xref: /linux/drivers/gpu/drm/i915/display/intel_tv.c (revision eed4edda910fe34dfae8c6bfbcf57f4593a54295)
1 /*
2  * Copyright © 2006-2008 Intel Corporation
3  *   Jesse Barnes <jesse.barnes@intel.com>
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *    Eric Anholt <eric@anholt.net>
26  *
27  */
28 
29 /** @file
30  * Integrated TV-out support for the 915GM and 945GM.
31  */
32 
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_edid.h>
36 
37 #include "i915_drv.h"
38 #include "i915_reg.h"
39 #include "intel_connector.h"
40 #include "intel_crtc.h"
41 #include "intel_de.h"
42 #include "intel_display_irq.h"
43 #include "intel_display_driver.h"
44 #include "intel_display_types.h"
45 #include "intel_dpll.h"
46 #include "intel_hotplug.h"
47 #include "intel_load_detect.h"
48 #include "intel_tv.h"
49 #include "intel_tv_regs.h"
50 
51 enum tv_margin {
52 	TV_MARGIN_LEFT, TV_MARGIN_TOP,
53 	TV_MARGIN_RIGHT, TV_MARGIN_BOTTOM
54 };
55 
56 struct intel_tv {
57 	struct intel_encoder base;
58 
59 	int type;
60 };
61 
62 struct video_levels {
63 	u16 blank, black;
64 	u8 burst;
65 };
66 
67 struct color_conversion {
68 	u16 ry, gy, by, ay;
69 	u16 ru, gu, bu, au;
70 	u16 rv, gv, bv, av;
71 };
72 
73 static const u32 filter_table[] = {
74 	0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140,
75 	0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000,
76 	0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160,
77 	0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780,
78 	0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50,
79 	0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20,
80 	0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0,
81 	0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0,
82 	0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020,
83 	0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140,
84 	0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20,
85 	0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848,
86 	0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900,
87 	0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080,
88 	0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060,
89 	0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140,
90 	0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000,
91 	0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160,
92 	0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780,
93 	0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50,
94 	0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20,
95 	0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0,
96 	0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0,
97 	0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020,
98 	0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140,
99 	0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20,
100 	0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848,
101 	0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900,
102 	0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080,
103 	0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060,
104 	0x36403000, 0x2D002CC0, 0x30003640, 0x2D0036C0,
105 	0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540,
106 	0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00,
107 	0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000,
108 	0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00,
109 	0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40,
110 	0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240,
111 	0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00,
112 	0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0,
113 	0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840,
114 	0x28003100, 0x28002F00, 0x00003100, 0x36403000,
115 	0x2D002CC0, 0x30003640, 0x2D0036C0,
116 	0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540,
117 	0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00,
118 	0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000,
119 	0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00,
120 	0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40,
121 	0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240,
122 	0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00,
123 	0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0,
124 	0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840,
125 	0x28003100, 0x28002F00, 0x00003100,
126 };
127 
128 /*
129  * Color conversion values have 3 separate fixed point formats:
130  *
131  * 10 bit fields (ay, au)
132  *   1.9 fixed point (b.bbbbbbbbb)
133  * 11 bit fields (ry, by, ru, gu, gv)
134  *   exp.mantissa (ee.mmmmmmmmm)
135  *   ee = 00 = 10^-1 (0.mmmmmmmmm)
136  *   ee = 01 = 10^-2 (0.0mmmmmmmmm)
137  *   ee = 10 = 10^-3 (0.00mmmmmmmmm)
138  *   ee = 11 = 10^-4 (0.000mmmmmmmmm)
139  * 12 bit fields (gy, rv, bu)
140  *   exp.mantissa (eee.mmmmmmmmm)
141  *   eee = 000 = 10^-1 (0.mmmmmmmmm)
142  *   eee = 001 = 10^-2 (0.0mmmmmmmmm)
143  *   eee = 010 = 10^-3 (0.00mmmmmmmmm)
144  *   eee = 011 = 10^-4 (0.000mmmmmmmmm)
145  *   eee = 100 = reserved
146  *   eee = 101 = reserved
147  *   eee = 110 = reserved
148  *   eee = 111 = 10^0 (m.mmmmmmmm) (only usable for 1.0 representation)
149  *
150  * Saturation and contrast are 8 bits, with their own representation:
151  * 8 bit field (saturation, contrast)
152  *   exp.mantissa (ee.mmmmmm)
153  *   ee = 00 = 10^-1 (0.mmmmmm)
154  *   ee = 01 = 10^0 (m.mmmmm)
155  *   ee = 10 = 10^1 (mm.mmmm)
156  *   ee = 11 = 10^2 (mmm.mmm)
157  *
158  * Simple conversion function:
159  *
160  * static u32
161  * float_to_csc_11(float f)
162  * {
163  *     u32 exp;
164  *     u32 mant;
165  *     u32 ret;
166  *
167  *     if (f < 0)
168  *         f = -f;
169  *
170  *     if (f >= 1) {
171  *         exp = 0x7;
172  *	   mant = 1 << 8;
173  *     } else {
174  *         for (exp = 0; exp < 3 && f < 0.5; exp++)
175  *	   f *= 2.0;
176  *         mant = (f * (1 << 9) + 0.5);
177  *         if (mant >= (1 << 9))
178  *             mant = (1 << 9) - 1;
179  *     }
180  *     ret = (exp << 9) | mant;
181  *     return ret;
182  * }
183  */
184 
185 /*
186  * Behold, magic numbers!  If we plant them they might grow a big
187  * s-video cable to the sky... or something.
188  *
189  * Pre-converted to appropriate hex value.
190  */
191 
192 /*
193  * PAL & NTSC values for composite & s-video connections
194  */
195 static const struct color_conversion ntsc_m_csc_composite = {
196 	.ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104,
197 	.ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200,
198 	.rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200,
199 };
200 
201 static const struct video_levels ntsc_m_levels_composite = {
202 	.blank = 225, .black = 267, .burst = 113,
203 };
204 
205 static const struct color_conversion ntsc_m_csc_svideo = {
206 	.ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133,
207 	.ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200,
208 	.rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200,
209 };
210 
211 static const struct video_levels ntsc_m_levels_svideo = {
212 	.blank = 266, .black = 316, .burst = 133,
213 };
214 
215 static const struct color_conversion ntsc_j_csc_composite = {
216 	.ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0119,
217 	.ru = 0x074c, .gu = 0x0546, .bu = 0x05ec, .au = 0x0200,
218 	.rv = 0x035a, .gv = 0x0322, .bv = 0x06e1, .av = 0x0200,
219 };
220 
221 static const struct video_levels ntsc_j_levels_composite = {
222 	.blank = 225, .black = 225, .burst = 113,
223 };
224 
225 static const struct color_conversion ntsc_j_csc_svideo = {
226 	.ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x014c,
227 	.ru = 0x0788, .gu = 0x0581, .bu = 0x0322, .au = 0x0200,
228 	.rv = 0x0399, .gv = 0x0356, .bv = 0x070a, .av = 0x0200,
229 };
230 
231 static const struct video_levels ntsc_j_levels_svideo = {
232 	.blank = 266, .black = 266, .burst = 133,
233 };
234 
235 static const struct color_conversion pal_csc_composite = {
236 	.ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0113,
237 	.ru = 0x0745, .gu = 0x053f, .bu = 0x05e1, .au = 0x0200,
238 	.rv = 0x0353, .gv = 0x031c, .bv = 0x06dc, .av = 0x0200,
239 };
240 
241 static const struct video_levels pal_levels_composite = {
242 	.blank = 237, .black = 237, .burst = 118,
243 };
244 
245 static const struct color_conversion pal_csc_svideo = {
246 	.ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145,
247 	.ru = 0x0780, .gu = 0x0579, .bu = 0x031c, .au = 0x0200,
248 	.rv = 0x0390, .gv = 0x034f, .bv = 0x0705, .av = 0x0200,
249 };
250 
251 static const struct video_levels pal_levels_svideo = {
252 	.blank = 280, .black = 280, .burst = 139,
253 };
254 
255 static const struct color_conversion pal_m_csc_composite = {
256 	.ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104,
257 	.ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200,
258 	.rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200,
259 };
260 
261 static const struct video_levels pal_m_levels_composite = {
262 	.blank = 225, .black = 267, .burst = 113,
263 };
264 
265 static const struct color_conversion pal_m_csc_svideo = {
266 	.ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133,
267 	.ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200,
268 	.rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200,
269 };
270 
271 static const struct video_levels pal_m_levels_svideo = {
272 	.blank = 266, .black = 316, .burst = 133,
273 };
274 
275 static const struct color_conversion pal_n_csc_composite = {
276 	.ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104,
277 	.ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200,
278 	.rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200,
279 };
280 
281 static const struct video_levels pal_n_levels_composite = {
282 	.blank = 225, .black = 267, .burst = 118,
283 };
284 
285 static const struct color_conversion pal_n_csc_svideo = {
286 	.ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133,
287 	.ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200,
288 	.rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200,
289 };
290 
291 static const struct video_levels pal_n_levels_svideo = {
292 	.blank = 266, .black = 316, .burst = 139,
293 };
294 
295 /*
296  * Component connections
297  */
298 static const struct color_conversion sdtv_csc_yprpb = {
299 	.ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145,
300 	.ru = 0x0559, .gu = 0x0353, .bu = 0x0100, .au = 0x0200,
301 	.rv = 0x0100, .gv = 0x03ad, .bv = 0x074d, .av = 0x0200,
302 };
303 
304 static const struct color_conversion hdtv_csc_yprpb = {
305 	.ry = 0x05b3, .gy = 0x016e, .by = 0x0728, .ay = 0x0145,
306 	.ru = 0x07d5, .gu = 0x038b, .bu = 0x0100, .au = 0x0200,
307 	.rv = 0x0100, .gv = 0x03d1, .bv = 0x06bc, .av = 0x0200,
308 };
309 
310 static const struct video_levels component_levels = {
311 	.blank = 279, .black = 279, .burst = 0,
312 };
313 
314 
315 struct tv_mode {
316 	const char *name;
317 
318 	u32 clock;
319 	u16 refresh; /* in millihertz (for precision) */
320 	u8 oversample;
321 	u8 hsync_end;
322 	u16 hblank_start, hblank_end, htotal;
323 	bool progressive : 1, trilevel_sync : 1, component_only : 1;
324 	u8 vsync_start_f1, vsync_start_f2, vsync_len;
325 	bool veq_ena : 1;
326 	u8 veq_start_f1, veq_start_f2, veq_len;
327 	u8 vi_end_f1, vi_end_f2;
328 	u16 nbr_end;
329 	bool burst_ena : 1;
330 	u8 hburst_start, hburst_len;
331 	u8 vburst_start_f1;
332 	u16 vburst_end_f1;
333 	u8 vburst_start_f2;
334 	u16 vburst_end_f2;
335 	u8 vburst_start_f3;
336 	u16 vburst_end_f3;
337 	u8 vburst_start_f4;
338 	u16 vburst_end_f4;
339 	/*
340 	 * subcarrier programming
341 	 */
342 	u16 dda2_size, dda3_size;
343 	u8 dda1_inc;
344 	u16 dda2_inc, dda3_inc;
345 	u32 sc_reset;
346 	bool pal_burst : 1;
347 	/*
348 	 * blank/black levels
349 	 */
350 	const struct video_levels *composite_levels, *svideo_levels;
351 	const struct color_conversion *composite_color, *svideo_color;
352 	const u32 *filter_table;
353 };
354 
355 
356 /*
357  * Sub carrier DDA
358  *
359  *  I think this works as follows:
360  *
361  *  subcarrier freq = pixel_clock * (dda1_inc + dda2_inc / dda2_size) / 4096
362  *
363  * Presumably, when dda3 is added in, it gets to adjust the dda2_inc value
364  *
365  * So,
366  *  dda1_ideal = subcarrier/pixel * 4096
367  *  dda1_inc = floor (dda1_ideal)
368  *  dda2 = dda1_ideal - dda1_inc
369  *
370  *  then pick a ratio for dda2 that gives the closest approximation. If
371  *  you can't get close enough, you can play with dda3 as well. This
372  *  seems likely to happen when dda2 is small as the jumps would be larger
373  *
374  * To invert this,
375  *
376  *  pixel_clock = subcarrier * 4096 / (dda1_inc + dda2_inc / dda2_size)
377  *
378  * The constants below were all computed using a 107.520MHz clock
379  */
380 
381 /*
382  * Register programming values for TV modes.
