1 /* 2 * Copyright © 2006-2008 Intel Corporation 3 * Jesse Barnes <jesse.barnes@intel.com> 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Eric Anholt <eric@anholt.net> 26 * 27 */ 28 29 /** @file 30 * Integrated TV-out support for the 915GM and 945GM. 31 */ 32 33 #include <drm/drm_atomic_helper.h> 34 #include <drm/drm_crtc.h> 35 #include <drm/drm_edid.h> 36 #include <drm/drm_probe_helper.h> 37 38 #include "i915_drv.h" 39 #include "i915_reg.h" 40 #include "intel_connector.h" 41 #include "intel_crtc.h" 42 #include "intel_de.h" 43 #include "intel_display_irq.h" 44 #include "intel_display_driver.h" 45 #include "intel_display_types.h" 46 #include "intel_dpll.h" 47 #include "intel_hotplug.h" 48 #include "intel_load_detect.h" 49 #include "intel_tv.h" 50 #include "intel_tv_regs.h" 51 52 enum tv_margin { 53 TV_MARGIN_LEFT, TV_MARGIN_TOP, 54 TV_MARGIN_RIGHT, TV_MARGIN_BOTTOM 55 }; 56 57 struct intel_tv { 58 struct intel_encoder base; 59 60 int type; 61 }; 62 63 struct video_levels { 64 u16 blank, black; 65 u8 burst; 66 }; 67 68 struct color_conversion { 69 u16 ry, gy, by, ay; 70 u16 ru, gu, bu, au; 71 u16 rv, gv, bv, av; 72 }; 73 74 static const u32 filter_table[] = { 75 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140, 76 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000, 77 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160, 78 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780, 79 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50, 80 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20, 81 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0, 82 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0, 83 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020, 84 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140, 85 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20, 86 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848, 87 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900, 88 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080, 89 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060, 90 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140, 91 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000, 92 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160, 93 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780, 94 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50, 95 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20, 96 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0, 97 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0, 98 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020, 99 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140, 100 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20, 101 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848, 102 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900, 103 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080, 104 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060, 105 0x36403000, 0x2D002CC0, 0x30003640, 0x2D0036C0, 106 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540, 107 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00, 108 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000, 109 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00, 110 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40, 111 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240, 112 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00, 113 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0, 114 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840, 115 0x28003100, 0x28002F00, 0x00003100, 0x36403000, 116 0x2D002CC0, 0x30003640, 0x2D0036C0, 117 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540, 118 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00, 119 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000, 120 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00, 121 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40, 122 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240, 123 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00, 124 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0, 125 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840, 126 0x28003100, 0x28002F00, 0x00003100, 127 }; 128 129 /* 130 * Color conversion values have 3 separate fixed point formats: 131 * 132 * 10 bit fields (ay, au) 133 * 1.9 fixed point (b.bbbbbbbbb) 134 * 11 bit fields (ry, by, ru, gu, gv) 135 * exp.mantissa (ee.mmmmmmmmm) 136 * ee = 00 = 10^-1 (0.mmmmmmmmm) 137 * ee = 01 = 10^-2 (0.0mmmmmmmmm) 138 * ee = 10 = 10^-3 (0.00mmmmmmmmm) 139 * ee = 11 = 10^-4 (0.000mmmmmmmmm) 140 * 12 bit fields (gy, rv, bu) 141 * exp.mantissa (eee.mmmmmmmmm) 142 * eee = 000 = 10^-1 (0.mmmmmmmmm) 143 * eee = 001 = 10^-2 (0.0mmmmmmmmm) 144 * eee = 010 = 10^-3 (0.00mmmmmmmmm) 145 * eee = 011 = 10^-4 (0.000mmmmmmmmm) 146 * eee = 100 = reserved 147 * eee = 101 = reserved 148 * eee = 110 = reserved 149 * eee = 111 = 10^0 (m.mmmmmmmm) (only usable for 1.0 representation) 150 * 151 * Saturation and contrast are 8 bits, with their own representation: 152 * 8 bit field (saturation, contrast) 153 * exp.mantissa (ee.mmmmmm) 154 * ee = 00 = 10^-1 (0.mmmmmm) 155 * ee = 01 = 10^0 (m.mmmmm) 156 * ee = 10 = 10^1 (mm.mmmm) 157 * ee = 11 = 10^2 (mmm.mmm) 158 * 159 * Simple conversion function: 160 * 161 * static u32 162 * float_to_csc_11(float f) 163 * { 164 * u32 exp; 165 * u32 mant; 166 * u32 ret; 167 * 168 * if (f < 0) 169 * f = -f; 170 * 171 * if (f >= 1) { 172 * exp = 0x7; 173 * mant = 1 << 8; 174 * } else { 175 * for (exp = 0; exp < 3 && f < 0.5; exp++) 176 * f *= 2.0; 177 * mant = (f * (1 << 9) + 0.5); 178 * if (mant >= (1 << 9)) 179 * mant = (1 << 9) - 1; 180 * } 181 * ret = (exp << 9) | mant; 182 * return ret; 183 * } 184 */ 185 186 /* 187 * Behold, magic numbers! If we plant them they might grow a big 188 * s-video cable to the sky... or something. 189 * 190 * Pre-converted to appropriate hex value. 191 */ 192 193 /* 194 * PAL & NTSC values for composite & s-video connections 195 */ 196 static const struct color_conversion ntsc_m_csc_composite = { 197 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 198 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 199 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 200 }; 201 202 static const struct video_levels ntsc_m_levels_composite = { 203 .blank = 225, .black = 267, .burst = 113, 204 }; 205 206 static const struct color_conversion ntsc_m_csc_svideo = { 207 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 208 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 209 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 210 }; 211 212 static const struct video_levels ntsc_m_levels_svideo = { 213 .blank = 266, .black = 316, .burst = 133, 214 }; 215 216 static const struct color_conversion ntsc_j_csc_composite = { 217 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0119, 218 .ru = 0x074c, .gu = 0x0546, .bu = 0x05ec, .au = 0x0200, 219 .rv = 0x035a, .gv = 0x0322, .bv = 0x06e1, .av = 0x0200, 220 }; 221 222 static const struct video_levels ntsc_j_levels_composite = { 223 .blank = 225, .black = 225, .burst = 113, 224 }; 225 226 static const struct color_conversion ntsc_j_csc_svideo = { 227 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x014c, 228 .ru = 0x0788, .gu = 0x0581, .bu = 0x0322, .au = 0x0200, 229 .rv = 0x0399, .gv = 0x0356, .bv = 0x070a, .av = 0x0200, 230 }; 231 232 static const struct video_levels ntsc_j_levels_svideo = { 233 .blank = 266, .black = 266, .burst = 133, 234 }; 235 236 static const struct color_conversion pal_csc_composite = { 237 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0113, 238 .ru = 0x0745, .gu = 0x053f, .bu = 0x05e1, .au = 0x0200, 239 .rv = 0x0353, .gv = 0x031c, .bv = 0x06dc, .av = 0x0200, 240 }; 241 242 static const struct video_levels pal_levels_composite = { 243 .blank = 237, .black = 237, .burst = 118, 244 }; 245 246 static const struct color_conversion pal_csc_svideo = { 247 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145, 248 .ru = 0x0780, .gu = 0x0579, .bu = 0x031c, .au = 0x0200, 249 .rv = 0x0390, .gv = 0x034f, .bv = 0x0705, .av = 0x0200, 250 }; 251 252 static const struct video_levels pal_levels_svideo = { 253 .blank = 280, .black = 280, .burst = 139, 254 }; 255 256 static const struct color_conversion pal_m_csc_composite = { 257 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 258 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 259 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 260 }; 261 262 static const struct video_levels pal_m_levels_composite = { 263 .blank = 225, .black = 267, .burst = 113, 264 }; 265 266 static const struct color_conversion pal_m_csc_svideo = { 267 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 268 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 269 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 270 }; 271 272 static const struct video_levels pal_m_levels_svideo = { 273 .blank = 266, .black = 316, .burst = 133, 274 }; 275 276 static const struct color_conversion pal_n_csc_composite = { 277 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 278 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 279 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 280 }; 281 282 static const struct video_levels pal_n_levels_composite = { 283 .blank = 225, .black = 267, .burst = 118, 284 }; 285 286 static const struct color_conversion pal_n_csc_svideo = { 287 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 288 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 289 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 290 }; 291 292 static const struct video_levels pal_n_levels_svideo = { 293 .blank = 266, .black = 316, .burst = 139, 294 }; 295 296 /* 297 * Component connections 298 */ 299 static const struct color_conversion sdtv_csc_yprpb = { 300 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145, 301 .ru = 0x0559, .gu = 0x0353, .bu = 0x0100, .au = 0x0200, 302 .rv = 0x0100, .gv = 0x03ad, .bv = 0x074d, .av = 0x0200, 303 }; 304 305 static const struct color_conversion hdtv_csc_yprpb = { 306 .ry = 0x05b3, .gy = 0x016e, .by = 0x0728, .ay = 0x0145, 307 .ru = 0x07d5, .gu = 0x038b, .bu = 0x0100, .au = 0x0200, 308 .rv = 0x0100, .gv = 0x03d1, .bv = 0x06bc, .av = 0x0200, 309 }; 310 311 static const struct video_levels component_levels = { 312 .blank = 279, .black = 279, .burst = 0, 313 }; 314 315 316 struct tv_mode { 317 const char *name; 318 319 u32 clock; 320 u16 refresh; /* in millihertz (for precision) */ 321 u8 oversample; 322 u8 hsync_end; 323 u16 hblank_start, hblank_end, htotal; 324 bool progressive : 1, trilevel_sync : 1, component_only : 1; 325 u8 vsync_start_f1, vsync_start_f2, vsync_len; 326 bool veq_ena : 1; 327 u8 veq_start_f1, veq_start_f2, veq_len; 328 u8 vi_end_f1, vi_end_f2; 329 u16 nbr_end; 330 bool burst_ena : 1; 331 u8 hburst_start, hburst_len; 332 u8 vburst_start_f1; 333 u16 vburst_end_f1; 334 u8 vburst_start_f2; 335 u16 vburst_end_f2; 336 u8 vburst_start_f3; 337 u16 vburst_end_f3; 338 u8 vburst_start_f4; 339 u16 vburst_end_f4; 340 /* 341 * subcarrier programming 342 */ 343 u16 dda2_size, dda3_size; 344 u8 dda1_inc; 345 u16 dda2_inc, dda3_inc; 346 u32 sc_reset; 347 bool pal_burst : 1; 348 /* 349 * blank/black levels 350 */ 351 const struct video_levels *composite_levels, *svideo_levels; 352 const struct color_conversion *composite_color, *svideo_color; 353 const u32 *filter_table; 354 }; 355 356 357 /* 358 * Sub carrier DDA 359 * 360 * I think this works as follows: 361 * 362 * subcarrier freq = pixel_clock * (dda1_inc + dda2_inc / dda2_size) / 4096 363 * 364 * Presumably, when dda3 is added in, it gets to adjust the dda2_inc value 365 * 366 * So, 367 * dda1_ideal = subcarrier/pixel * 4096 368 * dda1_inc = floor (dda1_ideal) 369 * dda2 = dda1_ideal - dda1_inc 370 * 371 * then pick a ratio for dda2 that gives the closest approximation. If 372 * you can't get close enough, you can play with dda3 as well. This 373 * seems likely to happen when dda2 is small as the jumps would be larger 374 * 375 * To invert this, 376 * 377 * pixel_clock = subcarrier * 4096 / (dda1_inc + dda2_inc / dda2_size) 378 * 379 * The constants below were all computed using a 107.520MHz clock 380 */ 381 382 /* 383 * Register programming values for TV modes. 384 * 385 * These values account for -1s required. 386 */ 387 static const struct tv_mode tv_modes[] = { 388 { 389 .name = "NTSC-M", 390 .clock = 108000, 391 .refresh = 59940, 392 .oversample = 8, 393 .component_only = false, 394 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 395 396 .hsync_end = 64, .hblank_end = 124, 397 .hblank_start = 836, .htotal = 857, 398 399 .progressive = false, .trilevel_sync = false, 400 401 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 402 .vsync_len = 6, 403 404 .veq_ena = true, .veq_start_f1 = 0, 405 .veq_start_f2 = 1, .veq_len = 18, 406 407 .vi_end_f1 = 20, .vi_end_f2 = 21, 408 .nbr_end = 240, 409 410 .burst_ena = true, 411 .hburst_start = 72, .hburst_len = 34, 412 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 413 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 414 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 415 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 416 417 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 418 .dda1_inc = 135, 419 .dda2_inc = 20800, .dda2_size = 27456, 420 .dda3_inc = 0, .dda3_size = 0, 421 .sc_reset = TV_SC_RESET_EVERY_4, 422 .pal_burst = false, 423 424 .composite_levels = &ntsc_m_levels_composite, 425 .composite_color = &ntsc_m_csc_composite, 426 .svideo_levels = &ntsc_m_levels_svideo, 427 .svideo_color = &ntsc_m_csc_svideo, 428 429 .filter_table = filter_table, 430 }, 431 { 432 .name = "NTSC-443", 433 .clock = 108000, 434 .refresh = 59940, 435 .oversample = 8, 436 .component_only = false, 437 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 4.43MHz */ 438 .hsync_end = 64, .hblank_end = 124, 439 .hblank_start = 836, .htotal = 857, 440 441 .progressive = false, .trilevel_sync = false, 442 443 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 444 .vsync_len = 6, 445 446 .veq_ena = true, .veq_start_f1 = 0, 447 .veq_start_f2 = 1, .veq_len = 18, 448 449 .vi_end_f1 = 20, .vi_end_f2 = 21, 450 .nbr_end = 240, 451 452 .burst_ena = true, 453 .hburst_start = 72, .hburst_len = 34, 454 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 455 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 456 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 457 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 458 459 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 460 .dda1_inc = 168, 461 .dda2_inc = 4093, .dda2_size = 27456, 462 .dda3_inc = 310, .dda3_size = 525, 463 .sc_reset = TV_SC_RESET_NEVER, 464 .pal_burst = false, 465 466 .composite_levels = &ntsc_m_levels_composite, 467 .composite_color = &ntsc_m_csc_composite, 468 .svideo_levels = &ntsc_m_levels_svideo, 469 .svideo_color = &ntsc_m_csc_svideo, 470 471 .filter_table = filter_table, 472 }, 473 { 474 .name = "NTSC-J", 475 .clock = 108000, 476 .refresh = 59940, 477 .oversample = 8, 478 .component_only = false, 479 480 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 481 .hsync_end = 64, .hblank_end = 124, 482 .hblank_start = 836, .htotal = 857, 483 484 .progressive = false, .trilevel_sync = false, 485 486 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 487 .vsync_len = 6, 488 489 .veq_ena = true, .veq_start_f1 = 0, 490 .veq_start_f2 = 1, .veq_len = 18, 491 492 .vi_end_f1 = 20, .vi_end_f2 = 21, 493 .nbr_end = 240, 494 495 .burst_ena = true, 496 .hburst_start = 72, .hburst_len = 34, 497 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 498 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 499 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 500 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 