1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022-2023 Intel Corporation 4 */ 5 6 #include <drm/drm_vblank.h> 7 8 #include "i915_drv.h" 9 #include "intel_color.h" 10 #include "intel_crtc.h" 11 #include "intel_de.h" 12 #include "intel_display_regs.h" 13 #include "intel_display_types.h" 14 #include "intel_vblank.h" 15 #include "intel_vrr.h" 16 17 /* 18 * This timing diagram depicts the video signal in and 19 * around the vertical blanking period. 20 * 21 * Assumptions about the fictitious mode used in this example: 22 * vblank_start >= 3 23 * vsync_start = vblank_start + 1 24 * vsync_end = vblank_start + 2 25 * vtotal = vblank_start + 3 26 * 27 * start of vblank: 28 * latch double buffered registers 29 * increment frame counter (ctg+) 30 * generate start of vblank interrupt (gen4+) 31 * | 32 * | frame start: 33 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 34 * | may be shifted forward 1-3 extra lines via TRANSCONF 35 * | | 36 * | | start of vsync: 37 * | | generate vsync interrupt 38 * | | | 39 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 40 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 41 * ----va---> <-----------------vb--------------------> <--------va------------- 42 * | | <----vs-----> | 43 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 44 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 45 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 46 * | | | 47 * last visible pixel first visible pixel 48 * | increment frame counter (gen3/4) 49 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 50 * 51 * x = horizontal active 52 * _ = horizontal blanking 53 * hs = horizontal sync 54 * va = vertical active 55 * vb = vertical blanking 56 * vs = vertical sync 57 * vbs = vblank_start (number) 58 * 59 * Summary: 60 * - most events happen at the start of horizontal sync 61 * - frame start happens at the start of horizontal blank, 1-4 lines 62 * (depending on TRANSCONF settings) after the start of vblank 63 * - gen3/4 pixel and frame counter are synchronized with the start 64 * of horizontal active on the first line of vertical active 65 */ 66 67 /* 68 * Called from drm generic code, passed a 'crtc', which we use as a pipe index. 69 */ 70 u32 i915_get_vblank_counter(struct drm_crtc *crtc) 71 { 72 struct intel_display *display = to_intel_display(crtc->dev); 73 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 74 const struct drm_display_mode *mode = &vblank->hwmode; 75 enum pipe pipe = to_intel_crtc(crtc)->pipe; 76 u32 pixel, vbl_start, hsync_start, htotal; 77 u64 frame; 78 79 /* 80 * On i965gm TV output the frame counter only works up to 81 * the point when we enable the TV encoder. After that the 82 * frame counter ceases to work and reads zero. We need a 83 * vblank wait before enabling the TV encoder and so we 84 * have to enable vblank interrupts while the frame counter 85 * is still in a working state. However the core vblank code 86 * does not like us returning non-zero frame counter values 87 * when we've told it that we don't have a working frame 88 * counter. Thus we must stop non-zero values leaking out. 89 */ 90 if (!vblank->max_vblank_count) 91 return 0; 92 93 htotal = mode->crtc_htotal; 94 hsync_start = mode->crtc_hsync_start; 95 vbl_start = intel_mode_vblank_start(mode); 96 97 /* Convert to pixel count */ 98 vbl_start *= htotal; 99 100 /* Start of vblank event occurs at start of hsync */ 101 vbl_start -= htotal - hsync_start; 102 103 /* 104 * High & low register fields aren't synchronized, so make sure 105 * we get a low value that's stable across two reads of the high 106 * register. 107 */ 108 frame = intel_de_read64_2x32(display, PIPEFRAMEPIXEL(display, pipe), 109 PIPEFRAME(display, pipe)); 110 111 pixel = frame & PIPE_PIXEL_MASK; 112 frame = (frame >> PIPE_FRAME_LOW_SHIFT) & 0xffffff; 113 114 /* 115 * The frame counter increments at beginning of active. 116 * Cook up a vblank counter by also checking the pixel 117 * counter against vblank start. 