1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include <drm/drm_print.h> 7 8 #include "i915_reg.h" 9 #include "intel_de.h" 10 #include "intel_display_regs.h" 11 #include "intel_display_types.h" 12 #include "intel_display_utils.h" 13 #include "intel_panel.h" 14 #include "intel_pch_refclk.h" 15 #include "intel_sbi.h" 16 #include "intel_sbi_regs.h" 17 18 static void lpt_fdi_reset_mphy(struct intel_display *display) 19 { 20 int ret; 21 22 intel_de_rmw(display, SOUTH_CHICKEN2, 0, FDI_MPHY_IOSFSB_RESET_CTL); 23 24 ret = intel_de_wait_for_set_us(display, SOUTH_CHICKEN2, 25 FDI_MPHY_IOSFSB_RESET_STATUS, 100); 26 if (ret) 27 drm_err(display->drm, "FDI mPHY reset assert timeout\n"); 28 29 intel_de_rmw(display, SOUTH_CHICKEN2, FDI_MPHY_IOSFSB_RESET_CTL, 0); 30 31 ret = intel_de_wait_for_clear_us(display, SOUTH_CHICKEN2, 32 FDI_MPHY_IOSFSB_RESET_STATUS, 100); 33 if (ret) 34 drm_err(display->drm, "FDI mPHY reset de-assert timeout\n"); 35 } 36 37 /* WaMPhyProgramming:hsw */ 38 static void lpt_fdi_program_mphy(struct intel_display *display) 39 { 40 u32 tmp; 41 42 lpt_fdi_reset_mphy(display); 43 44 tmp = intel_sbi_read(display, 0x8008, SBI_MPHY); 45 tmp &= ~(0xFF << 24); 46 tmp |= (0x12 << 24); 47 intel_sbi_write(display, 0x8008, tmp, SBI_MPHY); 48 49 tmp = intel_sbi_read(display, 0x2008, SBI_MPHY); 50 tmp |= (1 << 11); 51 intel_sbi_write(display, 0x2008, tmp, SBI_MPHY); 52 53 tmp = intel_sbi_read(display, 0x2108, SBI_MPHY); 54 tmp |= (1 << 11); 55 intel_sbi_write(display, 0x2108, tmp, SBI_MPHY); 56 57 tmp = intel_sbi_read(display, 0x206C, SBI_MPHY); 58 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 59 intel_sbi_write(display, 0x206C, tmp, SBI_MPHY); 60 61 tmp = intel_sbi_read(display, 0x216C, SBI_MPHY); 62 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 63 intel_sbi_write(display, 0x216C, tmp, SBI_MPHY); 64 65 tmp = intel_sbi_read(display, 0x2080, SBI_MPHY); 66 tmp &= ~(7 << 13); 67 tmp |= (5 << 13); 68 intel_sbi_write(display, 0x2080, tmp, SBI_MPHY); 69 70 tmp = intel_sbi_read(display, 0x2180, SBI_MPHY); 71 tmp &= ~(7 << 13); 72 tmp |= (5 << 13); 73 intel_sbi_write(display, 0x2180, tmp, SBI_MPHY); 74 75 tmp = intel_sbi_read(display, 0x208C, SBI_MPHY); 76 tmp &= ~0xFF; 77 tmp |= 0x1C; 78 intel_sbi_write(display, 0x208C, tmp, SBI_MPHY); 79 80 tmp = intel_sbi_read(display, 0x218C, SBI_MPHY); 81 tmp &= ~0xFF; 82 tmp |= 0x1C; 83 intel_sbi_write(display, 0x218C, tmp, SBI_MPHY); 84 85 tmp = intel_sbi_read(display, 0x2098, SBI_MPHY); 86 tmp &= ~(0xFF << 16); 87 tmp |= (0x1C << 16); 88 intel_sbi_write(display, 0x2098, tmp, SBI_MPHY); 89 90 tmp = intel_sbi_read(display, 0x2198, SBI_MPHY); 91 tmp &= ~(0xFF << 16); 92 tmp |= (0x1C << 16); 93 intel_sbi_write(display, 0x2198, tmp, SBI_MPHY); 94 95 tmp = intel_sbi_read(display, 0x20C4, SBI_MPHY); 96 tmp |= (1 << 27); 97 intel_sbi_write(display, 0x20C4, tmp, SBI_MPHY); 98 99 tmp = intel_sbi_read(display, 0x21C4, SBI_MPHY); 100 tmp |= (1 << 27); 101 intel_sbi_write(display, 0x21C4, tmp, SBI_MPHY); 102 103 tmp = intel_sbi_read(display, 0x20EC, SBI_MPHY); 104 tmp &= ~(0xF << 28); 105 tmp |= (4 << 28); 106 