1 /* 2 * Copyright © 2006-2008 Intel Corporation 3 * Jesse Barnes <jesse.barnes@intel.com> 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Eric Anholt <eric@anholt.net> 26 * 27 */ 28 29 /** @file 30 * Integrated TV-out support for the 915GM and 945GM. 31 */ 32 33 #include <drm/drm_atomic_helper.h> 34 #include <drm/drm_crtc.h> 35 #include <drm/drm_edid.h> 36 #include <drm/drm_print.h> 37 #include <drm/drm_probe_helper.h> 38 39 #include "intel_connector.h" 40 #include "intel_crtc.h" 41 #include "intel_de.h" 42 #include "intel_display_driver.h" 43 #include "intel_display_irq.h" 44 #include "intel_display_regs.h" 45 #include "intel_display_types.h" 46 #include "intel_dpll.h" 47 #include "intel_hotplug.h" 48 #include "intel_load_detect.h" 49 #include "intel_tv.h" 50 #include "intel_tv_regs.h" 51 52 enum tv_margin { 53 TV_MARGIN_LEFT, TV_MARGIN_TOP, 54 TV_MARGIN_RIGHT, TV_MARGIN_BOTTOM 55 }; 56 57 struct intel_tv { 58 struct intel_encoder base; 59 60 int type; 61 }; 62 63 struct video_levels { 64 u16 blank, black; 65 u8 burst; 66 }; 67 68 struct color_conversion { 69 u16 ry, gy, by, ay; 70 u16 ru, gu, bu, au; 71 u16 rv, gv, bv, av; 72 }; 73 74 static const u32 filter_table[] = { 75 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140, 76 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000, 77 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160, 78 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780, 79 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50, 80 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20, 81 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0, 82 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0, 83 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020, 84 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140, 85 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20, 86 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848, 87 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900, 88 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080, 89 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060, 90 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140, 91 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000, 92 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160, 93 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780, 94 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50, 95 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20, 96 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0, 97 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0, 98 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020, 99 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140, 100 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20, 101 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848, 102 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900, 103 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080, 104 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060, 105 0x36403000, 0x2D002CC0, 0x30003640, 0x2D0036C0, 106 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540, 107 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00, 108 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000, 109 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00, 110 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40, 111 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240, 112 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00, 113 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0, 114 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840, 115 0x28003100, 0x28002F00, 0x00003100, 0x36403000, 116 0x2D002CC0, 0x30003640, 0x2D0036C0, 117 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540, 118 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00, 119 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000, 120 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00, 121 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40, 122 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240, 123 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00, 124 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0, 125 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840, 126 0x28003100, 0x28002F00, 0x00003100, 127 }; 128 129 /* 130 * Color conversion values have 3 separate fixed point formats: 131 * 132 * 10 bit fields (ay, au) 133 * 1.9 fixed point (b.bbbbbbbbb) 134 * 11 bit fields (ry, by, ru, gu, gv) 135 * exp.mantissa (ee.mmmmmmmmm) 136 * ee = 00 = 10^-1 (0.mmmmmmmmm) 137 * ee = 01 = 10^-2 (0.0mmmmmmmmm) 138 * ee = 10 = 10^-3 (0.00mmmmmmmmm) 139 * ee = 11 = 10^-4 (0.000mmmmmmmmm) 140 * 12 bit fields (gy, rv, bu) 141 * exp.mantissa (eee.mmmmmmmmm) 142 * eee = 000 = 10^-1 (0.mmmmmmmmm) 143 * eee = 001 = 10^-2 (0.0mmmmmmmmm) 144 * eee = 010 = 10^-3 (0.00mmmmmmmmm) 145 * eee = 011 = 10^-4 (0.000mmmmmmmmm) 146 * eee = 100 = reserved 147 * eee = 101 = reserved 148 * eee = 110 = reserved 149 * eee = 111 = 10^0 (m.mmmmmmmm) (only usable for 1.0 representation) 150 * 151 * Saturation and contrast are 8 bits, with their own representation: 152 * 8 bit field (saturation, contrast) 153 * exp.mantissa (ee.mmmmmm) 154 * ee = 00 = 10^-1 (0.mmmmmm) 155 * ee = 01 = 10^0 (m.mmmmm) 156 * ee = 10 = 10^1 (mm.mmmm) 157 * ee = 11 = 10^2 (mmm.mmm) 158 * 159 * Simple conversion function: 160 * 161 * static u32 162 * float_to_csc_11(float f) 163 * { 164 * u32 exp; 165 * u32 mant; 166 * u32 ret; 167 * 168 * if (f < 0) 169 * f = -f; 170 * 171 * if (f >= 1) { 172 * exp = 0x7; 173 * mant = 1 << 8; 174 * } else { 175 * for (exp = 0; exp < 3 && f < 0.5; exp++) 176 * f *= 2.0; 177 * mant = (f * (1 << 9) + 0.5); 178 * if (mant >= (1 << 9)) 179 * mant = (1 << 9) - 1; 180 * } 181 * ret = (exp << 9) | mant; 182 * return ret; 183 * } 184 */ 185 186 /* 187 * Behold, magic numbers! If we plant them they might grow a big 188 * s-video cable to the sky... or something. 189 * 190 * Pre-converted to appropriate hex value. 191 */ 192 193 /* 194 * PAL & NTSC values for composite & s-video connections 195 */ 196 static const struct color_conversion ntsc_m_csc_composite = { 197 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 198 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 199 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 200 }; 201 202 static const struct video_levels ntsc_m_levels_composite = { 203 .blank = 225, .black = 267, .burst = 113, 204 }; 205 206 static const struct color_conversion ntsc_m_csc_svideo = { 207 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 208 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 209 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 210 }; 211 212 static const struct video_levels ntsc_m_levels_svideo = { 213 .blank = 266, .black = 316, .burst = 133, 214 }; 215 216 static const struct color_conversion ntsc_j_csc_composite = { 217 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0119, 218 .ru = 0x074c, .gu = 0x0546, .bu = 0x05ec, .au = 0x0200, 219 .rv = 0x035a, .gv = 0x0322, .bv = 0x06e1, .av = 0x0200, 220 }; 221 222 static const struct video_levels ntsc_j_levels_composite = { 223 .blank = 225, .black = 225, .burst = 113, 224 }; 225 226 static const struct color_conversion ntsc_j_csc_svideo = { 227 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x014c, 228 .ru = 0x0788, .gu = 0x0581, .bu = 0x0322, .au = 0x0200, 229 .rv = 0x0399, .gv = 0x0356, .bv = 0x070a, .av = 0x0200, 230 }; 231 232 static const struct video_levels ntsc_j_levels_svideo = { 233 .blank = 266, .black = 266, .burst = 133, 234 }; 235 236 static const struct color_conversion pal_csc_composite = { 237 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0113, 238 .ru = 0x0745, .gu = 0x053f, .bu = 0x05e1, .au = 0x0200, 239 .rv = 0x0353, .gv = 0x031c, .bv = 0x06dc, .av = 0x0200, 240 }; 241 242 static const struct video_levels pal_levels_composite = { 243 .blank = 237, .black = 237, .burst = 118, 244 }; 245 246 static const struct color_conversion pal_csc_svideo = { 247 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145, 248 .ru = 0x0780, .gu = 0x0579, .bu = 0x031c, .au = 0x0200, 249 .rv = 0x0390, .gv = 0x034f, .bv = 0x0705, .av = 0x0200, 250 }; 251 252 static const struct video_levels pal_levels_svideo = { 253 .blank = 280, .black = 280, .burst = 139, 254 }; 255 256 static const struct color_conversion pal_m_csc_composite = { 257 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 258 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 259 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 260 }; 261 262 static const struct video_levels pal_m_levels_composite = { 263 .blank = 225, .black = 267, .burst = 113, 264 }; 265 266 static const struct color_conversion pal_m_csc_svideo = { 267 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 268 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 269 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 270 }; 271 272 static const struct video_levels pal_m_levels_svideo = { 273 .blank = 266, .black = 316, .burst = 133, 274 }; 275 276 static const struct color_conversion pal_n_csc_composite = { 277 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 278 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 279 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 280 }; 281 282 static const struct video_levels pal_n_levels_composite = { 283 .blank = 225, .black = 267, .burst = 118, 284 }; 285 286 static const struct color_conversion pal_n_csc_svideo = { 287 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 288 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 289 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 290 }; 291 292 static const struct video_levels pal_n_levels_svideo = { 293 .blank = 266, .black = 316, .burst = 139, 294 }; 295 296 /* 297 * Component connections 298 */ 299 static const struct color_conversion sdtv_csc_yprpb = { 300 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145, 301 .ru = 0x0559, .gu = 0x0353, .bu = 0x0100, .au = 0x0200, 302 .rv = 0x0100, .gv = 0x03ad, .bv = 0x074d, .av = 0x0200, 303 }; 304 305 static const struct color_conversion hdtv_csc_yprpb = { 306 .ry = 0x05b3, .gy = 0x016e, .by = 0x0728, .ay = 0x0145, 307 .ru = 0x07d5, .gu = 0x038b, .bu = 0x0100, .au = 0x0200, 308 .rv = 0x0100, .gv = 0x03d1, .bv = 0x06bc, .av = 0x0200, 309 }; 310 311 static const struct video_levels component_levels = { 312 .blank = 279, .black = 279, .burst = 0, 313 }; 314 315 316 struct tv_mode { 317 const char *name; 318 319 u32 clock; 320 u16 refresh; /* in millihertz (for precision) */ 321 u8 oversample; 322 u8 hsync_end; 323 u16 hblank_start, hblank_end, htotal; 324 bool progressive : 1, trilevel_sync : 1, component_only : 1; 325 u8 vsync_start_f1, vsync_start_f2, vsync_len; 326 bool veq_ena : 1; 327 u8 veq_start_f1, veq_start_f2, veq_len; 328 u8 vi_end_f1, vi_end_f2; 329 u16 nbr_end; 330 bool burst_ena : 1; 331 u8 hburst_start, hburst_len; 332 u8 vburst_start_f1; 333 u16 vburst_end_f1; 334 u8 vburst_start_f2; 335 u16 vburst_end_f2; 336 u8 vburst_start_f3; 337 u16 vburst_end_f3; 338 u8 vburst_start_f4; 339 u16 vburst_end_f4; 340 /* 341 * subcarrier programming 342 */ 343 u16 dda2_size, dda3_size; 344 u8 dda1_inc; 345 u16 dda2_inc, dda3_inc; 346 u32 sc_reset; 347 bool pal_burst : 1; 348 /* 349 * blank/black levels 350 */ 351 const struct video_levels *composite_levels, *svideo_levels; 352 const struct color_conversion *composite_color, *svideo_color; 353 const u32 *filter_table; 354 }; 355 356 357 /* 358 * Sub carrier DDA 359 * 360 * I think this works as follows: 361 * 362 * subcarrier freq = pixel_clock * (dda1_inc + dda2_inc / dda2_size) / 4096 363 * 364 * Presumably, when dda3 is added in, it gets to adjust the dda2_inc value 365 * 366 * So, 367 * dda1_ideal = subcarrier/pixel * 4096 368 * dda1_inc = floor (dda1_ideal) 369 * dda2 = dda1_ideal - dda1_inc 370 * 371 * then pick a ratio for dda2 that gives the closest approximation. If 372 * you can't get close enough, you can play with dda3 as well. This 373 * seems likely to happen when dda2 is small as the jumps would be larger 374 * 375 * To invert this, 376 * 377 * pixel_clock = subcarrier * 4096 / (dda1_inc + dda2_inc / dda2_size) 378 * 379 * The constants below were all computed using a 107.520MHz clock 380 */ 381 382 /* 383 * Register programming values for TV modes. 384 * 385 * These values account for -1s required. 386 */ 387 static const struct tv_mode tv_modes[] = { 388 { 389 .name = "NTSC-M", 390 .clock = 108000, 391 .refresh = 59940, 392 .oversample = 8, 393 .component_only = false, 394 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 395 396 .hsync_end = 64, .hblank_end = 124, 397 .hblank_start = 836, .htotal = 857, 398 399 .progressive = false, .trilevel_sync = false, 400 401 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 402 .vsync_len = 6, 403 404 .veq_ena = true, .veq_start_f1 = 0, 405 .veq_start_f2 = 1, .veq_len = 18, 406 407 .vi_end_f1 = 20, .vi_end_f2 = 21, 408 .nbr_end = 240, 409 410 .burst_ena = true, 411 .hburst_start = 72, .hburst_len = 34, 412 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 413 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 414 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 415 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 416 417 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 418 .dda1_inc = 135, 419 .dda2_inc = 20800, .dda2_size = 27456, 420 .dda3_inc = 0, .dda3_size = 0, 421 .sc_reset = TV_SC_RESET_EVERY_4, 422 .pal_burst = false, 423 424 .composite_levels = &ntsc_m_levels_composite, 425 .composite_color = &ntsc_m_csc_composite, 426 .svideo_levels = &ntsc_m_levels_svideo, 427 .svideo_color = &ntsc_m_csc_svideo, 428 429 .filter_table = filter_table, 430 }, 431 { 432 .name = "NTSC-443", 433 .clock = 108000, 434 .refresh = 59940, 435 .oversample = 8, 436 .component_only = false, 437 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 4.43MHz */ 438 .hsync_end = 64, .hblank_end = 124, 439 .hblank_start = 836, .htotal = 857, 440 441 .progressive = false, .trilevel_sync = false, 442 443 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 444 .vsync_len = 6, 445 446 .veq_ena = true, .veq_start_f1 = 0, 447 .veq_start_f2 = 1, .veq_len = 18, 448 449 .vi_end_f1 = 20, .vi_end_f2 = 21, 450 .nbr_end = 240, 451 452 .burst_ena = true, 453 .hburst_start = 72, .hburst_len = 34, 454 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 455 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 456 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 457 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 458 459 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 460 .dda1_inc = 168, 461 .dda2_inc = 4093, .dda2_size = 27456, 462 .dda3_inc = 310, .dda3_size = 525, 463 .sc_reset = TV_SC_RESET_NEVER, 464 .pal_burst = false, 465 466 .composite_levels = &ntsc_m_levels_composite, 467 .composite_color = &ntsc_m_csc_composite, 468 .svideo_levels = &ntsc_m_levels_svideo, 469 .svideo_color = &ntsc_m_csc_svideo, 470 471 .filter_table = filter_table, 472 }, 473 { 474 .name = "NTSC-J", 475 .clock = 108000, 476 .refresh = 59940, 477 .oversample = 8, 478 .component_only = false, 479 480 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 481 .hsync_end = 64, .hblank_end = 124, 482 .hblank_start = 836, .htotal = 857, 483 484 .progressive = false, .trilevel_sync = false, 485 486 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 487 .vsync_len = 6, 488 489 .veq_ena = true, .veq_start_f1 = 0, 490 .veq_start_f2 = 1, .veq_len = 18, 491 492 .vi_end_f1 = 20, .vi_end_f2 = 21, 493 .nbr_end = 240, 494 495 .burst_ena = true, 496 .hburst_start = 72, .hburst_len = 34, 497 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 498 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 499 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 