383  *
384  * These values account for -1s required.
385  */
386 static const struct tv_mode tv_modes[] = {
387 	{
388 		.name		= "NTSC-M",
389 		.clock		= 108000,
390 		.refresh	= 59940,
391 		.oversample	= 8,
392 		.component_only = false,
393 		/* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */
394 
395 		.hsync_end	= 64,		    .hblank_end		= 124,
396 		.hblank_start	= 836,		    .htotal		= 857,
397 
398 		.progressive	= false,	    .trilevel_sync = false,
399 
400 		.vsync_start_f1	= 6,		    .vsync_start_f2	= 7,
401 		.vsync_len	= 6,
402 
403 		.veq_ena	= true,		    .veq_start_f1	= 0,
404 		.veq_start_f2	= 1,		    .veq_len		= 18,
405 
406 		.vi_end_f1	= 20,		    .vi_end_f2		= 21,
407 		.nbr_end	= 240,
408 
409 		.burst_ena	= true,
410 		.hburst_start	= 72,		    .hburst_len		= 34,
411 		.vburst_start_f1 = 9,		    .vburst_end_f1	= 240,
412 		.vburst_start_f2 = 10,		    .vburst_end_f2	= 240,
413 		.vburst_start_f3 = 9,		    .vburst_end_f3	= 240,
414 		.vburst_start_f4 = 10,		    .vburst_end_f4	= 240,
415 
416 		/* desired 3.5800000 actual 3.5800000 clock 107.52 */
417 		.dda1_inc	=    135,
418 		.dda2_inc	=  20800,	    .dda2_size		=  27456,
419 		.dda3_inc	=      0,	    .dda3_size		=      0,
420 		.sc_reset	= TV_SC_RESET_EVERY_4,
421 		.pal_burst	= false,
422 
423 		.composite_levels = &ntsc_m_levels_composite,
424 		.composite_color = &ntsc_m_csc_composite,
425 		.svideo_levels  = &ntsc_m_levels_svideo,
426 		.svideo_color = &ntsc_m_csc_svideo,
427 
428 		.filter_table = filter_table,
429 	},
430 	{
431 		.name		= "NTSC-443",
432 		.clock		= 108000,
433 		.refresh	= 59940,
434 		.oversample	= 8,
435 		.component_only = false,
436 		/* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 4.43MHz */
437 		.hsync_end	= 64,		    .hblank_end		= 124,
438 		.hblank_start	= 836,		    .htotal		= 857,
439 
440 		.progressive	= false,	    .trilevel_sync = false,
441 
442 		.vsync_start_f1 = 6,		    .vsync_start_f2	= 7,
443 		.vsync_len	= 6,
444 
445 		.veq_ena	= true,		    .veq_start_f1	= 0,
446 		.veq_start_f2	= 1,		    .veq_len		= 18,
447 
448 		.vi_end_f1	= 20,		    .vi_end_f2		= 21,
449 		.nbr_end	= 240,
450 
451 		.burst_ena	= true,
452 		.hburst_start	= 72,		    .hburst_len		= 34,
453 		.vburst_start_f1 = 9,		    .vburst_end_f1	= 240,
454 		.vburst_start_f2 = 10,		    .vburst_end_f2	= 240,
455 		.vburst_start_f3 = 9,		    .vburst_end_f3	= 240,
456 		.vburst_start_f4 = 10,		    .vburst_end_f4	= 240,
457 
458 		/* desired 4.4336180 actual 4.4336180 clock 107.52 */
459 		.dda1_inc       =    168,
460 		.dda2_inc       =   4093,       .dda2_size      =  27456,
461 		.dda3_inc       =    310,       .dda3_size      =    525,
462 		.sc_reset   = TV_SC_RESET_NEVER,
463 		.pal_burst  = false,
464 
465 		.composite_levels = &ntsc_m_levels_composite,
466 		.composite_color = &ntsc_m_csc_composite,
467 		.svideo_levels  = &ntsc_m_levels_svideo,
468 		.svideo_color = &ntsc_m_csc_svideo,
469 
470 		.filter_table = filter_table,
471 	},
472 	{
473 		.name		= "NTSC-J",
474 		.clock		= 108000,
475 		.refresh	= 59940,
476 		.oversample	= 8,
477 		.component_only = false,
478 
479 		/* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */
480 		.hsync_end	= 64,		    .hblank_end		= 124,
481 		.hblank_start = 836,	    .htotal		= 857,
482 
483 		.progressive	= false,    .trilevel_sync = false,
484 
485 		.vsync_start_f1	= 6,	    .vsync_start_f2	= 7,
486 		.vsync_len	= 6,
487 
488 		.veq_ena      = true,	    .veq_start_f1	= 0,
489 		.veq_start_f2 = 1,	    .veq_len		= 18,
490 
491 		.vi_end_f1	= 20,		    .vi_end_f2		= 21,
492 		.nbr_end	= 240,
493 
494 		.burst_ena	= true,
495 		.hburst_start	= 72,		    .hburst_len		= 34,
496 		.vburst_start_f1 = 9,		    .vburst_end_f1	= 240,
497 		.vburst_start_f2 = 10,		    .vburst_end_f2	= 240,
498 		.vburst_start_f3 = 9,		    .vburst_end_f3	= 240,
499 		.vburst_start_f4 = 10,		    .vburst_end_f4	= 240,
500 
501 		/* desired 3.5800000 actual 3.5800000 clock 107.52 */
502 		.dda1_inc	=    135,
503 		.dda2_inc	=  20800,	    .dda2_size		=  27456,
504 		.dda3_inc	=      0,	    .dda3_size		=      0,
505 		.sc_reset	= TV_SC_RESET_EVERY_4,
506 		.pal_burst	= false,
507 
508 		.composite_levels = &ntsc_j_levels_composite,
509 		.composite_color = &ntsc_j_csc_composite,
510 		.svideo_levels  = &ntsc_j_levels_svideo,
511 		.svideo_color = &ntsc_j_csc_svideo,
512 
513 		.filter_table = filter_table,
514 	},
515 	{
516 		.name		= "PAL-M",
517 		.clock		= 108000,
518 		.refresh	= 59940,
519 		.oversample	= 8,
520 		.component_only = false,
521 
522 		/* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */
523 		.hsync_end	= 64,		  .hblank_end		= 124,
524 		.hblank_start = 836,	  .htotal		= 857,
525 
526 		.progressive	= false,	    .trilevel_sync = false,
527 
528 		.vsync_start_f1	= 6,		    .vsync_start_f2	= 7,
529 		.vsync_len	= 6,
530 
531 		.veq_ena	= true,		    .veq_start_f1	= 0,
532 		.veq_start_f2	= 1,		    .veq_len		= 18,
533 
534 		.vi_end_f1	= 20,		    .vi_end_f2		= 21,
535 		.nbr_end	= 240,
536 
537 		.burst_ena	= true,
538 		.hburst_start	= 72,		    .hburst_len		= 34,
539 		.vburst_start_f1 = 9,		    .vburst_end_f1	= 240,
540 		.vburst_start_f2 = 10,		    .vburst_end_f2	= 240,
541 		.vburst_start_f3 = 9,		    .vburst_end_f3	= 240,
542 		.vburst_start_f4 = 10,		    .vburst_end_f4	= 240,
543 
544 		/* desired 3.5800000 actual 3.5800000 clock 107.52 */
545 		.dda1_inc	=    135,
546 		.dda2_inc	=  16704,	    .dda2_size		=  27456,
547 		.dda3_inc	=      0,	    .dda3_size		=      0,
548 		.sc_reset	= TV_SC_RESET_EVERY_8,
549 		.pal_burst  = true,
550 
551 		.composite_levels = &pal_m_levels_composite,
552 		.composite_color = &pal_m_csc_composite,
553 		.svideo_levels  = &pal_m_levels_svideo,
554 		.svideo_color = &pal_m_csc_svideo,
555 
556 		.filter_table = filter_table,
557 	},
558 	{
559 		/* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */
560 		.name	    = "PAL-N",
561 		.clock		= 108000,
562 		.refresh	= 50000,
563 		.oversample	= 8,
564 		.component_only = false,
565 
566 		.hsync_end	= 64,		    .hblank_end		= 128,
567 		.hblank_start = 844,	    .htotal		= 863,
568 
569 		.progressive  = false,    .trilevel_sync = false,
570 
571 
572 		.vsync_start_f1	= 6,	   .vsync_start_f2	= 7,
573 		.vsync_len	= 6,
574 
575 		.veq_ena	= true,		    .veq_start_f1	= 0,
576 		.veq_start_f2	= 1,		    .veq_len		= 18,
577 
578 		.vi_end_f1	= 24,		    .vi_end_f2		= 25,
579 		.nbr_end	= 286,
580 
581 		.burst_ena	= true,
582 		.hburst_start = 73,	    .hburst_len		= 34,
583 		.vburst_start_f1 = 8,	    .vburst_end_f1	= 285,
584 		.vburst_start_f2 = 8,	    .vburst_end_f2	= 286,
585 		.vburst_start_f3 = 9,	    .vburst_end_f3	= 286,
586 		.vburst_start_f4 = 9,	    .vburst_end_f4	= 285,
587 
588 
589 		/* desired 4.4336180 actual 4.4336180 clock 107.52 */
590 		.dda1_inc       =    135,
591 		.dda2_inc       =  23578,       .dda2_size      =  27648,
592 		.dda3_inc       =    134,       .dda3_size      =    625,
593 		.sc_reset   = TV_SC_RESET_EVERY_8,
594 		.pal_burst  = true,
595 
596 		.composite_levels = &pal_n_levels_composite,
597 		.composite_color = &pal_n_csc_composite,
598 		.svideo_levels  = &pal_n_levels_svideo,
599 		.svideo_color = &pal_n_csc_svideo,
600 
601 		.filter_table = filter_table,
602 	},
603 	{
604 		/* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */
605 		.name	    = "PAL",
606 		.clock		= 108000,
607 		.refresh	= 50000,
608 		.oversample	= 8,
609 		.component_only = false,
610 
611 		.hsync_end	= 64,		    .hblank_end		= 142,
612 		.hblank_start	= 844,	    .htotal		= 863,
613 
614 		.progressive	= false,    .trilevel_sync = false,
615 