501 502 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 503 .dda1_inc = 135, 504 .dda2_inc = 20800, .dda2_size = 27456, 505 .dda3_inc = 0, .dda3_size = 0, 506 .sc_reset = TV_SC_RESET_EVERY_4, 507 .pal_burst = false, 508 509 .composite_levels = &ntsc_j_levels_composite, 510 .composite_color = &ntsc_j_csc_composite, 511 .svideo_levels = &ntsc_j_levels_svideo, 512 .svideo_color = &ntsc_j_csc_svideo, 513 514 .filter_table = filter_table, 515 }, 516 { 517 .name = "PAL-M", 518 .clock = 108000, 519 .refresh = 59940, 520 .oversample = 8, 521 .component_only = false, 522 523 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 524 .hsync_end = 64, .hblank_end = 124, 525 .hblank_start = 836, .htotal = 857, 526 527 .progressive = false, .trilevel_sync = false, 528 529 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 530 .vsync_len = 6, 531 532 .veq_ena = true, .veq_start_f1 = 0, 533 .veq_start_f2 = 1, .veq_len = 18, 534 535 .vi_end_f1 = 20, .vi_end_f2 = 21, 536 .nbr_end = 240, 537 538 .burst_ena = true, 539 .hburst_start = 72, .hburst_len = 34, 540 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 541 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 542 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 543 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 544 545 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 546 .dda1_inc = 135, 547 .dda2_inc = 16704, .dda2_size = 27456, 548 .dda3_inc = 0, .dda3_size = 0, 549 .sc_reset = TV_SC_RESET_EVERY_8, 550 .pal_burst = true, 551 552 .composite_levels = &pal_m_levels_composite, 553 .composite_color = &pal_m_csc_composite, 554 .svideo_levels = &pal_m_levels_svideo, 555 .svideo_color = &pal_m_csc_svideo, 556 557 .filter_table = filter_table, 558 }, 559 { 560 /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */ 561 .name = "PAL-N", 562 .clock = 108000, 563 .refresh = 50000, 564 .oversample = 8, 565 .component_only = false, 566 567 .hsync_end = 64, .hblank_end = 128, 568 .hblank_start = 844, .htotal = 863, 569 570 .progressive = false, .trilevel_sync = false, 571 572 573 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 574 .vsync_len = 6, 575 576 .veq_ena = true, .veq_start_f1 = 0, 577 .veq_start_f2 = 1, .veq_len = 18, 578 579 .vi_end_f1 = 24, .vi_end_f2 = 25, 580 .nbr_end = 286, 581 582 .burst_ena = true, 583 .hburst_start = 73, .hburst_len = 34, 584 .vburst_start_f1 = 8, .vburst_end_f1 = 285, 585 .vburst_start_f2 = 8, .vburst_end_f2 = 286, 586 .vburst_start_f3 = 9, .vburst_end_f3 = 286, 587 .vburst_start_f4 = 9, .vburst_end_f4 = 285, 588 589 590 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 591 .dda1_inc = 135, 592 .dda2_inc = 23578, .dda2_size = 27648, 593 .dda3_inc = 134, .dda3_size = 625, 594 .sc_reset = TV_SC_RESET_EVERY_8, 595 .pal_burst = true, 596 597 .composite_levels = &pal_n_levels_composite, 598 .composite_color = &pal_n_csc_composite, 599 .svideo_levels = &pal_n_levels_svideo, 600 .svideo_color = &pal_n_csc_svideo, 601 602 .filter_table = filter_table, 603 }, 604 { 605 /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */ 606 .name = "PAL", 607 .clock = 108000, 608 .refresh = 50000, 609 .oversample = 8, 610 .component_only = false, 611 612 .hsync_end = 64, .hblank_end = 142, 613 .hblank_start = 844, .htotal = 863, 614 615 .progressive = false, .trilevel_sync = false, 616 617 .vsync_start_f1 = 5, .vsync_start_f2 = 6, 618 .vsync_len = 5, 619 620 .veq_ena = true, .veq_start_f1 = 0, 621 .veq_start_f2 = 1, .veq_len = 15, 622 623 .vi_end_f1 = 24, .vi_end_f2 = 25, 624 .nbr_end = 286, 625 626 .burst_ena = true, 627 .hburst_start = 73, .hburst_len = 32, 628 .vburst_start_f1 = 8, .vburst_end_f1 = 285, 629 .vburst_start_f2 = 8, .vburst_end_f2 = 286, 630 .vburst_start_f3 = 9, .vburst_end_f3 = 286, 631 .vburst_start_f4 = 9, .vburst_end_f4 = 285, 632 633 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 634 .dda1_inc = 168, 635 .dda2_inc = 4122, .dda2_size = 27648, 636 .dda3_inc = 67, .dda3_size = 625, 637 .sc_reset = TV_SC_RESET_EVERY_8, 638 .pal_burst = true, 639 640 .composite_levels = &pal_levels_composite, 641 .composite_color = &pal_csc_composite, 642 .svideo_levels = &pal_levels_svideo, 643 .svideo_color = &pal_csc_svideo, 644 645 .filter_table = filter_table, 646 }, 647 { 648 .name = "480p", 649 .clock = 108000, 650 .refresh = 59940, 651 .oversample = 4, 652 .component_only = true, 653 654 .hsync_end = 64, .hblank_end = 122, 655 .hblank_start = 842, .htotal = 857, 656 657 .progressive = true, .trilevel_sync = false, 658 659 .vsync_start_f1 = 12, .vsync_start_f2 = 12, 660 .vsync_len = 12, 661 662 .veq_ena = false, 663 664 .vi_end_f1 = 44, .vi_end_f2 = 44, 665 .nbr_end = 479, 666 667 .burst_ena = false, 668 669 .filter_table = filter_table, 670 }, 671 { 672 .name = "576p", 673 .clock = 108000, 674 .refresh = 50000, 675 .oversample = 4, 676 .component_only = true, 677 678 .hsync_end = 64, .hblank_end = 139, 679 .hblank_start = 859, .htotal = 863, 680 681 .progressive = true, .trilevel_sync = false, 682 683 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 684 .vsync_len = 10, 685 686 .veq_ena = false, 687 688 .vi_end_f1 = 48, .vi_end_f2 = 48, 689 .nbr_end = 575, 690 691 .burst_ena = false, 692 693 .filter_table = filter_table, 694 }, 695 { 696 .name = "720p@60Hz", 697 .clock = 148500, 698 .refresh = 60000, 699 .oversample = 2, 700 .component_only = true, 701 702 .hsync_end = 80, .hblank_end = 300, 703 .hblank_start = 1580, .htotal = 1649, 704 705 .progressive = true, .trilevel_sync = true, 706 707 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 708 .vsync_len = 10, 709 710 .veq_ena = false, 711 712 .vi_end_f1 = 29, .vi_end_f2 = 29, 713 .nbr_end = 719, 714 715 .burst_ena = false, 716 717 .filter_table = filter_table, 718 }, 719 { 720 .name = "720p@50Hz", 721 .clock = 148500, 722 .refresh = 50000, 723 .oversample = 2, 724 .component_only = true, 725 726 .hsync_end = 80, .hblank_end = 300, 727 .hblank_start = 1580, .htotal = 1979, 728 729 .progressive = true, .trilevel_sync = true, 730 731 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 732 .vsync_len = 10, 733 734 .veq_ena = false, 735 736 .vi_end_f1 = 29, .vi_end_f2 = 29, 737 .nbr_end = 719, 738 739 .burst_ena = false, 740 741 .filter_table = filter_table, 742 }, 743 { 744 .name = "1080i@50Hz", 745 .clock = 148500, 746 .refresh = 50000, 747 .oversample = 2, 748 .component_only = true, 749 750 .hsync_end = 88, .hblank_end = 235, 751 .hblank_start = 2155, .htotal = 2639, 752 753 .progressive = false, .trilevel_sync = true, 754 755 .vsync_start_f1 = 4, .vsync_start_f2 = 5, 756 .vsync_len = 10, 757 758 .veq_ena = true, .veq_start_f1 = 4, 759 .veq_start_f2 = 4, .veq_len = 10, 760 761 762 .vi_end_f1 = 21, .vi_end_f2 = 22, 763 .nbr_end = 539, 764 765 .burst_ena = false, 766 767 .filter_table = filter_table, 768 }, 769 { 770 .name = "1080i@60Hz", 771 .clock = 148500, 772 .refresh = 60000, 773 .oversample = 2, 774 .component_only = true, 775 776 .hsync_end = 88, .hblank_end = 235, 777 .hblank_start = 2155, .htotal = 2199, 778 779 .progressive = false, .trilevel_sync = true, 780 781 .vsync_start_f1 = 4, .vsync_start_f2 = 5, 782 .vsync_len = 10, 783 784 .veq_ena = true, .veq_start_f1 = 4, 785 .veq_start_f2 = 4, .veq_len = 10, 786 787 788 .vi_end_f1 = 21, .vi_end_f2 = 22, 789 .nbr_end = 539, 790 791 .burst_ena = false, 792 793 .filter_table = filter_table, 794 }, 795 796 { 797 .name = "1080p@30Hz", 798 .clock = 148500, 799 .refresh = 30000, 800 .oversample = 2, 801 .component_only = true, 802 803 .hsync_end = 88, .hblank_end = 235, 804 .hblank_start = 2155, .htotal = 2199, 805 806 .progressive = true, .trilevel_sync = true, 807 808 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 809 .vsync_len = 10, 810 811 .veq_ena = false, .veq_start_f1 = 0, 812 .veq_start_f2 = 0, .veq_len = 0, 813 814 .vi_end_f1 = 44, .vi_end_f2 = 44, 815 .nbr_end = 1079, 816 817 .burst_ena = false, 818 819 .filter_table = filter_table, 820 }, 821 822 { 823 .name = "1080p@50Hz", 