1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022-2023 Intel Corporation 4 */ 5 6 #include <linux/iopoll.h> 7 8 #include <drm/drm_vblank.h> 9 10 #include "i915_drv.h" 11 #include "i915_utils.h" 12 #include "intel_color.h" 13 #include "intel_crtc.h" 14 #include "intel_de.h" 15 #include "intel_display_regs.h" 16 #include "intel_display_types.h" 17 #include "intel_vblank.h" 18 #include "intel_vrr.h" 19 20 /* 21 * This timing diagram depicts the video signal in and 22 * around the vertical blanking period. 23 * 24 * Assumptions about the fictitious mode used in this example: 25 * vblank_start >= 3 26 * vsync_start = vblank_start + 1 27 * vsync_end = vblank_start + 2 28 * vtotal = vblank_start + 3 29 * 30 * start of vblank: 31 * latch double buffered registers 32 * increment frame counter (ctg+) 33 * generate start of vblank interrupt (gen4+) 34 * | 35 * | frame start: 36 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 37 * | may be shifted forward 1-3 extra lines via TRANSCONF 38 * | | 39 * | | start of vsync: 40 * | | generate vsync interrupt 41 * | | | 42 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 43 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 44 * ----va---> <-----------------vb--------------------> <--------va------------- 45 * | | <----vs-----> | 46 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 47 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 48 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 49 * | | | 50 * last visible pixel first visible pixel 51 * | increment frame counter (gen3/4) 52 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 53 * 54 * x = horizontal active 55 * _ = horizontal blanking 56 * hs = horizontal sync 57 * va = vertical active 58 * vb = vertical blanking 59 * vs = vertical sync 60 * vbs = vblank_start (number) 61 * 62 * Summary: 63 * - most events happen at the start of horizontal sync 64 * - frame start happens at the start of horizontal blank, 1-4 lines 65 * (depending on TRANSCONF settings) after the start of vblank 66 * - gen3/4 pixel and frame counter are synchronized with the start 67 * of horizontal active on the first line of vertical active 68 */ 69 70 /* 71 * Called from drm generic code, passed a 'crtc', which we use as a pipe index. 72 */ 73 u32 i915_get_vblank_counter(struct drm_crtc *crtc) 74 { 75 struct intel_display *display = to_intel_display(crtc->dev); 76 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 77 const struct drm_display_mode *mode = &vblank->hwmode; 78 enum pipe pipe = to_intel_crtc(crtc)->pipe; 79 u32 pixel, vbl_start, hsync_start, htotal; 80 u64 frame; 81 82 /* 83 * On i965gm TV output the frame counter only works up to 84 * the point when we enable the TV encoder. After that the 85 * frame counter ceases to work and reads zero. We need a 86 * vblank wait before enabling the TV encoder and so we 87 * have to enable vblank interrupts while the frame counter 88 * is still in a working state. However the core vblank code 89 * does not like us returning non-zero frame counter values 90 * when we've told it that we don't have a working frame 91 * counter. Thus we must stop non-zero values leaking out. 92 */ 93 if (!vblank->max_vblank_count) 94 return 0; 95 96 htotal = mode->crtc_htotal; 97 hsync_start = mode->crtc_hsync_start; 98 vbl_start = intel_mode_vblank_start(mode); 99 100 /* Convert to pixel count */ 101 vbl_start *= htotal; 102 103 /* Start of vblank event occurs at start of hsync */ 104 vbl_start -= htotal - hsync_start; 105 106 /* 107 * High & low register fields aren't synchronized, so make sure 108 * we get a low value that's stable across two reads of the high 109 * register. 110 */ 111 frame = intel_de_read64_2x32(display, PIPEFRAMEPIXEL(display, pipe), 112 PIPEFRAME(display, pipe)); 113 114 pixel = frame & PIPE_PIXEL_MASK; 115 frame = (frame >> PIPE_FRAME_LOW_SHIFT) & 0xffffff; 116 117 /* 118 * The frame counter increments at beginning of active. 119 * Cook up a vblank counter by also checking the pixel 120 * counter against vblank start. 