915->uncore.lock) 308 { 309 #ifdef I915 310 spin_lock(&i915->uncore.lock); 311 #endif 312 } 313 314 static void intel_vblank_section_exit(struct drm_i915_private *i915) 315 __releases(i915->uncore.lock) 316 { 317 #ifdef I915 318 spin_unlock(&i915->uncore.lock); 319 #endif 320 } 321 322 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc, 323 bool in_vblank_irq, 324 int *vpos, int *hpos, 325 ktime_t *stime, ktime_t *etime, 326 const struct drm_display_mode *mode) 327 { 328 struct drm_device *dev = _crtc->dev; 329 struct drm_i915_private *dev_priv = to_i915(dev); 330 struct intel_crtc *crtc = to_intel_crtc(_crtc); 331 enum pipe pipe = crtc->pipe; 332 int position; 333 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 334 unsigned long irqflags; 335 bool use_scanline_counter = DISPLAY_VER(dev_priv) >= 5 || 336 IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) == 2 || 337 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER; 338 339 if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) { 340 drm_dbg(&dev_priv->drm, 341 "trying to get scanoutpos for disabled pipe %c\n", 342 pipe_name(pipe)); 343 return false; 344 } 345 346 htotal = mode->crtc_htotal; 347 hsync_start = mode->crtc_hsync_start; 348 vtotal = intel_mode_vtotal(mode); 349 vbl_start = intel_mode_vblank_start(mode); 350 vbl_end = intel_mode_vblank_end(mode); 351 352 /* 353 * Enter vblank critical section, as we will do multiple 354 * timing critical raw register reads, potentially with 355 * preemption disabled, so the following code must not block. 356 */ 357 local_irq_save(irqflags); 358 intel_vblank_section_enter(dev_priv); 359 360 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 361 362 /* Get optional system timestamp before query. */ 363 if (stime) 364 *stime = ktime_get(); 365 366 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 367 int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc); 368 369 position = __intel_get_crtc_scanline(crtc); 370 371 /* 372 * Already exiting vblank? If so, shift our position 373 * so it looks like we're already apporaching the full 374 * vblank end. This should make the generated timestamp 375 * more or less match when the active portion will start. 376 */ 377 if (position >= vbl_start && scanlines < position) 378 position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1); 379 } else if (use_scanline_counter) { 380 /* No obvious pixelcount register. Only query vertical 381 * scanout position from Display scan line register. 382 */ 383 position = __intel_get_crtc_scanline(crtc); 384 } else { 385 /* 386 * Have access to pixelcount since start of frame. 387 * We can split this into vertical and horizontal 388 * scanout position. 389 */ 390 position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(dev_priv, pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 391 392 /* convert to pixel counts */ 393 vbl_start *= htotal; 394 vbl_end *= htotal; 395 vtotal *= htotal; 396 397 /* 398 * In interlaced modes, the pixel counter counts all pixels, 399 * so one field will have htotal more pixels. In order to avoid 400 * the reported position from jumping backwards when the pixel 401 * counter is beyond the length of the shorter field, just 402 * clamp the position the length of the shorter field. This 403 * matches how the scanline counter based position works since 404 * the scanline counter doesn't count the two half lines. 405 */ 406 position = min(position, vtotal - 1); 407 408 /* 409 * Start of vblank interrupt is triggered at start of hsync, 410 * just prior to the first active line of vblank. However we 411 * consider lines to start at the leading edge of horizontal 412 * active. So, should we get here before we've crossed into 413 * the horizontal active of the first line in vblank, we would 414 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 415 * always add htotal-hsync_start to the current pixel position. 