500 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 501 502 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 503 .dda1_inc = 135, 504 .dda2_inc = 20800, .dda2_size = 27456, 505 .dda3_inc = 0, .dda3_size = 0, 506 .sc_reset = TV_SC_RESET_EVERY_4, 507 .pal_burst = false, 508 509 .composite_levels = &ntsc_j_levels_composite, 510 .composite_color = &ntsc_j_csc_composite, 511 .svideo_levels = &ntsc_j_levels_svideo, 512 .svideo_color = &ntsc_j_csc_svideo, 513 514 .filter_table = filter_table, 515 }, 516 { 517 .name = "PAL-M", 518 .clock = 108000, 519 .refresh = 59940, 520 .oversample = 8, 521 .component_only = false, 522 523 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 524 .hsync_end = 64, .hblank_end = 124, 525 .hblank_start = 836, .htotal = 857, 526 527 .progressive = false, .trilevel_sync = false, 528 529 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 530 .vsync_len = 6, 531 532 .veq_ena = true, .veq_start_f1 = 0, 533 .veq_start_f2 = 1, .veq_len = 18, 534 535 .vi_end_f1 = 20, .vi_end_f2 = 21, 536 .nbr_end = 240, 537 538 .burst_ena = true, 539 .hburst_start = 72, .hburst_len = 34, 540 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 541 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 542 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 543 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 544 545 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 546 .dda1_inc = 135, 547 .dda2_inc = 16704, .dda2_size = 27456, 548 .dda3_inc = 0, .dda3_size = 0, 549 .sc_reset = TV_SC_RESET_EVERY_8, 550 .pal_burst = true, 551 552 .composite_levels = &pal_m_levels_composite, 553 .composite_color = &pal_m_csc_composite, 554 .svideo_levels = &pal_m_levels_svideo, 555 .svideo_color = &pal_m_csc_svideo, 556 557 .filter_table = filter_table, 558 }, 559 { 560 /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */ 561 .name = "PAL-N", 562 .clock = 108000, 563 .refresh = 50000, 564 .oversample = 8, 565 .component_only = false, 566 567 .hsync_end = 64, .hblank_end = 128, 568 .hblank_start = 844, .htotal = 863, 569 570 .progressive = false, .trilevel_sync = false, 571 572 573 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 574 .vsync_len = 6, 575 576 .veq_ena = true, .veq_start_f1 = 0, 577 .veq_start_f2 = 1, .veq_len = 18, 578 579 .vi_end_f1 = 24, .vi_end_f2 = 25, 580 .nbr_end = 286, 581 582 .burst_ena = true, 583 .hburst_start = 73, .hburst_len = 34, 584 .vburst_start_f1 = 8, .vburst_end_f1 = 285, 585 .vburst_start_f2 = 8, .vburst_end_f2 = 286, 586 .vburst_start_f3 = 9, .vburst_end_f3 = 286, 587 .vburst_start_f4 = 9, .vburst_end_f4 = 285, 588 589 590 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 591 .dda1_inc = 135, 592 .dda2_inc = 23578, .dda2_size = 27648, 593 .dda3_inc = 134, .dda3_size = 625, 594 .sc_reset = TV_SC_RESET_EVERY_8, 595 .pal_burst = true, 596 597 .composite_levels = &pal_n_levels_composite, 598 .composite_color = &pal_n_csc_composite, 599 .svideo_levels = &pal_n_levels_svideo, 600 .svideo_color = &pal_n_csc_svideo, 601 602 .filter_table = filter_table, 603 }, 604 { 605 /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */ 606 .name = "PAL", 607 .clock = 108000, 608 .refresh = 50000, 609 .oversample = 8, 610 .component_only = false, 611 612 .hsync_end = 64, .hblank_end = 142, 613 .hblank_start = 844, .htotal = 863, 614 615 .progressive = false, .trilevel_sync = false, 616 617 .vsync_start_f1 = 5, .vsync_start_f2 = 6, 618 .vsync_len = 5, 619 620 .veq_ena = true, .veq_start_f1 = 0, 621 .veq_start_f2 = 1, .veq_len = 15, 622 623 .vi_end_f1 = 24, .vi_end_f2 = 25, 624 .nbr_end = 286, 625 626 .burst_ena = true, 627 .hburst_start = 73, .hburst_len = 32, 628 .vburst_start_f1 = 8, .vburst_end_f1 = 285, 629 .vburst_start_f2 = 8, .vburst_end_f2 = 286, 630 .vburst_start_f3 = 9, .vburst_end_f3 = 286, 631 .vburst_start_f4 = 9, .vburst_end_f4 = 285, 632 633 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 634 .dda1_inc = 168, 635 .dda2_inc = 4122, .dda2_size = 27648, 636 .dda3_inc = 67, .dda3_size = 625, 637 .sc_reset = TV_SC_RESET_EVERY_8, 638 .pal_burst = true, 639 640 .composite_levels = &pal_levels_composite, 641 .composite_color = &pal_csc_composite, 642 .svideo_levels = &pal_levels_svideo, 643 .svideo_color = &pal_csc_svideo, 644 645 .filter_table = filter_table, 646 }, 647 { 648 .name = "480p", 649 .clock = 108000, 650 .refresh = 59940, 651 .oversample = 4, 652 .component_only = true, 653 654 .hsync_end = 64, .hblank_end = 122, 655 .hblank_start = 842, .htotal = 857, 656 657 .progressive = true, .trilevel_sync = false, 658 659 .vsync_start_f1 = 12, .vsync_start_f2 = 12, 660 .vsync_len = 12, 661 662 .veq_ena = false, 663 664 .vi_end_f1 = 44, .vi_end_f2 = 44, 665 .nbr_end = 479, 666 667 .burst_ena = false, 668 669 .filter_table = filter_table, 670 }, 671 { 672 .name = "576p", 673 .clock = 108000, 674 .refresh = 50000, 675 .oversample = 4, 676 .component_only = true, 677 678 .hsync_end = 64, .hblank_end = 139, 679 .hblank_start = 859, .htotal = 863, 680 681 .progressive = true, .trilevel_sync = false, 682 683 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 684 .vsync_len = 10, 685 686 .veq_ena = false, 687 688 .vi_end_f1 = 48, .vi_end_f2 = 48, 689 .nbr_end = 575, 690 691 .burst_ena = false, 692 693 .filter_table = filter_table, 694 }, 695 { 696 .name = "720p@60Hz", 697 .clock = 148500, 698 .refresh = 60000, 699 .oversample = 2, 700 .component_only = true, 701 702 .hsync_end = 80, .hblank_end = 300, 703 .hblank_start = 1580, .htotal = 1649, 704 705 .progressive = true, .trilevel_sync = true, 706 707 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 708 .vsync_len = 10, 709 710 .veq_ena = false, 711 712 .vi_end_f1 = 29, .vi_end_f2 = 29, 713 .nbr_end = 719, 714 715 .burst_ena = false, 716 717 .filter_table = filter_table, 718 }, 719 { 720 .name = "720p@50Hz", 721 .clock = 148500, 722 .refresh = 50000, 723 .oversample = 2, 724 .component_only = true, 725 726 .hsync_end = 80, .hblank_end = 300, 727 .hblank_start = 1580, .htotal = 1979, 728 729 .progressive = true, .trilevel_sync = true, 730 731 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 732 .vsync_len = 10, 733 734 .veq_ena = false, 735 736 .vi_end_f1 = 29, .vi_end_f2 = 29, 737 .nbr_end = 719, 738 739 .burst_ena = false, 740 741 .filter_table = filter_table, 742 }, 743 { 744 .name = "1080i@50Hz", 745 .clock = 148500, 746 .refresh = 50000, 747 .oversample = 2, 748 .component_only = true, 749 750 .hsync_end = 88, .hblank_end = 235, 751 .hblank_start = 2155, .htotal = 2639, 752 753 .progressive = false, .trilevel_sync = true, 754 755 .vsync_start_f1 = 4, .vsync_start_f2 = 5, 756 .vsync_len = 10, 757 758 .veq_ena = true, .veq_start_f1 = 4, 759 .veq_start_f2 = 4, .veq_len = 10, 760 761 762 .vi_end_f1 = 21, .vi_end_f2 = 22, 763 .nbr_end = 539, 764 765 .burst_ena = false, 766 767 .filter_table = filter_table, 768 }, 769 { 770 .name = "1080i@60Hz", 771 .clock = 148500, 772 .refresh = 60000, 773 .oversample = 2, 774 .component_only = true, 775 776 .hsync_end = 88, .hblank_end = 235, 777 .hblank_start = 2155, .htotal = 2199, 778 779 .progressive = false, .trilevel_sync = true, 780 781 .vsync_start_f1 = 4, .vsync_start_f2 = 5, 782 .vsync_len = 10, 783 784 .veq_ena = true, .veq_start_f1 = 4, 785 .veq_start_f2 = 4, .veq_len = 10, 786 787 788 .vi_end_f1 = 21, .vi_end_f2 = 22, 789 .nbr_end = 539, 790 791 .burst_ena = false, 792 793 .filter_table = filter_table, 794 }, 795 796 { 797 .name = "1080p@30Hz", 798 .clock = 148500, 799 .refresh = 30000, 800 .oversample = 2, 801 .component_only = true, 802 803 .hsync_end = 88, .hblank_end = 235, 804 .hblank_start = 2155, .htotal = 2199, 805 806 .progressive = true, .trilevel_sync = true, 807 808 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 809 .vsync_len = 10, 810 811 .veq_ena = false, .veq_start_f1 = 0, 812 .veq_start_f2 = 0, .veq_len = 0, 813 814 .vi_end_f1 = 44, .vi_end_f2 = 44, 815 .nbr_end = 1079, 816 817 .burst_ena = false, 818 819 .filter_table = filter_table, 820 }, 821 822 { 823 .name = "1080p@50Hz", 824 .clock = 148500, 825 .refresh = 50000, 826 .oversample = 1, 827 .component_only = true, 828 829 .hsync_end = 88, .hblank_end = 235, 830 .hblank_start = 2155, .htotal = 2639, 831 832 .progressive = true, .trilevel_sync = true, 833 834 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 835 .vsync_len = 10, 836 837 .veq_ena = false, .veq_start_f1 = 0, 838 .veq_start_f2 = 0, .veq_len = 0, 839 840 .vi_end_f1 = 44, .vi_end_f2 = 44, 841 .nbr_end = 1079, 842 843 .burst_ena = false, 844 845 .filter_table = filter_table, 846 }, 847 848 { 849 .name = "1080p@60Hz", 850 .clock = 148500, 851 .refresh = 60000, 852 .oversample = 1, 853 .component_only = true, 854 855 .hsync_end = 88, .hblank_end = 235, 856 .hblank_start = 2155, .htotal = 2199, 857 858 .progressive = true, .trilevel_sync = true, 859 860 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 861 .vsync_len = 10, 862 863 .veq_ena = false, .veq_start_f1 = 0, 864 .veq_start_f2 = 0, .veq_len = 0, 865 866 .vi_end_f1 = 44, .vi_end_f2 = 44, 867 .nbr_end = 1079, 868 869 .burst_ena = false, 870 871 .filter_table = filter_table, 872 }, 873 }; 874 875 struct intel_tv_connector_state { 876 struct drm_connector_state base; 877 878 /* 879 * May need to override the user margins for 880 * gen3 >1024 wide source vertical centering. 881 */ 882 struct { 883 u16 top, bottom; 884 } margins; 885 886 bool bypass_vfilter; 887 }; 888 889 #define to_intel_tv_connector_state(conn_state) \ 890 container_of_const((conn_state), struct intel_tv_connector_state, base) 891 892 static struct drm_connector_state * 893 intel_tv_connector_duplicate_state(struct drm_connector *connector) 894 { 895 struct intel_tv_connector_state *state; 896 897 state = kmemdup(connector->state, sizeof(*state), GFP_KERNEL); 898 if (!state) 899 return NULL; 900 901 __drm_atomic_helper_connector_duplicate_state(connector, &state->base); 902 return &state->base; 903 } 904 905 static struct intel_tv *enc_to_tv(struct intel_encoder *encoder) 906 { 907 return container_of(encoder, struct intel_tv, base); 908 } 909 910 static struct intel_tv *intel_attached_tv(struct intel_connector *connector) 911 { 912 return enc_to_tv(intel_attached_encoder(connector)); 913 } 914 915 static bool 916 intel_tv_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) 917 { 918 struct intel_display *display = to_intel_display(encoder); 919 u32 tmp = intel_de_read(display, TV_CTL); 920 921 *pipe = (tmp & TV_ENC_PIPE_SEL_MASK) >> TV_ENC_PIPE_SEL_SHIFT; 922 923 return tmp & TV_ENC_ENABLE; 924 } 925 926 static void 927 intel_enable_tv(struct intel_atomic_state *state, 928 struct intel_encoder *encoder, 929 const struct intel_crtc_state *pipe_config, 930 const struct drm_connector_state *conn_state) 931 { 932 struct intel_display *display = to_intel_display(encoder); 933 934 /* Prevents vblank waits from timing out in intel_tv_detect_type() */ 935 intel_crtc_wait_for_next_vblank(to_intel_crtc(pipe_config->uapi.crtc)); 936 937 intel_de_rmw(display, TV_CTL, 0, TV_ENC_ENABLE); 938 } 939 940 static void 941 intel_disable_tv(struct intel_atomic_state *state, 942 struct intel_encoder *encoder, 943 const struct intel_crtc_state *old_crtc_state, 944 const struct drm_connector_state *old_conn_state) 945 { 946 struct intel_display *display = to_intel_display(encoder); 947 948 intel_de_rmw(display, TV_CTL, TV_ENC_ENABLE, 0); 949 } 950 951 static const struct tv_mode *intel_tv_mode_find(const struct drm_connector_state *conn_state) 952 { 953 int format = conn_state->tv.legacy_mode; 954 955 return &tv_modes[format]; 956 } 957 958 static enum drm_mode_status 959 intel_tv_mode_valid(struct drm_connector *connector, 960 const struct drm_display_mode *mode) 961 { 962 struct intel_display *display = to_intel_display(connector->dev); 963 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 964 int max_dotclk = display->cdclk.max_dotclk_freq; 965 enum drm_mode_status status; 966 967 status = intel_cpu_transcoder_mode_valid(display, mode); 968 if (status != MODE_OK) 969 return status; 970 971 if (mode->clock > max_dotclk) 972 return MODE_CLOCK_HIGH; 973 974 /* Ensure TV refresh is close to desired refresh */ 975 if (abs(tv_mode->refresh - drm_mode_vrefresh(mode) * 1000) >= 1000) 976 return MODE_CLOCK_RANGE; 977 978 return MODE_OK; 979 } 980 981 static int 982 intel_tv_mode_vdisplay(const struct tv_mode *tv_mode) 983 { 984 if (tv_mode->progressive) 985 return tv_mode->nbr_end + 1; 986 else 987 return 2 * (tv_mode->nbr_end + 1); 988 } 989 990 static void 991 intel_tv_mode_to_mode(struct drm_display_mode *mode, 992 const struct tv_mode *tv_mode, 993 int clock) 994 { 995 mode->clock = clock / (tv_mode->oversample >> !tv_mode->progressive); 996 997 /* 998 * tv_mode horizontal timings: 999 * 1000 * hsync_end 1001 * | hblank_end 1002 * | | hblank_start 1003 * | | | htotal 1004 * | _______ | 1005 * ____/ \___ 1006 * \__/ \ 1007 */ 1008 mode->hdisplay = 1009 tv_mode->hblank_start - tv_mode->hblank_end; 1010 mode->hsync_start = mode->hdisplay + 1011 tv_mode->htotal - tv_mode->hblank_start; 1012 mode->hsync_end = mode->hsync_start + 1013 tv_mode->hsync_end; 1014 mode->htotal = tv_mode->htotal + 1; 1015 1016 /* 1017 * tv_mode vertical timings: 1018 * 1019 * vsync_start 1020 * | vsync_end 1021 * | | vi_end nbr_end 1022 * | | | | 1023 * | | _______ 1024 * \__ ____/ \ 1025 * \__/ 1026 */ 1027 mode->vdisplay = intel_tv_mode_vdisplay(tv_mode); 1028 if (tv_mode->progressive) { 1029 mode->vsync_start = mode->vdisplay + 1030 tv_mode->vsync_start_f1 + 1; 1031 mode->vsync_end = mode->vsync_start + 1032 tv_mode->vsync_len; 1033 mode->vtotal = mode->vdisplay + 1034 tv_mode->vi_end_f1 + 1; 1035 } else { 1036 mode->vsync_start = mode->vdisplay + 1037 tv_mode->vsync_start_f1 + 1 + 1038 tv_mode->vsync_start_f2 + 1; 1039 mode->vsync_end = mode->vsync_start + 1040 2 * tv_mode->vsync_len; 1041 mode->vtotal = mode->vdisplay + 1042 tv_mode->vi_end_f1 + 1 + 1043 tv_mode->vi_end_f2 + 1; 1044 } 1045 1046 /* TV has it's own notion of sync and other mode flags, so clear them. */ 1047 mode->flags = 0; 1048 1049 snprintf(mode->name, sizeof(mode->name), 1050 "%dx%d%c (%s)", 1051 mode->hdisplay, mode->vdisplay, 1052 tv_mode->progressive ? 'p' : 'i', 1053 tv_mode->name); 1054 } 1055 1056 static void intel_tv_scale_mode_horiz(struct drm_display_mode *mode, 1057 int hdisplay, int left_margin, 1058 int right_margin) 1059 { 1060 int hsync_start = mode->hsync_start - mode->hdisplay + right_margin; 1061 int hsync_end = mode->hsync_end - mode->hdisplay + right_margin; 1062 int new_htotal = mode->htotal * hdisplay / 1063 (mode->hdisplay - left_margin - right_margin); 1064 1065 mode->clock = mode->clock * new_htotal / mode->htotal; 1066 1067 mode->hdisplay = hdisplay; 1068 mode->hsync_start = hdisplay + hsync_start * new_htotal / mode->htotal; 1069 mode->hsync_end = hdisplay + hsync_end * new_htotal / mode->htotal; 1070 mode->htotal = new_htotal; 1071 } 1072 1073 static void intel_tv_scale_mode_vert(struct drm_display_mode *mode, 1074 int vdisplay, int top_margin, 1075 int bottom_margin) 1076 { 1077 int vsync_start = mode->vsync_start - mode->vdisplay + bottom_margin; 1078 int vsync_end = mode->vsync_end - mode->vdisplay + bottom_margin; 1079 int new_vtotal = mode->vtotal * vdisplay / 1080 (mode->vdisplay - top_margin - bottom_margin); 1081 1082 mode->clock = mode->clock * new_vtotal / mode->vtotal; 1083 1084 mode->vdisplay = vdisplay; 1085 mode->vsync_start = vdisplay + vsync_start * new_vtotal / mode->vtotal; 1086 mode->vsync_end = vdisplay + vsync_end * new_vtotal / mode->vtotal; 1087 mode->vtotal = new_vtotal; 1088 } 1089 1090 static void 1091 intel_tv_get_config(struct intel_encoder *encoder, 1092 struct intel_crtc_state *pipe_config) 1093 { 1094 struct intel_display *display = to_intel_display(encoder); 1095 struct drm_display_mode *adjusted_mode = 1096 &pipe_config->hw.adjusted_mode; 