616 		.vsync_start_f1	= 5,	    .vsync_start_f2	= 6,
617 		.vsync_len	= 5,
618 
619 		.veq_ena	= true,	    .veq_start_f1	= 0,
620 		.veq_start_f2	= 1,	    .veq_len		= 15,
621 
622 		.vi_end_f1	= 24,		    .vi_end_f2		= 25,
623 		.nbr_end	= 286,
624 
625 		.burst_ena	= true,
626 		.hburst_start	= 73,		    .hburst_len		= 32,
627 		.vburst_start_f1 = 8,		    .vburst_end_f1	= 285,
628 		.vburst_start_f2 = 8,		    .vburst_end_f2	= 286,
629 		.vburst_start_f3 = 9,		    .vburst_end_f3	= 286,
630 		.vburst_start_f4 = 9,		    .vburst_end_f4	= 285,
631 
632 		/* desired 4.4336180 actual 4.4336180 clock 107.52 */
633 		.dda1_inc       =    168,
634 		.dda2_inc       =   4122,       .dda2_size      =  27648,
635 		.dda3_inc       =     67,       .dda3_size      =    625,
636 		.sc_reset   = TV_SC_RESET_EVERY_8,
637 		.pal_burst  = true,
638 
639 		.composite_levels = &pal_levels_composite,
640 		.composite_color = &pal_csc_composite,
641 		.svideo_levels  = &pal_levels_svideo,
642 		.svideo_color = &pal_csc_svideo,
643 
644 		.filter_table = filter_table,
645 	},
646 	{
647 		.name       = "480p",
648 		.clock		= 108000,
649 		.refresh	= 59940,
650 		.oversample     = 4,
651 		.component_only = true,
652 
653 		.hsync_end      = 64,               .hblank_end         = 122,
654 		.hblank_start   = 842,              .htotal             = 857,
655 
656 		.progressive    = true,		    .trilevel_sync = false,
657 
658 		.vsync_start_f1 = 12,               .vsync_start_f2     = 12,
659 		.vsync_len      = 12,
660 
661 		.veq_ena        = false,
662 
663 		.vi_end_f1      = 44,               .vi_end_f2          = 44,
664 		.nbr_end        = 479,
665 
666 		.burst_ena      = false,
667 
668 		.filter_table = filter_table,
669 	},
670 	{
671 		.name       = "576p",
672 		.clock		= 108000,
673 		.refresh	= 50000,
674 		.oversample     = 4,
675 		.component_only = true,
676 
677 		.hsync_end      = 64,               .hblank_end         = 139,
678 		.hblank_start   = 859,              .htotal             = 863,
679 
680 		.progressive    = true,		    .trilevel_sync = false,
681 
682 		.vsync_start_f1 = 10,               .vsync_start_f2     = 10,
683 		.vsync_len      = 10,
684 
685 		.veq_ena        = false,
686 
687 		.vi_end_f1      = 48,               .vi_end_f2          = 48,
688 		.nbr_end        = 575,
689 
690 		.burst_ena      = false,
691 
692 		.filter_table = filter_table,
693 	},
694 	{
695 		.name       = "720p@60Hz",
696 		.clock		= 148500,
697 		.refresh	= 60000,
698 		.oversample     = 2,
699 		.component_only = true,
700 
701 		.hsync_end      = 80,               .hblank_end         = 300,
702 		.hblank_start   = 1580,             .htotal             = 1649,
703 
704 		.progressive	= true,		    .trilevel_sync = true,
705 
706 		.vsync_start_f1 = 10,               .vsync_start_f2     = 10,
707 		.vsync_len      = 10,
708 
709 		.veq_ena        = false,
710 
711 		.vi_end_f1      = 29,               .vi_end_f2          = 29,
712 		.nbr_end        = 719,
713 
714 		.burst_ena      = false,
715 
716 		.filter_table = filter_table,
717 	},
718 	{
719 		.name       = "720p@50Hz",
720 		.clock		= 148500,
721 		.refresh	= 50000,
722 		.oversample     = 2,
723 		.component_only = true,
724 
725 		.hsync_end      = 80,               .hblank_end         = 300,
726 		.hblank_start   = 1580,             .htotal             = 1979,
727 
728 		.progressive	= true,		    .trilevel_sync = true,
729 
730 		.vsync_start_f1 = 10,               .vsync_start_f2     = 10,
731 		.vsync_len      = 10,
732 
733 		.veq_ena        = false,
734 
735 		.vi_end_f1      = 29,               .vi_end_f2          = 29,
736 		.nbr_end        = 719,
737 
738 		.burst_ena      = false,
739 
740 		.filter_table = filter_table,
741 	},
742 	{
743 		.name       = "1080i@50Hz",
744 		.clock		= 148500,
745 		.refresh	= 50000,
746 		.oversample     = 2,
747 		.component_only = true,
748 
749 		.hsync_end      = 88,               .hblank_end         = 235,
750 		.hblank_start   = 2155,             .htotal             = 2639,
751 
752 		.progressive	= false,	  .trilevel_sync = true,
753 
754 		.vsync_start_f1 = 4,              .vsync_start_f2     = 5,
755 		.vsync_len      = 10,
756 
757 		.veq_ena	= true,	    .veq_start_f1	= 4,
758 		.veq_start_f2   = 4,	    .veq_len		= 10,
759 
760 
761 		.vi_end_f1      = 21,           .vi_end_f2          = 22,
762 		.nbr_end        = 539,
763 
764 		.burst_ena      = false,
765 
766 		.filter_table = filter_table,
767 	},
768 	{
769 		.name       = "1080i@60Hz",
770 		.clock		= 148500,
771 		.refresh	= 60000,
772 		.oversample     = 2,
773 		.component_only = true,
774 
775 		.hsync_end      = 88,               .hblank_end         = 235,
776 		.hblank_start   = 2155,             .htotal             = 2199,
777 
778 		.progressive	= false,	    .trilevel_sync = true,
779 
780 		.vsync_start_f1 = 4,               .vsync_start_f2     = 5,
781 		.vsync_len      = 10,
782 
783 		.veq_ena	= true,		    .veq_start_f1	= 4,
784 		.veq_start_f2	= 4,		    .veq_len		= 10,
785 
786 
787 		.vi_end_f1      = 21,               .vi_end_f2          = 22,
788 		.nbr_end        = 539,
789 
790 		.burst_ena      = false,
791 
792 		.filter_table = filter_table,
793 	},
794 
795 	{
796 		.name       = "1080p@30Hz",
797 		.clock		= 148500,
798 		.refresh	= 30000,
799 		.oversample     = 2,
800 		.component_only = true,
801 
802 		.hsync_end      = 88,               .hblank_end         = 235,
803 		.hblank_start   = 2155,             .htotal             = 2199,
804 
805 		.progressive	= true,		    .trilevel_sync = true,
806 
807 		.vsync_start_f1 = 8,               .vsync_start_f2     = 8,
808 		.vsync_len      = 10,
809 
810 		.veq_ena	= false,	.veq_start_f1	= 0,
811 		.veq_start_f2	= 0,		    .veq_len		= 0,
812 
813 		.vi_end_f1      = 44,               .vi_end_f2          = 44,
814 		.nbr_end        = 1079,
815 
816 		.burst_ena      = false,
817 
818 		.filter_table = filter_table,
819 	},
820 
821 	{
822 		.name       = "1080p@50Hz",
823 		.clock		= 148500,
824 		.refresh	= 50000,
825 		.oversample     = 1,
826 		.component_only = true,
827 
828 		.hsync_end      = 88,               .hblank_end         = 235,
829 		.hblank_start   = 2155,             .htotal             = 2639,
830 
831 		.progressive	= true,		    .trilevel_sync = true,
832 
833 		.vsync_start_f1 = 8,               .vsync_start_f2     = 8,
834 		.vsync_len      = 10,
835 
836 		.veq_ena	= false,	.veq_start_f1	= 0,
837 		.veq_start_f2	= 0,		    .veq_len		= 0,
838 
839 		.vi_end_f1      = 44,               .vi_end_f2          = 44,
840 		.nbr_end        = 1079,
841 
842 		.burst_ena      = false,
843 
844 		.filter_table = filter_table,
845 	},
846 
847 	{
848 		.name       = "1080p@60Hz",
849 		.clock		= 148500,
850 		.refresh	= 60000,
851 		.oversample     = 1,
852 		.component_only = true,
853 
854 		.hsync_end      = 88,               .hblank_end         = 235,
855 		.hblank_start   = 2155,             .htotal             = 2199,
856 
857 		.progressive	= true,		    .trilevel_sync = true,
858 
859 		.vsync_start_f1 = 8,               .vsync_start_f2     = 8,
860 		.vsync_len      = 10,
861 
862 		.veq_ena	= false,		    .veq_start_f1	= 0,
863 		.veq_start_f2	= 0,		    .veq_len		= 0,
864 
865 		.vi_end_f1      = 44,               .vi_end_f2          = 44,
866 		.nbr_end        = 1079,
867 
868 		.burst_ena      = false,
869 
870 		.filter_table = filter_table,
871 	},
872 };
873 
874 struct intel_tv_connector_state {
875 	struct drm_connector_state base;
876 
877 	/*
878 	 * May need to override the user margins for
879 	 * gen3 >1024 wide source vertical centering.