intel_sbi_write(display, 0x20EC, tmp, SBI_MPHY); 107 108 tmp = intel_sbi_read(display, 0x21EC, SBI_MPHY); 109 tmp &= ~(0xF << 28); 110 tmp |= (4 << 28); 111 intel_sbi_write(display, 0x21EC, tmp, SBI_MPHY); 112 } 113 114 void lpt_disable_iclkip(struct intel_display *display) 115 { 116 u32 temp; 117 118 intel_de_write(display, PIXCLK_GATE, PIXCLK_GATE_GATE); 119 120 intel_sbi_lock(display); 121 122 temp = intel_sbi_read(display, SBI_SSCCTL6, SBI_ICLK); 123 temp |= SBI_SSCCTL_DISABLE; 124 intel_sbi_write(display, SBI_SSCCTL6, temp, SBI_ICLK); 125 126 intel_sbi_unlock(display); 127 } 128 129 struct iclkip_params { 130 u32 iclk_virtual_root_freq; 131 u32 iclk_pi_range; 132 u32 divsel, phaseinc, auxdiv, phasedir, desired_divisor; 133 }; 134 135 static void iclkip_params_init(struct iclkip_params *p) 136 { 137 memset(p, 0, sizeof(*p)); 138 139 p->iclk_virtual_root_freq = 172800 * 1000; 140 p->iclk_pi_range = 64; 141 } 142 143 static int lpt_iclkip_freq(struct iclkip_params *p) 144 { 145 return DIV_ROUND_CLOSEST(p->iclk_virtual_root_freq, 146 p->desired_divisor << p->auxdiv); 147 } 148 149 static void lpt_compute_iclkip(struct iclkip_params *p, int clock) 150 { 151 iclkip_params_init(p); 152 153 /* The iCLK virtual clock root frequency is in MHz, 154 * but the adjusted_mode->crtc_clock in KHz. To get the 155 * divisors, it is necessary to divide one by another, so we 156 * convert the virtual clock precision to KHz here for higher 157 * precision. 158 */ 159 for (p->auxdiv = 0; p->auxdiv < 2; p->auxdiv++) { 160 p->desired_divisor = DIV_ROUND_CLOSEST(p->iclk_virtual_root_freq, 161 clock << p->auxdiv); 162 p->divsel = (p->desired_divisor / p->iclk_pi_range) - 2; 163 p->phaseinc = p->desired_divisor % p->iclk_pi_range; 164 165 /* 166 * Near 20MHz is a corner case which is 167 * out of range for the 7-bit divisor 168 */ 169 if (p->divsel <= 0x7f) 170 break; 171 } 172 } 173 174 int lpt_iclkip(const struct intel_crtc_state *crtc_state) 175 { 176 struct iclkip_params p; 177 178 lpt_compute_iclkip(&p, crtc_state->hw.adjusted_mode.crtc_clock); 179 180 return lpt_iclkip_freq(&p); 181 } 182 183 /* Program iCLKIP clock to the desired frequency */ 184 void lpt_program_iclkip(const struct intel_crtc_state *crtc_state) 185 { 186 struct intel_display *display = to_intel_display(crtc_state); 187 int clock = crtc_state->hw.adjusted_mode.crtc_clock; 188 struct iclkip_params p; 189 u32 temp; 190 191 lpt_disable_iclkip(display); 192 193 lpt_compute_iclkip(&p, clock); 194 drm_WARN_ON(display->drm, lpt_iclkip_freq(&p) != clock); 195 196 /* This should not happen with any sane values */ 197 drm_WARN_ON(display->drm, SBI_SSCDIVINTPHASE_DIVSEL(p.divsel) & 198 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 199 drm_WARN_ON(display->drm, SBI_SSCDIVINTPHASE_DIR(p.phasedir) & 200 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 201 202 drm_dbg_kms(display->drm, 203 "iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 204 clock, p.auxdiv, p.divsel, p.phasedir, p.phaseinc); 205 206 intel_sbi_lock(display); 207 208 /* Program SSCDIVINTPHASE6 */ 209 temp = intel_sbi_read(display, SBI_SSCDIVINTPHASE6, SBI_ICLK); 