824 .clock = 148500, 825 .refresh = 50000, 826 .oversample = 1, 827 .component_only = true, 828 829 .hsync_end = 88, .hblank_end = 235, 830 .hblank_start = 2155, .htotal = 2639, 831 832 .progressive = true, .trilevel_sync = true, 833 834 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 835 .vsync_len = 10, 836 837 .veq_ena = false, .veq_start_f1 = 0, 838 .veq_start_f2 = 0, .veq_len = 0, 839 840 .vi_end_f1 = 44, .vi_end_f2 = 44, 841 .nbr_end = 1079, 842 843 .burst_ena = false, 844 845 .filter_table = filter_table, 846 }, 847 848 { 849 .name = "1080p@60Hz", 850 .clock = 148500, 851 .refresh = 60000, 852 .oversample = 1, 853 .component_only = true, 854 855 .hsync_end = 88, .hblank_end = 235, 856 .hblank_start = 2155, .htotal = 2199, 857 858 .progressive = true, .trilevel_sync = true, 859 860 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 861 .vsync_len = 10, 862 863 .veq_ena = false, .veq_start_f1 = 0, 864 .veq_start_f2 = 0, .veq_len = 0, 865 866 .vi_end_f1 = 44, .vi_end_f2 = 44, 867 .nbr_end = 1079, 868 869 .burst_ena = false, 870 871 .filter_table = filter_table, 872 }, 873 }; 874 875 struct intel_tv_connector_state { 876 struct drm_connector_state base; 877 878 /* 879 * May need to override the user margins for 880 * gen3 >1024 wide source vertical centering. 881 */ 882 struct { 883 u16 top, bottom; 884 } margins; 885 886 bool bypass_vfilter; 887 }; 888 889 #define to_intel_tv_connector_state(conn_state) \ 890 container_of_const((conn_state), struct intel_tv_connector_state, base) 891 892 static struct drm_connector_state * 893 intel_tv_connector_duplicate_state(struct drm_connector *connector) 894 { 895 struct intel_tv_connector_state *state; 896 897 state = kmemdup(connector->state, sizeof(*state), GFP_KERNEL); 898 if (!state) 899 return NULL; 900 901 __drm_atomic_helper_connector_duplicate_state(connector, &state->base); 902 return &state->base; 903 } 904 905 static struct intel_tv *enc_to_tv(struct intel_encoder *encoder) 906 { 907 return container_of(encoder, struct intel_tv, base); 908 } 909 910 static struct intel_tv *intel_attached_tv(struct intel_connector *connector) 911 { 912 return enc_to_tv(intel_attached_encoder(connector)); 913 } 914 915 static bool 916 intel_tv_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) 917 { 918 struct intel_display *display = to_intel_display(encoder); 919 u32 tmp = intel_de_read(display, TV_CTL); 920 921 *pipe = (tmp & TV_ENC_PIPE_SEL_MASK) >> TV_ENC_PIPE_SEL_SHIFT; 922 923 return tmp & TV_ENC_ENABLE; 924 } 925 926 static void 927 intel_enable_tv(struct intel_atomic_state *state, 928 struct intel_encoder *encoder, 929 const struct intel_crtc_state *pipe_config, 930 const struct drm_connector_state *conn_state) 931 { 932 struct intel_display *display = to_intel_display(encoder); 933 934 /* Prevents vblank waits from timing out in intel_tv_detect_type() */ 935 intel_crtc_wait_for_next_vblank(to_intel_crtc(pipe_config->uapi.crtc)); 936 937 intel_de_rmw(display, TV_CTL, 0, TV_ENC_ENABLE); 938 } 939 940 static void 941 intel_disable_tv(struct intel_atomic_state *state, 942 struct intel_encoder *encoder, 943 const struct intel_crtc_state *old_crtc_state, 944 const struct drm_connector_state *old_conn_state) 945 { 946 struct intel_display *display = to_intel_display(encoder); 947 948 intel_de_rmw(display, TV_CTL, TV_ENC_ENABLE, 0); 949 } 950 951 static const struct tv_mode *intel_tv_mode_find(const struct drm_connector_state *conn_state) 952 { 953 int format = conn_state->tv.legacy_mode; 954 955 return &tv_modes[format]; 956 } 957 958 static enum drm_mode_status 959 intel_tv_mode_valid(struct drm_connector *connector, 960 struct drm_display_mode *mode) 961 { 962 struct intel_display *display = to_intel_display(connector->dev); 963 struct drm_i915_private *i915 = to_i915(connector->dev); 964 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 965 int max_dotclk = display->cdclk.max_dotclk_freq; 966 enum drm_mode_status status; 967 968 status = intel_cpu_transcoder_mode_valid(i915, mode); 969 if (status != MODE_OK) 970 return status; 971 972 if (mode->clock > max_dotclk) 973 return MODE_CLOCK_HIGH; 974 975 /* Ensure TV refresh is close to desired refresh */ 976 if (abs(tv_mode->refresh - drm_mode_vrefresh(mode) * 1000) >= 1000) 977 return MODE_CLOCK_RANGE; 978 979 return MODE_OK; 980 } 981 982 static int 983 intel_tv_mode_vdisplay(const struct tv_mode *tv_mode) 984 { 985 if (tv_mode->progressive) 986 return tv_mode->nbr_end + 1; 987 else 988 return 2 * (tv_mode->nbr_end + 1); 989 } 990 991 static void 992 intel_tv_mode_to_mode(struct drm_display_mode *mode, 993 const struct tv_mode *tv_mode, 994 int clock) 995 { 996 mode->clock = clock / (tv_mode->oversample >> !tv_mode->progressive); 997 998 /* 999 * tv_mode horizontal timings: 1000 * 1001 * hsync_end 1002 * | hblank_end 1003 * | | hblank_start 1004 * | | | htotal 1005 * | _______ | 1006 * ____/ \___ 1007 * \__/ \ 1008 */ 1009 mode->hdisplay = 1010 tv_mode->hblank_start - tv_mode->hblank_end; 1011 mode->hsync_start = mode->hdisplay + 1012 tv_mode->htotal - tv_mode->hblank_start; 1013 mode->hsync_end = mode->hsync_start + 1014 tv_mode->hsync_end; 1015 mode->htotal = tv_mode->htotal + 1; 1016 1017 /* 1018 * tv_mode vertical timings: 1019 * 1020 * vsync_start 1021 * | vsync_end 1022 * | | vi_end nbr_end 1023 * | | | | 1024 * | | _______ 1025 * \__ ____/ \ 1026 * \__/ 1027 */ 1028 mode->vdisplay = intel_tv_mode_vdisplay(tv_mode); 1029 if (tv_mode->progressive) { 1030 mode->vsync_start = mode->vdisplay + 1031 tv_mode->vsync_start_f1 + 1; 1032 mode->vsync_end = mode->vsync_start + 1033 tv_mode->vsync_len; 1034 mode->vtotal = mode->vdisplay + 1035 tv_mode->vi_end_f1 + 1; 1036 } else { 1037 mode->vsync_start = mode->vdisplay + 1038 tv_mode->vsync_start_f1 + 1 + 1039 tv_mode->vsync_start_f2 + 1; 1040 mode->vsync_end = mode->vsync_start + 1041 2 * tv_mode->vsync_len; 1042 mode->vtotal = mode->vdisplay + 1043 tv_mode->vi_end_f1 + 1 + 1044 tv_mode->vi_end_f2 + 1; 1045 } 1046 1047 /* TV has it's own notion of sync and other mode flags, so clear them. */ 1048 mode->flags = 0; 1049 1050 snprintf(mode->name, sizeof(mode->name), 1051 "%dx%d%c (%s)", 1052 mode->hdisplay, mode->vdisplay, 1053 tv_mode->progressive ? 'p' : 'i', 1054 tv_mode->name); 1055 } 1056 1057 static void intel_tv_scale_mode_horiz(struct drm_display_mode *mode, 1058 int hdisplay, int left_margin, 1059 int right_margin) 1060 { 1061 int hsync_start = mode->hsync_start - mode->hdisplay + right_margin; 1062 int hsync_end = mode->hsync_end - mode->hdisplay + right_margin; 1063 int new_htotal = mode->htotal * hdisplay / 1064 (mode->hdisplay - left_margin - right_margin); 1065 1066 mode->clock = mode->clock * new_htotal / mode->htotal; 1067 1068 mode->hdisplay = hdisplay; 1069 mode->hsync_start = hdisplay + hsync_start * new_htotal / mode->htotal; 1070 mode->hsync_end = hdisplay + hsync_end * new_htotal / mode->htotal; 1071 mode->htotal = new_htotal; 1072 } 1073 1074 static void intel_tv_scale_mode_vert(struct drm_display_mode *mode, 1075 int vdisplay, int top_margin, 1076 int bottom_margin) 1077 { 1078 int vsync_start = mode->vsync_start - mode->vdisplay + bottom_margin; 1079 int vsync_end = mode->vsync_end - mode->vdisplay + bottom_margin; 1080 int new_vtotal = mode->vtotal * vdisplay / 1081 (mode->vdisplay - top_margin - bottom_margin); 1082 1083 mode->clock = mode->clock * new_vtotal / mode->vtotal; 1084 1085 mode->vdisplay = vdisplay; 1086 mode->vsync_start = vdisplay + vsync_start * new_vtotal / mode->vtotal; 1087 mode->vsync_end = vdisplay + vsync_end * new_vtotal / mode->vtotal; 1088 mode->vtotal = new_vtotal; 1089 } 1090 1091 static void 1092 intel_tv_get_config(struct intel_encoder *encoder, 1093 struct intel_crtc_state *pipe_config) 1094 { 1095 struct intel_display *display = to_intel_display(encoder); 1096 struct drm_display_mode *adjusted_mode = 1097 &pipe_config->hw.adjusted_mode; 1098 struct drm_display_mode mode = {}; 1099 u32 