880 	 */
881 	struct {
882 		u16 top, bottom;
883 	} margins;
884 
885 	bool bypass_vfilter;
886 };
887 
888 #define to_intel_tv_connector_state(x) container_of(x, struct intel_tv_connector_state, base)
889 
890 static struct drm_connector_state *
891 intel_tv_connector_duplicate_state(struct drm_connector *connector)
892 {
893 	struct intel_tv_connector_state *state;
894 
895 	state = kmemdup(connector->state, sizeof(*state), GFP_KERNEL);
896 	if (!state)
897 		return NULL;
898 
899 	__drm_atomic_helper_connector_duplicate_state(connector, &state->base);
900 	return &state->base;
901 }
902 
903 static struct intel_tv *enc_to_tv(struct intel_encoder *encoder)
904 {
905 	return container_of(encoder, struct intel_tv, base);
906 }
907 
908 static struct intel_tv *intel_attached_tv(struct intel_connector *connector)
909 {
910 	return enc_to_tv(intel_attached_encoder(connector));
911 }
912 
913 static bool
914 intel_tv_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe)
915 {
916 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
917 	u32 tmp = intel_de_read(dev_priv, TV_CTL);
918 
919 	*pipe = (tmp & TV_ENC_PIPE_SEL_MASK) >> TV_ENC_PIPE_SEL_SHIFT;
920 
921 	return tmp & TV_ENC_ENABLE;
922 }
923 
924 static void
925 intel_enable_tv(struct intel_atomic_state *state,
926 		struct intel_encoder *encoder,
927 		const struct intel_crtc_state *pipe_config,
928 		const struct drm_connector_state *conn_state)
929 {
930 	struct drm_device *dev = encoder->base.dev;
931 	struct drm_i915_private *dev_priv = to_i915(dev);
932 
933 	/* Prevents vblank waits from timing out in intel_tv_detect_type() */
934 	intel_crtc_wait_for_next_vblank(to_intel_crtc(pipe_config->uapi.crtc));
935 
936 	intel_de_rmw(dev_priv, TV_CTL, 0, TV_ENC_ENABLE);
937 }
938 
939 static void
940 intel_disable_tv(struct intel_atomic_state *state,
941 		 struct intel_encoder *encoder,
942 		 const struct intel_crtc_state *old_crtc_state,
943 		 const struct drm_connector_state *old_conn_state)
944 {
945 	struct drm_device *dev = encoder->base.dev;
946 	struct drm_i915_private *dev_priv = to_i915(dev);
947 
948 	intel_de_rmw(dev_priv, TV_CTL, TV_ENC_ENABLE, 0);
949 }
950 
951 static const struct tv_mode *intel_tv_mode_find(const struct drm_connector_state *conn_state)
952 {
953 	int format = conn_state->tv.legacy_mode;
954 
955 	return &tv_modes[format];
956 }
957 
958 static enum drm_mode_status
959 intel_tv_mode_valid(struct drm_connector *connector,
960 		    struct drm_display_mode *mode)
961 {
962 	struct drm_i915_private *i915 = to_i915(connector->dev);
963 	const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state);
964 	int max_dotclk = i915->max_dotclk_freq;
965 	enum drm_mode_status status;
966 
967 	status = intel_cpu_transcoder_mode_valid(i915, mode);
968 	if (status != MODE_OK)
969 		return status;
970 
971 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
972 		return MODE_NO_DBLESCAN;
973 
974 	if (mode->clock > max_dotclk)
975 		return MODE_CLOCK_HIGH;
976 
977 	/* Ensure TV refresh is close to desired refresh */
978 	if (abs(tv_mode->refresh - drm_mode_vrefresh(mode) * 1000) >= 1000)
979 		return MODE_CLOCK_RANGE;
980 
981 	return MODE_OK;
982 }
983 
984 static int
985 intel_tv_mode_vdisplay(const struct tv_mode *tv_mode)
986 {
987 	if (tv_mode->progressive)
988 		return tv_mode->nbr_end + 1;
989 	else
990 		return 2 * (tv_mode->nbr_end + 1);
991 }
992 
993 static void
994 intel_tv_mode_to_mode(struct drm_display_mode *mode,
995 		      const struct tv_mode *tv_mode,
996 		      int clock)
997 {
998 	mode->clock = clock / (tv_mode->oversample >> !tv_mode->progressive);
999 
1000 	/*
1001 	 * tv_mode horizontal timings:
1002 	 *
1003 	 * hsync_end
1004 	 *    | hblank_end
1005 	 *    |    | hblank_start
1006 	 *    |    |       | htotal
1007 	 *    |     _______    |
1008 	 *     ____/       \___
1009 	 * \__/                \
1010 	 */
1011 	mode->hdisplay =
1012 		tv_mode->hblank_start - tv_mode->hblank_end;
1013 	mode->hsync_start = mode->hdisplay +
1014 		tv_mode->htotal - tv_mode->hblank_start;
1015 	mode->hsync_end = mode->hsync_start +
1016 		tv_mode->hsync_end;
1017 	mode->htotal = tv_mode->htotal + 1;
1018 
1019 	/*
1020 	 * tv_mode vertical timings:
1021 	 *
1022 	 * vsync_start
1023 	 *    | vsync_end
1024 	 *    |  | vi_end nbr_end
1025 	 *    |  |    |       |
1026 	 *    |  |     _______
1027 	 * \__    ____/       \
1028 	 *    \__/
1029 	 */
1030 	mode->vdisplay = intel_tv_mode_vdisplay(tv_mode);
1031 	if (tv_mode->progressive) {
1032 		mode->vsync_start = mode->vdisplay +
1033 			tv_mode->vsync_start_f1 + 1;
1034 		mode->vsync_end = mode->vsync_start +
1035 			tv_mode->vsync_len;
1036 		mode->vtotal = mode->vdisplay +
1037 			tv_mode->vi_end_f1 + 1;
1038 	} else {
1039 		mode->vsync_start = mode->vdisplay +
1040 			tv_mode->vsync_start_f1 + 1 +
1041 			tv_mode->vsync_start_f2 + 1;
1042 		mode->vsync_end = mode->vsync_start +
1043 			2 * tv_mode->vsync_len;
1044 		mode->vtotal = mode->vdisplay +
1045 			tv_mode->vi_end_f1 + 1 +
1046 			tv_mode->vi_end_f2 + 1;
1047 	}
1048 
1049 	/* TV has it's own notion of sync and other mode flags, so clear them. */
1050 	mode->flags = 0;
1051 
1052 	snprintf(mode->name, sizeof(mode->name),
1053 		 "%dx%d%c (%s)",
1054 		 mode->hdisplay, mode->vdisplay,
1055 		 tv_mode->progressive ? 'p' : 'i',
1056 		 tv_mode->name);
1057 }
1058 
1059 static void intel_tv_scale_mode_horiz(struct drm_display_mode *mode,
1060 				      int hdisplay, int left_margin,
1061 				      int right_margin)
1062 {
1063 	int hsync_start = mode->hsync_start - mode->hdisplay + right_margin;
1064 	int hsync_end = mode->hsync_end - mode->hdisplay + right_margin;
1065 	int new_htotal = mode->htotal * hdisplay /
1066 		(mode->hdisplay - left_margin - right_margin);
1067 
1068 	mode->clock = mode->clock * new_htotal / mode->htotal;
1069 
1070 	mode->hdisplay = hdisplay;
1071 	mode->hsync_start = hdisplay + hsync_start * new_htotal / mode->htotal;
1072 	mode->hsync_end = hdisplay + hsync_end * new_htotal / mode->htotal;
1073 	mode->htotal = new_htotal;
1074 }
1075 
1076 static void intel_tv_scale_mode_vert(struct drm_display_mode *mode,
1077 				     int vdisplay, int top_margin,
1078 				     int bottom_margin)
1079 {
1080 	int vsync_start = mode->vsync_start - mode->vdisplay + bottom_margin;
1081 	int vsync_end = mode->vsync_end - mode->vdisplay + bottom_margin;
1082 	int new_vtotal = mode->vtotal * vdisplay /
1083 		(mode->vdisplay - top_margin - bottom_margin);
1084 
1085 	mode->clock = mode->clock * new_vtotal / mode->vtotal;
1086 
1087 	mode->vdisplay = vdisplay;
1088 	mode->vsync_start = vdisplay + vsync_start * new_vtotal / mode->vtotal;
1089 	mode->vsync_end = vdisplay + vsync_end * new_vtotal / mode->vtotal;
1090 	mode->vtotal = new_vtotal;
1091 }
1092 
1093 static void
1094 intel_tv_get_config(struct intel_encoder *encoder,
1095 		    struct intel_crtc_state *pipe_config)
1096 {
1097 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1098 	struct drm_display_mode *adjusted_mode =
1099 		&pipe_config->hw.adjusted_mode;
1100 	struct drm_display_mode mode = {};
1101 	u32 tv_ctl, hctl1, hctl3, vctl1, vctl2, tmp;
1102 	struct tv_mode tv_mode = {};
1103 	int hdisplay = adjusted_mode->crtc_hdisplay;
1104 	int vdisplay = adjusted_mode->crtc_vdisplay;
1105 	int xsize, ysize, xpos, ypos;
1106 
1107 	pipe_config->output_types |= BIT(INTEL_OUTPUT_TVOUT);
1108 
1109 	tv_ctl = intel_de_read(dev_priv, TV_CTL);
1110 	hctl1 = intel_de_read(dev_priv, TV_H_CTL_1);
1111 	hctl3 = intel_de_read(dev_priv, TV_H_CTL_3);
1112 	vctl1 = intel_de_read(dev_priv, TV_V_CTL_1);
1113 	vctl2 = intel_de_read(dev_priv, TV_V_CTL_2);
1114 
1115 	tv_mode.htotal = (hctl1 & TV_HTOTAL_MASK) >> TV_HTOTAL_SHIFT;
1116 	tv_mode.hsync_end = (hctl1 & TV_HSYNC_END_MASK) >> TV_HSYNC_END_SHIFT;
1117 
1118 	tv_mode.hblank_start = (hctl3 & TV_HBLANK_START_MASK) >> TV_HBLANK_START_SHIFT;
1119 	tv_mode.hblank_end = (hctl3 & TV_HSYNC_END_MASK) >> TV_HBLANK_END_SHIFT;