210 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 211 temp |= SBI_SSCDIVINTPHASE_DIVSEL(p.divsel); 212 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 213 temp |= SBI_SSCDIVINTPHASE_INCVAL(p.phaseinc); 214 temp |= SBI_SSCDIVINTPHASE_DIR(p.phasedir); 215 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 216 intel_sbi_write(display, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 217 218 /* Program SSCAUXDIV */ 219 temp = intel_sbi_read(display, SBI_SSCAUXDIV6, SBI_ICLK); 220 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 221 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(p.auxdiv); 222 intel_sbi_write(display, SBI_SSCAUXDIV6, temp, SBI_ICLK); 223 224 /* Enable modulator and associated divider */ 225 temp = intel_sbi_read(display, SBI_SSCCTL6, SBI_ICLK); 226 temp &= ~SBI_SSCCTL_DISABLE; 227 intel_sbi_write(display, SBI_SSCCTL6, temp, SBI_ICLK); 228 229 intel_sbi_unlock(display); 230 231 /* Wait for initialization time */ 232 udelay(24); 233 234 intel_de_write(display, PIXCLK_GATE, PIXCLK_GATE_UNGATE); 235 } 236 237 int lpt_get_iclkip(struct intel_display *display) 238 { 239 struct iclkip_params p; 240 u32 temp; 241 242 if ((intel_de_read(display, PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 243 return 0; 244 245 iclkip_params_init(&p); 246 247 intel_sbi_lock(display); 248 249 temp = intel_sbi_read(display, SBI_SSCCTL6, SBI_ICLK); 250 if (temp & SBI_SSCCTL_DISABLE) { 251 intel_sbi_unlock(display); 252 return 0; 253 } 254 255 temp = intel_sbi_read(display, SBI_SSCDIVINTPHASE6, SBI_ICLK); 256 p.divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 257 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 258 p.phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 259 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 260 261 temp = intel_sbi_read(display, SBI_SSCAUXDIV6, SBI_ICLK); 262 p.auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 263 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 264 265 intel_sbi_unlock(display); 266 267 p.desired_divisor = (p.divsel + 2) * p.iclk_pi_range + p.phaseinc; 268 269 return lpt_iclkip_freq(&p); 270 } 271 272 /* Implements 3 different sequences from BSpec chapter "Display iCLK 273 * Programming" based on the parameters passed: 274 * - Sequence to enable CLKOUT_DP 275 * - Sequence to enable CLKOUT_DP without spread 276 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 277 */ 278 static void lpt_enable_clkout_dp(struct intel_display *display, 279 bool with_spread, bool with_fdi) 280 { 281 u32 reg, tmp; 282 283 if (drm_WARN(display->drm, with_fdi && !with_spread, 284 "FDI requires downspread\n")) 285 with_spread = true; 286 if (drm_WARN(display->drm, HAS_PCH_LPT_LP(display) && 287 with_fdi, "LP PCH doesn't have FDI\n")) 288 with_fdi = false; 289 290 intel_sbi_lock(display); 291 292 tmp = intel_sbi_read(display, SBI_SSCCTL, SBI_ICLK); 293 tmp &= ~SBI_SSCCTL_DISABLE; 294 tmp |= SBI_SSCCTL_PATHALT; 295 intel_sbi_write(display, SBI_SSCCTL, tmp, SBI_ICLK); 296 297 udelay(24); 298 299 if (with_spread) { 300 tmp = intel_sbi_read(display, SBI_SSCCTL, SBI_ICLK); 