tv_ctl, hctl1, hctl3, vctl1, vctl2, tmp; 1100 struct tv_mode tv_mode = {}; 1101 int hdisplay = adjusted_mode->crtc_hdisplay; 1102 int vdisplay = adjusted_mode->crtc_vdisplay; 1103 int xsize, ysize, xpos, ypos; 1104 1105 pipe_config->output_types |= BIT(INTEL_OUTPUT_TVOUT); 1106 1107 tv_ctl = intel_de_read(display, TV_CTL); 1108 hctl1 = intel_de_read(display, TV_H_CTL_1); 1109 hctl3 = intel_de_read(display, TV_H_CTL_3); 1110 vctl1 = intel_de_read(display, TV_V_CTL_1); 1111 vctl2 = intel_de_read(display, TV_V_CTL_2); 1112 1113 tv_mode.htotal = (hctl1 & TV_HTOTAL_MASK) >> TV_HTOTAL_SHIFT; 1114 tv_mode.hsync_end = (hctl1 & TV_HSYNC_END_MASK) >> TV_HSYNC_END_SHIFT; 1115 1116 tv_mode.hblank_start = (hctl3 & TV_HBLANK_START_MASK) >> TV_HBLANK_START_SHIFT; 1117 tv_mode.hblank_end = (hctl3 & TV_HSYNC_END_MASK) >> TV_HBLANK_END_SHIFT; 1118 1119 tv_mode.nbr_end = (vctl1 & TV_NBR_END_MASK) >> TV_NBR_END_SHIFT; 1120 tv_mode.vi_end_f1 = (vctl1 & TV_VI_END_F1_MASK) >> TV_VI_END_F1_SHIFT; 1121 tv_mode.vi_end_f2 = (vctl1 & TV_VI_END_F2_MASK) >> TV_VI_END_F2_SHIFT; 1122 1123 tv_mode.vsync_len = (vctl2 & TV_VSYNC_LEN_MASK) >> TV_VSYNC_LEN_SHIFT; 1124 tv_mode.vsync_start_f1 = (vctl2 & TV_VSYNC_START_F1_MASK) >> TV_VSYNC_START_F1_SHIFT; 1125 tv_mode.vsync_start_f2 = (vctl2 & TV_VSYNC_START_F2_MASK) >> TV_VSYNC_START_F2_SHIFT; 1126 1127 tv_mode.clock = pipe_config->port_clock; 1128 1129 tv_mode.progressive = tv_ctl & TV_PROGRESSIVE; 1130 1131 switch (tv_ctl & TV_OVERSAMPLE_MASK) { 1132 case TV_OVERSAMPLE_8X: 1133 tv_mode.oversample = 8; 1134 break; 1135 case TV_OVERSAMPLE_4X: 1136 tv_mode.oversample = 4; 1137 break; 1138 case TV_OVERSAMPLE_2X: 1139 tv_mode.oversample = 2; 1140 break; 1141 default: 1142 tv_mode.oversample = 1; 1143 break; 1144 } 1145 1146 tmp = intel_de_read(display, TV_WIN_POS); 1147 xpos = tmp >> 16; 1148 ypos = tmp & 0xffff; 1149 1150 tmp = intel_de_read(display, TV_WIN_SIZE); 1151 xsize = tmp >> 16; 1152 ysize = tmp & 0xffff; 1153 1154 intel_tv_mode_to_mode(&mode, &tv_mode, pipe_config->port_clock); 1155 1156 drm_dbg_kms(display->drm, "TV mode: " DRM_MODE_FMT "\n", 1157 DRM_MODE_ARG(&mode)); 1158 1159 intel_tv_scale_mode_horiz(&mode, hdisplay, 1160 xpos, mode.hdisplay - xsize - xpos); 1161 intel_tv_scale_mode_vert(&mode, vdisplay, 1162 ypos, mode.vdisplay - ysize - ypos); 1163 1164 adjusted_mode->crtc_clock = mode.clock; 1165 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 1166 adjusted_mode->crtc_clock /= 2; 1167 1168 /* pixel counter doesn't work on i965gm TV output */ 1169 if (display->platform.i965gm) 1170 pipe_config->mode_flags |= 1171 I915_MODE_FLAG_USE_SCANLINE_COUNTER; 1172 } 1173 1174 static bool intel_tv_source_too_wide(struct intel_display *display, 1175 int hdisplay) 1176 { 1177 return DISPLAY_VER(display) == 3 && hdisplay > 1024; 1178 } 1179 1180 static bool intel_tv_vert_scaling(const struct drm_display_mode *tv_mode, 1181 const struct drm_connector_state *conn_state, 1182 int vdisplay) 1183 { 1184 return tv_mode->crtc_vdisplay - 1185 conn_state->tv.margins.top - 1186 conn_state->tv.margins.bottom != 1187 vdisplay; 1188 } 1189 1190 static int 1191 intel_tv_compute_config(struct intel_encoder *encoder, 1192 struct intel_crtc_state *pipe_config, 1193 struct drm_connector_state *conn_state) 1194 { 1195 struct intel_display *display = to_intel_display(encoder); 1196 struct intel_atomic_state *state = 1197 to_intel_atomic_state(pipe_config->uapi.state); 1198 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 1199 struct intel_tv_connector_state *tv_conn_state = 1200 to_intel_tv_connector_state(conn_state); 1201 const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state); 1202 struct drm_display_mode *adjusted_mode = 1203 &pipe_config->hw.adjusted_mode; 1204 int hdisplay = adjusted_mode->crtc_hdisplay; 1205 int vdisplay = adjusted_mode->crtc_vdisplay; 1206 int ret; 1207 1208 if (!tv_mode) 1209 return -EINVAL; 1210 1211 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 1212 return -EINVAL; 1213 1214 pipe_config->sink_format = INTEL_OUTPUT_FORMAT_RGB; 1215 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 1216 1217 drm_dbg_kms(display->drm, "forcing bpc to 8 for TV\n"); 1218 pipe_config->pipe_bpp = 8*3; 1219 1220 pipe_config->port_clock = tv_mode->clock; 1221 1222 ret = intel_dpll_crtc_compute_clock(state, crtc); 1223 if (ret) 1224 return ret; 1225 1226 pipe_config->clock_set = true; 1227 1228 intel_tv_mode_to_mode(adjusted_mode, tv_mode, pipe_config->port_clock); 1229 drm_mode_set_crtcinfo(adjusted_mode, 0); 1230 1231 if (intel_tv_source_too_wide(display, hdisplay) || 1232 !intel_tv_vert_scaling(adjusted_mode, conn_state, vdisplay)) { 1233 int extra, top, bottom; 1234 1235 extra = adjusted_mode->crtc_vdisplay - vdisplay; 1236 1237 if (extra < 0) { 1238 drm_dbg_kms(display->drm, 1239 "No vertical scaling for >1024 pixel wide modes\n"); 1240 return -EINVAL; 1241 } 1242 1243 /* Need to turn off the vertical filter and center the image */ 1244 1245 /* Attempt to maintain the relative sizes of the margins */ 1246 top = conn_state->tv.margins.top; 1247 bottom = conn_state->tv.margins.bottom; 1248 1249 if (top + bottom) 1250 top = extra * top / (top + bottom); 1251 else 1252 top = extra / 2; 1253 bottom = extra - top; 1254 1255 tv_conn_state->margins.top = top; 1256 tv_conn_state->margins.bottom = bottom; 1257 1258 tv_conn_state->bypass_vfilter = true; 1259 1260 if (!tv_mode->progressive) { 1261 adjusted_mode->clock /= 2; 1262 adjusted_mode->crtc_clock /= 2; 1263 adjusted_mode->flags |= DRM_MODE_FLAG_INTERLACE; 1264 } 1265 } else { 1266 tv_conn_state->margins.top = conn_state->tv.margins.top; 1267 tv_conn_state->margins.bottom = conn_state->tv.margins.bottom; 1268 1269 tv_conn_state->bypass_vfilter = false; 1270 } 1271 1272 drm_dbg_kms(display->drm, "TV mode: " DRM_MODE_FMT "\n", 1273 DRM_MODE_ARG(adjusted_mode)); 1274 1275 /* 1276 * The pipe scanline counter behaviour looks as follows when 1277 * using the TV encoder: 1278 * 1279 * time -> 1280 * 1281 * dsl=vtotal-1 | | 1282 * || || 1283 * ___| | ___| | 1284 * / | / | 1285 * / | / | 1286 * dsl=0 ___/ |_____/ | 1287 * | | | | | | 1288 * ^ ^ ^ ^ ^ 1289 * | | | | pipe vblank/first part of tv vblank 1290 * | | | bottom margin 1291 * | | active 1292 * | top margin 1293 * remainder of tv vblank 1294 * 1295 * When the TV encoder is used the pipe wants to run faster 1296 * than expected rate. During the active portion the TV 1297 * encoder stalls the pipe every few lines to keep it in 1298 * check. When the TV encoder reaches the bottom margin the 1299 * pipe simply stops. Once we reach the TV vblank the pipe is 1300 * no longer stalled and it runs at the max rate (apparently 1301 * oversample clock on gen3, cdclk on gen4). Once the pipe 1302 * reaches the pipe vtotal the pipe stops for the remainder 1303 * of the TV vblank/top margin. The pipe starts up again when 1304 * the TV encoder exits the top margin. 1305 * 1306 * To avoid huge hassles for vblank timestamping we scale 1307 * the pipe timings as if the pipe always runs at the average 1308 * rate it maintains during the active period. This also 1309 * gives us a reasonable guesstimate as to the pixel rate. 1310 * Due to the variation in the actual pipe speed the scanline 1311 * counter will give us slightly erroneous results during the 1312 * TV vblank/margins. But since vtotal was selected such that 1313 * it matches the average rate of the pipe during the active 1314 * portion the error shouldn't cause any serious grief to 1315 * vblank timestamps. 1316 * 1317 * For posterity here is the empirically derived formula 1318 * that gives us the maximum length of the pipe vblank 1319 * we can use without causing display corruption. Following 1320 * this would allow us to have a ticking scanline counter 1321 * everywhere except during the bottom margin (there the 1322 * pipe always stops). Ie. this would eliminate the second 1323 * flat portion of the above graph. However this would also 1324 * complicate vblank timestamping as the pipe vtotal would 1325 * no longer match the average rate the pipe runs at during 1326 * the active portion. Hence following this formula seems 1327 * more trouble that it's worth. 