1120 
1121 	tv_mode.nbr_end = (vctl1 & TV_NBR_END_MASK) >> TV_NBR_END_SHIFT;
1122 	tv_mode.vi_end_f1 = (vctl1 & TV_VI_END_F1_MASK) >> TV_VI_END_F1_SHIFT;
1123 	tv_mode.vi_end_f2 = (vctl1 & TV_VI_END_F2_MASK) >> TV_VI_END_F2_SHIFT;
1124 
1125 	tv_mode.vsync_len = (vctl2 & TV_VSYNC_LEN_MASK) >> TV_VSYNC_LEN_SHIFT;
1126 	tv_mode.vsync_start_f1 = (vctl2 & TV_VSYNC_START_F1_MASK) >> TV_VSYNC_START_F1_SHIFT;
1127 	tv_mode.vsync_start_f2 = (vctl2 & TV_VSYNC_START_F2_MASK) >> TV_VSYNC_START_F2_SHIFT;
1128 
1129 	tv_mode.clock = pipe_config->port_clock;
1130 
1131 	tv_mode.progressive = tv_ctl & TV_PROGRESSIVE;
1132 
1133 	switch (tv_ctl & TV_OVERSAMPLE_MASK) {
1134 	case TV_OVERSAMPLE_8X:
1135 		tv_mode.oversample = 8;
1136 		break;
1137 	case TV_OVERSAMPLE_4X:
1138 		tv_mode.oversample = 4;
1139 		break;
1140 	case TV_OVERSAMPLE_2X:
1141 		tv_mode.oversample = 2;
1142 		break;
1143 	default:
1144 		tv_mode.oversample = 1;
1145 		break;
1146 	}
1147 
1148 	tmp = intel_de_read(dev_priv, TV_WIN_POS);
1149 	xpos = tmp >> 16;
1150 	ypos = tmp & 0xffff;
1151 
1152 	tmp = intel_de_read(dev_priv, TV_WIN_SIZE);
1153 	xsize = tmp >> 16;
1154 	ysize = tmp & 0xffff;
1155 
1156 	intel_tv_mode_to_mode(&mode, &tv_mode, pipe_config->port_clock);
1157 
1158 	drm_dbg_kms(&dev_priv->drm, "TV mode: " DRM_MODE_FMT "\n",
1159 		    DRM_MODE_ARG(&mode));
1160 
1161 	intel_tv_scale_mode_horiz(&mode, hdisplay,
1162 				  xpos, mode.hdisplay - xsize - xpos);
1163 	intel_tv_scale_mode_vert(&mode, vdisplay,
1164 				 ypos, mode.vdisplay - ysize - ypos);
1165 
1166 	adjusted_mode->crtc_clock = mode.clock;
1167 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
1168 		adjusted_mode->crtc_clock /= 2;
1169 
1170 	/* pixel counter doesn't work on i965gm TV output */
1171 	if (IS_I965GM(dev_priv))
1172 		pipe_config->mode_flags |=
1173 			I915_MODE_FLAG_USE_SCANLINE_COUNTER;
1174 }
1175 
1176 static bool intel_tv_source_too_wide(struct drm_i915_private *dev_priv,
1177 				     int hdisplay)
1178 {
1179 	return DISPLAY_VER(dev_priv) == 3 && hdisplay > 1024;
1180 }
1181 
1182 static bool intel_tv_vert_scaling(const struct drm_display_mode *tv_mode,
1183 				  const struct drm_connector_state *conn_state,
1184 				  int vdisplay)
1185 {
1186 	return tv_mode->crtc_vdisplay -
1187 		conn_state->tv.margins.top -
1188 		conn_state->tv.margins.bottom !=
1189 		vdisplay;
1190 }
1191 
1192 static int
1193 intel_tv_compute_config(struct intel_encoder *encoder,
1194 			struct intel_crtc_state *pipe_config,
1195 			struct drm_connector_state *conn_state)
1196 {
1197 	struct intel_atomic_state *state =
1198 		to_intel_atomic_state(pipe_config->uapi.state);
1199 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
1200 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1201 	struct intel_tv_connector_state *tv_conn_state =
1202 		to_intel_tv_connector_state(conn_state);
1203 	const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state);
1204 	struct drm_display_mode *adjusted_mode =
1205 		&pipe_config->hw.adjusted_mode;
1206 	int hdisplay = adjusted_mode->crtc_hdisplay;
1207 	int vdisplay = adjusted_mode->crtc_vdisplay;
1208 	int ret;
1209 
1210 	if (!tv_mode)
1211 		return -EINVAL;
1212 
1213 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
1214 		return -EINVAL;
1215 
1216 	pipe_config->sink_format = INTEL_OUTPUT_FORMAT_RGB;
1217 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
1218 
1219 	drm_dbg_kms(&dev_priv->drm, "forcing bpc to 8 for TV\n");
1220 	pipe_config->pipe_bpp = 8*3;
1221 
1222 	pipe_config->port_clock = tv_mode->clock;
1223 
1224 	ret = intel_dpll_crtc_compute_clock(state, crtc);
1225 	if (ret)
1226 		return ret;
1227 
1228 	pipe_config->clock_set = true;
1229 
1230 	intel_tv_mode_to_mode(adjusted_mode, tv_mode, pipe_config->port_clock);
1231 	drm_mode_set_crtcinfo(adjusted_mode, 0);
1232 
1233 	if (intel_tv_source_too_wide(dev_priv, hdisplay) ||
1234 	    !intel_tv_vert_scaling(adjusted_mode, conn_state, vdisplay)) {
1235 		int extra, top, bottom;
1236 
1237 		extra = adjusted_mode->crtc_vdisplay - vdisplay;
1238 
1239 		if (extra < 0) {
1240 			drm_dbg_kms(&dev_priv->drm,
1241 				    "No vertical scaling for >1024 pixel wide modes\n");
1242 			return -EINVAL;
1243 		}
1244 
1245 		/* Need to turn off the vertical filter and center the image */
1246 
1247 		/* Attempt to maintain the relative sizes of the margins */
1248 		top = conn_state->tv.margins.top;
1249 		bottom = conn_state->tv.margins.bottom;
1250 
1251 		if (top + bottom)
1252 			top = extra * top / (top + bottom);
1253 		else
1254 			top = extra / 2;
1255 		bottom = extra - top;
1256 
1257 		tv_conn_state->margins.top = top;
1258 		tv_conn_state->margins.bottom = bottom;
1259 
1260 		tv_conn_state->bypass_vfilter = true;
1261 
1262 		if (!tv_mode->progressive) {
1263 			adjusted_mode->clock /= 2;
1264 			adjusted_mode->crtc_clock /= 2;
1265 			adjusted_mode->flags |= DRM_MODE_FLAG_INTERLACE;
1266 		}
1267 	} else {
1268 		tv_conn_state->margins.top = conn_state->tv.margins.top;
1269 		tv_conn_state->margins.bottom = conn_state->tv.margins.bottom;
1270 
1271 		tv_conn_state->bypass_vfilter = false;
1272 	}
1273 
1274 	drm_dbg_kms(&dev_priv->drm, "TV mode: " DRM_MODE_FMT "\n",
1275 		    DRM_MODE_ARG(adjusted_mode));
1276 
1277 	/*
1278 	 * The pipe scanline counter behaviour looks as follows when
1279 	 * using the TV encoder:
1280 	 *
1281 	 * time ->
1282 	 *
1283 	 * dsl=vtotal-1       |             |
1284 	 *                   ||            ||
1285 	 *               ___| |        ___| |
1286 	 *              /     |       /     |
1287 	 *             /      |      /      |
1288 	 * dsl=0   ___/       |_____/       |
1289 	 *        | | |  |  | |
1290 	 *         ^ ^ ^   ^ ^
1291 	 *         | | |   | pipe vblank/first part of tv vblank
1292 	 *         | | |   bottom margin
1293 	 *         | | active
1294 	 *         | top margin
1295 	 *         remainder of tv vblank
1296 	 *
1297 	 * When the TV encoder is used the pipe wants to run faster
1298 	 * than expected rate. During the active portion the TV
1299 	 * encoder stalls the pipe every few lines to keep it in
1300 	 * check. When the TV encoder reaches the bottom margin the
1301 	 * pipe simply stops. Once we reach the TV vblank the pipe is
1302 	 * no longer stalled and it runs at the max rate (apparently
1303 	 * oversample clock on gen3, cdclk on gen4). Once the pipe
1304 	 * reaches the pipe vtotal the pipe stops for the remainder
1305 	 * of the TV vblank/top margin. The pipe starts up again when
1306 	 * the TV encoder exits the top margin.
1307 	 *
1308 	 * To avoid huge hassles for vblank timestamping we scale
1309 	 * the pipe timings as if the pipe always runs at the average
1310 	 * rate it maintains during the active period. This also
1311 	 * gives us a reasonable guesstimate as to the pixel rate.
1312 	 * Due to the variation in the actual pipe speed the scanline
1313 	 * counter will give us slightly erroneous results during the
1314 	 * TV vblank/margins. But since vtotal was selected such that
1315 	 * it matches the average rate of the pipe during the active
1316 	 * portion the error shouldn't cause any serious grief to
1317 	 * vblank timestamps.
1318 	 *
1319 	 * For posterity here is the empirically derived formula
1320 	 * that gives us the maximum length of the pipe vblank
1321 	 * we can use without causing display corruption. Following
1322 	 * this would allow us to have a ticking scanline counter
1323 	 * everywhere except during the bottom margin (there the
1324 	 * pipe always stops). Ie. this would eliminate the second
1325 	 * flat portion of the above graph. However this would also
1326 	 * complicate vblank timestamping as the pipe vtotal would
1327 	 * no longer match the average rate the pipe runs at during
1328 	 * the active portion. Hence following this formula seems
1329 	 * more trouble that it's worth.