416 */ 417 position = (position + htotal - hsync_start) % vtotal; 418 } 419 420 /* Get optional system timestamp after query. */ 421 if (etime) 422 *etime = ktime_get(); 423 424 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 425 426 intel_vblank_section_exit(dev_priv); 427 local_irq_restore(irqflags); 428 429 /* 430 * While in vblank, position will be negative 431 * counting up towards 0 at vbl_end. And outside 432 * vblank, position will be positive counting 433 * up since vbl_end. 434 */ 435 if (position >= vbl_start) 436 position -= vbl_end; 437 else 438 position += vtotal - vbl_end; 439 440 if (use_scanline_counter) { 441 *vpos = position; 442 *hpos = 0; 443 } else { 444 *vpos = position / htotal; 445 *hpos = position - (*vpos * htotal); 446 } 447 448 return true; 449 } 450 451 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error, 452 ktime_t *vblank_time, bool in_vblank_irq) 453 { 454 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 455 crtc, max_error, vblank_time, in_vblank_irq, 456 i915_get_crtc_scanoutpos); 457 } 458 459 int intel_get_crtc_scanline(struct intel_crtc *crtc) 460 { 461 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 462 unsigned long irqflags; 463 int position; 464 465 local_irq_save(irqflags); 466 intel_vblank_section_enter(dev_priv); 467 468 position = __intel_get_crtc_scanline(crtc); 469 470 intel_vblank_section_exit(dev_priv); 471 local_irq_restore(irqflags); 472 473 return position; 474 } 475 476 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, 477 enum pipe pipe) 478 { 479 i915_reg_t reg = PIPEDSL(dev_priv, pipe); 480 u32 line1, line2; 481 482 line1 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK; 483 msleep(5); 484 line2 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK; 485 486 return line1 != line2; 487 } 488 489 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 490 { 491 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 492 enum pipe pipe = crtc->pipe; 493 494 /* Wait for the display line to settle/start moving */ 495 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) 496 drm_err(&dev_priv->drm, 497 "pipe %c scanline %s wait timed out\n", 498 pipe_name(pipe), str_on_off(state)); 499 } 500 501 void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 502 { 503 wait_for_pipe_scanline_moving(crtc, false); 504 } 505 506 void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 507 { 508 wait_for_pipe_scanline_moving(crtc, true); 509 } 510 511 void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state, 512 bool vrr_enable) 513 { 514 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 515 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 516 u8 mode_flags = crtc_state->mode_flags; 517 struct drm_display_mode adjusted_mode; 518 int vmax_vblank_start = 0; 519 unsigned long irqflags; 520 521 drm_mode_init(&adjusted_mode, &crtc_state->hw.adjusted_mode); 522 523 if (vrr_enable) { 524 drm_WARN_ON(&i915->drm, (mode_flags & I915_MODE_FLAG_VRR) == 0); 525 526 adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax; 527 adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax; 528 adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 529 vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 530 } else { 531 mode_flags &= ~I915_MODE_FLAG_VRR; 532 } 533 534 /* 535 * Belts and suspenders locking to guarantee everyone sees 100% 536 * consistent state during fastset seamless refresh rate changes. 537 * 538 * vblank_time_lock takes care of all drm_vblank.c stuff, and 539 * uncore.lock takes care of __intel_get_crtc_scanline() which 540 * may get called elsewhere as well. 541 * 542 * TODO maybe just protect everything (including 543 * __intel_get_crtc_scanline()) with vblank_time_lock? 544 * Need to audit everything to make sure it's safe. 545 */ 546 spin_lock_irqsave(&i915->drm.vblank_time_lock, irqflags); 547 intel_vblank_section_enter(i915); 548 549 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); 550 551 crtc->vmax_vblank_start = vmax_vblank_start; 552 553 crtc->mode_flags = mode_flags; 554 555 crtc->scanline_offset = intel_crtc_scanline_offset(crtc_state); 556 intel_vblank_section_exit(i915); 557 spin_unlock_irqrestore(&i915->drm.vblank_time_lock, irqflags); 558 } 559 560 int intel_mode_vdisplay(const struct drm_display_mode *mode) 561 { 562 int vdisplay = mode->crtc_vdisplay; 563 564 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 565 vdisplay = DIV_ROUND_UP(vdisplay, 2); 566 567 return vdisplay; 568 } 569 570 int intel_mode_vblank_start(const struct drm_display_mode *mode) 571 { 572 int vblank_start = mode->crtc_vblank_start; 573 574 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 575 vblank_start = DIV_ROUND_UP(vblank_start, 2); 576 577 return vblank_start; 578 } 579 580 int intel_mode_vblank_end(const struct drm_display_mode *mode) 581 { 582 int vblank_end = mode->crtc_vblank_end; 583 584 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 585 vblank_end /= 