1 /* 2 * Copyright © 2006-2008 Intel Corporation 3 * Jesse Barnes <jesse.barnes@intel.com> 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Eric Anholt <eric@anholt.net> 26 * 27 */ 28 29 /** @file 30 * Integrated TV-out support for the 915GM and 945GM. 31 */ 32 33 #include <drm/drm_atomic_helper.h> 34 #include <drm/drm_crtc.h> 35 #include <drm/drm_edid.h> 36 37 #include "i915_drv.h" 38 #include "intel_connector.h" 39 #include "intel_crtc.h" 40 #include "intel_de.h" 41 #include "intel_display_types.h" 42 #include "intel_dpll.h" 43 #include "intel_hotplug.h" 44 #include "intel_tv.h" 45 46 enum tv_margin { 47 TV_MARGIN_LEFT, TV_MARGIN_TOP, 48 TV_MARGIN_RIGHT, TV_MARGIN_BOTTOM 49 }; 50 51 struct intel_tv { 52 struct intel_encoder base; 53 54 int type; 55 }; 56 57 struct video_levels { 58 u16 blank, black; 59 u8 burst; 60 }; 61 62 struct color_conversion { 63 u16 ry, gy, by, ay; 64 u16 ru, gu, bu, au; 65 u16 rv, gv, bv, av; 66 }; 67 68 static const u32 filter_table[] = { 69 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140, 70 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000, 71 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160, 72 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780, 73 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50, 74 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20, 75 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0, 76 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0, 77 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020, 78 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140, 79 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20, 80 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848, 81 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900, 82 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080, 83 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060, 84 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140, 85 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000, 86 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160, 87 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780, 88 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50, 89 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20, 90 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0, 91 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0, 92 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020, 93 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140, 94 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20, 95 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848, 96 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900, 97 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080, 98 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060, 99 0x36403000, 0x2D002CC0, 0x30003640, 0x2D0036C0, 100 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540, 101 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00, 102 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000, 103 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00, 104 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40, 105 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240, 106 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00, 107 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0, 108 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840, 109 0x28003100, 0x28002F00, 0x00003100, 0x36403000, 110 0x2D002CC0, 0x30003640, 0x2D0036C0, 111 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540, 112 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00, 113 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000, 114 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00, 115 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40, 116 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240, 117 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00, 118 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0, 119 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840, 120 0x28003100, 0x28002F00, 0x00003100, 121 }; 122 123 /* 124 * Color conversion values have 3 separate fixed point formats: 125 * 126 * 10 bit fields (ay, au) 127 * 1.9 fixed point (b.bbbbbbbbb) 128 * 11 bit fields (ry, by, ru, gu, gv) 129 * exp.mantissa (ee.mmmmmmmmm) 130 * ee = 00 = 10^-1 (0.mmmmmmmmm) 131 * ee = 01 = 10^-2 (0.0mmmmmmmmm) 132 * ee = 10 = 10^-3 (0.00mmmmmmmmm) 133 * ee = 11 = 10^-4 (0.000mmmmmmmmm) 134 * 12 bit fields (gy, rv, bu) 135 * exp.mantissa (eee.mmmmmmmmm) 136 * eee = 000 = 10^-1 (0.mmmmmmmmm) 137 * eee = 001 = 10^-2 (0.0mmmmmmmmm) 138 * eee = 010 = 10^-3 (0.00mmmmmmmmm) 139 * eee = 011 = 10^-4 (0.000mmmmmmmmm) 140 * eee = 100 = reserved 141 * eee = 101 = reserved 142 * eee = 110 = reserved 143 * eee = 111 = 10^0 (m.mmmmmmmm) (only usable for 1.0 representation) 144 * 145 * Saturation and contrast are 8 bits, with their own representation: 146 * 8 bit field (saturation, contrast) 147 * exp.mantissa (ee.mmmmmm) 148 * ee = 00 = 10^-1 (0.mmmmmm) 149 * ee = 01 = 10^0 (m.mmmmm) 150 * ee = 10 = 10^1 (mm.mmmm) 151 * ee = 11 = 10^2 (mmm.mmm) 152 * 153 * Simple conversion function: 154 * 155 * static u32 156 * float_to_csc_11(float f) 157 * { 158 * u32 exp; 159 * u32 mant; 160 * u32 ret; 161 * 162 * if (f < 0) 163 * f = -f; 164 * 165 * if (f >= 1) { 166 * exp = 0x7; 167 * mant = 1 << 8; 168 * } else { 169 * for (exp = 0; exp < 3 && f < 0.5; exp++) 170 * f *= 2.0; 171 * mant = (f * (1 << 9) + 0.5); 172 * if (mant >= (1 << 9)) 173 * mant = (1 << 9) - 1; 174 * } 175 * ret = (exp << 9) | mant; 176 * return ret; 177 * } 178 */ 179 180 /* 181 * Behold, magic numbers! If we plant them they might grow a big 182 * s-video cable to the sky... or something. 183 * 184 * Pre-converted to appropriate hex value. 185 */ 186 187 /* 188 * PAL & NTSC values for composite & s-video connections 189 */ 190 static const struct color_conversion ntsc_m_csc_composite = { 191 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 192 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 193 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 194 }; 195 196 static const struct video_levels ntsc_m_levels_composite = { 197 .blank = 225, .black = 267, .burst = 113, 198 }; 199 200 static const struct color_conversion ntsc_m_csc_svideo = { 201 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 202 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 203 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 204 }; 205 206 static const struct video_levels ntsc_m_levels_svideo = { 207 .blank = 266, .black = 316, .burst = 133, 208 }; 209 210 static const struct color_conversion ntsc_j_csc_composite = { 211 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0119, 212 .ru = 0x074c, .gu = 0x0546, .bu = 0x05ec, .au = 0x0200, 213 .rv = 0x035a, .gv = 0x0322, .bv = 0x06e1, .av = 0x0200, 214 }; 215 216 static const struct video_levels ntsc_j_levels_composite = { 217 .blank = 225, .black = 225, .burst = 113, 218 }; 219 220 static const struct color_conversion ntsc_j_csc_svideo = { 221 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x014c, 222 .ru = 0x0788, .gu = 0x0581, .bu = 0x0322, .au = 0x0200, 223 .rv = 0x0399, .gv = 0x0356, .bv = 0x070a, .av = 0x0200, 224 }; 225 226 static const struct video_levels ntsc_j_levels_svideo = { 227 .blank = 266, .black = 266, .burst = 133, 228 }; 229 230 static const struct color_conversion pal_csc_composite = { 231 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0113, 232 .ru = 0x0745, .gu = 0x053f, .bu = 0x05e1, .au = 0x0200, 233 .rv = 0x0353, .gv = 0x031c, .bv = 0x06dc, .av = 0x0200, 234 }; 235 236 static const struct video_levels pal_levels_composite = { 237 .blank = 237, .black = 237, .burst = 118, 238 }; 239 240 static const struct color_conversion pal_csc_svideo = { 241 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145, 