1330 	 *
1331 	 * if (DISPLAY_VER(dev_priv) == 4) {
1332 	 *	num = cdclk * (tv_mode->oversample >> !tv_mode->progressive);
1333 	 *	den = tv_mode->clock;
1334 	 * } else {
1335 	 *	num = tv_mode->oversample >> !tv_mode->progressive;
1336 	 *	den = 1;
1337 	 * }
1338 	 * max_pipe_vblank_len ~=
1339 	 *	(num * tv_htotal * (tv_vblank_len + top_margin)) /
1340 	 *	(den * pipe_htotal);
1341 	 */
1342 	intel_tv_scale_mode_horiz(adjusted_mode, hdisplay,
1343 				  conn_state->tv.margins.left,
1344 				  conn_state->tv.margins.right);
1345 	intel_tv_scale_mode_vert(adjusted_mode, vdisplay,
1346 				 tv_conn_state->margins.top,
1347 				 tv_conn_state->margins.bottom);
1348 	drm_mode_set_crtcinfo(adjusted_mode, 0);
1349 	adjusted_mode->name[0] = '\0';
1350 
1351 	/* pixel counter doesn't work on i965gm TV output */
1352 	if (IS_I965GM(dev_priv))
1353 		pipe_config->mode_flags |=
1354 			I915_MODE_FLAG_USE_SCANLINE_COUNTER;
1355 
1356 	return 0;
1357 }
1358 
1359 static void
1360 set_tv_mode_timings(struct drm_i915_private *dev_priv,
1361 		    const struct tv_mode *tv_mode,
1362 		    bool burst_ena)
1363 {
1364 	u32 hctl1, hctl2, hctl3;
1365 	u32 vctl1, vctl2, vctl3, vctl4, vctl5, vctl6, vctl7;
1366 
1367 	hctl1 = (tv_mode->hsync_end << TV_HSYNC_END_SHIFT) |
1368 		(tv_mode->htotal << TV_HTOTAL_SHIFT);
1369 
1370 	hctl2 = (tv_mode->hburst_start << 16) |
1371 		(tv_mode->hburst_len << TV_HBURST_LEN_SHIFT);
1372 
1373 	if (burst_ena)
1374 		hctl2 |= TV_BURST_ENA;
1375 
1376 	hctl3 = (tv_mode->hblank_start << TV_HBLANK_START_SHIFT) |
1377 		(tv_mode->hblank_end << TV_HBLANK_END_SHIFT);
1378 
1379 	vctl1 = (tv_mode->nbr_end << TV_NBR_END_SHIFT) |
1380 		(tv_mode->vi_end_f1 << TV_VI_END_F1_SHIFT) |
1381 		(tv_mode->vi_end_f2 << TV_VI_END_F2_SHIFT);
1382 
1383 	vctl2 = (tv_mode->vsync_len << TV_VSYNC_LEN_SHIFT) |
1384 		(tv_mode->vsync_start_f1 << TV_VSYNC_START_F1_SHIFT) |
1385 		(tv_mode->vsync_start_f2 << TV_VSYNC_START_F2_SHIFT);
1386 
1387 	vctl3 = (tv_mode->veq_len << TV_VEQ_LEN_SHIFT) |
1388 		(tv_mode->veq_start_f1 << TV_VEQ_START_F1_SHIFT) |
1389 		(tv_mode->veq_start_f2 << TV_VEQ_START_F2_SHIFT);
1390 
1391 	if (tv_mode->veq_ena)
1392 		vctl3 |= TV_EQUAL_ENA;
1393 
1394 	vctl4 = (tv_mode->vburst_start_f1 << TV_VBURST_START_F1_SHIFT) |
1395 		(tv_mode->vburst_end_f1 << TV_VBURST_END_F1_SHIFT);
1396 
1397 	vctl5 = (tv_mode->vburst_start_f2 << TV_VBURST_START_F2_SHIFT) |
1398 		(tv_mode->vburst_end_f2 << TV_VBURST_END_F2_SHIFT);
1399 
1400 	vctl6 = (tv_mode->vburst_start_f3 << TV_VBURST_START_F3_SHIFT) |
1401 		(tv_mode->vburst_end_f3 << TV_VBURST_END_F3_SHIFT);
1402 
1403 	vctl7 = (tv_mode->vburst_start_f4 << TV_VBURST_START_F4_SHIFT) |
1404 		(tv_mode->vburst_end_f4 << TV_VBURST_END_F4_SHIFT);
1405 
1406 	intel_de_write(dev_priv, TV_H_CTL_1, hctl1);
1407 	intel_de_write(dev_priv, TV_H_CTL_2, hctl2);
1408 	intel_de_write(dev_priv, TV_H_CTL_3, hctl3);
1409 	intel_de_write(dev_priv, TV_V_CTL_1, vctl1);
1410 	intel_de_write(dev_priv, TV_V_CTL_2, vctl2);
1411 	intel_de_write(dev_priv, TV_V_CTL_3, vctl3);
1412 	intel_de_write(dev_priv, TV_V_CTL_4, vctl4);
1413 	intel_de_write(dev_priv, TV_V_CTL_5, vctl5);
1414 	intel_de_write(dev_priv, TV_V_CTL_6, vctl6);
1415 	intel_de_write(dev_priv, TV_V_CTL_7, vctl7);
1416 }
1417 
1418 static void set_color_conversion(struct drm_i915_private *dev_priv,
1419 				 const struct color_conversion *color_conversion)
1420 {
1421 	intel_de_write(dev_priv, TV_CSC_Y,
1422 		       (color_conversion->ry << 16) | color_conversion->gy);
1423 	intel_de_write(dev_priv, TV_CSC_Y2,
1424 		       (color_conversion->by << 16) | color_conversion->ay);
1425 	intel_de_write(dev_priv, TV_CSC_U,
1426 		       (color_conversion->ru << 16) | color_conversion->gu);
1427 	intel_de_write(dev_priv, TV_CSC_U2,
1428 		       (color_conversion->bu << 16) | color_conversion->au);
1429 	intel_de_write(dev_priv, TV_CSC_V,
1430 		       (color_conversion->rv << 16) | color_conversion->gv);
1431 	intel_de_write(dev_priv, TV_CSC_V2,
1432 		       (color_conversion->bv << 16) | color_conversion->av);
1433 }
1434 
1435 static void intel_tv_pre_enable(struct intel_atomic_state *state,
1436 				struct intel_encoder *encoder,
1437 				const struct intel_crtc_state *pipe_config,
1438 				const struct drm_connector_state *conn_state)
1439 {
1440 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1441 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
1442 	struct intel_tv *intel_tv = enc_to_tv(encoder);
1443 	const struct intel_tv_connector_state *tv_conn_state =
1444 		to_intel_tv_connector_state(conn_state);
1445 	const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state);
1446 	u32 tv_ctl, tv_filter_ctl;
1447 	u32 scctl1, scctl2, scctl3;
1448 	int i, j;
1449 	const struct video_levels *video_levels;
1450 	const struct color_conversion *color_conversion;
1451 	bool burst_ena;
1452 	int xpos, ypos;
1453 	unsigned int xsize, ysize;
1454 
1455 	tv_ctl = intel_de_read(dev_priv, TV_CTL);
1456 	tv_ctl &= TV_CTL_SAVE;
1457 
1458 	switch (intel_tv->type) {
1459 	default:
1460 	case DRM_MODE_CONNECTOR_Unknown:
1461 	case DRM_MODE_CONNECTOR_Composite:
1462 		tv_ctl |= TV_ENC_OUTPUT_COMPOSITE;
1463 		video_levels = tv_mode->composite_levels;
1464 		color_conversion = tv_mode->composite_color;
1465 		burst_ena = tv_mode->burst_ena;
1466 		break;
1467 	case DRM_MODE_CONNECTOR_Component:
1468 		tv_ctl |= TV_ENC_OUTPUT_COMPONENT;
1469 		video_levels = &component_levels;
1470 		if (tv_mode->burst_ena)
1471 			color_conversion = &sdtv_csc_yprpb;
1472 		else
1473 			color_conversion = &hdtv_csc_yprpb;
1474 		burst_ena = false;
1475 		break;
1476 	case DRM_MODE_CONNECTOR_SVIDEO:
1477 		tv_ctl |= TV_ENC_OUTPUT_SVIDEO;
1478 		video_levels = tv_mode->svideo_levels;
1479 		color_conversion = tv_mode->svideo_color;
1480 		burst_ena = tv_mode->burst_ena;
1481 		break;
1482 	}
1483 
1484 	tv_ctl |= TV_ENC_PIPE_SEL(crtc->pipe);
1485 
1486 	switch (tv_mode->oversample) {
1487 	case 8:
1488 		tv_ctl |= TV_OVERSAMPLE_8X;
1489 		break;
1490 	case 4:
1491 		tv_ctl |= TV_OVERSAMPLE_4X;
1492 		break;
1493 	case 2:
1494 		tv_ctl |= TV_OVERSAMPLE_2X;
1495 		break;
1496 	default:
1497 		tv_ctl |= TV_OVERSAMPLE_NONE;
1498 		break;
1499 	}
1500 
1501 	if (tv_mode->progressive)
1502 		tv_ctl |= TV_PROGRESSIVE;
1503 	if (tv_mode->trilevel_sync)
1504 		tv_ctl |= TV_TRILEVEL_SYNC;
1505 	if (tv_mode->pal_burst)
1506 		tv_ctl |= TV_PAL_BURST;
1507 
1508 	scctl1 = 0;
1509 	if (tv_mode->dda1_inc)
1510 		scctl1 |= TV_SC_DDA1_EN;
1511 	if (tv_mode->dda2_inc)
1512 		scctl1 |= TV_SC_DDA2_EN;
1513 	if (tv_mode->dda3_inc)
1514 		scctl1 |= TV_SC_DDA3_EN;
1515 	scctl1 |= tv_mode->sc_reset;
1516 	if (video_levels)
1517 		scctl1 |= video_levels->burst << TV_BURST_LEVEL_SHIFT;
1518 	scctl1 |= tv_mode->dda1_inc << TV_SCDDA1_INC_SHIFT;
1519 
1520 	scctl2 = tv_mode->dda2_size << TV_SCDDA2_SIZE_SHIFT |
1521 		tv_mode->dda2_inc << TV_SCDDA2_INC_SHIFT;
1522 
1523 	scctl3 = tv_mode->dda3_size << TV_SCDDA3_SIZE_SHIFT |
1524 		tv_mode->dda3_inc << TV_SCDDA3_INC_SHIFT;
1525 
1526 	/* Enable two fixes for the chips that need them. */
1527 	if (IS_I915GM(dev_priv))
1528 		tv_ctl |= TV_ENC_C0_FIX | TV_ENC_SDP_FIX;
1529 
1530 	set_tv_mode_timings(dev_priv, tv_mode, burst_ena);
1531 
1532 	intel_de_write(dev_priv, TV_SC_CTL_1, scctl1);
1533 	intel_de_write(dev_priv, TV_SC_CTL_2, scctl2);
1534 	intel_de_write(dev_priv, TV_SC_CTL_3, scctl3);
1535 
1536 	set_color_conversion(dev_priv, color_conversion);
1537 
1538 	if (DISPLAY_VER(dev_priv) >= 4)
1539 		intel_de_write(dev_priv, TV_CLR_KNOBS, 0x00404000);
1540 	else
1541 		intel_de_write(dev_priv, TV_CLR_KNOBS, 0x00606000);
1542 
1543 	if (video_levels)
1544 		intel_de_write(dev_priv, TV_CLR_LEVEL,
1545 			       ((video_levels->black << TV_BLACK_LEVEL_SHIFT) | (video_levels->blank << TV_BLANK_LEVEL_SHIFT)));
1546 
1547 	assert_transcoder_disabled(dev_priv, pipe_config->cpu_transcoder);
1548 
1549 	/* Filter ctl must be set before TV_WIN_SIZE */
1550 	tv_filter_ctl = TV_AUTO_SCALE;
1551 	if (tv_conn_state->bypass_vfilter)
1552 		tv_filter_ctl |= TV_V_FILTER_BYPASS;
1553 	intel_de_write(dev_priv, TV_FILTER_CTL_1, tv_filter_ctl);
1554 
1555 	xsize = tv_mode->hblank_start - tv_mode->hblank_end;
1556 	ysize = intel_tv_mode_vdisplay(tv_mode);
1557 
1558 	xpos = conn_state->tv.margins.left;
1559 	ypos = tv_conn_state->margins.top;
1560 	xsize -= (conn_state->tv.margins.left +
1561 		  conn_state->tv.margins.right);
1562 	ysize -= (tv_conn_state->margins.top +
1563 		  tv_conn_state->margins.bottom);
1564 	intel_de_write(dev_priv, TV_WIN_POS, (xpos << 16) | ypos);