1097 struct drm_display_mode mode = {}; 1098 u32 tv_ctl, hctl1, hctl3, vctl1, vctl2, tmp; 1099 struct tv_mode tv_mode = {}; 1100 int hdisplay = adjusted_mode->crtc_hdisplay; 1101 int vdisplay = adjusted_mode->crtc_vdisplay; 1102 int xsize, ysize, xpos, ypos; 1103 1104 pipe_config->output_types |= BIT(INTEL_OUTPUT_TVOUT); 1105 1106 tv_ctl = intel_de_read(display, TV_CTL); 1107 hctl1 = intel_de_read(display, TV_H_CTL_1); 1108 hctl3 = intel_de_read(display, TV_H_CTL_3); 1109 vctl1 = intel_de_read(display, TV_V_CTL_1); 1110 vctl2 = intel_de_read(display, TV_V_CTL_2); 1111 1112 tv_mode.htotal = (hctl1 & TV_HTOTAL_MASK) >> TV_HTOTAL_SHIFT; 1113 tv_mode.hsync_end = (hctl1 & TV_HSYNC_END_MASK) >> TV_HSYNC_END_SHIFT; 1114 1115 tv_mode.hblank_start = (hctl3 & TV_HBLANK_START_MASK) >> TV_HBLANK_START_SHIFT; 1116 tv_mode.hblank_end = (hctl3 & TV_HSYNC_END_MASK) >> TV_HBLANK_END_SHIFT; 1117 1118 tv_mode.nbr_end = (vctl1 & TV_NBR_END_MASK) >> TV_NBR_END_SHIFT; 1119 tv_mode.vi_end_f1 = (vctl1 & TV_VI_END_F1_MASK) >> TV_VI_END_F1_SHIFT; 1120 tv_mode.vi_end_f2 = (vctl1 & TV_VI_END_F2_MASK) >> TV_VI_END_F2_SHIFT; 1121 1122 tv_mode.vsync_len = (vctl2 & TV_VSYNC_LEN_MASK) >> TV_VSYNC_LEN_SHIFT; 1123 tv_mode.vsync_start_f1 = (vctl2 & TV_VSYNC_START_F1_MASK) >> TV_VSYNC_START_F1_SHIFT; 1124 tv_mode.vsync_start_f2 = (vctl2 & TV_VSYNC_START_F2_MASK) >> TV_VSYNC_START_F2_SHIFT; 1125 1126 tv_mode.clock = pipe_config->port_clock; 1127 1128 tv_mode.progressive = tv_ctl & TV_PROGRESSIVE; 1129 1130 switch (tv_ctl & TV_OVERSAMPLE_MASK) { 1131 case TV_OVERSAMPLE_8X: 1132 tv_mode.oversample = 8; 1133 break; 1134 case TV_OVERSAMPLE_4X: 1135 tv_mode.oversample = 4; 1136 break; 1137 case TV_OVERSAMPLE_2X: 1138 tv_mode.oversample = 2; 1139 break; 1140 default: 1141 tv_mode.oversample = 1; 1142 break; 1143 } 1144 1145 tmp = intel_de_read(display, TV_WIN_POS); 1146 xpos = tmp >> 16; 1147 ypos = tmp & 0xffff; 1148 1149 tmp = intel_de_read(display, TV_WIN_SIZE); 1150 xsize = tmp >> 16; 1151 ysize = tmp & 0xffff; 1152 1153 intel_tv_mode_to_mode(&mode, &tv_mode, pipe_config->port_clock); 1154 1155 drm_dbg_kms(display->drm, "TV mode: " DRM_MODE_FMT "\n", 1156 DRM_MODE_ARG(&mode)); 1157 1158 intel_tv_scale_mode_horiz(&mode, hdisplay, 1159 xpos, mode.hdisplay - xsize - xpos); 1160 intel_tv_scale_mode_vert(&mode, vdisplay, 1161 ypos, mode.vdisplay - ysize - ypos); 1162 1163 adjusted_mode->crtc_clock = mode.clock; 1164 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 1165 adjusted_mode->crtc_clock /= 2; 1166 1167 /* pixel counter doesn't work on i965gm TV output */ 1168 if (display->platform.i965gm) 1169 pipe_config->mode_flags |= 1170 I915_MODE_FLAG_USE_SCANLINE_COUNTER; 1171 } 1172 1173 static bool intel_tv_source_too_wide(struct intel_display *display, 1174 int hdisplay) 1175 { 1176 return DISPLAY_VER(display) == 3 && hdisplay > 1024; 1177 } 1178 1179 static bool intel_tv_vert_scaling(const struct drm_display_mode *tv_mode, 1180 const struct drm_connector_state *conn_state, 1181 int vdisplay) 1182 { 1183 return tv_mode->crtc_vdisplay - 1184 conn_state->tv.margins.top - 1185 conn_state->tv.margins.bottom != 1186 vdisplay; 1187 } 1188 1189 static int 1190 intel_tv_compute_config(struct intel_encoder *encoder, 1191 struct intel_crtc_state *pipe_config, 1192 struct drm_connector_state *conn_state) 1193 { 1194 struct intel_display *display = to_intel_display(encoder); 1195 struct intel_atomic_state *state = 1196 to_intel_atomic_state(pipe_config->uapi.state); 1197 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 1198 struct intel_tv_connector_state *tv_conn_state = 1199 to_intel_tv_connector_state(conn_state); 1200 const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state); 1201 struct drm_display_mode *adjusted_mode = 1202 &pipe_config->hw.adjusted_mode; 1203 int hdisplay = adjusted_mode->crtc_hdisplay; 1204 int vdisplay = adjusted_mode->crtc_vdisplay; 1205 int ret; 1206 1207 if (!tv_mode) 1208 return -EINVAL; 1209 1210 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 1211 return -EINVAL; 1212 1213 pipe_config->sink_format = INTEL_OUTPUT_FORMAT_RGB; 1214 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 1215 1216 drm_dbg_kms(display->drm, "forcing bpc to 8 for TV\n"); 1217 pipe_config->pipe_bpp = 8*3; 1218 1219 pipe_config->port_clock = tv_mode->clock; 1220 1221 ret = intel_dpll_crtc_compute_clock(state, crtc); 1222 if (ret) 1223 return ret; 1224 1225 pipe_config->clock_set = true; 1226 1227 intel_tv_mode_to_mode(adjusted_mode, tv_mode, pipe_config->port_clock); 1228 drm_mode_set_crtcinfo(adjusted_mode, 0); 1229 1230 if (intel_tv_source_too_wide(display, hdisplay) || 1231 !intel_tv_vert_scaling(adjusted_mode, conn_state, vdisplay)) { 1232 int extra, top, bottom; 1233 1234 extra = adjusted_mode->crtc_vdisplay - vdisplay; 1235 1236 if (extra < 0) { 1237 drm_dbg_kms(display->drm, 1238 "No vertical scaling for >1024 pixel wide modes\n"); 1239 return -EINVAL; 1240 } 1241 1242 /* Need to turn off the vertical filter and center the image */ 1243 1244 /* Attempt to maintain the relative sizes of the margins */ 1245 top = conn_state->tv.margins.top; 1246 bottom = conn_state->tv.margins.bottom; 1247 1248 if (top + bottom) 1249 top = extra * top / (top + bottom); 1250 else 1251 top = extra / 2; 1252 bottom = extra - top; 1253 1254 tv_conn_state->margins.top = top; 1255 tv_conn_state->margins.bottom = bottom; 1256 1257 tv_conn_state->bypass_vfilter = true; 1258 1259 if (!tv_mode->progressive) { 1260 adjusted_mode->clock /= 2; 1261 adjusted_mode->crtc_clock /= 2; 1262 adjusted_mode->flags |= DRM_MODE_FLAG_INTERLACE; 1263 } 1264 } else { 1265 tv_conn_state->margins.top = conn_state->tv.margins.top; 1266 tv_conn_state->margins.bottom = conn_state->tv.margins.bottom; 1267 1268 tv_conn_state->bypass_vfilter = false; 1269 } 1270 1271 drm_dbg_kms(display->drm, "TV mode: " DRM_MODE_FMT "\n", 1272 DRM_MODE_ARG(adjusted_mode)); 1273 1274 /* 1275 * The pipe scanline counter behaviour looks as follows when 1276 * using the TV encoder: 1277 * 1278 * time -> 1279 * 1280 * dsl=vtotal-1 | | 1281 * || || 1282 * ___| | ___| | 1283 * / | / | 1284 * / | / | 1285 * dsl=0 ___/ |_____/ | 1286 * | | | | | | 1287 * ^ ^ ^ ^ ^ 1288 * | | | | pipe vblank/first part of tv vblank 1289 * | | | bottom margin 1290 * | | active 1291 * | top margin 1292 * remainder of tv vblank 1293 * 1294 * When the TV encoder is used the pipe wants to run faster 1295 * than expected rate. During the active portion the TV 1296 * encoder stalls the pipe every few lines to keep it in 1297 * check. When the TV encoder reaches the bottom margin the 1298 * pipe simply stops. Once we reach the TV vblank the pipe is 1299 * no longer stalled and it runs at the max rate (apparently 1300 * oversample clock on gen3, cdclk on gen4). Once the pipe 1301 * reaches the pipe vtotal the pipe stops for the remainder 1302 * of the TV vblank/top margin. The pipe starts up again when 1303 * the TV encoder exits the top margin. 1304 * 1305 * To avoid huge hassles for vblank timestamping we scale 1306 * the pipe timings as if the pipe always runs at the average 1307 * rate it maintains during the active period. This also 1308 * gives us a reasonable guesstimate as to the pixel rate. 1309 * Due to the variation in the actual pipe speed the scanline 1310 * counter will give us slightly erroneous results during the 1311 * TV vblank/margins. But since vtotal was selected such that 1312 * it matches the average rate of the pipe during the active 1313 * portion the error shouldn't cause any serious grief to 1314 * vblank timestamps. 1315 * 1316 * For posterity here is the empirically derived formula 1317 * that gives us the maximum length of the pipe vblank 1318 * we can use without causing display corruption. Following 1319 * this would allow us to have a ticking scanline counter 1320 * everywhere except during the bottom margin (there the 1321 * pipe always stops). Ie. this would eliminate the second 1322 * flat portion of the above graph. However this would also 1323 * complicate vblank timestamping as the pipe vtotal would 1324 * no longer match the average rate the pipe runs at during 1325 * the active portion. Hence following this formula seems 1326 * more trouble that it's worth. 