242 .ru = 0x0780, .gu = 0x0579, .bu = 0x031c, .au = 0x0200, 243 .rv = 0x0390, .gv = 0x034f, .bv = 0x0705, .av = 0x0200, 244 }; 245 246 static const struct video_levels pal_levels_svideo = { 247 .blank = 280, .black = 280, .burst = 139, 248 }; 249 250 static const struct color_conversion pal_m_csc_composite = { 251 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 252 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 253 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 254 }; 255 256 static const struct video_levels pal_m_levels_composite = { 257 .blank = 225, .black = 267, .burst = 113, 258 }; 259 260 static const struct color_conversion pal_m_csc_svideo = { 261 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 262 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 263 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 264 }; 265 266 static const struct video_levels pal_m_levels_svideo = { 267 .blank = 266, .black = 316, .burst = 133, 268 }; 269 270 static const struct color_conversion pal_n_csc_composite = { 271 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 272 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 273 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 274 }; 275 276 static const struct video_levels pal_n_levels_composite = { 277 .blank = 225, .black = 267, .burst = 118, 278 }; 279 280 static const struct color_conversion pal_n_csc_svideo = { 281 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 282 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 283 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 284 }; 285 286 static const struct video_levels pal_n_levels_svideo = { 287 .blank = 266, .black = 316, .burst = 139, 288 }; 289 290 /* 291 * Component connections 292 */ 293 static const struct color_conversion sdtv_csc_yprpb = { 294 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145, 295 .ru = 0x0559, .gu = 0x0353, .bu = 0x0100, .au = 0x0200, 296 .rv = 0x0100, .gv = 0x03ad, .bv = 0x074d, .av = 0x0200, 297 }; 298 299 static const struct color_conversion hdtv_csc_yprpb = { 300 .ry = 0x05b3, .gy = 0x016e, .by = 0x0728, .ay = 0x0145, 301 .ru = 0x07d5, .gu = 0x038b, .bu = 0x0100, .au = 0x0200, 302 .rv = 0x0100, .gv = 0x03d1, .bv = 0x06bc, .av = 0x0200, 303 }; 304 305 static const struct video_levels component_levels = { 306 .blank = 279, .black = 279, .burst = 0, 307 }; 308 309 310 struct tv_mode { 311 const char *name; 312 313 u32 clock; 314 u16 refresh; /* in millihertz (for precision) */ 315 u8 oversample; 316 u8 hsync_end; 317 u16 hblank_start, hblank_end, htotal; 318 bool progressive : 1, trilevel_sync : 1, component_only : 1; 319 u8 vsync_start_f1, vsync_start_f2, vsync_len; 320 bool veq_ena : 1; 321 u8 veq_start_f1, veq_start_f2, veq_len; 322 u8 vi_end_f1, vi_end_f2; 323 u16 nbr_end; 324 bool burst_ena : 1; 325 u8 hburst_start, hburst_len; 326 u8 vburst_start_f1; 327 u16 vburst_end_f1; 328 u8 vburst_start_f2; 329 u16 vburst_end_f2; 330 u8 vburst_start_f3; 331 u16 vburst_end_f3; 332 u8 vburst_start_f4; 333 u16 vburst_end_f4; 334 /* 335 * subcarrier programming 336 */ 337 u16 dda2_size, dda3_size; 338 u8 dda1_inc; 339 u16 dda2_inc, dda3_inc; 340 u32 sc_reset; 341 bool pal_burst : 1; 342 /* 343 * blank/black levels 344 */ 345 const struct video_levels *composite_levels, *svideo_levels; 346 const struct color_conversion *composite_color, *svideo_color; 347 const u32 *filter_table; 348 }; 349 350 351 /* 352 * Sub carrier DDA 353 * 354 * I think this works as follows: 355 * 356 * subcarrier freq = pixel_clock * (dda1_inc + dda2_inc / dda2_size) / 4096 357 * 358 * Presumably, when dda3 is added in, it gets to adjust the dda2_inc value 359 * 360 * So, 361 * dda1_ideal = subcarrier/pixel * 4096 362 * dda1_inc = floor (dda1_ideal) 363 * dda2 = dda1_ideal - dda1_inc 364 * 365 * then pick a ratio for dda2 that gives the closest approximation. If 366 * you can't get close enough, you can play with dda3 as well. This 367 * seems likely to happen when dda2 is small as the jumps would be larger 368 * 369 * To invert this, 370 * 371 * pixel_clock = subcarrier * 4096 / (dda1_inc + dda2_inc / dda2_size) 372 * 373 * The constants below were all computed using a 107.520MHz clock 374 */ 375 376 /* 377 * Register programming values for TV modes. 378 * 379 * These values account for -1s required. 380 */ 381 static const struct tv_mode tv_modes[] = { 382 { 383 .name = "NTSC-M", 384 .clock = 108000, 385 .refresh = 59940, 386 .oversample = 8, 387 .component_only = false, 388 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 389 390 .hsync_end = 64, .hblank_end = 124, 391 .hblank_start = 836, .htotal = 857, 392 393 .progressive = false, .trilevel_sync = false, 394 395 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 396 .vsync_len = 6, 397 398 .veq_ena = true, .veq_start_f1 = 0, 399 .veq_start_f2 = 1, .veq_len = 18, 400 401 .vi_end_f1 = 20, .vi_end_f2 = 21, 402 .nbr_end = 240, 403 404 .burst_ena = true, 405 .hburst_start = 72, .hburst_len = 34, 406 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 407 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 408 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 409 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 410 411 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 412 .dda1_inc = 135, 413 .dda2_inc = 20800, .dda2_size = 27456, 414 .dda3_inc = 0, .dda3_size = 0, 415 .sc_reset = TV_SC_RESET_EVERY_4, 416 .pal_burst = false, 417 418 .composite_levels = &ntsc_m_levels_composite, 419 .composite_color = &ntsc_m_csc_composite, 420 .svideo_levels = &ntsc_m_levels_svideo, 421 .svideo_color = &ntsc_m_csc_svideo, 422 423 .filter_table = filter_table, 424 }, 425 { 426 .name = "NTSC-443", 427 .clock = 108000, 428 .refresh = 59940, 429 .oversample = 8, 430 .component_only = false, 431 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 4.43MHz */ 432 .hsync_end = 64, .hblank_end = 124, 433 .hblank_start = 836, .htotal = 857, 434 435 .progressive = false, .trilevel_sync = false, 436 437 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 438 .vsync_len = 6, 439 440 .veq_ena = true, .veq_start_f1 = 0, 441 .veq_start_f2 = 1, .veq_len = 18, 442 443 .vi_end_f1 = 20, .vi_end_f2 = 21, 444 .nbr_end = 240, 445 446 .burst_ena = true, 447 .hburst_start = 72, .hburst_len = 34, 448 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 449 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 450 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 451 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 452 453 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 454 .dda1_inc = 168, 455 .dda2_inc = 4093, .dda2_size = 27456, 456 .dda3_inc = 310, .dda3_size = 525, 457 .sc_reset = TV_SC_RESET_NEVER, 458 .pal_burst = false, 459 460 .composite_levels = &ntsc_m_levels_composite, 461 .composite_color = &ntsc_m_csc_composite, 462 .svideo_levels = &ntsc_m_levels_svideo, 463 .svideo_color = &ntsc_m_csc_svideo, 464 465 .filter_table = filter_table, 466 }, 467 { 468 .name = "NTSC-J", 469 .clock = 108000, 470 .refresh = 59940, 471 .oversample = 8, 472 .component_only = false, 473 474 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 475 .hsync_end = 64, .hblank_end = 124, 476 .hblank_start = 836, .htotal = 857, 477 478 .progressive = false, .trilevel_sync = false, 479 480 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 481 .vsync_len = 6, 482 483 .veq_ena = true, .veq_start_f1 = 0, 484 .veq_start_f2 = 1, .veq_len = 18, 485 486 .vi_end_f1 = 20, .vi_end_f2 = 21, 487 .nbr_end = 240, 488 489 .burst_ena = true, 490 .hburst_start = 72, .hburst_len = 34, 491 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 492 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 493 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 494 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 495 496 