121 */ 122 return (frame + (pixel >= vbl_start)) & 0xffffff; 123 } 124 125 u32 g4x_get_vblank_counter(struct drm_crtc *crtc) 126 { 127 struct intel_display *display = to_intel_display(crtc->dev); 128 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(crtc); 129 enum pipe pipe = to_intel_crtc(crtc)->pipe; 130 131 if (!vblank->max_vblank_count) 132 return 0; 133 134 return intel_de_read(display, PIPE_FRMCOUNT_G4X(display, pipe)); 135 } 136 137 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc) 138 { 139 struct intel_display *display = to_intel_display(crtc); 140 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 141 const struct drm_display_mode *mode = &vblank->hwmode; 142 u32 htotal = mode->crtc_htotal; 143 u32 clock = mode->crtc_clock; 144 u32 scan_prev_time, scan_curr_time, scan_post_time; 145 146 /* 147 * To avoid the race condition where we might cross into the 148 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR 149 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR 150 * during the same frame. 151 */ 152 do { 153 /* 154 * This field provides read back of the display 155 * pipe frame time stamp. The time stamp value 156 * is sampled at every start of vertical blank. 157 */ 158 scan_prev_time = intel_de_read_fw(display, 159 PIPE_FRMTMSTMP(crtc->pipe)); 160 161 /* 162 * The TIMESTAMP_CTR register has the current 163 * time stamp value. 164 */ 165 scan_curr_time = intel_de_read_fw(display, IVB_TIMESTAMP_CTR); 166 167 scan_post_time = intel_de_read_fw(display, 168 PIPE_FRMTMSTMP(crtc->pipe)); 169 } while (scan_post_time != scan_prev_time); 170 171 return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, 172 clock), 1000 * htotal); 173 } 174 175 /* 176 * On certain encoders on certain platforms, pipe 177 * scanline register will not work to get the scanline, 178 * since the timings are driven from the PORT or issues 179 * with scanline register updates. 180 * This function will use Framestamp and current 181 * timestamp registers to calculate the scanline. 182 */ 183 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) 184 { 185 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 186 const struct drm_display_mode *mode = &vblank->hwmode; 187 u32 vblank_start = mode->crtc_vblank_start; 188 u32 vtotal = mode->crtc_vtotal; 189 u32 scanline; 190 191 scanline = intel_crtc_scanlines_since_frame_timestamp(crtc); 192 scanline = min(scanline, vtotal - 1); 193 scanline = (scanline + vblank_start) % vtotal; 194 195 return scanline; 196 } 197 198 int intel_crtc_scanline_offset(const struct intel_crtc_state *crtc_state) 199 { 200 struct intel_display *display = to_intel_display(crtc_state); 201 202 /* 203 * The scanline counter increments at the leading edge of hsync. 204 * 205 * On most platforms it starts counting from vtotal-1 on the 206 * first active line. That means the scanline counter value is 207 * always one less than what we would expect. Ie. just after 208 * start of vblank, which also occurs at start of hsync (on the 209 * last active line), the scanline counter will read vblank_start-1. 210 * 211 * On gen2 the scanline counter starts counting from 1 instead 212 * of vtotal-1, so we have to subtract one. 213 * 214 * On HSW+ the behaviour of the scanline counter depends on the output 215 * type. For DP ports it behaves like most other platforms, but on HDMI 216 * there's an extra 1 line difference. So we need to add two instead of 217 * one to the value. 218 * 219 * On VLV/CHV DSI the scanline counter would appear to increment 220 * approx. 1/3 of a scanline before start of vblank. Unfortunately 221 * that means we can't tell whether we're in vblank or not while 222 * we're on that particular line. We must still set scanline_offset 223 * to 1 so that the vblank timestamps come out correct when we query 224 * the scanline counter from within the vblank interrupt handler. 225 * However if queried just before the start of vblank we'll get an 226 * answer that's slightly in the future. 227 */ 228 if (DISPLAY_VER(display) >= 20 || display->platform.battlemage) 229 return 1; 230 else if (DISPLAY_VER(display) >= 9 || 231 display->platform.broadwell || display->platform.haswell) 232 return intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ? 