118 */ 119 return (frame + (pixel >= vbl_start)) & 0xffffff; 120 } 121 122 u32 g4x_get_vblank_counter(struct drm_crtc *crtc) 123 { 124 struct intel_display *display = to_intel_display(crtc->dev); 125 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 126 enum pipe pipe = to_intel_crtc(crtc)->pipe; 127 128 if (!vblank->max_vblank_count) 129 return 0; 130 131 return intel_de_read(display, PIPE_FRMCOUNT_G4X(display, pipe)); 132 } 133 134 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc) 135 { 136 struct intel_display *display = to_intel_display(crtc); 137 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 138 const struct drm_display_mode *mode = &vblank->hwmode; 139 u32 htotal = mode->crtc_htotal; 140 u32 clock = mode->crtc_clock; 141 u32 scan_prev_time, scan_curr_time, scan_post_time; 142 143 /* 144 * To avoid the race condition where we might cross into the 145 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR 146 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR 147 * during the same frame. 148 */ 149 do { 150 /* 151 * This field provides read back of the display 152 * pipe frame time stamp. The time stamp value 153 * is sampled at every start of vertical blank. 154 */ 155 scan_prev_time = intel_de_read_fw(display, 156 PIPE_FRMTMSTMP(crtc->pipe)); 157 158 /* 159 * The TIMESTAMP_CTR register has the current 160 * time stamp value. 161 */ 162 scan_curr_time = intel_de_read_fw(display, IVB_TIMESTAMP_CTR); 163 164 scan_post_time = intel_de_read_fw(display, 165 PIPE_FRMTMSTMP(crtc->pipe)); 166 } while (scan_post_time != scan_prev_time); 167 168 return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, 169 clock), 1000 * htotal); 170 } 171 172 /* 173 * On certain encoders on certain platforms, pipe 174 * scanline register will not work to get the scanline, 175 * since the timings are driven from the PORT or issues 176 * with scanline register updates. 177 * This function will use Framestamp and current 178 * timestamp registers to calculate the scanline. 179 */ 180 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) 181 { 182 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 183 const struct drm_display_mode *mode = &vblank->hwmode; 184 u32 vblank_start = mode->crtc_vblank_start; 185 u32 vtotal = mode->crtc_vtotal; 186 u32 scanline; 187 188 scanline = intel_crtc_scanlines_since_frame_timestamp(crtc); 189 scanline = min(scanline, vtotal - 1); 190 scanline = (scanline + vblank_start) % vtotal; 191 192 return scanline; 193 } 194 195 int intel_crtc_scanline_offset(const struct intel_crtc_state *crtc_state) 196 { 197 struct intel_display *display = to_intel_display(crtc_state); 198 199 /* 200 * The scanline counter increments at the leading edge of hsync. 201 * 202 * On most platforms it starts counting from vtotal-1 on the 203 * first active line. That means the scanline counter value is 204 * always one less than what we would expect. Ie. just after 205 * start of vblank, which also occurs at start of hsync (on the 206 * last active line), the scanline counter will read vblank_start-1. 207 * 208 * On gen2 the scanline counter starts counting from 1 instead 209 * of vtotal-1, so we have to subtract one. 210 * 211 * On HSW+ the behaviour of the scanline counter depends on the output 212 * type. For DP ports it behaves like most other platforms, but on HDMI 213 * there's an extra 1 line difference. So we need to add two instead of 214 * one to the value. 215 * 216 * On VLV/CHV DSI the scanline counter would appear to increment 217 * approx. 1/3 of a scanline before start of vblank. Unfortunately 218 * that means we can't tell whether we're in vblank or not while 219 * we're on that particular line. We must still set scanline_offset 220 * to 1 so that the vblank timestamps come out correct when we query 221 * the scanline counter from within the vblank interrupt handler. 222 * However if queried just before the start of vblank we'll get an 223 * answer that's slightly in the future. 224 */ 225 if (DISPLAY_VER(display) >= 20 || display->platform.battlemage) 226 return 1; 227 else if (DISPLAY_VER(display) >= 9 || 228 display->platform.broadwell || display->platform.haswell) 229 return intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ? 