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 497 .dda1_inc = 135, 498 .dda2_inc = 20800, .dda2_size = 27456, 499 .dda3_inc = 0, .dda3_size = 0, 500 .sc_reset = TV_SC_RESET_EVERY_4, 501 .pal_burst = false, 502 503 .composite_levels = &ntsc_j_levels_composite, 504 .composite_color = &ntsc_j_csc_composite, 505 .svideo_levels = &ntsc_j_levels_svideo, 506 .svideo_color = &ntsc_j_csc_svideo, 507 508 .filter_table = filter_table, 509 }, 510 { 511 .name = "PAL-M", 512 .clock = 108000, 513 .refresh = 59940, 514 .oversample = 8, 515 .component_only = false, 516 517 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 518 .hsync_end = 64, .hblank_end = 124, 519 .hblank_start = 836, .htotal = 857, 520 521 .progressive = false, .trilevel_sync = false, 522 523 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 524 .vsync_len = 6, 525 526 .veq_ena = true, .veq_start_f1 = 0, 527 .veq_start_f2 = 1, .veq_len = 18, 528 529 .vi_end_f1 = 20, .vi_end_f2 = 21, 530 .nbr_end = 240, 531 532 .burst_ena = true, 533 .hburst_start = 72, .hburst_len = 34, 534 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 535 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 536 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 537 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 538 539 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 540 .dda1_inc = 135, 541 .dda2_inc = 16704, .dda2_size = 27456, 542 .dda3_inc = 0, .dda3_size = 0, 543 .sc_reset = TV_SC_RESET_EVERY_8, 544 .pal_burst = true, 545 546 .composite_levels = &pal_m_levels_composite, 547 .composite_color = &pal_m_csc_composite, 548 .svideo_levels = &pal_m_levels_svideo, 549 .svideo_color = &pal_m_csc_svideo, 550 551 .filter_table = filter_table, 552 }, 553 { 554 /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */ 555 .name = "PAL-N", 556 .clock = 108000, 557 .refresh = 50000, 558 .oversample = 8, 559 .component_only = false, 560 561 .hsync_end = 64, .hblank_end = 128, 562 .hblank_start = 844, .htotal = 863, 563 564 .progressive = false, .trilevel_sync = false, 565 566 567 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 568 .vsync_len = 6, 569 570 .veq_ena = true, .veq_start_f1 = 0, 571 .veq_start_f2 = 1, .veq_len = 18, 572 573 .vi_end_f1 = 24, .vi_end_f2 = 25, 574 .nbr_end = 286, 575 576 .burst_ena = true, 577 .hburst_start = 73, .hburst_len = 34, 578 .vburst_start_f1 = 8, .vburst_end_f1 = 285, 579 .vburst_start_f2 = 8, .vburst_end_f2 = 286, 580 .vburst_start_f3 = 9, .vburst_end_f3 = 286, 581 .vburst_start_f4 = 9, .vburst_end_f4 = 285, 582 583 584 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 585 .dda1_inc = 135, 586 .dda2_inc = 23578, .dda2_size = 27648, 587 .dda3_inc = 134, .dda3_size = 625, 588 .sc_reset = TV_SC_RESET_EVERY_8, 589 .pal_burst = true, 590 591 .composite_levels = &pal_n_levels_composite, 592 .composite_color = &pal_n_csc_composite, 593 .svideo_levels = &pal_n_levels_svideo, 594 .svideo_color = &pal_n_csc_svideo, 595 596 .filter_table = filter_table, 597 }, 598 { 599 /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */ 600 .name = "PAL", 601 .clock = 108000, 602 .refresh = 50000, 603 .oversample = 8, 604 .component_only = false, 605 606 .hsync_end = 64, .hblank_end = 142, 607 .hblank_start = 844, .htotal = 863, 608 609 .progressive = false, .trilevel_sync = false, 610 611 .vsync_start_f1 = 5, .vsync_start_f2 = 6, 612 .vsync_len = 5, 613 614 .veq_ena = true, .veq_start_f1 = 0, 615 .veq_start_f2 = 1, .veq_len = 15, 616 617 .vi_end_f1 = 24, .vi_end_f2 = 25, 618 .nbr_end = 286, 619 620 .burst_ena = true, 621 .hburst_start = 73, .hburst_len = 32, 622 .vburst_start_f1 = 8, .vburst_end_f1 = 285, 623 .vburst_start_f2 = 8, .vburst_end_f2 = 286, 624 .vburst_start_f3 = 9, .vburst_end_f3 = 286, 625 .vburst_start_f4 = 9, .vburst_end_f4 = 285, 626 627 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 628 .dda1_inc = 168, 629 .dda2_inc = 4122, .dda2_size = 27648, 630 .dda3_inc = 67, .dda3_size = 625, 631 .sc_reset = TV_SC_RESET_EVERY_8, 632 .pal_burst = true, 633 634 .composite_levels = &pal_levels_composite, 635 .composite_color = &pal_csc_composite, 636 .svideo_levels = &pal_levels_svideo, 637 .svideo_color = &pal_csc_svideo, 638 639 .filter_table = filter_table, 640 }, 641 { 642 .name = "480p", 643 .clock = 108000, 644 .refresh = 59940, 645 .oversample = 4, 646 .component_only = true, 647 648 .hsync_end = 64, .hblank_end = 122, 649 .hblank_start = 842, .htotal = 857, 650 651 .progressive = true, .trilevel_sync = false, 652 653 .vsync_start_f1 = 12, .vsync_start_f2 = 12, 654 .vsync_len = 12, 655 656 .veq_ena = false, 657 658 .vi_end_f1 = 44, .vi_end_f2 = 44, 659 .nbr_end = 479, 660 661 .burst_ena = false, 662 663 .filter_table = filter_table, 664 }, 665 { 666 .name = "576p", 667 .clock = 108000, 668 .refresh = 50000, 669 .oversample = 4, 670 .component_only = true, 671 672 .hsync_end = 64, .hblank_end = 139, 673 .hblank_start = 859, .htotal = 863, 674 675 .progressive = true, .trilevel_sync = false, 676 677 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 678 .vsync_len = 10, 679 680 .veq_ena = false, 681 682 .vi_end_f1 = 48, .vi_end_f2 = 48, 683 .nbr_end = 575, 684 685 .burst_ena = false, 686 687 .filter_table = filter_table, 688 }, 689 { 690 .name = "720p@60Hz", 691 .clock = 148500, 692 .refresh = 60000, 693 .oversample = 2, 694 .component_only = true, 695 696 .hsync_end = 80, .hblank_end = 300, 697 .hblank_start = 1580, .htotal = 1649, 698 699 .progressive = true, .trilevel_sync = true, 700 701 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 702 .vsync_len = 10, 703 704 .veq_ena = false, 705 706 .vi_end_f1 = 29, .vi_end_f2 = 29, 707 .nbr_end = 719, 708 709 .burst_ena = false, 710 711 .filter_table = filter_table, 712 }, 713 { 714 .name = "720p@50Hz", 715 .clock = 148500, 716 .refresh = 50000, 717 .oversample = 2, 718 .component_only = true, 719 720 .hsync_end = 80, .hblank_end = 300, 721 .hblank_start = 1580, .htotal = 1979, 722 723 .progressive = true, .trilevel_sync = true, 724 725 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 726 .vsync_len = 10, 727 728 .veq_ena = false, 729 730 .vi_end_f1 = 29, .vi_end_f2 = 29, 731 .nbr_end = 719, 732 733 .burst_ena = false, 734 735 .filter_table = filter_table, 736 }, 737 { 738 .name = "1080i@50Hz", 739 .clock = 148500, 740 .refresh = 50000, 741 .oversample = 2, 742 .component_only = true, 743 744 .hsync_end = 88, .hblank_end = 235, 745 .hblank_start = 2155, .htotal = 2639, 746 747 .progressive = false, .trilevel_sync = true, 748 749 .vsync_start_f1 = 4, .vsync_start_f2 = 5, 750 .vsync_len = 10, 751 752 .veq_ena = true, .veq_start_f1 = 4, 753 .veq_start_f2 = 4, .veq_len = 10, 754 755 756 .vi_end_f1 = 21, .vi_end_f2 = 22, 757 .nbr_end = 539, 758 759 .burst_ena = false, 760 761 .filter_table = filter_table, 762 }, 763 { 764 .name = "1080i@60Hz", 765 .clock = 148500, 766 .refresh = 60000, 767 .oversample = 2, 768 .component_only = true, 769 770 .hsync_end = 88, .hblank_end = 235, 771 .hblank_start = 2155, .htotal = 2199, 772 773 .progressive = false, .trilevel_sync = true, 774 775 .vsync_start_f1 = 4, .vsync_start_f2 = 5, 776 .vsync_len = 10, 777 778 .veq_ena = true, .veq_start_f1 = 4, 779 .veq_start_f2 = 4, .veq_len = 10, 780 781 782 .vi_end_f1 = 21, .vi_end_f2 = 22, 783 .nbr_end = 539, 784 785 .burst_ena = false, 786 787 .filter_table = filter_table, 788 }, 789 790 { 791 .name = "1080p@30Hz", 792 .clock = 148500, 793 .refresh = 30000, 794 .oversample = 2, 795 .component_only = true, 796 797 .hsync_end = 88, .hblank_end = 235, 798 .hblank_start = 2155, .htotal = 2199, 799 800 .progressive = true, .trilevel_sync = true, 801 802 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 803 .vsync_len = 10, 804 805 .veq_ena = false, .veq_start_f1 = 0, 806 .veq_start_f2 = 0, .veq_len = 0, 807 808 .vi_end_f1 = 44, .vi_end_f2 = 44, 809 .nbr_end = 1079, 810 811 .burst_ena = false, 812 813 .filter_table = filter_table, 