1328 * 1329 * if (DISPLAY_VER(dev_priv) == 4) { 1330 * num = cdclk * (tv_mode->oversample >> !tv_mode->progressive); 1331 * den = tv_mode->clock; 1332 * } else { 1333 * num = tv_mode->oversample >> !tv_mode->progressive; 1334 * den = 1; 1335 * } 1336 * max_pipe_vblank_len ~= 1337 * (num * tv_htotal * (tv_vblank_len + top_margin)) / 1338 * (den * pipe_htotal); 1339 */ 1340 intel_tv_scale_mode_horiz(adjusted_mode, hdisplay, 1341 conn_state->tv.margins.left, 1342 conn_state->tv.margins.right); 1343 intel_tv_scale_mode_vert(adjusted_mode, vdisplay, 1344 tv_conn_state->margins.top, 1345 tv_conn_state->margins.bottom); 1346 drm_mode_set_crtcinfo(adjusted_mode, 0); 1347 adjusted_mode->name[0] = '\0'; 1348 1349 /* pixel counter doesn't work on i965gm TV output */ 1350 if (display->platform.i965gm) 1351 pipe_config->mode_flags |= 1352 I915_MODE_FLAG_USE_SCANLINE_COUNTER; 1353 1354 return 0; 1355 } 1356 1357 static void 1358 set_tv_mode_timings(struct intel_display *display, 1359 const struct tv_mode *tv_mode, 1360 bool burst_ena) 1361 { 1362 u32 hctl1, hctl2, hctl3; 1363 u32 vctl1, vctl2, vctl3, vctl4, vctl5, vctl6, vctl7; 1364 1365 hctl1 = (tv_mode->hsync_end << TV_HSYNC_END_SHIFT) | 1366 (tv_mode->htotal << TV_HTOTAL_SHIFT); 1367 1368 hctl2 = (tv_mode->hburst_start << 16) | 1369 (tv_mode->hburst_len << TV_HBURST_LEN_SHIFT); 1370 1371 if (burst_ena) 1372 hctl2 |= TV_BURST_ENA; 1373 1374 hctl3 = (tv_mode->hblank_start << TV_HBLANK_START_SHIFT) | 1375 (tv_mode->hblank_end << TV_HBLANK_END_SHIFT); 1376 1377 vctl1 = (tv_mode->nbr_end << TV_NBR_END_SHIFT) | 1378 (tv_mode->vi_end_f1 << TV_VI_END_F1_SHIFT) | 1379 (tv_mode->vi_end_f2 << TV_VI_END_F2_SHIFT); 1380 1381 vctl2 = (tv_mode->vsync_len << TV_VSYNC_LEN_SHIFT) | 1382 (tv_mode->vsync_start_f1 << TV_VSYNC_START_F1_SHIFT) | 1383 (tv_mode->vsync_start_f2 << TV_VSYNC_START_F2_SHIFT); 1384 1385 vctl3 = (tv_mode->veq_len << TV_VEQ_LEN_SHIFT) | 1386 (tv_mode->veq_start_f1 << TV_VEQ_START_F1_SHIFT) | 1387 (tv_mode->veq_start_f2 << TV_VEQ_START_F2_SHIFT); 1388 1389 if (tv_mode->veq_ena) 1390 vctl3 |= TV_EQUAL_ENA; 1391 1392 vctl4 = (tv_mode->vburst_start_f1 << TV_VBURST_START_F1_SHIFT) | 1393 (tv_mode->vburst_end_f1 << TV_VBURST_END_F1_SHIFT); 1394 1395 vctl5 = (tv_mode->vburst_start_f2 << TV_VBURST_START_F2_SHIFT) | 1396 (tv_mode->vburst_end_f2 << TV_VBURST_END_F2_SHIFT); 1397 1398 vctl6 = (tv_mode->vburst_start_f3 << TV_VBURST_START_F3_SHIFT) | 1399 (tv_mode->vburst_end_f3 << TV_VBURST_END_F3_SHIFT); 1400 1401 vctl7 = (tv_mode->vburst_start_f4 << TV_VBURST_START_F4_SHIFT) | 1402 (tv_mode->vburst_end_f4 << TV_VBURST_END_F4_SHIFT); 1403 1404 intel_de_write(display, TV_H_CTL_1, hctl1); 1405 intel_de_write(display, TV_H_CTL_2, hctl2); 1406 intel_de_write(display, TV_H_CTL_3, hctl3); 1407 intel_de_write(display, TV_V_CTL_1, vctl1); 1408 intel_de_write(display, TV_V_CTL_2, vctl2); 1409 intel_de_write(display, TV_V_CTL_3, vctl3); 1410 intel_de_write(display, TV_V_CTL_4, vctl4); 1411 intel_de_write(display, TV_V_CTL_5, vctl5); 1412 intel_de_write(display, TV_V_CTL_6, vctl6); 1413 intel_de_write(display, TV_V_CTL_7, vctl7); 1414 } 1415 1416 static void set_color_conversion(struct intel_display *display, 1417 const struct color_conversion *color_conversion) 1418 { 1419 intel_de_write(display, TV_CSC_Y, 1420 (color_conversion->ry << 16) | color_conversion->gy); 1421 intel_de_write(display, TV_CSC_Y2, 1422 (color_conversion->by << 16) | color_conversion->ay); 1423 intel_de_write(display, TV_CSC_U, 1424 (color_conversion->ru << 16) | color_conversion->gu); 1425 intel_de_write(display, TV_CSC_U2, 1426 (color_conversion->bu << 16) | color_conversion->au); 1427 intel_de_write(display, TV_CSC_V, 1428 (color_conversion->rv << 16) | color_conversion->gv); 1429 intel_de_write(display, TV_CSC_V2, 1430 (color_conversion->bv << 16) | color_conversion->av); 1431 } 1432 1433 static void intel_tv_pre_enable(struct intel_atomic_state *state, 1434 struct intel_encoder *encoder, 1435 const struct intel_crtc_state *pipe_config, 1436 const struct drm_connector_state *conn_state) 1437 { 1438 struct intel_display *display = to_intel_display(encoder); 1439 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1440 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 1441 struct intel_tv *intel_tv = enc_to_tv(encoder); 1442 const struct intel_tv_connector_state *tv_conn_state = 1443 to_intel_tv_connector_state(conn_state); 1444 const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state); 1445 u32 tv_ctl, tv_filter_ctl; 1446 u32 scctl1, scctl2, scctl3; 1447 int i, j; 1448 const struct video_levels *video_levels; 1449 const struct color_conversion *color_conversion; 1450 bool burst_ena; 1451 int xpos, ypos; 1452 unsigned int xsize, ysize; 1453 1454 tv_ctl = intel_de_read(display, TV_CTL); 1455 tv_ctl &= TV_CTL_SAVE; 1456 1457 switch (intel_tv->type) { 1458 default: 1459 case DRM_MODE_CONNECTOR_Unknown: 1460 case DRM_MODE_CONNECTOR_Composite: 1461 tv_ctl |= TV_ENC_OUTPUT_COMPOSITE; 1462 video_levels = tv_mode->composite_levels; 1463 color_conversion = tv_mode->composite_color; 1464 burst_ena = tv_mode->burst_ena; 1465 break; 1466 case DRM_MODE_CONNECTOR_Component: 1467 tv_ctl |= TV_ENC_OUTPUT_COMPONENT; 1468 video_levels = &component_levels; 1469 if (tv_mode->burst_ena) 1470 color_conversion = &sdtv_csc_yprpb; 1471 else 1472 color_conversion = &hdtv_csc_yprpb; 1473 burst_ena = false; 1474 break; 1475 case DRM_MODE_CONNECTOR_SVIDEO: 1476 tv_ctl |= TV_ENC_OUTPUT_SVIDEO; 1477 video_levels = tv_mode->svideo_levels; 1478 color_conversion = tv_mode->svideo_color; 1479 burst_ena = tv_mode->burst_ena; 1480 break; 1481 } 1482 1483 tv_ctl |= TV_ENC_PIPE_SEL(crtc->pipe); 1484 1485 switch (tv_mode->oversample) { 1486 case 8: 1487 tv_ctl |= TV_OVERSAMPLE_8X; 1488 break; 1489 case 4: 1490 tv_ctl |= TV_OVERSAMPLE_4X; 1491 break; 1492 case 2: 1493 tv_ctl |= TV_OVERSAMPLE_2X; 1494 break; 1495 default: 1496 tv_ctl |= TV_OVERSAMPLE_NONE; 1497 break; 1498 } 1499 1500 if (tv_mode->progressive) 1501 tv_ctl |= TV_PROGRESSIVE; 1502 if (tv_mode->trilevel_sync) 1503 tv_ctl |= TV_TRILEVEL_SYNC; 1504 if (tv_mode->pal_burst) 1505 tv_ctl |= TV_PAL_BURST; 1506 1507 scctl1 = 0; 1508 if (tv_mode->dda1_inc) 1509 scctl1 |= TV_SC_DDA1_EN; 1510 if (tv_mode->dda2_inc) 1511 scctl1 |= TV_SC_DDA2_EN; 1512 if (tv_mode->dda3_inc) 1513 scctl1 |= TV_SC_DDA3_EN; 1514 scctl1 |= tv_mode->sc_reset; 1515 if (video_levels) 1516 scctl1 |= video_levels->burst << TV_BURST_LEVEL_SHIFT; 1517 scctl1 |= tv_mode->dda1_inc << TV_SCDDA1_INC_SHIFT; 1518 1519 scctl2 = tv_mode->dda2_size << TV_SCDDA2_SIZE_SHIFT | 1520 tv_mode->dda2_inc << TV_SCDDA2_INC_SHIFT; 1521 1522 scctl3 = tv_mode->dda3_size << TV_SCDDA3_SIZE_SHIFT | 1523 tv_mode->dda3_inc << TV_SCDDA3_INC_SHIFT; 1524 1525 /* Enable two fixes for the chips that need them. */ 1526 if (display->platform.i915gm) 1527 tv_ctl |= TV_ENC_C0_FIX | TV_ENC_SDP_FIX; 1528 1529 set_tv_mode_timings(display, tv_mode, burst_ena); 1530 1531 intel_de_write(display, TV_SC_CTL_1, scctl1); 1532 intel_de_write(display, TV_SC_CTL_2, scctl2); 1533 intel_de_write(display, TV_SC_CTL_3, scctl3); 1534 1535 set_color_conversion(display, color_conversion); 1536 1537 if (DISPLAY_VER(display) >= 4) 1538 intel_de_write(display, TV_CLR_KNOBS, 0x00404000); 1539 else 1540 intel_de_write(display, TV_CLR_KNOBS, 0x00606000); 1541 1542 if (video_levels) 1543 intel_de_write(display, TV_CLR_LEVEL, 1544 ((video_levels->black << TV_BLACK_LEVEL_SHIFT) | (video_levels->blank << TV_BLANK_LEVEL_SHIFT))); 1545 1546 assert_transcoder_disabled(dev_priv, pipe_config->cpu_transcoder); 1547 1548 /* Filter ctl must be set before TV_WIN_SIZE */ 1549 tv_filter_ctl = TV_AUTO_SCALE; 1550 if (tv_conn_state->bypass_vfilter) 1551 tv_filter_ctl |= TV_V_FILTER_BYPASS; 1552 intel_de_write(display, TV_FILTER_CTL_1, tv_filter_ctl); 1553 1554 xsize = tv_mode->hblank_start - tv_mode->hblank_end; 1555 ysize = intel_tv_mode_vdisplay(tv_mode); 1556 1557 xpos = conn_state->tv.margins.left; 1558 ypos = tv_conn_state->margins.top; 1559 xsize -= (conn_state->tv.margins.left + 1560 conn_state->tv.margins.right); 1561 ysize -= (tv_conn_state->margins.top + 1562 tv_conn_state->margins.bottom); 1563 intel_de_write(display, TV_WIN_POS, (xpos << 16) | ypos); 1564 intel_de_write(display, TV_WIN_SIZE, (xsize << 16) | ysize); 1565 1566 j = 0; 1567 for (i = 0; i < 60; i++) 1568 intel_de_write(display, TV_H_LUMA(i), 1569 tv_mode->filter_table[j++]); 1570 for (i = 0; i < 60; i++) 1571 intel_de_write(display, TV_H_CHROMA(i), 1572 tv_mode->filter_table[j++]); 1573 for (i = 0; i < 43; i++) 1574 intel_de_write(display, TV_V_LUMA(i), 1575 tv_mode->filter_table[j++]); 1576 for (i = 0; i < 43; i++) 1577 intel_de_write(display, TV_V_CHROMA(i), 1578 tv_mode->filter_table[j++]); 1579 intel_de_write(display, TV_DAC, 1580 intel_de_read(display, TV_DAC) & TV_DAC_SAVE); 1581 intel_de_write(display, TV_CTL, tv_ctl); 1582 } 1583 1584 static int 1585 intel_tv_detect_type(struct intel_tv *intel_tv, 1586 struct drm_connector *connector) 1587 { 1588 struct intel_display *display = to_intel_display(connector->dev); 1589 struct intel_crtc *crtc = to_intel_crtc(connector->state->crtc); 1590 struct drm_device *dev = connector->dev; 1591 struct drm_i915_private *dev_priv = to_i915(dev); 1592 u32 tv_ctl, save_tv_ctl; 1593 u32 tv_dac, save_tv_dac; 1594 int type; 1595 1596 /* Disable TV interrupts around load detect or we'll recurse */ 1597 if (connector->polled & DRM_CONNECTOR_POLL_HPD) { 1598 spin_lock_irq(&dev_priv->irq_lock); 1599 i915_disable_pipestat(dev_priv, 0, 1600 PIPE_HOTPLUG_INTERRUPT_STATUS | 1601 PIPE_HOTPLUG_TV_INTERRUPT_STATUS); 1602 spin_unlock_irq(&dev_priv->irq_lock); 1603 } 1604 1605 save_tv_dac = tv_dac = intel_de_read(display, TV_DAC); 1606 save_tv_ctl = tv_ctl = intel_de_read(display, TV_CTL); 1607 1608 /* Poll for TV detection */ 1609 tv_ctl &= ~(TV_ENC_ENABLE | TV_ENC_PIPE_SEL_MASK | TV_TEST_MODE_MASK); 1610 tv_ctl |= TV_TEST_MODE_MONITOR_DETECT; 1611 tv_ctl |= TV_ENC_PIPE_SEL(crtc->pipe); 1612 1613 tv_dac &= ~(TVDAC_SENSE_MASK | DAC_A_MASK | DAC_B_MASK | DAC_C_MASK); 1614 tv_dac |= (TVDAC_STATE_CHG_EN | 1615 TVDAC_A_SENSE_CTL | 1616 TVDAC_B_SENSE_CTL | 1617 TVDAC_C_SENSE_CTL | 1618 DAC_CTL_OVERRIDE | 1619 DAC_A_0_7_V | 1620 DAC_B_0_7_V | 1621 DAC_C_0_7_V); 1622 1623 1624 /* 1625 * The TV sense state should be cleared to zero on cantiga platform. Otherwise 1626 * the TV is misdetected. This is hardware requirement. 1627 */ 1628 if (display->platform.gm45) 1629 tv_dac &= ~(TVDAC_STATE_CHG_EN | TVDAC_A_SENSE_CTL | 1630 TVDAC_B_SENSE_CTL | TVDAC_C_SENSE_CTL); 1631 1632 intel_de_write(display, TV_CTL, tv_ctl); 1633 intel_de_write(display, TV_DAC, tv_dac); 1634 intel_de_posting_read(display, TV_DAC); 1635 1636 intel_crtc_wait_for_next_vblank(crtc); 1637 1638 type = -1; 1639 tv_dac = intel_de_read(display, TV_DAC); 1640 drm_dbg_kms(display->drm, "TV detected: %x, %x\n", tv_ctl, tv_dac); 1641 /* 1642 * A B C 1643 * 0 1 1 Composite 1644 * 1 0 X svideo 1645 * 0 0 0 Component 1646 */ 1647 if ((tv_dac & TVDAC_SENSE_MASK) == (TVDAC_B_SENSE | TVDAC_C_SENSE)) { 1648 drm_dbg_kms(display->drm, 1649 "Detected Composite TV connection\n"); 1650 type = DRM_MODE_CONNECTOR_Composite; 1651 } else if ((tv_dac & (TVDAC_A_SENSE|TVDAC_B_SENSE)) == TVDAC_A_SENSE) { 1652 drm_dbg_kms(display->drm, 1653 "Detected S-Video TV connection\n"); 1654 type = DRM_MODE_CONNECTOR_SVIDEO; 1655 } else if ((tv_dac & TVDAC_SENSE_MASK) == 0) { 1656 drm_dbg_kms(display->drm, 1657 "Detected Component TV connection\n"); 1658 type = DRM_MODE_CONNECTOR_Component; 1659 } else { 1660 drm_dbg_kms(display->drm, "Unrecognised TV connection\n"); 1661 type = -1; 1662 } 1663 1664 intel_de_write(display, TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN); 1665 intel_de_write(display, TV_CTL, save_tv_ctl); 1666 intel_de_posting_read(display, TV_CTL); 1667 1668 /* For unknown reasons the hw barfs if we don't do this vblank wait. */ 1669 intel_crtc_wait_for_next_vblank(crtc); 1670 1671 /* Restore interrupt config */ 1672 if (connector->polled & DRM_CONNECTOR_POLL_HPD) { 1673 spin_lock_irq(&dev_priv->irq_lock); 1674 i915_enable_pipestat(dev_priv, 0, 1675 PIPE_HOTPLUG_INTERRUPT_STATUS | 1676 PIPE_HOTPLUG_TV_INTERRUPT_STATUS); 1677 spin_unlock_irq(&dev_priv->irq_lock); 1678 } 1679 1680 return type; 1681 } 1682 1683 /* 1684 * Here we set accurate tv format according to connector type 1685 * i.e Component TV should not be assigned by NTSC or PAL 1686 */ 1687 static void intel_tv_find_better_format(struct drm_connector *connector) 1688 { 1689 struct intel_tv *intel_tv = intel_attached_tv(to_intel_connector(connector)); 1690 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 1691 int i; 1692 1693 /* Component supports everything so we can keep the current mode */ 1694 if (intel_tv->type == DRM_MODE_CONNECTOR_Component) 1695 return; 1696 1697 /* If the current mode is fine don't change it */ 1698 if (!tv_mode->component_only) 1699 return; 1700 1701 for (i = 0; i < ARRAY_SIZE(tv_modes); i++) { 1702 tv_mode = &tv_modes[i]; 1703 1704 if (!tv_mode->component_only) 1705 break; 1706 } 1707 1708 connector->state->tv.legacy_mode = i; 1709 } 1710 1711 static int 1712 intel_tv_detect(struct drm_connector *connector, 1713 struct drm_modeset_acquire_ctx *ctx, 1714 bool force) 1715 { 1716 struct intel_display *display = to_intel_display(connector->dev); 1717 struct intel_tv *intel_tv = intel_attached_tv(to_intel_connector(connector)); 1718 enum drm_connector_status status; 1719 int type; 1720 1721 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] force=%d\n", 1722 connector->base.id, connector->name, force); 1723 1724 if (!intel_display_device_enabled(display)) 1725 return connector_status_disconnected; 1726 1727 if (!intel_display_driver_check_access(display)) 1728 return connector->status; 1729 1730 if (force) { 1731 struct drm_atomic_state *state; 1732 1733 state = intel_load_detect_get_pipe(connector, ctx); 1734 if (IS_ERR(state)) 1735 return PTR_ERR(state); 1736 1737 if (state) { 1738 type = intel_tv_detect_type(intel_tv, connector); 1739 intel_load_detect_release_pipe(connector, state, ctx); 1740 status = type < 0 ? 1741 connector_status_disconnected : 1742 connector_status_connected; 1743 } else { 1744 status = connector_status_unknown; 1745 } 1746 1747 if (status == connector_status_connected) { 1748 intel_tv->type = type; 1749 intel_tv_find_better_format(connector); 1750 } 1751 1752 return status; 1753 } else 1754 return connector->status; 1755 } 1756 1757 static const struct input_res { 1758 u16 w, h; 1759 } input_res_table[] = { 1760 { 640, 480 }, 1761 { 800, 600 }, 1762 { 1024, 768 }, 1763 { 1280, 1024 }, 1764 { 848, 480 }, 1765 { 1280, 720 }, 1766 { 1920, 1080 }, 1767 }; 1768 1769 /* Choose preferred mode according to line number of TV format */ 1770 static bool 1771 intel_tv_is_preferred_mode(const struct drm_display_mode *mode, 1772 const struct tv_mode *tv_mode) 1773 { 1774 int vdisplay = intel_tv_mode_vdisplay(tv_mode); 1775 1776 /* prefer 480 line modes for all SD TV modes */ 1777 if (vdisplay <= 576) 1778 vdisplay = 480; 1779 1780 return vdisplay == mode->vdisplay; 1781 } 1782 1783 static void 1784 intel_tv_set_mode_type(struct drm_display_mode *mode, 1785 const struct tv_mode *tv_mode) 1786 { 1787 mode->type = DRM_MODE_TYPE_DRIVER; 1788 1789 if (intel_tv_is_preferred_mode(mode, tv_mode)) 1790 mode->type |= DRM_MODE_TYPE_PREFERRED; 1791 } 1792 1793 static int 1794 intel_tv_get_modes(struct drm_connector *connector) 1795 { 1796 struct intel_display *display = to_intel_display(connector->dev); 1797 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 1798 int i, count = 0; 1799 1800 for (i = 0; i < ARRAY_SIZE(input_res_table); i++) { 1801 const struct input_res *input = &input_res_table[i]; 1802 struct drm_display_mode *mode; 1803 1804 if (input->w > 1024 && 1805 !tv_mode->progressive && 1806 !tv_mode->component_only) 1807 continue; 1808 1809 /* no vertical scaling with wide sources on gen3 */ 1810 if (DISPLAY_VER(display) == 3 && input->w > 1024 && 1811 input->h > intel_tv_mode_vdisplay(tv_mode)) 1812 continue; 1813 1814 mode = drm_mode_create(connector->dev); 1815 if (!mode) 1816 continue; 1817 1818 /* 1819 * We take the TV mode and scale it to look 1820 * like it had the expected h/vdisplay. This 1821 * provides the most information to userspace 1822 * about the actual timings of the mode. We 1823 * do ignore the margins though. 