1327 * 1328 * if (DISPLAY_VER(dev_priv) == 4) { 1329 * num = cdclk * (tv_mode->oversample >> !tv_mode->progressive); 1330 * den = tv_mode->clock; 1331 * } else { 1332 * num = tv_mode->oversample >> !tv_mode->progressive; 1333 * den = 1; 1334 * } 1335 * max_pipe_vblank_len ~= 1336 * (num * tv_htotal * (tv_vblank_len + top_margin)) / 1337 * (den * pipe_htotal); 1338 */ 1339 intel_tv_scale_mode_horiz(adjusted_mode, hdisplay, 1340 conn_state->tv.margins.left, 1341 conn_state->tv.margins.right); 1342 intel_tv_scale_mode_vert(adjusted_mode, vdisplay, 1343 tv_conn_state->margins.top, 1344 tv_conn_state->margins.bottom); 1345 drm_mode_set_crtcinfo(adjusted_mode, 0); 1346 adjusted_mode->name[0] = '\0'; 1347 1348 /* pixel counter doesn't work on i965gm TV output */ 1349 if (display->platform.i965gm) 1350 pipe_config->mode_flags |= 1351 I915_MODE_FLAG_USE_SCANLINE_COUNTER; 1352 1353 return 0; 1354 } 1355 1356 static void 1357 set_tv_mode_timings(struct intel_display *display, 1358 const struct tv_mode *tv_mode, 1359 bool burst_ena) 1360 { 1361 u32 hctl1, hctl2, hctl3; 1362 u32 vctl1, vctl2, vctl3, vctl4, vctl5, vctl6, vctl7; 1363 1364 hctl1 = (tv_mode->hsync_end << TV_HSYNC_END_SHIFT) | 1365 (tv_mode->htotal << TV_HTOTAL_SHIFT); 1366 1367 hctl2 = (tv_mode->hburst_start << 16) | 1368 (tv_mode->hburst_len << TV_HBURST_LEN_SHIFT); 1369 1370 if (burst_ena) 1371 hctl2 |= TV_BURST_ENA; 1372 1373 hctl3 = (tv_mode->hblank_start << TV_HBLANK_START_SHIFT) | 1374 (tv_mode->hblank_end << TV_HBLANK_END_SHIFT); 1375 1376 vctl1 = (tv_mode->nbr_end << TV_NBR_END_SHIFT) | 1377 (tv_mode->vi_end_f1 << TV_VI_END_F1_SHIFT) | 1378 (tv_mode->vi_end_f2 << TV_VI_END_F2_SHIFT); 1379 1380 vctl2 = (tv_mode->vsync_len << TV_VSYNC_LEN_SHIFT) | 1381 (tv_mode->vsync_start_f1 << TV_VSYNC_START_F1_SHIFT) | 1382 (tv_mode->vsync_start_f2 << TV_VSYNC_START_F2_SHIFT); 1383 1384 vctl3 = (tv_mode->veq_len << TV_VEQ_LEN_SHIFT) | 1385 (tv_mode->veq_start_f1 << TV_VEQ_START_F1_SHIFT) | 1386 (tv_mode->veq_start_f2 << TV_VEQ_START_F2_SHIFT); 1387 1388 if (tv_mode->veq_ena) 1389 vctl3 |= TV_EQUAL_ENA; 1390 1391 vctl4 = (tv_mode->vburst_start_f1 << TV_VBURST_START_F1_SHIFT) | 1392 (tv_mode->vburst_end_f1 << TV_VBURST_END_F1_SHIFT); 1393 1394 vctl5 = (tv_mode->vburst_start_f2 << TV_VBURST_START_F2_SHIFT) | 1395 (tv_mode->vburst_end_f2 << TV_VBURST_END_F2_SHIFT); 1396 1397 vctl6 = (tv_mode->vburst_start_f3 << TV_VBURST_START_F3_SHIFT) | 1398 (tv_mode->vburst_end_f3 << TV_VBURST_END_F3_SHIFT); 1399 1400 vctl7 = (tv_mode->vburst_start_f4 << TV_VBURST_START_F4_SHIFT) | 1401 (tv_mode->vburst_end_f4 << TV_VBURST_END_F4_SHIFT); 1402 1403 intel_de_write(display, TV_H_CTL_1, hctl1); 1404 intel_de_write(display, TV_H_CTL_2, hctl2); 1405 intel_de_write(display, TV_H_CTL_3, hctl3); 1406 intel_de_write(display, TV_V_CTL_1, vctl1); 1407 intel_de_write(display, TV_V_CTL_2, vctl2); 1408 intel_de_write(display, TV_V_CTL_3, vctl3); 1409 intel_de_write(display, TV_V_CTL_4, vctl4); 1410 intel_de_write(display, TV_V_CTL_5, vctl5); 1411 intel_de_write(display, TV_V_CTL_6, vctl6); 1412 intel_de_write(display, TV_V_CTL_7, vctl7); 1413 } 1414 1415 static void set_color_conversion(struct intel_display *display, 1416 const struct color_conversion *color_conversion) 1417 { 1418 intel_de_write(display, TV_CSC_Y, 1419 (color_conversion->ry << 16) | color_conversion->gy); 1420 intel_de_write(display, TV_CSC_Y2, 1421 (color_conversion->by << 16) | color_conversion->ay); 1422 intel_de_write(display, TV_CSC_U, 1423 (color_conversion->ru << 16) | color_conversion->gu); 1424 intel_de_write(display, TV_CSC_U2, 1425 (color_conversion->bu << 16) | color_conversion->au); 1426 intel_de_write(display, TV_CSC_V, 1427 (color_conversion->rv << 16) | color_conversion->gv); 1428 intel_de_write(display, TV_CSC_V2, 1429 (color_conversion->bv << 16) | color_conversion->av); 1430 } 1431 1432 static void intel_tv_pre_enable(struct intel_atomic_state *state, 1433 struct intel_encoder *encoder, 1434 const struct intel_crtc_state *pipe_config, 1435 const struct drm_connector_state *conn_state) 1436 { 1437 struct intel_display *display = to_intel_display(encoder); 1438 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 1439 struct intel_tv *intel_tv = enc_to_tv(encoder); 1440 const struct intel_tv_connector_state *tv_conn_state = 1441 to_intel_tv_connector_state(conn_state); 1442 const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state); 1443 u32 tv_ctl, tv_filter_ctl; 1444 u32 scctl1, scctl2, scctl3; 1445 int i, j; 1446 const struct video_levels *video_levels; 1447 const struct color_conversion *color_conversion; 1448 bool burst_ena; 1449 int xpos, ypos; 1450 unsigned int xsize, ysize; 1451 1452 tv_ctl = intel_de_read(display, TV_CTL); 1453 tv_ctl &= TV_CTL_SAVE; 1454 1455 switch (intel_tv->type) { 1456 default: 1457 case DRM_MODE_CONNECTOR_Unknown: 1458 case DRM_MODE_CONNECTOR_Composite: 1459 tv_ctl |= TV_ENC_OUTPUT_COMPOSITE; 1460 video_levels = tv_mode->composite_levels; 1461 color_conversion = tv_mode->composite_color; 1462 burst_ena = tv_mode->burst_ena; 1463 break; 1464 case DRM_MODE_CONNECTOR_Component: 1465 tv_ctl |= TV_ENC_OUTPUT_COMPONENT; 1466 video_levels = &component_levels; 1467 if (tv_mode->burst_ena) 1468 color_conversion = &sdtv_csc_yprpb; 1469 else 1470 color_conversion = &hdtv_csc_yprpb; 1471 burst_ena = false; 1472 break; 1473 case DRM_MODE_CONNECTOR_SVIDEO: 1474 tv_ctl |= TV_ENC_OUTPUT_SVIDEO; 1475 video_levels = tv_mode->svideo_levels; 1476 color_conversion = tv_mode->svideo_color; 1477 burst_ena = tv_mode->burst_ena; 1478 break; 1479 } 1480 1481 tv_ctl |= TV_ENC_PIPE_SEL(crtc->pipe); 1482 1483 switch (tv_mode->oversample) { 1484 case 8: 1485 tv_ctl |= TV_OVERSAMPLE_8X; 1486 break; 1487 case 4: 1488 tv_ctl |= TV_OVERSAMPLE_4X; 1489 break; 1490 case 2: 1491 tv_ctl |= TV_OVERSAMPLE_2X; 1492 break; 1493 default: 1494 tv_ctl |= TV_OVERSAMPLE_NONE; 1495 break; 1496 } 1497 1498 if (tv_mode->progressive) 1499 tv_ctl |= TV_PROGRESSIVE; 1500 if (tv_mode->trilevel_sync) 1501 tv_ctl |= TV_TRILEVEL_SYNC; 1502 if (tv_mode->pal_burst) 1503 tv_ctl |= TV_PAL_BURST; 1504 1505 scctl1 = 0; 1506 if (tv_mode->dda1_inc) 1507 scctl1 |= TV_SC_DDA1_EN; 1508 if (tv_mode->dda2_inc) 1509 scctl1 |= TV_SC_DDA2_EN; 1510 if (tv_mode->dda3_inc) 1511 scctl1 |= TV_SC_DDA3_EN; 1512 scctl1 |= tv_mode->sc_reset; 1513 if (video_levels) 1514 scctl1 |= video_levels->burst << TV_BURST_LEVEL_SHIFT; 1515 scctl1 |= tv_mode->dda1_inc << TV_SCDDA1_INC_SHIFT; 1516 1517 scctl2 = tv_mode->dda2_size << TV_SCDDA2_SIZE_SHIFT | 1518 tv_mode->dda2_inc << TV_SCDDA2_INC_SHIFT; 1519 1520 scctl3 = tv_mode->dda3_size << TV_SCDDA3_SIZE_SHIFT | 1521 tv_mode->dda3_inc << TV_SCDDA3_INC_SHIFT; 1522 1523 /* Enable two fixes for the chips that need them. */ 1524 if (display->platform.i915gm) 1525 tv_ctl |= TV_ENC_C0_FIX | TV_ENC_SDP_FIX; 1526 1527 set_tv_mode_timings(display, tv_mode, burst_ena); 1528 1529 intel_de_write(display, TV_SC_CTL_1, scctl1); 1530 intel_de_write(display, TV_SC_CTL_2, scctl2); 1531 intel_de_write(display, TV_SC_CTL_3, scctl3); 1532 1533 set_color_conversion(display, color_conversion); 1534 1535 if (DISPLAY_VER(display) >= 4) 1536 intel_de_write(display, TV_CLR_KNOBS, 0x00404000); 1537 else 1538 intel_de_write(display, TV_CLR_KNOBS, 0x00606000); 1539 1540 if (video_levels) 1541 intel_de_write(display, TV_CLR_LEVEL, 1542 ((video_levels->black << TV_BLACK_LEVEL_SHIFT) | (video_levels->blank << TV_BLANK_LEVEL_SHIFT))); 1543 1544 assert_transcoder_disabled(display, pipe_config->cpu_transcoder); 1545 1546 /* Filter ctl must be set before TV_WIN_SIZE */ 1547 tv_filter_ctl = TV_AUTO_SCALE; 1548 