814 }, 815 816 { 817 .name = "1080p@50Hz", 818 .clock = 148500, 819 .refresh = 50000, 820 .oversample = 1, 821 .component_only = true, 822 823 .hsync_end = 88, .hblank_end = 235, 824 .hblank_start = 2155, .htotal = 2639, 825 826 .progressive = true, .trilevel_sync = true, 827 828 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 829 .vsync_len = 10, 830 831 .veq_ena = false, .veq_start_f1 = 0, 832 .veq_start_f2 = 0, .veq_len = 0, 833 834 .vi_end_f1 = 44, .vi_end_f2 = 44, 835 .nbr_end = 1079, 836 837 .burst_ena = false, 838 839 .filter_table = filter_table, 840 }, 841 842 { 843 .name = "1080p@60Hz", 844 .clock = 148500, 845 .refresh = 60000, 846 .oversample = 1, 847 .component_only = true, 848 849 .hsync_end = 88, .hblank_end = 235, 850 .hblank_start = 2155, .htotal = 2199, 851 852 .progressive = true, .trilevel_sync = true, 853 854 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 855 .vsync_len = 10, 856 857 .veq_ena = false, .veq_start_f1 = 0, 858 .veq_start_f2 = 0, .veq_len = 0, 859 860 .vi_end_f1 = 44, .vi_end_f2 = 44, 861 .nbr_end = 1079, 862 863 .burst_ena = false, 864 865 .filter_table = filter_table, 866 }, 867 }; 868 869 struct intel_tv_connector_state { 870 struct drm_connector_state base; 871 872 /* 873 * May need to override the user margins for 874 * gen3 >1024 wide source vertical centering. 875 */ 876 struct { 877 u16 top, bottom; 878 } margins; 879 880 bool bypass_vfilter; 881 }; 882 883 #define to_intel_tv_connector_state(x) container_of(x, struct intel_tv_connector_state, base) 884 885 static struct drm_connector_state * 886 intel_tv_connector_duplicate_state(struct drm_connector *connector) 887 { 888 struct intel_tv_connector_state *state; 889 890 state = kmemdup(connector->state, sizeof(*state), GFP_KERNEL); 891 if (!state) 892 return NULL; 893 894 __drm_atomic_helper_connector_duplicate_state(connector, &state->base); 895 return &state->base; 896 } 897 898 static struct intel_tv *enc_to_tv(struct intel_encoder *encoder) 899 { 900 return container_of(encoder, struct intel_tv, base); 901 } 902 903 static struct intel_tv *intel_attached_tv(struct intel_connector *connector) 904 { 905 return enc_to_tv(intel_attached_encoder(connector)); 906 } 907 908 static bool 909 intel_tv_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) 910 { 911 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 912 u32 tmp = intel_de_read(dev_priv, TV_CTL); 913 914 *pipe = (tmp & TV_ENC_PIPE_SEL_MASK) >> TV_ENC_PIPE_SEL_SHIFT; 915 916 return tmp & TV_ENC_ENABLE; 917 } 918 919 static void 920 intel_enable_tv(struct intel_atomic_state *state, 921 struct intel_encoder *encoder, 922 const struct intel_crtc_state *pipe_config, 923 const struct drm_connector_state *conn_state) 924 { 925 struct drm_device *dev = encoder->base.dev; 926 struct drm_i915_private *dev_priv = to_i915(dev); 927 928 /* Prevents vblank waits from timing out in intel_tv_detect_type() */ 929 intel_crtc_wait_for_next_vblank(to_intel_crtc(pipe_config->uapi.crtc)); 930 931 intel_de_write(dev_priv, TV_CTL, 932 intel_de_read(dev_priv, TV_CTL) | TV_ENC_ENABLE); 933 } 934 935 static void 936 intel_disable_tv(struct intel_atomic_state *state, 937 struct intel_encoder *encoder, 938 const struct intel_crtc_state *old_crtc_state, 939 const struct drm_connector_state *old_conn_state) 940 { 941 struct drm_device *dev = encoder->base.dev; 942 struct drm_i915_private *dev_priv = to_i915(dev); 943 944 intel_de_write(dev_priv, TV_CTL, 945 intel_de_read(dev_priv, TV_CTL) & ~TV_ENC_ENABLE); 946 } 947 948 static const struct tv_mode *intel_tv_mode_find(const struct drm_connector_state *conn_state) 949 { 950 int format = conn_state->tv.mode; 951 952 return &tv_modes[format]; 953 } 954 955 static enum drm_mode_status 956 intel_tv_mode_valid(struct drm_connector *connector, 957 struct drm_display_mode *mode) 958 { 959 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 960 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq; 961 962 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 963 return MODE_NO_DBLESCAN; 964 965 if (mode->clock > max_dotclk) 966 return MODE_CLOCK_HIGH; 967 968 /* Ensure TV refresh is close to desired refresh */ 969 if (abs(tv_mode->refresh - drm_mode_vrefresh(mode) * 1000) >= 1000) 970 return MODE_CLOCK_RANGE; 971 972 return MODE_OK; 973 } 974 975 static int 976 intel_tv_mode_vdisplay(const struct tv_mode *tv_mode) 977 { 978 if (tv_mode->progressive) 979 return tv_mode->nbr_end + 1; 980 else 981 return 2 * (tv_mode->nbr_end + 1); 982 } 983 984 static void 985 intel_tv_mode_to_mode(struct drm_display_mode *mode, 986 const struct tv_mode *tv_mode, 987 int clock) 988 { 989 mode->clock = clock / (tv_mode->oversample >> !tv_mode->progressive); 990 991 /* 992 * tv_mode horizontal timings: 993 * 994 * hsync_end 995 * | hblank_end 996 * | | hblank_start 997 * | | | htotal 998 * | _______ | 999 * ____/ \___ 1000 * \__/ \ 1001 */ 1002 mode->hdisplay = 1003 tv_mode->hblank_start - tv_mode->hblank_end; 1004 mode->hsync_start = mode->hdisplay + 1005 tv_mode->htotal - tv_mode->hblank_start; 1006 mode->hsync_end = mode->hsync_start + 1007 tv_mode->hsync_end; 1008 mode->htotal = tv_mode->htotal + 1; 1009 1010 /* 1011 * tv_mode vertical timings: 1012 * 1013 * vsync_start 1014 * | vsync_end 1015 * | | vi_end nbr_end 1016 * | | | | 1017 * | | _______ 1018 * \__ ____/ \ 1019 * \__/ 1020 */ 1021 mode->vdisplay = intel_tv_mode_vdisplay(tv_mode); 1022 if (tv_mode->progressive) { 1023 mode->vsync_start = mode->vdisplay + 1024 tv_mode->vsync_start_f1 + 1; 1025 mode->vsync_end = mode->vsync_start + 1026 tv_mode->vsync_len; 1027 mode->vtotal = mode->vdisplay + 1028 tv_mode->vi_end_f1 + 1; 1029 } else { 1030 mode->vsync_start = mode->vdisplay + 1031 tv_mode->vsync_start_f1 + 1 + 1032 tv_mode->vsync_start_f2 + 1; 1033 mode->vsync_end = mode->vsync_start + 1034 2 * tv_mode->vsync_len; 1035 mode->vtotal = mode->vdisplay + 1036 tv_mode->vi_end_f1 + 1 + 1037 tv_mode->vi_end_f2 + 1; 1038 } 1039 1040 /* TV has it's own notion of sync and other mode flags, so clear them. */ 1041 mode->flags = 0; 1042 1043 snprintf(mode->name, sizeof(mode->name), 1044 "%dx%d%c (%s)", 1045 mode->hdisplay, mode->vdisplay, 1046 tv_mode->progressive ? 'p' : 'i', 1047 tv_mode->name); 1048 } 1049 1050 static void intel_tv_scale_mode_horiz(struct drm_display_mode *mode, 1051 int hdisplay, int left_margin, 1052 int right_margin) 1053 { 1054 int hsync_start = mode->hsync_start - mode->hdisplay + right_margin; 1055 int hsync_end = mode->hsync_end - mode->hdisplay + right_margin; 1056 int new_htotal = mode->htotal * hdisplay / 1057 (mode->hdisplay - left_margin - right_margin); 1058 1059 mode->clock = mode->clock * new_htotal / mode->htotal; 1060 1061 mode->hdisplay = hdisplay; 1062 mode->hsync_start = hdisplay + hsync_start * new_htotal / mode->htotal; 1063 mode->hsync_end = hdisplay + hsync_end * new_htotal / mode->htotal; 1064 mode->htotal = new_htotal; 1065 } 1066 1067 static void intel_tv_scale_mode_vert(struct drm_display_mode *mode, 1068 int vdisplay, int top_margin, 1069 int bottom_margin) 1070 { 1071 int vsync_start = mode->vsync_start - mode->vdisplay + bottom_margin; 1072 int vsync_end = mode->vsync_end - mode->vdisplay + bottom_margin; 1073 int new_vtotal = mode->vtotal * vdisplay / 1074 (mode->vdisplay - top_margin - bottom_margin); 1075 1076 mode->clock = mode->clock * new_vtotal / mode->vtotal; 1077 1078 mode->vdisplay = vdisplay; 1079 mode->vsync_start = vdisplay + vsync_start * new_vtotal / mode->vtotal; 1080 mode->vsync_end = vdisplay + vsync_end * new_vtotal / mode->vtotal; 1081 mode->vtotal = new_vtotal; 1082 } 1083 1084 static void 1085 intel_tv_get_config(struct intel_encoder *encoder, 1086 struct intel_crtc_state *pipe_config) 1087 { 1088 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1089 struct drm_display_mode *adjusted_mode = 1090 &pipe_config->hw.adjusted_mode; 