2 : 1; 233 else if (DISPLAY_VER(display) >= 3) 234 return 1; 235 else 236 return -1; 237 } 238 239 /* 240 * intel_de_read_fw(), only for fast reads of display block, no need for 241 * forcewake etc. 242 */ 243 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 244 { 245 struct intel_display *display = to_intel_display(crtc); 246 struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); 247 const struct drm_display_mode *mode = &vblank->hwmode; 248 enum pipe pipe = crtc->pipe; 249 int position, vtotal; 250 251 if (!crtc->active) 252 return 0; 253 254 if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) 255 return __intel_get_crtc_scanline_from_timestamp(crtc); 256 257 vtotal = intel_mode_vtotal(mode); 258 259 position = intel_de_read_fw(display, PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK; 260 261 /* 262 * On HSW, the DSL reg (0x70000) appears to return 0 if we 263 * read it just before the start of vblank. So try it again 264 * so we don't accidentally end up spanning a vblank frame 265 * increment, causing the pipe_update_end() code to squak at us. 266 * 267 * The nature of this problem means we can't simply check the ISR 268 * bit and return the vblank start value; nor can we use the scanline 269 * debug register in the transcoder as it appears to have the same 270 * problem. We may need to extend this to include other platforms, 271 * but so far testing only shows the problem on HSW. 272 */ 273 if (HAS_DDI(display) && !position) { 274 int i, temp; 275 276 for (i = 0; i < 100; i++) { 277 udelay(1); 278 temp = intel_de_read_fw(display, 279 PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK; 280 if (temp != position) { 281 position = temp; 282 break; 283 } 284 } 285 } 286 287 /* 288 * See update_scanline_offset() for the details on the 289 * scanline_offset adjustment. 290 */ 291 return (position + vtotal + crtc->scanline_offset) % vtotal; 292 } 293 294 /* 295 * The uncore version of the spin lock functions is used to decide 296 * whether we need to lock the uncore lock or not. This is only 297 * needed in i915, not in Xe. 298 * 299 * This lock in i915 is needed because some old platforms (at least 300 * IVB and possibly HSW as well), which are not supported in Xe, need 301 * all register accesses to the same cacheline to be serialized, 302 * otherwise they may hang. 303 */ 304 #ifdef I915 305 static void intel_vblank_section_enter(struct intel_display *display) 306 __acquires(i915->uncore.lock) 307 { 308 struct drm_i915_private *i915 = to_i915(display->drm); 309 spin_lock(&i915->uncore.lock); 310 } 311 312 static void intel_vblank_section_exit(struct intel_display *display) 313 __releases(i915->uncore.lock) 314 { 315 struct drm_i915_private *i915 = to_i915(display->drm); 316 spin_unlock(&i915->uncore.lock); 317 } 318 #else 319 static void intel_vblank_section_enter(struct intel_display *display) 320 { 321 } 322 323 static void intel_vblank_section_exit(struct intel_display *display) 324 { 325 } 326 #endif 327 328 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc, 329 bool in_vblank_irq, 330 int *vpos, int *hpos, 331 ktime_t *stime, ktime_t *etime, 332 const struct drm_display_mode *mode) 333 { 334 struct intel_display *display = to_intel_display(_crtc->dev); 335 struct intel_crtc *crtc = to_intel_crtc(_crtc); 336 enum pipe pipe = crtc->pipe; 337 int position; 338 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 339 unsigned long irqflags; 340 bool use_scanline_counter = DISPLAY_VER(display) >= 5 || 341 display->platform.g4x || DISPLAY_VER(display) == 2 || 342 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER; 343 344 if (drm_WARN_ON(display->drm, !mode->crtc_clock)) { 345 drm_dbg(display->drm, 346 "trying to get scanoutpos for disabled pipe %c\n", 347 pipe_name(pipe)); 348 return false; 349 } 350 351 htotal = mode->crtc_htotal; 352 hsync_start = mode->crtc_hsync_start; 353 vtotal = intel_mode_vtotal(mode); 354 vbl_start = intel_mode_vblank_start(mode); 355 vbl_end = intel_mode_vblank_end(mode); 356 357 /* 358 * Enter vblank critical section, as we will do multiple 359 * timing critical raw register reads, potentially with 360 * preemption disabled, so the following code must not block. 