2 : 1; 230 else if (DISPLAY_VER(display) >= 3) 231 return 1; 232 else 233 return -1; 234 } 235 236 /* 237 * intel_de_read_fw(), only for fast reads of display block, no need for 238 * forcewake etc. 239 */ 240 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 241 { 242 struct intel_display *display = to_intel_display(crtc); 243 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 244 const struct drm_display_mode *mode = &vblank->hwmode; 245 enum pipe pipe = crtc->pipe; 246 int position, vtotal; 247 248 if (!crtc->active) 249 return 0; 250 251 if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) 252 return __intel_get_crtc_scanline_from_timestamp(crtc); 253 254 vtotal = intel_mode_vtotal(mode); 255 256 position = intel_de_read_fw(display, PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK; 257 258 /* 259 * On HSW, the DSL reg (0x70000) appears to return 0 if we 260 * read it just before the start of vblank. So try it again 261 * so we don't accidentally end up spanning a vblank frame 262 * increment, causing the pipe_update_end() code to squak at us. 263 * 264 * The nature of this problem means we can't simply check the ISR 265 * bit and return the vblank start value; nor can we use the scanline 266 * debug register in the transcoder as it appears to have the same 267 * problem. We may need to extend this to include other platforms, 268 * but so far testing only shows the problem on HSW. 269 */ 270 if (HAS_DDI(display) && !position) { 271 int i, temp; 272 273 for (i = 0; i < 100; i++) { 274 udelay(1); 275 temp = intel_de_read_fw(display, 276 PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK; 277 if (temp != position) { 278 position = temp; 279 break; 280 } 281 } 282 } 283 284 /* 285 * See update_scanline_offset() for the details on the 286 * scanline_offset adjustment. 287 */ 288 return (position + vtotal + crtc->scanline_offset) % vtotal; 289 } 290 291 /* 292 * The uncore version of the spin lock functions is used to decide 293 * whether we need to lock the uncore lock or not. This is only 294 * needed in i915, not in Xe. 295 * 296 * This lock in i915 is needed because some old platforms (at least 297 * IVB and possibly HSW as well), which are not supported in Xe, need 298 * all register accesses to the same cacheline to be serialized, 299 * otherwise they may hang. 300 */ 301 #ifdef I915 302 static void intel_vblank_section_enter(struct intel_display *display) 303 __acquires(i915->uncore.lock) 304 { 305 struct drm_i915_private *i915 = to_i915(display->drm); 306 spin_lock(&i915->uncore.lock); 307 } 308 309 static void intel_vblank_section_exit(struct intel_display *display) 310 __releases(i915->uncore.lock) 311 { 312 struct drm_i915_private *i915 = to_i915(display->drm); 313 spin_unlock(&i915->uncore.lock); 314 } 315 #else 316 static void intel_vblank_section_enter(struct intel_display *display) 317 { 318 } 319 320 static void intel_vblank_section_exit(struct intel_display *display) 321 { 322 } 323 #endif 324 325 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc, 326 bool in_vblank_irq, 327 int *vpos, int *hpos, 328 ktime_t *stime, ktime_t *etime, 329 const struct drm_display_mode *mode) 330 { 331 struct intel_display *display = to_intel_display(_crtc->dev); 332 struct intel_crtc *crtc = to_intel_crtc(_crtc); 333 enum pipe pipe = crtc->pipe; 334 int position; 335 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 336 unsigned long irqflags; 337 bool use_scanline_counter = DISPLAY_VER(display) >= 5 || 338 display->platform.g4x || DISPLAY_VER(display) == 2 || 339 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER; 340 341 if (drm_WARN_ON(display->drm, !mode->crtc_clock)) { 342 drm_dbg(display->drm, 343 "trying to get scanoutpos for disabled pipe %c\n", 344 pipe_name(pipe)); 345 return false; 346 } 347 348 htotal = mode->crtc_htotal; 349 hsync_start = mode->crtc_hsync_start; 350 vtotal = intel_mode_vtotal(mode); 351 vbl_start = intel_mode_vblank_start(mode); 352 vbl_end = intel_mode_vblank_end(mode); 353 354 /* 355 * Enter vblank critical section, as we will do multiple 356 * timing critical raw register reads, potentially with 357 * preemption disabled, so the following code must not block. 