1091 struct drm_display_mode mode = {}; 1092 u32 tv_ctl, hctl1, hctl3, vctl1, vctl2, tmp; 1093 struct tv_mode tv_mode = {}; 1094 int hdisplay = adjusted_mode->crtc_hdisplay; 1095 int vdisplay = adjusted_mode->crtc_vdisplay; 1096 int xsize, ysize, xpos, ypos; 1097 1098 pipe_config->output_types |= BIT(INTEL_OUTPUT_TVOUT); 1099 1100 tv_ctl = intel_de_read(dev_priv, TV_CTL); 1101 hctl1 = intel_de_read(dev_priv, TV_H_CTL_1); 1102 hctl3 = intel_de_read(dev_priv, TV_H_CTL_3); 1103 vctl1 = intel_de_read(dev_priv, TV_V_CTL_1); 1104 vctl2 = intel_de_read(dev_priv, TV_V_CTL_2); 1105 1106 tv_mode.htotal = (hctl1 & TV_HTOTAL_MASK) >> TV_HTOTAL_SHIFT; 1107 tv_mode.hsync_end = (hctl1 & TV_HSYNC_END_MASK) >> TV_HSYNC_END_SHIFT; 1108 1109 tv_mode.hblank_start = (hctl3 & TV_HBLANK_START_MASK) >> TV_HBLANK_START_SHIFT; 1110 tv_mode.hblank_end = (hctl3 & TV_HSYNC_END_MASK) >> TV_HBLANK_END_SHIFT; 1111 1112 tv_mode.nbr_end = (vctl1 & TV_NBR_END_MASK) >> TV_NBR_END_SHIFT; 1113 tv_mode.vi_end_f1 = (vctl1 & TV_VI_END_F1_MASK) >> TV_VI_END_F1_SHIFT; 1114 tv_mode.vi_end_f2 = (vctl1 & TV_VI_END_F2_MASK) >> TV_VI_END_F2_SHIFT; 1115 1116 tv_mode.vsync_len = (vctl2 & TV_VSYNC_LEN_MASK) >> TV_VSYNC_LEN_SHIFT; 1117 tv_mode.vsync_start_f1 = (vctl2 & TV_VSYNC_START_F1_MASK) >> TV_VSYNC_START_F1_SHIFT; 1118 tv_mode.vsync_start_f2 = (vctl2 & TV_VSYNC_START_F2_MASK) >> TV_VSYNC_START_F2_SHIFT; 1119 1120 tv_mode.clock = pipe_config->port_clock; 1121 1122 tv_mode.progressive = tv_ctl & TV_PROGRESSIVE; 1123 1124 switch (tv_ctl & TV_OVERSAMPLE_MASK) { 1125 case TV_OVERSAMPLE_8X: 1126 tv_mode.oversample = 8; 1127 break; 1128 case TV_OVERSAMPLE_4X: 1129 tv_mode.oversample = 4; 1130 break; 1131 case TV_OVERSAMPLE_2X: 1132 tv_mode.oversample = 2; 1133 break; 1134 default: 1135 tv_mode.oversample = 1; 1136 break; 1137 } 1138 1139 tmp = intel_de_read(dev_priv, TV_WIN_POS); 1140 xpos = tmp >> 16; 1141 ypos = tmp & 0xffff; 1142 1143 tmp = intel_de_read(dev_priv, TV_WIN_SIZE); 1144 xsize = tmp >> 16; 1145 ysize = tmp & 0xffff; 1146 1147 intel_tv_mode_to_mode(&mode, &tv_mode, pipe_config->port_clock); 1148 1149 drm_dbg_kms(&dev_priv->drm, "TV mode: " DRM_MODE_FMT "\n", 1150 DRM_MODE_ARG(&mode)); 1151 1152 intel_tv_scale_mode_horiz(&mode, hdisplay, 1153 xpos, mode.hdisplay - xsize - xpos); 1154 intel_tv_scale_mode_vert(&mode, vdisplay, 1155 ypos, mode.vdisplay - ysize - ypos); 1156 1157 adjusted_mode->crtc_clock = mode.clock; 1158 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 1159 adjusted_mode->crtc_clock /= 2; 1160 1161 /* pixel counter doesn't work on i965gm TV output */ 1162 if (IS_I965GM(dev_priv)) 1163 pipe_config->mode_flags |= 1164 I915_MODE_FLAG_USE_SCANLINE_COUNTER; 1165 } 1166 1167 static bool intel_tv_source_too_wide(struct drm_i915_private *dev_priv, 1168 int hdisplay) 1169 { 1170 return DISPLAY_VER(dev_priv) == 3 && hdisplay > 1024; 1171 } 1172 1173 static bool intel_tv_vert_scaling(const struct drm_display_mode *tv_mode, 1174 const struct drm_connector_state *conn_state, 1175 int vdisplay) 1176 { 1177 return tv_mode->crtc_vdisplay - 1178 conn_state->tv.margins.top - 1179 conn_state->tv.margins.bottom != 1180 vdisplay; 1181 } 1182 1183 static int 1184 intel_tv_compute_config(struct intel_encoder *encoder, 1185 struct intel_crtc_state *pipe_config, 1186 struct drm_connector_state *conn_state) 1187 { 1188 struct intel_atomic_state *state = 1189 to_intel_atomic_state(pipe_config->uapi.state); 1190 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 1191 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1192 struct intel_tv_connector_state *tv_conn_state = 1193 to_intel_tv_connector_state(conn_state); 1194 const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state); 1195 struct drm_display_mode *adjusted_mode = 1196 &pipe_config->hw.adjusted_mode; 1197 int hdisplay = adjusted_mode->crtc_hdisplay; 1198 int vdisplay = adjusted_mode->crtc_vdisplay; 1199 int ret; 1200 1201 if (!tv_mode) 1202 return -EINVAL; 1203 1204 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 1205 return -EINVAL; 1206 1207 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 1208 1209 drm_dbg_kms(&dev_priv->drm, "forcing bpc to 8 for TV\n"); 1210 pipe_config->pipe_bpp = 8*3; 1211 1212 pipe_config->port_clock = tv_mode->clock; 1213 1214 ret = intel_dpll_crtc_compute_clock(state, crtc); 1215 if (ret) 1216 return ret; 1217 1218 pipe_config->clock_set = true; 1219 1220 intel_tv_mode_to_mode(adjusted_mode, tv_mode, pipe_config->port_clock); 1221 drm_mode_set_crtcinfo(adjusted_mode, 0); 1222 1223 if (intel_tv_source_too_wide(dev_priv, hdisplay) || 1224 !intel_tv_vert_scaling(adjusted_mode, conn_state, vdisplay)) { 1225 int extra, top, bottom; 1226 1227 extra = adjusted_mode->crtc_vdisplay - vdisplay; 1228 1229 if (extra < 0) { 1230 drm_dbg_kms(&dev_priv->drm, 1231 "No vertical scaling for >1024 pixel wide modes\n"); 1232 return -EINVAL; 1233 } 1234 1235 /* Need to turn off the vertical filter and center the image */ 1236 1237 /* Attempt to maintain the relative sizes of the margins */ 1238 top = conn_state->tv.margins.top; 1239 bottom = conn_state->tv.margins.bottom; 1240 1241 if (top + bottom) 1242 top = extra * top / (top + bottom); 1243 else 1244 top = extra / 2; 1245 bottom = extra - top; 1246 1247 tv_conn_state->margins.top = top; 1248 tv_conn_state->margins.bottom = bottom; 1249 1250 tv_conn_state->bypass_vfilter = true; 1251 1252 if (!tv_mode->progressive) { 1253 adjusted_mode->clock /= 2; 1254 adjusted_mode->crtc_clock /= 2; 1255 adjusted_mode->flags |= DRM_MODE_FLAG_INTERLACE; 1256 } 1257 } else { 1258 tv_conn_state->margins.top = conn_state->tv.margins.top; 1259 tv_conn_state->margins.bottom = conn_state->tv.margins.bottom; 1260 1261 tv_conn_state->bypass_vfilter = false; 1262 } 1263 1264 drm_dbg_kms(&dev_priv->drm, "TV mode: " DRM_MODE_FMT "\n", 1265 DRM_MODE_ARG(adjusted_mode)); 1266 1267 /* 1268 * The pipe scanline counter behaviour looks as follows when 1269 * using the TV encoder: 1270 * 1271 * time -> 1272 * 1273 * dsl=vtotal-1 | | 1274 * || || 1275 * ___| | ___| | 1276 * / | / | 1277 * / | / | 1278 * dsl=0 ___/ |_____/ | 1279 * | | | | | | 1280 * ^ ^ ^ ^ ^ 1281 * | | | | pipe vblank/first part of tv vblank 1282 * | | | bottom margin 1283 * | | active 1284 * | top margin 1285 * remainder of tv vblank 1286 * 1287 * When the TV encoder is used the pipe wants to run faster 1288 * than expected rate. During the active portion the TV 1289 * encoder stalls the pipe every few lines to keep it in 1290 * check. When the TV encoder reaches the bottom margin the 1291 * pipe simply stops. Once we reach the TV vblank the pipe is 1292 * no longer stalled and it runs at the max rate (apparently 1293 * oversample clock on gen3, cdclk on gen4). Once the pipe 1294 * reaches the pipe vtotal the pipe stops for the remainder 1295 * of the TV vblank/top margin. The pipe starts up again when 1296 * the TV encoder exits the top margin. 1297 * 1298 * To avoid huge hassles for vblank timestamping we scale 1299 * the pipe timings as if the pipe always runs at the average 1300 * rate it maintains during the active period. This also 1301 * gives us a reasonable guesstimate as to the pixel rate. 1302 * Due to the variation in the actual pipe speed the scanline 1303 * counter will give us slightly erroneous results during the 1304 * TV vblank/margins. But since vtotal was selected such that 1305 * it matches the average rate of the pipe during the active 1306 * portion the error shouldn't cause any serious grief to 1307 * vblank timestamps. 1308 * 1309 * For posterity here is the empirically derived formula 1310 * that gives us the maximum length of the pipe vblank 1311 * we can use without causing display corruption. Following 1312 * this would allow us to have a ticking scanline counter 1313 * everywhere except during the bottom margin (there the 1314 * pipe always stops). Ie. this would eliminate the second 1315 * flat portion of the above graph. However this would also 1316 * complicate vblank timestamping as the pipe vtotal would 1317 * no longer match the average rate the pipe runs at during 1318 * the active portion. Hence following this formula seems 1319 * more trouble that it's worth. 