1824 */ 1825 intel_tv_mode_to_mode(mode, tv_mode, tv_mode->clock); 1826 if (count == 0) { 1827 drm_dbg_kms(display->drm, 1828 "TV mode: " DRM_MODE_FMT "\n", 1829 DRM_MODE_ARG(mode)); 1830 } 1831 intel_tv_scale_mode_horiz(mode, input->w, 0, 0); 1832 intel_tv_scale_mode_vert(mode, input->h, 0, 0); 1833 intel_tv_set_mode_type(mode, tv_mode); 1834 1835 drm_mode_set_name(mode); 1836 1837 drm_mode_probed_add(connector, mode); 1838 count++; 1839 } 1840 1841 return count; 1842 } 1843 1844 static const struct drm_connector_funcs intel_tv_connector_funcs = { 1845 .late_register = intel_connector_register, 1846 .early_unregister = intel_connector_unregister, 1847 .destroy = intel_connector_destroy, 1848 .fill_modes = drm_helper_probe_single_connector_modes, 1849 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 1850 .atomic_duplicate_state = intel_tv_connector_duplicate_state, 1851 }; 1852 1853 static int intel_tv_atomic_check(struct drm_connector *connector, 1854 struct drm_atomic_state *state) 1855 { 1856 struct drm_connector_state *new_state; 1857 struct drm_crtc_state *new_crtc_state; 1858 struct drm_connector_state *old_state; 1859 1860 new_state = drm_atomic_get_new_connector_state(state, connector); 1861 if (!new_state->crtc) 1862 return 0; 1863 1864 old_state = drm_atomic_get_old_connector_state(state, connector); 1865 new_crtc_state = drm_atomic_get_new_crtc_state(state, new_state->crtc); 1866 1867 if (old_state->tv.legacy_mode != new_state->tv.legacy_mode || 1868 old_state->tv.margins.left != new_state->tv.margins.left || 1869 old_state->tv.margins.right != new_state->tv.margins.right || 1870 old_state->tv.margins.top != new_state->tv.margins.top || 1871 old_state->tv.margins.bottom != new_state->tv.margins.bottom) { 1872 /* Force a modeset. */ 1873 1874 new_crtc_state->connectors_changed = true; 1875 } 1876 1877 return 0; 1878 } 1879 1880 static const struct drm_connector_helper_funcs intel_tv_connector_helper_funcs = { 1881 .detect_ctx = intel_tv_detect, 1882 .mode_valid = intel_tv_mode_valid, 1883 .get_modes = intel_tv_get_modes, 1884 .atomic_check = intel_tv_atomic_check, 1885 }; 1886 1887 static const struct drm_encoder_funcs intel_tv_enc_funcs = { 1888 .destroy = intel_encoder_destroy, 1889 }; 1890 1891 static void intel_tv_add_properties(struct drm_connector *connector) 1892 { 1893 struct intel_display *display = to_intel_display(connector->dev); 1894 struct drm_connector_state *conn_state = connector->state; 1895 const char *tv_format_names[ARRAY_SIZE(tv_modes)]; 1896 int i; 1897 1898 /* BIOS margin values */ 1899 conn_state->tv.margins.left = 54; 1900 conn_state->tv.margins.top = 36; 1901 conn_state->tv.margins.right = 46; 1902 conn_state->tv.margins.bottom = 37; 1903 1904 conn_state->tv.legacy_mode = 0; 1905 1906 /* Create TV properties then attach current values */ 1907 for (i = 0; i < ARRAY_SIZE(tv_modes); i++) { 1908 /* 1080p50/1080p60 not supported on gen3 */ 1909 if (DISPLAY_VER(display) == 3 && tv_modes[i].oversample == 1) 1910 break; 1911 1912 tv_format_names[i] = tv_modes[i].name; 1913 } 1914 drm_mode_create_tv_properties_legacy(display->drm, i, tv_format_names); 1915 1916 drm_object_attach_property(&connector->base, 1917 display->drm->mode_config.legacy_tv_mode_property, 1918 conn_state->tv.legacy_mode); 1919 drm_object_attach_property(&connector->base, 1920 display->drm->mode_config.tv_left_margin_property, 1921 conn_state->tv.margins.left); 1922 drm_object_attach_property(&connector->base, 1923 display->drm->mode_config.tv_top_margin_property, 1924 conn_state->tv.margins.top); 1925 drm_object_attach_property(&connector->base, 1926 display->drm->mode_config.tv_right_margin_property, 1927 conn_state->tv.margins.right); 1928 drm_object_attach_property(&connector->base, 1929 display->drm->mode_config.tv_bottom_margin_property, 1930 conn_state->tv.margins.bottom); 1931 } 1932 1933 void 1934 intel_tv_init(struct intel_display *display) 1935 { 1936 struct drm_connector *connector; 1937 struct intel_tv *intel_tv; 1938 struct intel_encoder *intel_encoder; 1939 struct intel_connector *intel_connector; 1940 u32 tv_dac_on, tv_dac_off, save_tv_dac; 1941 1942 if ((intel_de_read(display, TV_CTL) & TV_FUSE_STATE_MASK) == TV_FUSE_STATE_DISABLED) 1943 return; 1944 1945 if (!intel_bios_is_tv_present(display)) { 1946 drm_dbg_kms(display->drm, "Integrated TV is not present.\n"); 1947 return; 1948 } 1949 1950 /* 1951 * Sanity check the TV output by checking to see if the 1952 * DAC register holds a value 1953 */ 1954 save_tv_dac = intel_de_read(display, TV_DAC); 1955 1956 intel_de_write(display, TV_DAC, save_tv_dac | TVDAC_STATE_CHG_EN); 1957 tv_dac_on = intel_de_read(display, TV_DAC); 1958 1959 intel_de_write(display, TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN); 1960 tv_dac_off = intel_de_read(display, TV_DAC); 1961 1962 intel_de_write(display, TV_DAC, save_tv_dac); 1963 1964 /* 1965 * If the register does not hold the state change enable 1966 * bit, (either as a 0 or a 1), assume it doesn't really 1967 * exist 1968 */ 1969 if ((tv_dac_on & TVDAC_STATE_CHG_EN) == 0 || 1970 (tv_dac_off & TVDAC_STATE_CHG_EN) != 0) 1971 return; 1972 1973 intel_tv = kzalloc(sizeof(*intel_tv), GFP_KERNEL); 1974 if (!intel_tv) { 1975 return; 1976 } 1977 1978 intel_connector = intel_connector_alloc(); 1979 if (!intel_connector) { 1980 kfree(intel_tv); 1981 return; 1982 } 1983 1984 intel_encoder = &intel_tv->base; 1985 connector = &intel_connector->base; 1986 1987 /* 1988 * The documentation, for the older chipsets at least, recommend 1989 * using a polling method rather than hotplug detection for TVs. 1990 * This is because in order to perform the hotplug detection, the PLLs 1991 * for the TV must be kept alive increasing power drain and starving 1992 * bandwidth from other encoders. Notably for instance, it causes 1993 * pipe underruns on Crestline when this encoder is supposedly idle. 1994 * 1995 * More recent chipsets favour HDMI rather than integrated S-Video. 1996 */ 1997 intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT; 1998 intel_connector->base.polled = intel_connector->polled; 1999 2000 drm_connector_init(display->drm, connector, &intel_tv_connector_funcs, 2001 DRM_MODE_CONNECTOR_SVIDEO); 2002 2003 drm_encoder_init(display->drm, &intel_encoder->base, 2004 &intel_tv_enc_funcs, 2005 DRM_MODE_ENCODER_TVDAC, "TV"); 2006 2007 intel_encoder->compute_config = intel_tv_compute_config; 2008 intel_encoder->get_config = intel_tv_get_config; 2009 intel_encoder->pre_enable = intel_tv_pre_enable; 2010 intel_encoder->enable = intel_enable_tv; 2011 intel_encoder->disable = intel_disable_tv; 2012 intel_encoder->get_hw_state = intel_tv_get_hw_state; 2013 intel_connector->get_hw_state = intel_connector_get_hw_state; 2014 2015 intel_connector_attach_encoder(intel_connector, intel_encoder); 2016 2017 intel_encoder->type = INTEL_OUTPUT_TVOUT; 2018 intel_encoder->power_domain = POWER_DOMAIN_PORT_OTHER; 2019 intel_encoder->port = PORT_NONE; 2020 intel_encoder->pipe_mask = ~0; 2021 intel_encoder->cloneable = 0; 2022 intel_tv->type = DRM_MODE_CONNECTOR_Unknown; 2023 2024 drm_connector_helper_add(connector, &intel_tv_connector_helper_funcs); 2025 2026 intel_tv_add_properties(connector); 2027 } 2028