if (tv_conn_state->bypass_vfilter) 1549 tv_filter_ctl |= TV_V_FILTER_BYPASS; 1550 intel_de_write(display, TV_FILTER_CTL_1, tv_filter_ctl); 1551 1552 xsize = tv_mode->hblank_start - tv_mode->hblank_end; 1553 ysize = intel_tv_mode_vdisplay(tv_mode); 1554 1555 xpos = conn_state->tv.margins.left; 1556 ypos = tv_conn_state->margins.top; 1557 xsize -= (conn_state->tv.margins.left + 1558 conn_state->tv.margins.right); 1559 ysize -= (tv_conn_state->margins.top + 1560 tv_conn_state->margins.bottom); 1561 intel_de_write(display, TV_WIN_POS, (xpos << 16) | ypos); 1562 intel_de_write(display, TV_WIN_SIZE, (xsize << 16) | ysize); 1563 1564 j = 0; 1565 for (i = 0; i < 60; i++) 1566 intel_de_write(display, TV_H_LUMA(i), 1567 tv_mode->filter_table[j++]); 1568 for (i = 0; i < 60; i++) 1569 intel_de_write(display, TV_H_CHROMA(i), 1570 tv_mode->filter_table[j++]); 1571 for (i = 0; i < 43; i++) 1572 intel_de_write(display, TV_V_LUMA(i), 1573 tv_mode->filter_table[j++]); 1574 for (i = 0; i < 43; i++) 1575 intel_de_write(display, TV_V_CHROMA(i), 1576 tv_mode->filter_table[j++]); 1577 intel_de_write(display, TV_DAC, 1578 intel_de_read(display, TV_DAC) & TV_DAC_SAVE); 1579 intel_de_write(display, TV_CTL, tv_ctl); 1580 } 1581 1582 static int 1583 intel_tv_detect_type(struct intel_tv *intel_tv, 1584 struct drm_connector *connector) 1585 { 1586 struct intel_display *display = to_intel_display(connector->dev); 1587 struct intel_crtc *crtc = to_intel_crtc(connector->state->crtc); 1588 u32 tv_ctl, save_tv_ctl; 1589 u32 tv_dac, save_tv_dac; 1590 int type; 1591 1592 /* Disable TV interrupts around load detect or we'll recurse */ 1593 if (connector->polled & DRM_CONNECTOR_POLL_HPD) { 1594 spin_lock_irq(&display->irq.lock); 1595 i915_disable_pipestat(display, 0, 1596 PIPE_HOTPLUG_INTERRUPT_STATUS | 1597 PIPE_HOTPLUG_TV_INTERRUPT_STATUS); 1598 spin_unlock_irq(&display->irq.lock); 1599 } 1600 1601 save_tv_dac = tv_dac = intel_de_read(display, TV_DAC); 1602 save_tv_ctl = tv_ctl = intel_de_read(display, TV_CTL); 1603 1604 /* Poll for TV detection */ 1605 tv_ctl &= ~(TV_ENC_ENABLE | TV_ENC_PIPE_SEL_MASK | TV_TEST_MODE_MASK); 1606 tv_ctl |= TV_TEST_MODE_MONITOR_DETECT; 1607 tv_ctl |= TV_ENC_PIPE_SEL(crtc->pipe); 1608 1609 tv_dac &= ~(TVDAC_SENSE_MASK | DAC_A_MASK | DAC_B_MASK | DAC_C_MASK); 1610 tv_dac |= (TVDAC_STATE_CHG_EN | 1611 TVDAC_A_SENSE_CTL | 1612 TVDAC_B_SENSE_CTL | 1613 TVDAC_C_SENSE_CTL | 1614 DAC_CTL_OVERRIDE | 1615 DAC_A_0_7_V | 1616 DAC_B_0_7_V | 1617 DAC_C_0_7_V); 1618 1619 1620 /* 1621 * The TV sense state should be cleared to zero on cantiga platform. Otherwise 1622 * the TV is misdetected. This is hardware requirement. 1623 */ 1624 if (display->platform.gm45) 1625 tv_dac &= ~(TVDAC_STATE_CHG_EN | TVDAC_A_SENSE_CTL | 1626 TVDAC_B_SENSE_CTL | TVDAC_C_SENSE_CTL); 1627 1628 intel_de_write(display, TV_CTL, tv_ctl); 1629 intel_de_write(display, TV_DAC, tv_dac); 1630 intel_de_posting_read(display, TV_DAC); 1631 1632 intel_crtc_wait_for_next_vblank(crtc); 1633 1634 type = -1; 1635 tv_dac = intel_de_read(display, TV_DAC); 1636 drm_dbg_kms(display->drm, "TV detected: %x, %x\n", tv_ctl, tv_dac); 1637 /* 1638 * A B C 1639 * 0 1 1 Composite 1640 * 1 0 X svideo 1641 * 0 0 0 Component 1642 */ 1643 if ((tv_dac & TVDAC_SENSE_MASK) == (TVDAC_B_SENSE | TVDAC_C_SENSE)) { 1644 drm_dbg_kms(display->drm, 1645 "Detected Composite TV connection\n"); 1646 type = DRM_MODE_CONNECTOR_Composite; 1647 } else if ((tv_dac & (TVDAC_A_SENSE|TVDAC_B_SENSE)) == TVDAC_A_SENSE) { 1648 drm_dbg_kms(display->drm, 1649 "Detected S-Video TV connection\n"); 1650 type = DRM_MODE_CONNECTOR_SVIDEO; 1651 } else if ((tv_dac & TVDAC_SENSE_MASK) == 0) { 1652 drm_dbg_kms(display->drm, 1653 "Detected Component TV connection\n"); 1654 type = DRM_MODE_CONNECTOR_Component; 1655 } else { 1656 drm_dbg_kms(display->drm, "Unrecognised TV connection\n"); 1657 type = -1; 1658 } 1659 1660 intel_de_write(display, TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN); 1661 intel_de_write(display, TV_CTL, save_tv_ctl); 1662 intel_de_posting_read(display, TV_CTL); 1663 1664 /* For unknown reasons the hw barfs if we don't do this vblank wait. */ 1665 intel_crtc_wait_for_next_vblank(crtc); 1666 1667 /* Restore interrupt config */ 1668 if (connector->polled & DRM_CONNECTOR_POLL_HPD) { 1669 spin_lock_irq(&display->irq.lock); 1670 i915_enable_pipestat(display, 0, 1671 PIPE_HOTPLUG_INTERRUPT_STATUS | 1672 PIPE_HOTPLUG_TV_INTERRUPT_STATUS); 1673 spin_unlock_irq(&display->irq.lock); 1674 } 1675 1676 return type; 1677 } 1678 1679 /* 1680 * Here we set accurate tv format according to connector type 1681 * i.e Component TV should not be assigned by NTSC or PAL 1682 */ 1683 static void intel_tv_find_better_format(struct drm_connector *connector) 1684 { 1685 struct intel_tv *intel_tv = intel_attached_tv(to_intel_connector(connector)); 1686 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 1687 int i; 1688 1689 /* Component supports everything so we can keep the current mode */ 1690 if (intel_tv->type == DRM_MODE_CONNECTOR_Component) 1691 return; 1692 1693 /* If the current mode is fine don't change it */ 1694 if (!tv_mode->component_only) 1695 return; 1696 1697 for (i = 0; i < ARRAY_SIZE(tv_modes); i++) { 1698 tv_mode = &tv_modes[i]; 1699 1700 if (!tv_mode->component_only) 1701 break; 1702 } 1703 1704 connector->state->tv.legacy_mode = i; 1705 } 1706 1707 static int 1708 intel_tv_detect(struct drm_connector *connector, 1709 struct drm_modeset_acquire_ctx *ctx, 1710 bool force) 1711 { 1712 struct intel_display *display = to_intel_display(connector->dev); 1713 struct intel_tv *intel_tv = intel_attached_tv(to_intel_connector(connector)); 1714 enum drm_connector_status status; 1715 int type; 1716 1717 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] force=%d\n", 1718 connector->base.id, connector->name, force); 1719 1720 if (!intel_display_device_enabled(display)) 1721 return connector_status_disconnected; 1722 1723 if (!intel_display_driver_check_access(display)) 1724 return connector->status; 1725 1726 if (force) { 1727 struct drm_atomic_state *state; 1728 1729 state = intel_load_detect_get_pipe(connector, ctx); 1730 if (IS_ERR(state)) 1731 return PTR_ERR(state); 1732 1733 if (state) { 1734 type = intel_tv_detect_type(intel_tv, connector); 1735 intel_load_detect_release_pipe(connector, state, ctx); 1736 status = type < 0 ? 1737 connector_status_disconnected : 1738 connector_status_connected; 1739 } else { 1740 status = connector_status_unknown; 1741 } 1742 1743 if (status == connector_status_connected) { 1744 intel_tv->type = type; 1745 intel_tv_find_better_format(connector); 1746 } 1747 1748 return status; 1749 } else 1750 return connector->status; 1751 } 1752 1753 static const struct input_res { 1754 u16 w, h; 1755 } input_res_table[] = { 1756 { 640, 480 }, 1757 { 800, 600 }, 1758 { 1024, 768 }, 1759 { 1280, 1024 }, 1760 { 848, 480 }, 1761 { 1280, 720 }, 1762 { 1920, 1080 }, 1763 }; 1764 1765 /* Choose preferred mode according to line number of TV format */ 1766 static bool 1767 intel_tv_is_preferred_mode(const struct drm_display_mode *mode, 1768 const struct tv_mode *tv_mode) 1769 { 1770 int vdisplay = intel_tv_mode_vdisplay(tv_mode); 1771 1772 /* prefer 480 line modes for all SD TV modes */ 1773 if (vdisplay <= 576) 1774 vdisplay = 480; 1775 1776 return vdisplay == mode->vdisplay; 1777 } 1778 1779 static void 1780 intel_tv_set_mode_type(struct drm_display_mode *mode, 1781 const struct tv_mode *tv_mode) 1782 { 1783 mode->type = DRM_MODE_TYPE_DRIVER; 1784 1785 if (intel_tv_is_preferred_mode(mode, tv_mode)) 1786 mode->type |= DRM_MODE_TYPE_PREFERRED; 1787 } 1788 1789 static int 1790 intel_tv_get_modes(struct drm_connector *connector) 1791 { 1792 struct intel_display *display = to_intel_display(connector->dev); 1793 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 1794 int i, count = 0; 1795 1796 for (i = 0; i < ARRAY_SIZE(input_res_table); i++) { 1797 const struct input_res *input = &input_res_table[i]; 1798 struct drm_display_mode *mode; 1799 1800 if (input->w > 1024 && 1801 !tv_mode->progressive && 1802 !tv_mode->component_only) 1803 continue; 1804 1805 /* no vertical scaling with wide sources on gen3 */ 1806 if (DISPLAY_VER(display) == 3 && input->w > 1024 && 1807 input->h > intel_tv_mode_vdisplay(tv_mode)) 1808 continue; 1809 1810 mode = drm_mode_create(connector->dev); 1811 if (!mode) 1812 continue; 1813 1814 /* 1815 * We take the TV mode and scale it to look 1816 * like it had the expected h/vdisplay. This 1817 * provides the most information to userspace 1818 * about the actual timings of the mode. We 1819 * do ignore the margins though. 