1320 * 1321 * if (GRAPHICS_VER(dev_priv) == 4) { 1322 * num = cdclk * (tv_mode->oversample >> !tv_mode->progressive); 1323 * den = tv_mode->clock; 1324 * } else { 1325 * num = tv_mode->oversample >> !tv_mode->progressive; 1326 * den = 1; 1327 * } 1328 * max_pipe_vblank_len ~= 1329 * (num * tv_htotal * (tv_vblank_len + top_margin)) / 1330 * (den * pipe_htotal); 1331 */ 1332 intel_tv_scale_mode_horiz(adjusted_mode, hdisplay, 1333 conn_state->tv.margins.left, 1334 conn_state->tv.margins.right); 1335 intel_tv_scale_mode_vert(adjusted_mode, vdisplay, 1336 tv_conn_state->margins.top, 1337 tv_conn_state->margins.bottom); 1338 drm_mode_set_crtcinfo(adjusted_mode, 0); 1339 adjusted_mode->name[0] = '\0'; 1340 1341 /* pixel counter doesn't work on i965gm TV output */ 1342 if (IS_I965GM(dev_priv)) 1343 pipe_config->mode_flags |= 1344 I915_MODE_FLAG_USE_SCANLINE_COUNTER; 1345 1346 return 0; 1347 } 1348 1349 static void 1350 set_tv_mode_timings(struct drm_i915_private *dev_priv, 1351 const struct tv_mode *tv_mode, 1352 bool burst_ena) 1353 { 1354 u32 hctl1, hctl2, hctl3; 1355 u32 vctl1, vctl2, vctl3, vctl4, vctl5, vctl6, vctl7; 1356 1357 hctl1 = (tv_mode->hsync_end << TV_HSYNC_END_SHIFT) | 1358 (tv_mode->htotal << TV_HTOTAL_SHIFT); 1359 1360 hctl2 = (tv_mode->hburst_start << 16) | 1361 (tv_mode->hburst_len << TV_HBURST_LEN_SHIFT); 1362 1363 if (burst_ena) 1364 hctl2 |= TV_BURST_ENA; 1365 1366 hctl3 = (tv_mode->hblank_start << TV_HBLANK_START_SHIFT) | 1367 (tv_mode->hblank_end << TV_HBLANK_END_SHIFT); 1368 1369 vctl1 = (tv_mode->nbr_end << TV_NBR_END_SHIFT) | 1370 (tv_mode->vi_end_f1 << TV_VI_END_F1_SHIFT) | 1371 (tv_mode->vi_end_f2 << TV_VI_END_F2_SHIFT); 1372 1373 vctl2 = (tv_mode->vsync_len << TV_VSYNC_LEN_SHIFT) | 1374 (tv_mode->vsync_start_f1 << TV_VSYNC_START_F1_SHIFT) | 1375 (tv_mode->vsync_start_f2 << TV_VSYNC_START_F2_SHIFT); 1376 1377 vctl3 = (tv_mode->veq_len << TV_VEQ_LEN_SHIFT) | 1378 (tv_mode->veq_start_f1 << TV_VEQ_START_F1_SHIFT) | 1379 (tv_mode->veq_start_f2 << TV_VEQ_START_F2_SHIFT); 1380 1381 if (tv_mode->veq_ena) 1382 vctl3 |= TV_EQUAL_ENA; 1383 1384 vctl4 = (tv_mode->vburst_start_f1 << TV_VBURST_START_F1_SHIFT) | 1385 (tv_mode->vburst_end_f1 << TV_VBURST_END_F1_SHIFT); 1386 1387 vctl5 = (tv_mode->vburst_start_f2 << TV_VBURST_START_F2_SHIFT) | 1388 (tv_mode->vburst_end_f2 << TV_VBURST_END_F2_SHIFT); 1389 1390 vctl6 = (tv_mode->vburst_start_f3 << TV_VBURST_START_F3_SHIFT) | 1391 (tv_mode->vburst_end_f3 << TV_VBURST_END_F3_SHIFT); 1392 1393 vctl7 = (tv_mode->vburst_start_f4 << TV_VBURST_START_F4_SHIFT) | 1394 (tv_mode->vburst_end_f4 << TV_VBURST_END_F4_SHIFT); 1395 1396 intel_de_write(dev_priv, TV_H_CTL_1, hctl1); 1397 intel_de_write(dev_priv, TV_H_CTL_2, hctl2); 1398 intel_de_write(dev_priv, TV_H_CTL_3, hctl3); 1399 intel_de_write(dev_priv, TV_V_CTL_1, vctl1); 1400 intel_de_write(dev_priv, TV_V_CTL_2, vctl2); 1401 intel_de_write(dev_priv, TV_V_CTL_3, vctl3); 1402 intel_de_write(dev_priv, TV_V_CTL_4, vctl4); 1403 intel_de_write(dev_priv, TV_V_CTL_5, vctl5); 1404 intel_de_write(dev_priv, TV_V_CTL_6, vctl6); 1405 intel_de_write(dev_priv, TV_V_CTL_7, vctl7); 1406 } 1407 1408 static void set_color_conversion(struct drm_i915_private *dev_priv, 1409 const struct color_conversion *color_conversion) 1410 { 1411 if (!color_conversion) 1412 return; 1413 1414 intel_de_write(dev_priv, TV_CSC_Y, 1415 (color_conversion->ry << 16) | color_conversion->gy); 1416 intel_de_write(dev_priv, TV_CSC_Y2, 1417 (color_conversion->by << 16) | color_conversion->ay); 1418 intel_de_write(dev_priv, TV_CSC_U, 1419 (color_conversion->ru << 16) | color_conversion->gu); 1420 intel_de_write(dev_priv, TV_CSC_U2, 1421 (color_conversion->bu << 16) | color_conversion->au); 1422 intel_de_write(dev_priv, TV_CSC_V, 1423 (color_conversion->rv << 16) | color_conversion->gv); 1424 intel_de_write(dev_priv, TV_CSC_V2, 1425 (color_conversion->bv << 16) | color_conversion->av); 1426 } 1427 1428 static void intel_tv_pre_enable(struct intel_atomic_state *state, 1429 struct intel_encoder *encoder, 1430 const struct intel_crtc_state *pipe_config, 1431 const struct drm_connector_state *conn_state) 1432 { 1433 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1434 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 1435 struct intel_tv *intel_tv = enc_to_tv(encoder); 1436 const struct intel_tv_connector_state *tv_conn_state = 1437 to_intel_tv_connector_state(conn_state); 1438 const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state); 1439 u32 tv_ctl, tv_filter_ctl; 1440 u32 scctl1, scctl2, scctl3; 1441 int i, j; 1442 const struct video_levels *video_levels; 1443 const struct color_conversion *color_conversion; 1444 bool burst_ena; 1445 int xpos, ypos; 1446 unsigned int xsize, ysize; 1447 1448 if (!tv_mode) 1449 return; /* can't happen (mode_prepare prevents this) */ 1450 1451 tv_ctl = intel_de_read(dev_priv, TV_CTL); 1452 tv_ctl &= TV_CTL_SAVE; 1453 1454 switch (intel_tv->type) { 1455 default: 1456 case DRM_MODE_CONNECTOR_Unknown: 1457 case DRM_MODE_CONNECTOR_Composite: 1458 tv_ctl |= TV_ENC_OUTPUT_COMPOSITE; 1459 video_levels = tv_mode->composite_levels; 1460 color_conversion = tv_mode->composite_color; 1461 burst_ena = tv_mode->burst_ena; 1462 break; 1463 case DRM_MODE_CONNECTOR_Component: 1464 tv_ctl |= TV_ENC_OUTPUT_COMPONENT; 1465 video_levels = &component_levels; 1466 if (tv_mode->burst_ena) 1467 color_conversion = &sdtv_csc_yprpb; 1468 else 1469 color_conversion = &hdtv_csc_yprpb; 1470 burst_ena = false; 1471 break; 1472 case DRM_MODE_CONNECTOR_SVIDEO: 1473 tv_ctl |= TV_ENC_OUTPUT_SVIDEO; 1474 video_levels = tv_mode->svideo_levels; 1475 color_conversion = tv_mode->svideo_color; 1476 burst_ena = tv_mode->burst_ena; 1477 break; 1478 } 1479 1480 tv_ctl |= TV_ENC_PIPE_SEL(crtc->pipe); 1481 1482 switch (tv_mode->oversample) { 1483 case 8: 1484 tv_ctl |= TV_OVERSAMPLE_8X; 1485 break; 1486 case 4: 1487 tv_ctl |= TV_OVERSAMPLE_4X; 1488 break; 1489 case 2: 1490 tv_ctl |= TV_OVERSAMPLE_2X; 1491 break; 1492 default: 1493 tv_ctl |= TV_OVERSAMPLE_NONE; 1494 break; 1495 } 1496 1497 if (tv_mode->progressive) 1498 tv_ctl |= TV_PROGRESSIVE; 1499 if (tv_mode->trilevel_sync) 1500 tv_ctl |= TV_TRILEVEL_SYNC; 1501 if (tv_mode->pal_burst) 1502 tv_ctl |= TV_PAL_BURST; 1503 1504 scctl1 = 0; 1505 if (tv_mode->dda1_inc) 1506 scctl1 |= TV_SC_DDA1_EN; 1507 if (tv_mode->dda2_inc) 1508 scctl1 |= TV_SC_DDA2_EN; 1509 if (tv_mode->dda3_inc) 1510 scctl1 |= TV_SC_DDA3_EN; 1511 scctl1 |= tv_mode->sc_reset; 1512 if (video_levels) 1513 scctl1 |= video_levels->burst << TV_BURST_LEVEL_SHIFT; 1514 scctl1 |= tv_mode->dda1_inc << TV_SCDDA1_INC_SHIFT; 1515 1516 scctl2 = tv_mode->dda2_size << TV_SCDDA2_SIZE_SHIFT | 1517 tv_mode->dda2_inc << TV_SCDDA2_INC_SHIFT; 1518 1519 scctl3 = tv_mode->dda3_size << TV_SCDDA3_SIZE_SHIFT | 1520 tv_mode->dda3_inc << TV_SCDDA3_INC_SHIFT; 1521 1522 /* Enable two fixes for the chips that need them. */ 1523 if (IS_I915GM(dev_priv)) 1524 tv_ctl |= TV_ENC_C0_FIX | TV_ENC_SDP_FIX; 1525 1526 set_tv_mode_timings(dev_priv, tv_mode, burst_ena); 1527 1528 intel_de_write(dev_priv, TV_SC_CTL_1, scctl1); 1529 intel_de_write(dev_priv, TV_SC_CTL_2, scctl2); 1530 intel_de_write(dev_priv, TV_SC_CTL_3, scctl3); 1531 1532 set_color_conversion(dev_priv, color_conversion); 1533 1534 if (DISPLAY_VER(dev_priv) >= 4) 1535 intel_de_write(dev_priv, TV_CLR_KNOBS, 0x00404000); 1536 else 1537 intel_de_write(dev_priv, TV_CLR_KNOBS, 0x00606000); 1538 1539 if (video_levels) 1540 intel_de_write(dev_priv, TV_CLR_LEVEL, 1541 ((video_levels->black << TV_BLACK_LEVEL_SHIFT) | (video_levels->blank << TV_BLANK_LEVEL_SHIFT))); 1542 1543 assert_transcoder_disabled(dev_priv, pipe_config->cpu_transcoder); 1544 1545 /* Filter ctl must be set before TV_WIN_SIZE */ 1546 tv_filter_ctl = TV_AUTO_SCALE; 1547 if (tv_conn_state->bypass_vfilter) 1548 tv_filter_ctl |= TV_V_FILTER_BYPASS; 1549 intel_de_write(dev_priv, TV_FILTER_CTL_1, tv_filter_ctl); 1550 1551 xsize = tv_mode->hblank_start - tv_mode->hblank_end; 1552 ysize = intel_tv_mode_vdisplay(tv_mode); 1553 1554 xpos = conn_state->tv.margins.left; 1555 ypos = tv_conn_state->margins.top; 1556 xsize -= (conn_state->tv.margins.left + 1557 conn_state->tv.margins.right); 1558 ysize -= (tv_conn_state->margins.top + 1559 tv_conn_state->margins.bottom); 1560 intel_de_write(dev_priv, TV_WIN_POS, (xpos << 16) | ypos); 1561 intel_de_write(dev_priv, TV_WIN_SIZE, (xsize << 16) | ysize); 1562 1563 j = 0; 1564 for (i = 0; i < 60; i++) 1565 intel_de_write(dev_priv, TV_H_LUMA(i), 1566 tv_mode->filter_table[j++]); 1567 for (i = 0; i < 60; i++) 1568 intel_de_write(dev_priv, TV_H_CHROMA(i), 1569 tv_mode->filter_table[j++]); 1570 for (i = 0; i < 43; i++) 1571 intel_de_write(dev_priv, TV_V_LUMA(i), 1572 tv_mode->filter_table[j++]); 1573 for (i = 0; i < 43; i++) 1574 intel_de_write(dev_priv, TV_V_CHROMA(i), 1575 tv_mode->filter_table[j++]); 1576 intel_de_write(dev_priv, TV_DAC, 1577 intel_de_read(dev_priv, TV_DAC) & TV_DAC_SAVE); 1578 intel_de_write(dev_priv, TV_CTL, tv_ctl); 1579 } 1580 1581 static int 1582 intel_tv_detect_type(struct intel_tv *intel_tv, 1583 struct drm_connector *connector) 1584 { 1585 struct intel_crtc *crtc = to_intel_crtc(connector->state->crtc); 1586 struct drm_device *dev = connector->dev; 1587 struct drm_i915_private *dev_priv = to_i915(dev); 1588 u32 tv_ctl, save_tv_ctl; 1589 u32 tv_dac, save_tv_dac; 1590 int type; 1591 1592 /* Disable TV interrupts around load detect or we'll recurse */ 1593 if (connector->polled & DRM_CONNECTOR_POLL_HPD) { 1594 spin_lock_irq(&dev_priv->irq_lock); 1595 i915_disable_pipestat(dev_priv, 0, 1596 PIPE_HOTPLUG_INTERRUPT_STATUS | 1597 PIPE_HOTPLUG_TV_INTERRUPT_STATUS); 1598 spin_unlock_irq(&dev_priv->irq_lock); 1599 } 1600 1601 save_tv_dac = tv_dac = intel_de_read(dev_priv, TV_DAC); 1602 save_tv_ctl = tv_ctl = intel_de_read(dev_priv, TV_CTL); 1603 1604 /* Poll for TV detection */ 1605 tv_ctl &= ~(TV_ENC_ENABLE | TV_ENC_PIPE_SEL_MASK | TV_TEST_MODE_MASK); 1606 tv_ctl |= TV_TEST_MODE_MONITOR_DETECT; 1607 tv_ctl |= TV_ENC_PIPE_SEL(crtc->pipe); 1608 1609 tv_dac &= ~(TVDAC_SENSE_MASK | DAC_A_MASK | DAC_B_MASK | DAC_C_MASK); 1610 tv_dac |= (TVDAC_STATE_CHG_EN | 1611 TVDAC_A_SENSE_CTL | 1612 TVDAC_B_SENSE_CTL | 1613 TVDAC_C_SENSE_CTL | 1614 DAC_CTL_OVERRIDE | 1615 DAC_A_0_7_V | 1616 DAC_B_0_7_V | 1617 DAC_C_0_7_V); 1618 1619 1620 /* 1621 * The TV sense state should be cleared to zero on cantiga platform. Otherwise 1622 * the TV is misdetected. This is hardware requirement. 1623 */ 1624 if (IS_GM45(dev_priv)) 1625 tv_dac &= ~(TVDAC_STATE_CHG_EN | TVDAC_A_SENSE_CTL | 1626 TVDAC_B_SENSE_CTL | TVDAC_C_SENSE_CTL); 1627 1628 intel_de_write(dev_priv, TV_CTL, tv_ctl); 1629 intel_de_write(dev_priv, TV_DAC, tv_dac); 1630 intel_de_posting_read(dev_priv, TV_DAC); 1631 1632 intel_crtc_wait_for_next_vblank(crtc); 1633 1634 type = -1; 1635 tv_dac = intel_de_read(dev_priv, TV_DAC); 1636 drm_dbg_kms(&dev_priv->drm, "TV detected: %x, %x\n", tv_ctl, tv_dac); 1637 /* 1638 * A B C 1639 * 0 1 1 Composite 1640 * 1 0 X svideo 1641 * 0 0 0 Component 1642 */ 1643 if ((tv_dac & TVDAC_SENSE_MASK) == (TVDAC_B_SENSE | TVDAC_C_SENSE)) { 1644 drm_dbg_kms(&dev_priv->drm, 1645 "Detected Composite TV connection\n"); 1646 type = DRM_MODE_CONNECTOR_Composite; 1647 } else if ((tv_dac & (TVDAC_A_SENSE|TVDAC_B_SENSE)) == TVDAC_A_SENSE) { 1648 drm_dbg_kms(&dev_priv->drm, 1649 "Detected S-Video TV connection\n"); 1650 type = DRM_MODE_CONNECTOR_SVIDEO; 1651 } else if ((tv_dac & TVDAC_SENSE_MASK) == 0) { 1652 drm_dbg_kms(&dev_priv->drm, 1653 "Detected Component TV connection\n"); 1654 type = DRM_MODE_CONNECTOR_Component; 1655 } else { 1656 drm_dbg_kms(&dev_priv->drm, "Unrecognised TV connection\n"); 1657 type = -1; 1658 } 1659 1660 intel_de_write(dev_priv, TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN); 1661 intel_de_write(dev_priv, TV_CTL, save_tv_ctl); 1662 intel_de_posting_read(dev_priv, TV_CTL); 1663 1664 /* For unknown reasons the hw barfs if we don't do this vblank wait. */ 1665 intel_crtc_wait_for_next_vblank(crtc); 1666 1667 /* Restore interrupt config */ 1668 if (connector->polled & DRM_CONNECTOR_POLL_HPD) { 1669 spin_lock_irq(&dev_priv->irq_lock); 1670 i915_enable_pipestat(dev_priv, 0, 1671 PIPE_HOTPLUG_INTERRUPT_STATUS | 1672 PIPE_HOTPLUG_TV_INTERRUPT_STATUS); 1673 spin_unlock_irq(&dev_priv->irq_lock); 1674 } 1675 1676 return type; 1677 } 1678 1679 /* 1680 * Here we set accurate tv format according to connector type 1681 * i.e Component TV should not be assigned by NTSC or PAL 1682 */ 1683 static void intel_tv_find_better_format(struct drm_connector *connector) 1684 { 1685 struct intel_tv *intel_tv = intel_attached_tv(to_intel_connector(connector)); 1686 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 1687 int i; 1688 1689 /* Component supports everything so we can keep the current mode */ 1690 if (intel_tv->type == DRM_MODE_CONNECTOR_Component) 1691 return; 1692 1693 /* If the current mode is fine don't change it */ 1694 if (!tv_mode->component_only) 1695 return; 1696 1697 for (i = 0; i < ARRAY_SIZE(tv_modes); i++) { 1698 tv_mode = &tv_modes[i]; 1699 1700 if (!tv_mode->component_only) 1701 break; 1702 } 1703 1704 connector->state->tv.mode = i; 1705 } 1706 1707 static int 1708 intel_tv_detect(struct drm_connector *connector, 1709 struct drm_modeset_acquire_ctx *ctx, 1710 bool force) 1711 { 1712 struct drm_i915_private *i915 = to_i915(connector->dev); 1713 struct intel_tv *intel_tv = intel_attached_tv(to_intel_connector(connector)); 1714 enum drm_connector_status status; 1715 int type; 1716 1717 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] force=%d\n", 1718 connector->base.id, connector->name, force); 1719 1720 if (!INTEL_DISPLAY_ENABLED(i915)) 1721 return connector_status_disconnected; 1722 1723 if (force) { 1724 struct intel_load_detect_pipe tmp; 1725 int ret; 1726 1727 ret = intel_get_load_detect_pipe(connector, &tmp, ctx); 1728 if (ret < 0) 1729 return ret; 1730 1731 if (ret > 0) { 1732 type = intel_tv_detect_type(intel_tv, connector); 1733 intel_release_load_detect_pipe(connector, &tmp, ctx); 1734 status = type < 0 ? 1735 connector_status_disconnected : 1736 connector_status_connected; 1737 } else 1738 status = connector_status_unknown; 1739 1740 if (status == connector_status_connected) { 1741 intel_tv->type = type; 1742 intel_tv_find_better_format(connector); 1743 } 1744 1745 return status; 1746 } else 1747 return connector->status; 1748 } 1749 1750 static const struct input_res { 1751 u16 w, h; 1752 } input_res_table[] = { 1753 { 640, 480 }, 1754 { 800, 600 }, 1755 { 1024, 768 }, 1756 { 1280, 1024 }, 1757 { 848, 480 }, 1758 { 1280, 720 }, 1759 { 1920, 1080 }, 1760 }; 1761 1762 /* Choose preferred mode according to line number of TV format */ 1763 static bool 1764 intel_tv_is_preferred_mode(const struct drm_display_mode *mode, 1765 const struct tv_mode *tv_mode) 1766 { 1767 int vdisplay = intel_tv_mode_vdisplay(tv_mode); 1768 1769 /* prefer 480 line modes for all SD TV modes */ 1770 if (vdisplay <= 576) 1771 vdisplay = 480; 1772 1773 return vdisplay == mode->vdisplay; 1774 } 1775 1776 static void 1777 intel_tv_set_mode_type(struct drm_display_mode *mode, 1778 const struct tv_mode *tv_mode) 1779 { 1780 mode->type = DRM_MODE_TYPE_DRIVER; 1781 1782 if (intel_tv_is_preferred_mode(mode, tv_mode)) 1783 mode->type |= DRM_MODE_TYPE_PREFERRED; 1784 } 1785 1786 static int 1787 intel_tv_get_modes(struct drm_connector *connector) 1788 { 1789 struct drm_i915_private *dev_priv = to_i915(connector->dev); 1790 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 1791 int i, count = 0; 1792 1793 for (i = 0; i < ARRAY_SIZE(input_res_table); i++) { 1794 const struct input_res *input = &input_res_table[i]; 1795 struct drm_display_mode *mode; 1796 1797 if (input->w > 1024 && 1798 !tv_mode->progressive && 1799 !tv_mode->component_only) 1800 continue; 1801 1802 /* no vertical scaling with wide sources on gen3 */ 1803 if (DISPLAY_VER(dev_priv) == 3 && input->w > 1024 && 1804 input->h > intel_tv_mode_vdisplay(tv_mode)) 1805 continue; 1806 1807 mode = drm_mode_create(connector->dev); 1808 if (!mode) 1809 continue; 1810 1811 /* 1812 * We take the TV mode and scale it to look 1813 * like it had the expected h/vdisplay. This 1814 * provides the most information to userspace 1815 * about the actual timings of the mode. We 1816 * do ignore the margins though. 