358 */ 359 local_irq_save(irqflags); 360 intel_vblank_section_enter(display); 361 362 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 363 364 /* Get optional system timestamp before query. */ 365 if (stime) 366 *stime = ktime_get(); 367 368 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 369 int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc); 370 371 position = __intel_get_crtc_scanline(crtc); 372 373 /* 374 * Already exiting vblank? If so, shift our position 375 * so it looks like we're already approaching the full 376 * vblank end. This should make the generated timestamp 377 * more or less match when the active portion will start. 378 */ 379 if (position >= vbl_start && scanlines < position) 380 position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1); 381 } else if (use_scanline_counter) { 382 /* No obvious pixelcount register. Only query vertical 383 * scanout position from Display scan line register. 384 */ 385 position = __intel_get_crtc_scanline(crtc); 386 } else { 387 /* 388 * Have access to pixelcount since start of frame. 389 * We can split this into vertical and horizontal 390 * scanout position. 391 */ 392 position = (intel_de_read_fw(display, PIPEFRAMEPIXEL(display, pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 393 394 /* convert to pixel counts */ 395 vbl_start *= htotal; 396 vbl_end *= htotal; 397 vtotal *= htotal; 398 399 /* 400 * In interlaced modes, the pixel counter counts all pixels, 401 * so one field will have htotal more pixels. In order to avoid 402 * the reported position from jumping backwards when the pixel 403 * counter is beyond the length of the shorter field, just 404 * clamp the position the length of the shorter field. This 405 * matches how the scanline counter based position works since 406 * the scanline counter doesn't count the two half lines. 407 */ 408 position = min(position, vtotal - 1); 409 410 /* 411 * Start of vblank interrupt is triggered at start of hsync, 412 * just prior to the first active line of vblank. However we 413 * consider lines to start at the leading edge of horizontal 414 * active. So, should we get here before we've crossed into 415 * the horizontal active of the first line in vblank, we would 416 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 417 * always add htotal-hsync_start to the current pixel position. 418 */ 419 position = (position + htotal - hsync_start) % vtotal; 420 } 421 422 /* Get optional system timestamp after query. */ 423 if (etime) 424 *etime = ktime_get(); 425 426 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 427 428 intel_vblank_section_exit(display); 429 local_irq_restore(irqflags); 430 431 /* 432 * While in vblank, position will be negative 433 * counting up towards 0 at vbl_end. And outside 434 * vblank, position will be positive counting 435 * up since vbl_end. 436 */ 437 if (position >= vbl_start) 438 position -= vbl_end; 439 else 440 position += vtotal - vbl_end; 441 442 if (use_scanline_counter) { 443 *vpos = position; 444 *hpos = 0; 445 } else { 446 *vpos = position / htotal; 447 *hpos = position - (*vpos * htotal); 448 } 449 450 return true; 451 } 452 453 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error, 454 ktime_t *vblank_time, bool in_vblank_irq) 455 { 456 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 457 crtc, max_error, vblank_time, in_vblank_irq, 458 i915_get_crtc_scanoutpos); 459 } 460 461 int intel_get_crtc_scanline(struct intel_crtc *crtc) 462 { 463 struct intel_display *display = to_intel_display(crtc); 464 unsigned long irqflags; 465 int position; 466 467 local_irq_save(irqflags); 468 intel_vblank_section_enter(display); 469 470 position = __intel_get_crtc_scanline(crtc); 471 472 intel_vblank_section_exit(display); 473 local_irq_restore(irqflags); 474 475 return position; 476 } 477 478 static bool pipe_scanline_is_moving(struct intel_display *display, 479 enum pipe pipe) 480 { 481 i915_reg_t reg = PIPEDSL(display, pipe); 482 u32 line1, line2; 483 484 line1 = intel_de_read(display, reg) & PIPEDSL_LINE_MASK; 485 msleep(5); 486 line2 = intel_de_read(display, reg) & PIPEDSL_LINE_MASK; 487 488 return line1 != line2; 489 } 490 491 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 492 { 493 struct intel_display *display = to_intel_display(crtc); 494 enum pipe pipe = crtc->pipe; 495 496 /* Wait for the display line to settle/start moving */ 497 if (wait_for(pipe_scanline_is_moving(display, pipe) == state, 100)) 498 drm_err(display->drm, 499 "pipe %c scanline %s wait timed out\n", 500 pipe_name(pipe), str_on_off(state)); 