361 */ 362 local_irq_save(irqflags); 363 intel_vblank_section_enter(display); 364 365 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 366 367 /* Get optional system timestamp before query. */ 368 if (stime) 369 *stime = ktime_get(); 370 371 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 372 int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc); 373 374 position = __intel_get_crtc_scanline(crtc); 375 376 /* 377 * Already exiting vblank? If so, shift our position 378 * so it looks like we're already approaching the full 379 * vblank end. This should make the generated timestamp 380 * more or less match when the active portion will start. 381 */ 382 if (position >= vbl_start && scanlines < position) 383 position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1); 384 } else if (use_scanline_counter) { 385 /* No obvious pixelcount register. Only query vertical 386 * scanout position from Display scan line register. 387 */ 388 position = __intel_get_crtc_scanline(crtc); 389 } else { 390 /* 391 * Have access to pixelcount since start of frame. 392 * We can split this into vertical and horizontal 393 * scanout position. 394 */ 395 position = (intel_de_read_fw(display, PIPEFRAMEPIXEL(display, pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 396 397 /* convert to pixel counts */ 398 vbl_start *= htotal; 399 vbl_end *= htotal; 400 vtotal *= htotal; 401 402 /* 403 * In interlaced modes, the pixel counter counts all pixels, 404 * so one field will have htotal more pixels. In order to avoid 405 * the reported position from jumping backwards when the pixel 406 * counter is beyond the length of the shorter field, just 407 * clamp the position the length of the shorter field. This 408 * matches how the scanline counter based position works since 409 * the scanline counter doesn't count the two half lines. 410 */ 411 position = min(position, vtotal - 1); 412 413 /* 414 * Start of vblank interrupt is triggered at start of hsync, 415 * just prior to the first active line of vblank. However we 416 * consider lines to start at the leading edge of horizontal 417 * active. So, should we get here before we've crossed into 418 * the horizontal active of the first line in vblank, we would 419 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 420 * always add htotal-hsync_start to the current pixel position. 421 */ 422 position = (position + htotal - hsync_start) % vtotal; 423 } 424 425 /* Get optional system timestamp after query. */ 426 if (etime) 427 *etime = ktime_get(); 428 429 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 430 431 intel_vblank_section_exit(display); 432 local_irq_restore(irqflags); 433 434 /* 435 * While in vblank, position will be negative 436 * counting up towards 0 at vbl_end. And outside 437 * vblank, position will be positive counting 438 * up since vbl_end. 439 */ 440 if (position >= vbl_start) 441 position -= vbl_end; 442 else 443 position += vtotal - vbl_end; 444 445 if (use_scanline_counter) { 446 *vpos = position; 447 *hpos = 0; 448 } else { 449 *vpos = position / htotal; 450 *hpos = position - (*vpos * htotal); 451 } 452 453 return true; 454 } 455 456 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error, 457 ktime_t *vblank_time, bool in_vblank_irq) 458 { 459 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 460 crtc, max_error, vblank_time, in_vblank_irq, 461 i915_get_crtc_scanoutpos); 462 } 463 464 int intel_get_crtc_scanline(struct intel_crtc *crtc) 465 { 466 struct intel_display *display = to_intel_display(crtc); 467 unsigned long irqflags; 468 int position; 469 470 local_irq_save(irqflags); 471 intel_vblank_section_enter(display); 472 473 position = __intel_get_crtc_scanline(crtc); 474 475 intel_vblank_section_exit(display); 476 local_irq_restore(irqflags); 477 478 return position; 479 } 480 481 static bool pipe_scanline_is_moving(struct intel_display *display, 482 enum pipe pipe) 483 { 484 i915_reg_t reg = PIPEDSL(display, pipe); 485 u32 line1, line2; 486 487 line1 = intel_de_read(display, reg) & PIPEDSL_LINE_MASK; 488 msleep(5); 489 line2 = intel_de_read(display, reg) & PIPEDSL_LINE_MASK; 490 491 return line1 != line2; 492 } 493 494 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) 495 { 496 struct intel_display *display = to_intel_display(crtc); 497 enum pipe pipe = crtc->pipe; 498 bool is_moving; 499 int ret; 500 501 /* Wait for the display line to settle/start moving */ 502 ret = poll_timeout_us(is_moving = pipe_scanline_is_moving(display, pipe), 503 is_moving == state, 504 500, 100 * 1000, false); 505 if (ret) 506 drm_err(display->drm, 507 "pipe %c