1820 */ 1821 intel_tv_mode_to_mode(mode, tv_mode, tv_mode->clock); 1822 if (count == 0) { 1823 drm_dbg_kms(display->drm, 1824 "TV mode: " DRM_MODE_FMT "\n", 1825 DRM_MODE_ARG(mode)); 1826 } 1827 intel_tv_scale_mode_horiz(mode, input->w, 0, 0); 1828 intel_tv_scale_mode_vert(mode, input->h, 0, 0); 1829 intel_tv_set_mode_type(mode, tv_mode); 1830 1831 drm_mode_set_name(mode); 1832 1833 drm_mode_probed_add(connector, mode); 1834 count++; 1835 } 1836 1837 return count; 1838 } 1839 1840 static const struct drm_connector_funcs intel_tv_connector_funcs = { 1841 .late_register = intel_connector_register, 1842 .early_unregister = intel_connector_unregister, 1843 .destroy = intel_connector_destroy, 1844 .fill_modes = drm_helper_probe_single_connector_modes, 1845 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 1846 .atomic_duplicate_state = intel_tv_connector_duplicate_state, 1847 }; 1848 1849 static int intel_tv_atomic_check(struct drm_connector *connector, 1850 struct drm_atomic_state *state) 1851 { 1852 struct drm_connector_state *new_state; 1853 struct drm_crtc_state *new_crtc_state; 1854 struct drm_connector_state *old_state; 1855 1856 new_state = drm_atomic_get_new_connector_state(state, connector); 1857 if (!new_state->crtc) 1858 return 0; 1859 1860 old_state = drm_atomic_get_old_connector_state(state, connector); 1861 new_crtc_state = drm_atomic_get_new_crtc_state(state, new_state->crtc); 1862 1863 if (old_state->tv.legacy_mode != new_state->tv.legacy_mode || 1864 old_state->tv.margins.left != new_state->tv.margins.left || 1865 old_state->tv.margins.right != new_state->tv.margins.right || 1866 old_state->tv.margins.top != new_state->tv.margins.top || 1867 old_state->tv.margins.bottom != new_state->tv.margins.bottom) { 1868 /* Force a modeset. */ 1869 1870 new_crtc_state->connectors_changed = true; 1871 } 1872 1873 return 0; 1874 } 1875 1876 static const struct drm_connector_helper_funcs intel_tv_connector_helper_funcs = { 1877 .detect_ctx = intel_tv_detect, 1878 .mode_valid = intel_tv_mode_valid, 1879 .get_modes = intel_tv_get_modes, 1880 .atomic_check = intel_tv_atomic_check, 1881 }; 1882 1883 static const struct drm_encoder_funcs intel_tv_enc_funcs = { 1884 .destroy = intel_encoder_destroy, 1885 }; 1886 1887 static void intel_tv_add_properties(struct drm_connector *connector) 1888 { 1889 struct intel_display *display = to_intel_display(connector->dev); 1890 struct drm_connector_state *conn_state = connector->state; 1891 const char *tv_format_names[ARRAY_SIZE(tv_modes)]; 1892 int i; 1893 1894 /* BIOS margin values */ 1895 conn_state->tv.margins.left = 54; 1896 conn_state->tv.margins.top = 36; 1897 conn_state->tv.margins.right = 46; 1898 conn_state->tv.margins.bottom = 37; 1899 1900 conn_state->tv.legacy_mode = 0; 1901 1902 /* Create TV properties then attach current values */ 1903 for (i = 0; i < ARRAY_SIZE(tv_modes); i++) { 1904 /* 1080p50/1080p60 not supported on gen3 */ 1905 if (DISPLAY_VER(display) == 3 && tv_modes[i].oversample == 1) 1906 break; 1907 1908 tv_format_names[i] = tv_modes[i].name; 1909 } 1910 drm_mode_create_tv_properties_legacy(display->drm, i, tv_format_names); 1911 1912 drm_object_attach_property(&connector->base, 1913 display->drm->mode_config.legacy_tv_mode_property, 1914 conn_state->tv.legacy_mode); 1915 drm_object_attach_property(&connector->base, 1916 display->drm->mode_config.tv_left_margin_property, 1917 conn_state->tv.margins.left); 1918 drm_object_attach_property(&connector->base, 1919 display->drm->mode_config.tv_top_margin_property, 1920 conn_state->tv.margins.top); 1921 drm_object_attach_property(&connector->base, 1922 display->drm->mode_config.tv_right_margin_property, 1923 conn_state->tv.margins.right); 1924 drm_object_attach_property(&connector->base, 1925 display->drm->mode_config.tv_bottom_margin_property, 1926 conn_state->tv.margins.bottom); 1927 } 1928 1929 void 1930 intel_tv_init(struct intel_display *display) 1931 { 1932 struct drm_connector *connector; 1933 struct intel_tv *intel_tv; 1934 struct intel_encoder *intel_encoder; 1935 struct intel_connector *intel_connector; 1936 u32 tv_dac_on, tv_dac_off, save_tv_dac; 1937 1938 if ((intel_de_read(display, TV_CTL) & TV_FUSE_STATE_MASK) == TV_FUSE_STATE_DISABLED) 1939 return; 1940 1941 if (!intel_bios_is_tv_present(display)) { 1942 drm_dbg_kms(display->drm, "Integrated TV is not present.\n"); 1943 return; 1944 } 1945 1946 /* 1947 * Sanity check the TV output by checking to see if the 1948 * DAC register holds a value 1949 */ 1950 save_tv_dac = intel_de_read(display, TV_DAC); 1951 1952 intel_de_write(display, TV_DAC, save_tv_dac | TVDAC_STATE_CHG_EN); 1953 tv_dac_on = intel_de_read(display, TV_DAC); 1954 1955 intel_de_write(display, TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN); 1956 tv_dac_off = intel_de_read(display, TV_DAC); 1957 1958 intel_de_write(display, TV_DAC, save_tv_dac); 1959 1960 /* 1961 * If the register does not hold the state change enable 1962 * bit, (either as a 0 or a 1), assume it doesn't really 1963 * exist 1964 */ 1965 if ((tv_dac_on & TVDAC_STATE_CHG_EN) == 0 || 1966 (tv_dac_off & TVDAC_STATE_CHG_EN) != 0) 1967 return; 1968 1969 intel_tv = kzalloc(sizeof(*intel_tv), GFP_KERNEL); 1970 if (!intel_tv) { 1971 return; 1972 } 1973 1974 intel_connector = intel_connector_alloc(); 1975 if (!intel_connector) { 1976 kfree(intel_tv); 1977 return; 1978 } 1979 1980 intel_encoder = &intel_tv->base; 1981 connector = &intel_connector->base; 1982 1983 /* 1984 * The documentation, for the older chipsets at least, recommend 1985 * using a polling method rather than hotplug detection for TVs. 1986 * This is because in order to perform the hotplug detection, the PLLs 1987 * for the TV must be kept alive increasing power drain and starving 1988 * bandwidth from other encoders. Notably for instance, it causes 1989 * pipe underruns on Crestline when this encoder is supposedly idle. 1990 * 1991 * More recent chipsets favour HDMI rather than integrated S-Video. 1992 */ 1993 intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT; 1994 intel_connector->base.polled = intel_connector->polled; 1995 1996 drm_connector_init(display->drm, connector, &intel_tv_connector_funcs, 1997 DRM_MODE_CONNECTOR_SVIDEO); 1998 1999 drm_encoder_init(display->drm, &intel_encoder->base, 2000 &intel_tv_enc_funcs, 2001 DRM_MODE_ENCODER_TVDAC, "TV"); 2002 2003 intel_encoder->compute_config = intel_tv_compute_config; 2004 intel_encoder->get_config = intel_tv_get_config; 2005 intel_encoder->pre_enable = intel_tv_pre_enable; 2006 intel_encoder->enable = intel_enable_tv; 2007 intel_encoder->disable = intel_disable_tv; 2008 intel_encoder->get_hw_state = intel_tv_get_hw_state; 2009 intel_connector->get_hw_state = intel_connector_get_hw_state; 2010 2011 intel_connector_attach_encoder(intel_connector, intel_encoder); 2012 2013 intel_encoder->type = INTEL_OUTPUT_TVOUT; 2014 intel_encoder->power_domain = POWER_DOMAIN_PORT_OTHER; 2015 intel_encoder->port = PORT_NONE; 2016 intel_encoder->pipe_mask = ~0; 2017 intel_encoder->cloneable = 0; 2018 intel_tv->type = DRM_MODE_CONNECTOR_Unknown; 2019 2020 drm_connector_helper_add(connector, &intel_tv_connector_helper_funcs); 2021 2022 intel_tv_add_properties(connector); 2023 } 2024