501 } 502 503 void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 504 { 505 wait_for_pipe_scanline_moving(crtc, false); 506 } 507 508 void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 509 { 510 wait_for_pipe_scanline_moving(crtc, true); 511 } 512 513 static void intel_crtc_active_timings(struct drm_display_mode *mode, 514 int *vmax_vblank_start, 515 const struct intel_crtc_state *crtc_state, 516 bool vrr_enable) 517 { 518 drm_mode_init(mode, &crtc_state->hw.adjusted_mode); 519 *vmax_vblank_start = 0; 520 521 if (!vrr_enable) 522 return; 523 524 mode->crtc_vtotal = intel_vrr_vmax_vtotal(crtc_state); 525 mode->crtc_vblank_end = intel_vrr_vmax_vtotal(crtc_state); 526 mode->crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 527 *vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 528 } 529 530 void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state, 531 bool vrr_enable) 532 { 533 struct intel_display *display = to_intel_display(crtc_state); 534 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 535 u8 mode_flags = crtc_state->mode_flags; 536 struct drm_display_mode adjusted_mode; 537 int vmax_vblank_start = 0; 538 unsigned long irqflags; 539 540 intel_crtc_active_timings(&adjusted_mode, &vmax_vblank_start, 541 crtc_state, vrr_enable); 542 543 if (vrr_enable) 544 drm_WARN_ON(display->drm, (mode_flags & I915_MODE_FLAG_VRR) == 0); 545 else 546 mode_flags &= ~I915_MODE_FLAG_VRR; 547 548 /* 549 * Belts and suspenders locking to guarantee everyone sees 100% 550 * consistent state during fastset seamless refresh rate changes. 551 * 552 * vblank_time_lock takes care of all drm_vblank.c stuff, and 553 * uncore.lock takes care of __intel_get_crtc_scanline() which 554 * may get called elsewhere as well. 555 * 556 * TODO maybe just protect everything (including 557 * __intel_get_crtc_scanline()) with vblank_time_lock? 558 * Need to audit everything to make sure it's safe. 559 */ 560 spin_lock_irqsave(&display->drm->vblank_time_lock, irqflags); 561 intel_vblank_section_enter(display); 562 563 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); 564 565 crtc->vmax_vblank_start = vmax_vblank_start; 566 567 crtc->mode_flags = mode_flags; 568 569 crtc->scanline_offset = intel_crtc_scanline_offset(crtc_state); 570 intel_vblank_section_exit(display); 571 spin_unlock_irqrestore(&display->drm->vblank_time_lock, irqflags); 572 } 573 574 int intel_mode_vdisplay(const struct drm_display_mode *mode) 575 { 576 int vdisplay = mode->crtc_vdisplay; 577 578 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 579 vdisplay = DIV_ROUND_UP(vdisplay, 2); 580 581 return vdisplay; 582 } 583 584 int intel_mode_vblank_start(const struct drm_display_mode *mode) 585 { 586 int vblank_start = mode->crtc_vblank_start; 587 588 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 589 vblank_start = DIV_ROUND_UP(vblank_start, 2); 590 591 return vblank_start; 592 } 593 594 int intel_mode_vblank_end(const struct drm_display_mode *mode) 595 { 596 int vblank_end = mode->crtc_vblank_end; 597 598 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 599 vblank_end /= 2; 600 601 return vblank_end; 602 } 603 604 int intel_mode_vtotal(const struct drm_display_mode *mode) 605 { 606 int vtotal = mode->crtc_vtotal; 607 608 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 609 vtotal /= 2; 610 611 return vtotal; 612 } 613 614 int intel_mode_vblank_delay(const struct drm_display_mode *mode) 615 { 616 return intel_mode_vblank_start(mode) - intel_mode_vdisplay(mode); 617 } 618 619 static const struct intel_crtc_state * 620 pre_commit_crtc_state(const struct intel_crtc_state *old_crtc_state, 621 const struct intel_crtc_state *new_crtc_state) 622 { 623 /* 624 * During fastsets/etc. the transcoder is still 625 * running with the old timings at this point. 