1565 	intel_de_write(dev_priv, TV_WIN_SIZE, (xsize << 16) | ysize);
1566 
1567 	j = 0;
1568 	for (i = 0; i < 60; i++)
1569 		intel_de_write(dev_priv, TV_H_LUMA(i),
1570 			       tv_mode->filter_table[j++]);
1571 	for (i = 0; i < 60; i++)
1572 		intel_de_write(dev_priv, TV_H_CHROMA(i),
1573 			       tv_mode->filter_table[j++]);
1574 	for (i = 0; i < 43; i++)
1575 		intel_de_write(dev_priv, TV_V_LUMA(i),
1576 			       tv_mode->filter_table[j++]);
1577 	for (i = 0; i < 43; i++)
1578 		intel_de_write(dev_priv, TV_V_CHROMA(i),
1579 			       tv_mode->filter_table[j++]);
1580 	intel_de_write(dev_priv, TV_DAC,
1581 		       intel_de_read(dev_priv, TV_DAC) & TV_DAC_SAVE);
1582 	intel_de_write(dev_priv, TV_CTL, tv_ctl);
1583 }
1584 
1585 static int
1586 intel_tv_detect_type(struct intel_tv *intel_tv,
1587 		      struct drm_connector *connector)
1588 {
1589 	struct intel_crtc *crtc = to_intel_crtc(connector->state->crtc);
1590 	struct drm_device *dev = connector->dev;
1591 	struct drm_i915_private *dev_priv = to_i915(dev);
1592 	u32 tv_ctl, save_tv_ctl;
1593 	u32 tv_dac, save_tv_dac;
1594 	int type;
1595 
1596 	/* Disable TV interrupts around load detect or we'll recurse */
1597 	if (connector->polled & DRM_CONNECTOR_POLL_HPD) {
1598 		spin_lock_irq(&dev_priv->irq_lock);
1599 		i915_disable_pipestat(dev_priv, 0,
1600 				      PIPE_HOTPLUG_INTERRUPT_STATUS |
1601 				      PIPE_HOTPLUG_TV_INTERRUPT_STATUS);
1602 		spin_unlock_irq(&dev_priv->irq_lock);
1603 	}
1604 
1605 	save_tv_dac = tv_dac = intel_de_read(dev_priv, TV_DAC);
1606 	save_tv_ctl = tv_ctl = intel_de_read(dev_priv, TV_CTL);
1607 
1608 	/* Poll for TV detection */
1609 	tv_ctl &= ~(TV_ENC_ENABLE | TV_ENC_PIPE_SEL_MASK | TV_TEST_MODE_MASK);
1610 	tv_ctl |= TV_TEST_MODE_MONITOR_DETECT;
1611 	tv_ctl |= TV_ENC_PIPE_SEL(crtc->pipe);
1612 
1613 	tv_dac &= ~(TVDAC_SENSE_MASK | DAC_A_MASK | DAC_B_MASK | DAC_C_MASK);
1614 	tv_dac |= (TVDAC_STATE_CHG_EN |
1615 		   TVDAC_A_SENSE_CTL |
1616 		   TVDAC_B_SENSE_CTL |
1617 		   TVDAC_C_SENSE_CTL |
1618 		   DAC_CTL_OVERRIDE |
1619 		   DAC_A_0_7_V |
1620 		   DAC_B_0_7_V |
1621 		   DAC_C_0_7_V);
1622 
1623 
1624 	/*
1625 	 * The TV sense state should be cleared to zero on cantiga platform. Otherwise
1626 	 * the TV is misdetected. This is hardware requirement.
1627 	 */
1628 	if (IS_GM45(dev_priv))
1629 		tv_dac &= ~(TVDAC_STATE_CHG_EN | TVDAC_A_SENSE_CTL |
1630 			    TVDAC_B_SENSE_CTL | TVDAC_C_SENSE_CTL);
1631 
1632 	intel_de_write(dev_priv, TV_CTL, tv_ctl);
1633 	intel_de_write(dev_priv, TV_DAC, tv_dac);
1634 	intel_de_posting_read(dev_priv, TV_DAC);
1635 
1636 	intel_crtc_wait_for_next_vblank(crtc);
1637 
1638 	type = -1;
1639 	tv_dac = intel_de_read(dev_priv, TV_DAC);
1640 	drm_dbg_kms(&dev_priv->drm, "TV detected: %x, %x\n", tv_ctl, tv_dac);
1641 	/*
1642 	 *  A B C
1643 	 *  0 1 1 Composite
1644 	 *  1 0 X svideo
1645 	 *  0 0 0 Component
1646 	 */
1647 	if ((tv_dac & TVDAC_SENSE_MASK) == (TVDAC_B_SENSE | TVDAC_C_SENSE)) {
1648 		drm_dbg_kms(&dev_priv->drm,
1649 			    "Detected Composite TV connection\n");
1650 		type = DRM_MODE_CONNECTOR_Composite;
1651 	} else if ((tv_dac & (TVDAC_A_SENSE|TVDAC_B_SENSE)) == TVDAC_A_SENSE) {
1652 		drm_dbg_kms(&dev_priv->drm,
1653 			    "Detected S-Video TV connection\n");
1654 		type = DRM_MODE_CONNECTOR_SVIDEO;
1655 	} else if ((tv_dac & TVDAC_SENSE_MASK) == 0) {
1656 		drm_dbg_kms(&dev_priv->drm,
1657 			    "Detected Component TV connection\n");
1658 		type = DRM_MODE_CONNECTOR_Component;
1659 	} else {
1660 		drm_dbg_kms(&dev_priv->drm, "Unrecognised TV connection\n");
1661 		type = -1;
1662 	}
1663 
1664 	intel_de_write(dev_priv, TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN);
1665 	intel_de_write(dev_priv, TV_CTL, save_tv_ctl);
1666 	intel_de_posting_read(dev_priv, TV_CTL);
1667 
1668 	/* For unknown reasons the hw barfs if we don't do this vblank wait. */
1669 	intel_crtc_wait_for_next_vblank(crtc);
1670 
1671 	/* Restore interrupt config */
1672 	if (connector->polled & DRM_CONNECTOR_POLL_HPD) {
1673 		spin_lock_irq(&dev_priv->irq_lock);
1674 		i915_enable_pipestat(dev_priv, 0,
1675 				     PIPE_HOTPLUG_INTERRUPT_STATUS |
1676 				     PIPE_HOTPLUG_TV_INTERRUPT_STATUS);
1677 		spin_unlock_irq(&dev_priv->irq_lock);
1678 	}
1679 
1680 	return type;
1681 }
1682 
1683 /*
1684  * Here we set accurate tv format according to connector type
1685  * i.e Component TV should not be assigned by NTSC or PAL
1686  */
1687 static void intel_tv_find_better_format(struct drm_connector *connector)
1688 {
1689 	struct intel_tv *intel_tv = intel_attached_tv(to_intel_connector(connector));
1690 	const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state);
1691 	int i;
1692 
1693 	/* Component supports everything so we can keep the current mode */
1694 	if (intel_tv->type == DRM_MODE_CONNECTOR_Component)
1695 		return;
1696 
1697 	/* If the current mode is fine don't change it */
1698 	if (!tv_mode->component_only)
1699 		return;
1700 
1701 	for (i = 0; i < ARRAY_SIZE(tv_modes); i++) {
1702 		tv_mode = &tv_modes[i];
1703 
1704 		if (!tv_mode->component_only)
1705 			break;
1706 	}
1707 
1708 	connector->state->tv.legacy_mode = i;
1709 }
1710 
1711 static int
1712 intel_tv_detect(struct drm_connector *connector,
1713 		struct drm_modeset_acquire_ctx *ctx,
1714 		bool force)
1715 {
1716 	struct drm_i915_private *i915 = to_i915(connector->dev);
1717 	struct intel_tv *intel_tv = intel_attached_tv(to_intel_connector(connector));
1718 	enum drm_connector_status status;
1719 	int type;
1720 
1721 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] force=%d\n",
1722 		    connector->base.id, connector->name, force);
1723 
1724 	if (!intel_display_device_enabled(i915))
1725 		return connector_status_disconnected;
1726 
1727 	if (!intel_display_driver_check_access(i915))
1728 		return connector->status;
1729 
1730 	if (force) {
1731 		struct drm_atomic_state *state;
1732 
1733 		state = intel_load_detect_get_pipe(connector, ctx);
1734 		if (IS_ERR(state))
1735 			return PTR_ERR(state);
1736 
1737 		if (state) {
1738 			type = intel_tv_detect_type(intel_tv, connector);
1739 			intel_load_detect_release_pipe(connector, state, ctx);
1740 			status = type < 0 ?
1741 				connector_status_disconnected :
1742 				connector_status_connected;
1743 		} else {
1744 			status = connector_status_unknown;
1745 		}
1746 
1747 		if (status == connector_status_connected) {
1748 			intel_tv->type = type;
1749 			intel_tv_find_better_format(connector);
1750 		}
1751 
1752 		return status;
1753 	} else
1754 		return connector->status;
1755 }
1756 
1757 static const struct input_res {
1758 	u16 w, h;
1759 } input_res_table[] = {
1760 	{ 640, 480 },
1761 	{ 800, 600 },
1762 	{ 1024, 768 },
1763 	{ 1280, 1024 },
1764 	{ 848, 480 },
1765 	{ 1280, 720 },
1766 	{ 1920, 1080 },
1767 };
1768 
1769 /* Choose preferred mode according to line number of TV format */
1770 static bool
1771 intel_tv_is_preferred_mode(const struct drm_display_mode *mode,
1772 			   const struct tv_mode *tv_mode)
1773 {
1774 	int vdisplay = intel_tv_mode_vdisplay(tv_mode);
1775 
1776 	/* prefer 480 line modes for all SD TV modes */
1777 	if (vdisplay <= 576)
1778 		vdisplay = 480;
1779 
1780 	return vdisplay == mode->vdisplay;
1781 }
1782 
1783 static void
1784 intel_tv_set_mode_type(struct drm_display_mode *mode,
1785 		       const struct tv_mode *tv_mode)
1786 {
1787 	mode->type = DRM_MODE_TYPE_DRIVER;
1788 
1789 	if (intel_tv_is_preferred_mode(mode, tv_mode))
1790 		mode->type |= DRM_MODE_TYPE_PREFERRED;
1791 }
1792 
1793 static int
1794 intel_tv_get_modes(struct drm_connector *connector)
1795 {
1796 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
1797 	const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state);
1798 	int i, count = 0;
1799 
1800 	for (i = 0; i < ARRAY_SIZE(input_res_table); i++) {
1801 		const struct input_res *input = &input_res_table[i];
1802 		struct drm_display_mode *mode;
1803 
1804 		if (input->w > 1024 &&
1805 		    !tv_mode->progressive &&
1806 		    !tv_mode->component_only)
1807 			continue;
1808 
1809 		/* no vertical scaling with wide sources on gen3 */
1810 		if (DISPLAY_VER(dev_priv) == 3 && input->w > 1024 &&
1811 		    input->h > intel_tv_mode_vdisplay(tv_mode))
1812 			continue;
1813 
1814 		mode = drm_mode_create(connector->dev);
1815 		if (!mode)
1816 			continue;
1817 
1818 		/*
1819 		 * We take the TV mode and scale it to look
1820 		 * like it had the expected h/vdisplay. This
1821 		 * provides the most information to userspace
1822 		 * about the actual timings of the mode. We
1823 		 * do ignore the margins though.