1817 */ 1818 intel_tv_mode_to_mode(mode, tv_mode, tv_mode->clock); 1819 if (count == 0) { 1820 drm_dbg_kms(&dev_priv->drm, "TV mode: " DRM_MODE_FMT "\n", 1821 DRM_MODE_ARG(mode)); 1822 } 1823 intel_tv_scale_mode_horiz(mode, input->w, 0, 0); 1824 intel_tv_scale_mode_vert(mode, input->h, 0, 0); 1825 intel_tv_set_mode_type(mode, tv_mode); 1826 1827 drm_mode_set_name(mode); 1828 1829 drm_mode_probed_add(connector, mode); 1830 count++; 1831 } 1832 1833 return count; 1834 } 1835 1836 static const struct drm_connector_funcs intel_tv_connector_funcs = { 1837 .late_register = intel_connector_register, 1838 .early_unregister = intel_connector_unregister, 1839 .destroy = intel_connector_destroy, 1840 .fill_modes = drm_helper_probe_single_connector_modes, 1841 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 1842 .atomic_duplicate_state = intel_tv_connector_duplicate_state, 1843 }; 1844 1845 static int intel_tv_atomic_check(struct drm_connector *connector, 1846 struct drm_atomic_state *state) 1847 { 1848 struct drm_connector_state *new_state; 1849 struct drm_crtc_state *new_crtc_state; 1850 struct drm_connector_state *old_state; 1851 1852 new_state = drm_atomic_get_new_connector_state(state, connector); 1853 if (!new_state->crtc) 1854 return 0; 1855 1856 old_state = drm_atomic_get_old_connector_state(state, connector); 1857 new_crtc_state = drm_atomic_get_new_crtc_state(state, new_state->crtc); 1858 1859 if (old_state->tv.mode != new_state->tv.mode || 1860 old_state->tv.margins.left != new_state->tv.margins.left || 1861 old_state->tv.margins.right != new_state->tv.margins.right || 1862 old_state->tv.margins.top != new_state->tv.margins.top || 1863 old_state->tv.margins.bottom != new_state->tv.margins.bottom) { 1864 /* Force a modeset. */ 1865 1866 new_crtc_state->connectors_changed = true; 1867 } 1868 1869 return 0; 1870 } 1871 1872 static const struct drm_connector_helper_funcs intel_tv_connector_helper_funcs = { 1873 .detect_ctx = intel_tv_detect, 1874 .mode_valid = intel_tv_mode_valid, 1875 .get_modes = intel_tv_get_modes, 1876 .atomic_check = intel_tv_atomic_check, 1877 }; 1878 1879 static const struct drm_encoder_funcs intel_tv_enc_funcs = { 1880 .destroy = intel_encoder_destroy, 1881 }; 1882 1883 void 1884 intel_tv_init(struct drm_i915_private *dev_priv) 1885 { 1886 struct drm_device *dev = &dev_priv->drm; 1887 struct drm_connector *connector; 1888 struct intel_tv *intel_tv; 1889 struct intel_encoder *intel_encoder; 1890 struct intel_connector *intel_connector; 1891 u32 tv_dac_on, tv_dac_off, save_tv_dac; 1892 const char *tv_format_names[ARRAY_SIZE(tv_modes)]; 1893 int i, initial_mode = 0; 1894 struct drm_connector_state *state; 1895 1896 if ((intel_de_read(dev_priv, TV_CTL) & TV_FUSE_STATE_MASK) == TV_FUSE_STATE_DISABLED) 1897 return; 1898 1899 if (!intel_bios_is_tv_present(dev_priv)) { 1900 drm_dbg_kms(&dev_priv->drm, "Integrated TV is not present.\n"); 1901 return; 1902 } 1903 1904 /* 1905 * Sanity check the TV output by checking to see if the 1906 * DAC register holds a value 1907 */ 1908 save_tv_dac = intel_de_read(dev_priv, TV_DAC); 1909 1910 intel_de_write(dev_priv, TV_DAC, save_tv_dac | TVDAC_STATE_CHG_EN); 1911 tv_dac_on = intel_de_read(dev_priv, TV_DAC); 1912 1913 intel_de_write(dev_priv, TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN); 1914 tv_dac_off = intel_de_read(dev_priv, TV_DAC); 1915 1916 intel_de_write(dev_priv, TV_DAC, save_tv_dac); 1917 1918 /* 1919 * If the register does not hold the state change enable 1920 * bit, (either as a 0 or a 1), assume it doesn't really 1921 * exist 1922 */ 1923 if ((tv_dac_on & TVDAC_STATE_CHG_EN) == 0 || 1924 (tv_dac_off & TVDAC_STATE_CHG_EN) != 0) 1925 return; 1926 1927 intel_tv = kzalloc(sizeof(*intel_tv), GFP_KERNEL); 1928 if (!intel_tv) { 1929 return; 1930 } 1931 1932 intel_connector = intel_connector_alloc(); 1933 if (!intel_connector) { 1934 kfree(intel_tv); 1935 return; 1936 } 1937 1938 intel_encoder = &intel_tv->base; 1939 connector = &intel_connector->base; 1940 state = connector->state; 1941 1942 /* 1943 * The documentation, for the older chipsets at least, recommend 1944 * using a polling method rather than hotplug detection for TVs. 1945 * This is because in order to perform the hotplug detection, the PLLs 1946 * for the TV must be kept alive increasing power drain and starving 1947 * bandwidth from other encoders. Notably for instance, it causes 1948 * pipe underruns on Crestline when this encoder is supposedly idle. 1949 * 1950 * More recent chipsets favour HDMI rather than integrated S-Video. 1951 */ 1952 intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT; 1953 1954 drm_connector_init(dev, connector, &intel_tv_connector_funcs, 1955 DRM_MODE_CONNECTOR_SVIDEO); 1956 1957 drm_encoder_init(dev, &intel_encoder->base, &intel_tv_enc_funcs, 1958 DRM_MODE_ENCODER_TVDAC, "TV"); 1959 1960 intel_encoder->compute_config = intel_tv_compute_config; 1961 intel_encoder->get_config = intel_tv_get_config; 1962 intel_encoder->pre_enable = intel_tv_pre_enable; 1963 intel_encoder->enable = intel_enable_tv; 1964 intel_encoder->disable = intel_disable_tv; 1965 intel_encoder->get_hw_state = intel_tv_get_hw_state; 1966 intel_connector->get_hw_state = intel_connector_get_hw_state; 1967 1968 intel_connector_attach_encoder(intel_connector, intel_encoder); 1969 1970 intel_encoder->type = INTEL_OUTPUT_TVOUT; 1971 intel_encoder->power_domain = POWER_DOMAIN_PORT_OTHER; 1972 intel_encoder->port = PORT_NONE; 1973 intel_encoder->pipe_mask = ~0; 1974 intel_encoder->cloneable = 0; 1975 intel_tv->type = DRM_MODE_CONNECTOR_Unknown; 1976 1977 /* BIOS margin values */ 1978 state->tv.margins.left = 54; 1979 state->tv.margins.top = 36; 1980 state->tv.margins.right = 46; 1981 state->tv.margins.bottom = 37; 1982 1983 state->tv.mode = initial_mode; 1984 1985 drm_connector_helper_add(connector, &intel_tv_connector_helper_funcs); 1986 connector->interlace_allowed = false; 1987 connector->doublescan_allowed = false; 1988 1989 /* Create TV properties then attach current values */ 1990 for (i = 0; i < ARRAY_SIZE(tv_modes); i++) { 1991 /* 1080p50/1080p60 not supported on gen3 */ 1992 if (DISPLAY_VER(dev_priv) == 3 && 1993 tv_modes[i].oversample == 1) 1994 break; 1995 1996 tv_format_names[i] = tv_modes[i].name; 1997 } 1998 drm_mode_create_tv_properties(dev, i, tv_format_names); 1999 2000 drm_object_attach_property(&connector->base, dev->mode_config.tv_mode_property, 2001 state->tv.mode); 2002 drm_object_attach_property(&connector->base, 2003 dev->mode_config.tv_left_margin_property, 2004 state->tv.margins.left); 2005 drm_object_attach_property(&connector->base, 2006 dev->mode_config.tv_top_margin_property, 2007 state->tv.margins.top); 2008 drm_object_attach_property(&connector->base, 2009 dev->mode_config.tv_right_margin_property, 2010 state->tv.margins.right); 2011 drm_object_attach_property(&connector->base, 2012 dev->mode_config.tv_bottom_margin_property, 2013 state->tv.margins.bottom); 2014 } 2015