scanline %s wait timed out\n", 508 pipe_name(pipe), str_on_off(state)); 509 } 510 511 void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) 512 { 513 wait_for_pipe_scanline_moving(crtc, false); 514 } 515 516 void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) 517 { 518 wait_for_pipe_scanline_moving(crtc, true); 519 } 520 521 static void intel_crtc_active_timings(struct drm_display_mode *mode, 522 int *vmax_vblank_start, 523 const struct intel_crtc_state *crtc_state, 524 bool vrr_enable) 525 { 526 drm_mode_init(mode, &crtc_state->hw.adjusted_mode); 527 *vmax_vblank_start = 0; 528 529 if (!vrr_enable) 530 return; 531 532 mode->crtc_vtotal = intel_vrr_vmax_vtotal(crtc_state); 533 mode->crtc_vblank_end = intel_vrr_vmax_vtotal(crtc_state); 534 mode->crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 535 *vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 536 } 537 538 void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state, 539 bool vrr_enable) 540 { 541 struct intel_display *display = to_intel_display(crtc_state); 542 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 543 u8 mode_flags = crtc_state->mode_flags; 544 struct drm_display_mode adjusted_mode; 545 int vmax_vblank_start = 0; 546 unsigned long irqflags; 547 548 intel_crtc_active_timings(&adjusted_mode, &vmax_vblank_start, 549 crtc_state, vrr_enable); 550 551 if (vrr_enable) 552 drm_WARN_ON(display->drm, (mode_flags & I915_MODE_FLAG_VRR) == 0); 553 else 554 mode_flags &= ~I915_MODE_FLAG_VRR; 555 556 /* 557 * Belts and suspenders locking to guarantee everyone sees 100% 558 * consistent state during fastset seamless refresh rate changes. 559 * 560 * vblank_time_lock takes care of all drm_vblank.c stuff, and 561 * uncore.lock takes care of __intel_get_crtc_scanline() which 562 * may get called elsewhere as well. 563 * 564 * TODO maybe just protect everything (including 565 * __intel_get_crtc_scanline()) with vblank_time_lock? 566 * Need to audit everything to make sure it's safe. 567 */ 568 spin_lock_irqsave(&display->drm->vblank_time_lock, irqflags); 569 intel_vblank_section_enter(display); 570 571 drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); 572 573 crtc->vmax_vblank_start = vmax_vblank_start; 574 575 crtc->mode_flags = mode_flags; 576 577 crtc->scanline_offset = intel_crtc_scanline_offset(crtc_state); 578 intel_vblank_section_exit(display); 579 spin_unlock_irqrestore(&display->drm->vblank_time_lock, irqflags); 580 } 581 582 int intel_mode_vdisplay(const struct drm_display_mode *mode) 583 { 584 int vdisplay = mode->crtc_vdisplay; 585 586 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 587 vdisplay = DIV_ROUND_UP(vdisplay, 2); 588 589 return vdisplay; 590 } 591 592 int intel_mode_vblank_start(const struct drm_display_mode *mode) 593 { 594 int vblank_start = mode->crtc_vblank_start; 595 596 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 597 vblank_start = DIV_ROUND_UP(vblank_start, 2); 598 599 return vblank_start; 600 } 601 602 int intel_mode_vblank_end(const struct drm_display_mode *mode) 603 { 604 int vblank_end = mode->crtc_vblank_end; 605 606 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 607 vblank_end /= 2; 608 609 return vblank_end; 610 } 611 612 int intel_mode_vtotal(const struct drm_display_mode *mode) 613 { 614 int vtotal = mode->crtc_vtotal; 615 616 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 617 vtotal /= 2; 618 619 return vtotal; 620 } 621 622 int intel_mode_vblank_delay(const struct drm_display_mode *mode) 623 { 624 return intel_mode_vblank_start(mode) - intel_mode_vdisplay(mode); 625 } 626 627 static const struct intel_crtc_state * 628 pre_commit_crtc_state(const struct intel_crtc_state *old_crtc_state, 629 const struct intel_crtc_state *new_crtc_state) 630 { 631 /* 632 * During fastsets/etc. the transcoder is still 633 * running with the old timings at this point. 