626 */ 627 if (intel_crtc_needs_modeset(new_crtc_state)) 628 return new_crtc_state; 629 else 630 return old_crtc_state; 631 } 632 633 const struct intel_crtc_state * 634 intel_pre_commit_crtc_state(struct intel_atomic_state *state, 635 struct intel_crtc *crtc) 636 { 637 const struct intel_crtc_state *old_crtc_state = 638 intel_atomic_get_old_crtc_state(state, crtc); 639 const struct intel_crtc_state *new_crtc_state = 640 intel_atomic_get_new_crtc_state(state, crtc); 641 642 return pre_commit_crtc_state(old_crtc_state, new_crtc_state); 643 } 644 645 void intel_vblank_evade_init(const struct intel_crtc_state *old_crtc_state, 646 const struct intel_crtc_state *new_crtc_state, 647 struct intel_vblank_evade_ctx *evade) 648 { 649 struct intel_display *display = to_intel_display(new_crtc_state); 650 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 651 const struct intel_crtc_state *crtc_state; 652 const struct drm_display_mode *adjusted_mode; 653 int vblank_delay; 654 655 evade->crtc = crtc; 656 657 evade->need_vlv_dsi_wa = (display->platform.valleyview || 658 display->platform.cherryview) && 659 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI); 660 661 /* TODO: maybe just use the active timings here? */ 662 crtc_state = pre_commit_crtc_state(old_crtc_state, new_crtc_state); 663 664 adjusted_mode = &crtc_state->hw.adjusted_mode; 665 666 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 667 /* timing changes should happen with VRR disabled */ 668 drm_WARN_ON(crtc->base.dev, intel_crtc_needs_modeset(new_crtc_state) || 669 new_crtc_state->update_m_n || new_crtc_state->update_lrr); 670 671 if (intel_vrr_is_push_sent(crtc_state)) 672 evade->vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 673 else 674 evade->vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 675 676 vblank_delay = intel_vrr_vblank_delay(crtc_state); 677 } else { 678 evade->vblank_start = intel_mode_vblank_start(adjusted_mode); 679 680 vblank_delay = intel_mode_vblank_delay(adjusted_mode); 681 } 682 683 /* FIXME needs to be calibrated sensibly */ 684 evade->min = evade->vblank_start - intel_usecs_to_scanlines(adjusted_mode, 685 VBLANK_EVASION_TIME_US); 686 evade->max = evade->vblank_start - 1; 687 688 /* 689 * M/N and TRANS_VTOTAL are double buffered on the transcoder's 690 * undelayed vblank, so with seamless M/N and LRR we must evade 691 * both vblanks. 692 * 693 * DSB execution waits for the transcoder's undelayed vblank, 694 * hence we must kick off the commit before that. 695 */ 696 if (intel_color_uses_dsb(new_crtc_state) || 697 new_crtc_state->update_m_n || new_crtc_state->update_lrr) 698 evade->min -= vblank_delay; 699 } 700 701 /* must be called with vblank interrupt already enabled! */ 702 int intel_vblank_evade(struct intel_vblank_evade_ctx *evade) 703 { 704 struct intel_crtc *crtc = evade->crtc; 705 struct intel_display *display = to_intel_display(crtc); 706 long timeout = msecs_to_jiffies_timeout(1); 707 wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base); 708 DEFINE_WAIT(wait); 709 int scanline; 710 711 if (evade->min <= 0 || evade->max <= 0) 712 return 0; 713 714 for (;;) { 715 /* 716 * prepare_to_wait() has a memory barrier, which guarantees 717 * other CPUs can see the task state update by the time we 718 * read the scanline. 719 */ 720 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 721 722 scanline = intel_get_crtc_scanline(crtc); 723 if (scanline < evade->min || scanline > evade->max) 724 break; 725 726 if (!timeout) { 727 drm_err(display->drm, 728 "Potential atomic update failure on pipe %c\n", 729 pipe_name(crtc->pipe)); 730 break; 731 } 732 733 local_irq_enable(); 734 735 timeout = schedule_timeout(timeout); 736 737 local_irq_disable(); 738 } 739 740 finish_wait(wq, &wait); 741 742 /* 743 * On VLV/CHV DSI the scanline counter would appear to 744 * increment approx. 1/3 of a scanline before start of vblank. 745 * The registers still get latched at start of vblank however. 746 * This means we must not write any registers on the first 747 * line of vblank (since not the whole line is actually in 748 * vblank). And unfortunately we can't use the interrupt to 749 * wait here since it will fire too soon. We could use the 750 * frame start interrupt instead since it will fire after the 751 * critical scanline, but that would require more changes 752 * in the interrupt code. So for now we'll just do the nasty 753 * thing and poll for the bad scanline to pass us by. 754 * 755 * FIXME figure out if BXT+ DSI suffers from this as well 756 */ 757 while (evade->need_vlv_dsi_wa && scanline == evade->vblank_start) 758 scanline = intel_get_crtc_scanline(crtc); 759 760 return scanline; 761 } 762