1824 		 */
1825 		intel_tv_mode_to_mode(mode, tv_mode, tv_mode->clock);
1826 		if (count == 0) {
1827 			drm_dbg_kms(&dev_priv->drm, "TV mode: " DRM_MODE_FMT "\n",
1828 				    DRM_MODE_ARG(mode));
1829 		}
1830 		intel_tv_scale_mode_horiz(mode, input->w, 0, 0);
1831 		intel_tv_scale_mode_vert(mode, input->h, 0, 0);
1832 		intel_tv_set_mode_type(mode, tv_mode);
1833 
1834 		drm_mode_set_name(mode);
1835 
1836 		drm_mode_probed_add(connector, mode);
1837 		count++;
1838 	}
1839 
1840 	return count;
1841 }
1842 
1843 static const struct drm_connector_funcs intel_tv_connector_funcs = {
1844 	.late_register = intel_connector_register,
1845 	.early_unregister = intel_connector_unregister,
1846 	.destroy = intel_connector_destroy,
1847 	.fill_modes = drm_helper_probe_single_connector_modes,
1848 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1849 	.atomic_duplicate_state = intel_tv_connector_duplicate_state,
1850 };
1851 
1852 static int intel_tv_atomic_check(struct drm_connector *connector,
1853 				 struct drm_atomic_state *state)
1854 {
1855 	struct drm_connector_state *new_state;
1856 	struct drm_crtc_state *new_crtc_state;
1857 	struct drm_connector_state *old_state;
1858 
1859 	new_state = drm_atomic_get_new_connector_state(state, connector);
1860 	if (!new_state->crtc)
1861 		return 0;
1862 
1863 	old_state = drm_atomic_get_old_connector_state(state, connector);
1864 	new_crtc_state = drm_atomic_get_new_crtc_state(state, new_state->crtc);
1865 
1866 	if (old_state->tv.legacy_mode != new_state->tv.legacy_mode ||
1867 	    old_state->tv.margins.left != new_state->tv.margins.left ||
1868 	    old_state->tv.margins.right != new_state->tv.margins.right ||
1869 	    old_state->tv.margins.top != new_state->tv.margins.top ||
1870 	    old_state->tv.margins.bottom != new_state->tv.margins.bottom) {
1871 		/* Force a modeset. */
1872 
1873 		new_crtc_state->connectors_changed = true;
1874 	}
1875 
1876 	return 0;
1877 }
1878 
1879 static const struct drm_connector_helper_funcs intel_tv_connector_helper_funcs = {
1880 	.detect_ctx = intel_tv_detect,
1881 	.mode_valid = intel_tv_mode_valid,
1882 	.get_modes = intel_tv_get_modes,
1883 	.atomic_check = intel_tv_atomic_check,
1884 };
1885 
1886 static const struct drm_encoder_funcs intel_tv_enc_funcs = {
1887 	.destroy = intel_encoder_destroy,
1888 };
1889 
1890 static void intel_tv_add_properties(struct drm_connector *connector)
1891 {
1892 	struct drm_i915_private *i915 = to_i915(connector->dev);
1893 	struct drm_connector_state *conn_state = connector->state;
1894 	const char *tv_format_names[ARRAY_SIZE(tv_modes)];
1895 	int i;
1896 
1897 	/* BIOS margin values */
1898 	conn_state->tv.margins.left = 54;
1899 	conn_state->tv.margins.top = 36;
1900 	conn_state->tv.margins.right = 46;
1901 	conn_state->tv.margins.bottom = 37;
1902 
1903 	conn_state->tv.legacy_mode = 0;
1904 
1905 	/* Create TV properties then attach current values */
1906 	for (i = 0; i < ARRAY_SIZE(tv_modes); i++) {
1907 		/* 1080p50/1080p60 not supported on gen3 */
1908 		if (DISPLAY_VER(i915) == 3 && tv_modes[i].oversample == 1)
1909 			break;
1910 
1911 		tv_format_names[i] = tv_modes[i].name;
1912 	}
1913 	drm_mode_create_tv_properties_legacy(&i915->drm, i, tv_format_names);
1914 
1915 	drm_object_attach_property(&connector->base,
1916 				   i915->drm.mode_config.legacy_tv_mode_property,
1917 				   conn_state->tv.legacy_mode);
1918 	drm_object_attach_property(&connector->base,
1919 				   i915->drm.mode_config.tv_left_margin_property,
1920 				   conn_state->tv.margins.left);
1921 	drm_object_attach_property(&connector->base,
1922 				   i915->drm.mode_config.tv_top_margin_property,
1923 				   conn_state->tv.margins.top);
1924 	drm_object_attach_property(&connector->base,
1925 				   i915->drm.mode_config.tv_right_margin_property,
1926 				   conn_state->tv.margins.right);
1927 	drm_object_attach_property(&connector->base,
1928 				   i915->drm.mode_config.tv_bottom_margin_property,
1929 				   conn_state->tv.margins.bottom);
1930 }
1931 
1932 void
1933 intel_tv_init(struct drm_i915_private *dev_priv)
1934 {
1935 	struct drm_connector *connector;
1936 	struct intel_tv *intel_tv;
1937 	struct intel_encoder *intel_encoder;
1938 	struct intel_connector *intel_connector;
1939 	u32 tv_dac_on, tv_dac_off, save_tv_dac;
1940 
1941 	if ((intel_de_read(dev_priv, TV_CTL) & TV_FUSE_STATE_MASK) == TV_FUSE_STATE_DISABLED)
1942 		return;
1943 
1944 	if (!intel_bios_is_tv_present(dev_priv)) {
1945 		drm_dbg_kms(&dev_priv->drm, "Integrated TV is not present.\n");
1946 		return;
1947 	}
1948 
1949 	/*
1950 	 * Sanity check the TV output by checking to see if the
1951 	 * DAC register holds a value
1952 	 */
1953 	save_tv_dac = intel_de_read(dev_priv, TV_DAC);
1954 
1955 	intel_de_write(dev_priv, TV_DAC, save_tv_dac | TVDAC_STATE_CHG_EN);
1956 	tv_dac_on = intel_de_read(dev_priv, TV_DAC);
1957 
1958 	intel_de_write(dev_priv, TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN);
1959 	tv_dac_off = intel_de_read(dev_priv, TV_DAC);
1960 
1961 	intel_de_write(dev_priv, TV_DAC, save_tv_dac);
1962 
1963 	/*
1964 	 * If the register does not hold the state change enable
1965 	 * bit, (either as a 0 or a 1), assume it doesn't really
1966 	 * exist
1967 	 */
1968 	if ((tv_dac_on & TVDAC_STATE_CHG_EN) == 0 ||
1969 	    (tv_dac_off & TVDAC_STATE_CHG_EN) != 0)
1970 		return;
1971 
1972 	intel_tv = kzalloc(sizeof(*intel_tv), GFP_KERNEL);
1973 	if (!intel_tv) {
1974 		return;
1975 	}
1976 
1977 	intel_connector = intel_connector_alloc();
1978 	if (!intel_connector) {
1979 		kfree(intel_tv);
1980 		return;
1981 	}
1982 
1983 	intel_encoder = &intel_tv->base;
1984 	connector = &intel_connector->base;
1985 
1986 	/*
1987 	 * The documentation, for the older chipsets at least, recommend
1988 	 * using a polling method rather than hotplug detection for TVs.
1989 	 * This is because in order to perform the hotplug detection, the PLLs
1990 	 * for the TV must be kept alive increasing power drain and starving
1991 	 * bandwidth from other encoders. Notably for instance, it causes
1992 	 * pipe underruns on Crestline when this encoder is supposedly idle.
1993 	 *
1994 	 * More recent chipsets favour HDMI rather than integrated S-Video.
1995 	 */
1996 	intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT;
1997 	intel_connector->base.polled = intel_connector->polled;
1998 
1999 	drm_connector_init(&dev_priv->drm, connector, &intel_tv_connector_funcs,
2000 			   DRM_MODE_CONNECTOR_SVIDEO);
2001 
2002 	drm_encoder_init(&dev_priv->drm, &intel_encoder->base, &intel_tv_enc_funcs,
2003 			 DRM_MODE_ENCODER_TVDAC, "TV");
2004 
2005 	intel_encoder->compute_config = intel_tv_compute_config;
2006 	intel_encoder->get_config = intel_tv_get_config;
2007 	intel_encoder->pre_enable = intel_tv_pre_enable;
2008 	intel_encoder->enable = intel_enable_tv;
2009 	intel_encoder->disable = intel_disable_tv;
2010 	intel_encoder->get_hw_state = intel_tv_get_hw_state;
2011 	intel_connector->get_hw_state = intel_connector_get_hw_state;
2012 
2013 	intel_connector_attach_encoder(intel_connector, intel_encoder);
2014 
2015 	intel_encoder->type = INTEL_OUTPUT_TVOUT;
2016 	intel_encoder->power_domain = POWER_DOMAIN_PORT_OTHER;
2017 	intel_encoder->port = PORT_NONE;
2018 	intel_encoder->pipe_mask = ~0;
2019 	intel_encoder->cloneable = 0;
2020 	intel_tv->type = DRM_MODE_CONNECTOR_Unknown;
2021 
2022 	drm_connector_helper_add(connector, &intel_tv_connector_helper_funcs);
2023 
2024 	intel_tv_add_properties(connector);
2025 }
2026