634 */ 635 if (intel_crtc_needs_modeset(new_crtc_state)) 636 return new_crtc_state; 637 else 638 return old_crtc_state; 639 } 640 641 const struct intel_crtc_state * 642 intel_pre_commit_crtc_state(struct intel_atomic_state *state, 643 struct intel_crtc *crtc) 644 { 645 const struct intel_crtc_state *old_crtc_state = 646 intel_atomic_get_old_crtc_state(state, crtc); 647 const struct intel_crtc_state *new_crtc_state = 648 intel_atomic_get_new_crtc_state(state, crtc); 649 650 return pre_commit_crtc_state(old_crtc_state, new_crtc_state); 651 } 652 653 void intel_vblank_evade_init(const struct intel_crtc_state *old_crtc_state, 654 const struct intel_crtc_state *new_crtc_state, 655 struct intel_vblank_evade_ctx *evade) 656 { 657 struct intel_display *display = to_intel_display(new_crtc_state); 658 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 659 const struct intel_crtc_state *crtc_state; 660 const struct drm_display_mode *adjusted_mode; 661 int vblank_delay; 662 663 evade->crtc = crtc; 664 665 evade->need_vlv_dsi_wa = (display->platform.valleyview || 666 display->platform.cherryview) && 667 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI); 668 669 /* TODO: maybe just use the active timings here? */ 670 crtc_state = pre_commit_crtc_state(old_crtc_state, new_crtc_state); 671 672 adjusted_mode = &crtc_state->hw.adjusted_mode; 673 674 if (crtc->mode_flags & I915_MODE_FLAG_VRR) { 675 /* timing changes should happen with VRR disabled */ 676 drm_WARN_ON(crtc->base.dev, intel_crtc_needs_modeset(new_crtc_state) || 677 new_crtc_state->update_m_n || new_crtc_state->update_lrr); 678 679 if (intel_vrr_is_push_sent(crtc_state)) 680 evade->vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 681 else 682 evade->vblank_start = intel_vrr_vmax_vblank_start(crtc_state); 683 684 vblank_delay = intel_vrr_vblank_delay(crtc_state); 685 } else { 686 evade->vblank_start = intel_mode_vblank_start(adjusted_mode); 687 688 vblank_delay = intel_mode_vblank_delay(adjusted_mode); 689 } 690 691 /* FIXME needs to be calibrated sensibly */ 692 evade->min = evade->vblank_start - intel_usecs_to_scanlines(adjusted_mode, 693 VBLANK_EVASION_TIME_US); 694 evade->max = evade->vblank_start - 1; 695 696 /* 697 * M/N and TRANS_VTOTAL are double buffered on the transcoder's 698 * undelayed vblank, so with seamless M/N and LRR we must evade 699 * both vblanks. 700 * 701 * DSB execution waits for the transcoder's undelayed vblank, 702 * hence we must kick off the commit before that. 703 */ 704 if (intel_color_uses_dsb(new_crtc_state) || 705 new_crtc_state->update_m_n || new_crtc_state->update_lrr) 706 evade->min -= vblank_delay; 707 } 708 709 /* must be called with vblank interrupt already enabled! */ 710 int intel_vblank_evade(struct intel_vblank_evade_ctx *evade) 711 { 712 struct intel_crtc *crtc = evade->crtc; 713 struct intel_display *display = to_intel_display(crtc); 714 long timeout = msecs_to_jiffies_timeout(1); 715 wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base); 716 DEFINE_WAIT(wait); 717 int scanline; 718 719 if (evade->min <= 0 || evade->max <= 0) 720 return 0; 721 722 for (;;) { 723 /* 724 * prepare_to_wait() has a memory barrier, which guarantees 725 * other CPUs can see the task state update by the time we 726 * read the scanline. 727 */ 728 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 729 730 scanline = intel_get_crtc_scanline(crtc); 731 if (scanline < evade->min || scanline > evade->max) 732 break; 733 734 if (!timeout) { 735 drm_dbg_kms(display->drm, 736 "Potential atomic update failure on pipe %c\n", 737 pipe_name(crtc->pipe)); 738 break; 739 } 740 741 local_irq_enable(); 742 743 timeout = schedule_timeout(timeout); 744 745 local_irq_disable(); 746 } 747 748 finish_wait(wq, &wait); 749 750 /* 751 * On VLV/CHV DSI the scanline counter would appear to 752 * increment approx. 1/3 of a scanline before start of vblank. 753 * The registers still get latched at start of vblank however. 754 * This means we must not write any registers on the first 755 * line of vblank (since not the whole line is actually in 756 * vblank). And unfortunately we can't use the interrupt to 757 * wait here since it will fire too soon. We could use the 758 * frame start interrupt instead since it will fire after the 759 * critical scanline, but that would require more changes 760 * in the interrupt code. So for now we'll just do the nasty 761 * thing and poll for the bad scanline to pass us by. 762 * 763 * FIXME figure out if BXT+ DSI suffers from this as well 764 */ 765 while (evade->need_vlv_dsi_wa && scanline == evade->vblank_start) 766 scanline = intel_get_crtc_scanline(crtc); 767 768 return scanline; 769 } 770