2; 586 587 return vblank_end; 588 } 589 590 int intel_mode_vtotal(const struct drm_display_mode *mode) 591 { 592 int vtotal = mode->crtc_vtotal; 593 594 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 595 vtotal /= 2; 596 597 return vtotal; 598 } 599 600 void intel_vblank_evade_init(const struct intel_crtc_state *old_crtc_state, 601 const struct intel_crtc_state *new_crtc_state, 602 struct intel_vblank_evade_ctx *evade) 603 { 604 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 605 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 606 const struct intel_crtc_state *crtc_state; 607 const struct drm_display_mode *adjusted_mode; 608 609 evade->crtc = crtc; 610 611 evade->need_vlv_dsi_wa = (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) && 612 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI); 613 614 /* 615 * During fastsets/etc. the transcoder is still 616 * running with the old timings at this point. 617 * 618 * TODO: maybe just use the active timings here? 619 */ 620 if (intel_crtc_needs_modeset(new_crtc_state)) 621 crtc_state = new_crtc_state; 622 else 623 crtc_state = old_crtc_state; 624 625 adjusted_mode = &crtc_state->hw.adjusted_mode; 626 627 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 628 /* timing changes should happen with VRR disabled */ 629 drm_WARN_ON(crtc->base.dev, intel_crtc_needs_modeset(new_crtc_state) || 630 new_crtc_state->update_m_n || new_crtc_state->update_lrr); 631 632 if (intel_vrr_is_push_sent(crtc_state)) 633 evade->vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 634 else 635 evade->vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 636 } else { 637 evade->vblank_start = intel_mode_vblank_start(adjusted_mode); 638 } 639 640 /* FIXME needs to be calibrated sensibly */ 641 evade->min = evade->vblank_start - intel_usecs_to_scanlines(adjusted_mode, 642 VBLANK_EVASION_TIME_US); 643 evade->max = evade->vblank_start - 1; 644 645 /* 646 * M/N and TRANS_VTOTAL are double buffered on the transcoder's 647 * undelayed vblank, so with seamless M/N and LRR we must evade 648 * both vblanks. 649 * 650 * DSB execution waits for the transcoder's undelayed vblank, 651 * hence we must kick off the commit before that. 652 */ 653 if (intel_color_uses_dsb(new_crtc_state) || 654 new_crtc_state->update_m_n || new_crtc_state->update_lrr) 655 evade->min -= adjusted_mode->crtc_vblank_start - adjusted_mode->crtc_vdisplay; 656 } 657 658 /* must be called with vblank interrupt already enabled! */ 659 int intel_vblank_evade(struct intel_vblank_evade_ctx *evade) 660 { 661 struct intel_crtc *crtc = evade->crtc; 662 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 663 long timeout = msecs_to_jiffies_timeout(1); 664 wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base); 665 DEFINE_WAIT(wait); 666 int scanline; 667 668 if (evade->min <= 0 || evade->max <= 0) 669 return 0; 670 671 for (;;) { 672 /* 673 * prepare_to_wait() has a memory barrier, which guarantees 674 * other CPUs can see the task state update by the time we 675 * read the scanline. 676 */ 677 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 678 679 scanline = intel_get_crtc_scanline(crtc); 680 if (scanline < evade->min || scanline > evade->max) 681 break; 682 683 if (!timeout) { 684 drm_err(&i915->drm, 685 "Potential atomic update failure on pipe %c\n", 686 pipe_name(crtc->pipe)); 687 break; 688 } 689 690 local_irq_enable(); 691 692 timeout = schedule_timeout(timeout); 693 694 local_irq_disable(); 695 } 696 697 finish_wait(wq, &wait); 698 699 /* 700 * On VLV/CHV DSI the scanline counter would appear to 701 * increment approx. 1/3 of a scanline before start of vblank. 702 * The registers still get latched at start of vblank however. 703 * This means we must not write any registers on the first 704 * line of vblank (since not the whole line is actually in 705 * vblank). And unfortunately we can't use the interrupt to 706 * wait here since it will fire too soon. We could use the 707 * frame start interrupt instead since it will fire after the 708 * critical scanline, but that would require more changes 709 * in the interrupt code. So for now we'll just do the nasty 710 * thing and poll for the bad scanline to pass us by. 711 * 712 * FIXME figure out if BXT+ DSI suffers from this as well 713 */ 714 while (evade->need_vlv_dsi_wa && scanline == evade->vblank_start) 715 scanline = intel_get_crtc_scanline(crtc); 716 717 return scanline; 718 } 719