301 tmp &= ~SBI_SSCCTL_PATHALT; 302 intel_sbi_write(display, SBI_SSCCTL, tmp, SBI_ICLK); 303 304 if (with_fdi) 305 lpt_fdi_program_mphy(display); 306 } 307 308 reg = HAS_PCH_LPT_LP(display) ? SBI_GEN0 : SBI_DBUFF0; 309 tmp = intel_sbi_read(display, reg, SBI_ICLK); 310 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 311 intel_sbi_write(display, reg, tmp, SBI_ICLK); 312 313 intel_sbi_unlock(display); 314 } 315 316 /* Sequence to disable CLKOUT_DP */ 317 void lpt_disable_clkout_dp(struct intel_display *display) 318 { 319 u32 reg, tmp; 320 321 intel_sbi_lock(display); 322 323 reg = HAS_PCH_LPT_LP(display) ? SBI_GEN0 : SBI_DBUFF0; 324 tmp = intel_sbi_read(display, reg, SBI_ICLK); 325 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 326 intel_sbi_write(display, reg, tmp, SBI_ICLK); 327 328 tmp = intel_sbi_read(display, SBI_SSCCTL, SBI_ICLK); 329 if (!(tmp & SBI_SSCCTL_DISABLE)) { 330 if (!(tmp & SBI_SSCCTL_PATHALT)) { 331 tmp |= SBI_SSCCTL_PATHALT; 332 intel_sbi_write(display, SBI_SSCCTL, tmp, SBI_ICLK); 333 udelay(32); 334 } 335 tmp |= SBI_SSCCTL_DISABLE; 336 intel_sbi_write(display, SBI_SSCCTL, tmp, SBI_ICLK); 337 } 338 339 intel_sbi_unlock(display); 340 } 341 342 #define BEND_IDX(steps) ((50 + (steps)) / 5) 343 344 static const u16 sscdivintphase[] = { 345 [BEND_IDX( 50)] = 0x3B23, 346 [BEND_IDX( 45)] = 0x3B23, 347 [BEND_IDX( 40)] = 0x3C23, 348 [BEND_IDX( 35)] = 0x3C23, 349 [BEND_IDX( 30)] = 0x3D23, 350 [BEND_IDX( 25)] = 0x3D23, 351 [BEND_IDX( 20)] = 0x3E23, 352 [BEND_IDX( 15)] = 0x3E23, 353 [BEND_IDX( 10)] = 0x3F23, 354 [BEND_IDX( 5)] = 0x3F23, 355 [BEND_IDX( 0)] = 0x0025, 356 [BEND_IDX( -5)] = 0x0025, 357 [BEND_IDX(-10)] = 0x0125, 358 [BEND_IDX(-15)] = 0x0125, 359 [BEND_IDX(-20)] = 0x0225, 360 [BEND_IDX(-25)] = 0x0225, 361 [BEND_IDX(-30)] = 0x0325, 362 [BEND_IDX(-35)] = 0x0325, 363 [BEND_IDX(-40)] = 0x0425, 364 [BEND_IDX(-45)] = 0x0425, 365 [BEND_IDX(-50)] = 0x0525, 366 }; 367 368 /* 369 * Bend CLKOUT_DP 370 * steps -50 to 50 inclusive, in steps of 5 371 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 372 * change in clock period = -(steps / 10) * 5.787 ps 373 */ 374 static void lpt_bend_clkout_dp(struct intel_display *display, int steps) 375 { 376 u32 tmp; 377 int idx = BEND_IDX(steps); 378 379 if (drm_WARN_ON(display->drm, steps % 5 != 0)) 380 return; 381 382 if (drm_WARN_ON(display->drm, idx >= ARRAY_SIZE(sscdivintphase))) 383 return; 384 385 intel_sbi_lock(display); 386 387 if (steps % 10 != 0) 388 tmp = 0xAAAAAAAB; 389 else 390 tmp = 0x00000000; 391 intel_sbi_write(display, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 392 393 tmp = intel_sbi_read(display, SBI_SSCDIVINTPHASE, SBI_ICLK); 394 tmp &= 0xffff0000; 395 tmp |= sscdivintphase[idx]; 396 intel_sbi_write(display, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 397 398 intel_sbi_unlock(display); 399 } 400 401 #undef BEND_IDX 402 403 static bool spll_uses_pch_ssc(struct intel_display *display) 404 { 405 u32 fuse_strap = intel_de_read(display, FUSE_STRAP); 406 u32 ctl = intel_de_read(display, SPLL_CTL); 407 408 if ((ctl & SPLL_PLL_ENABLE) == 0) 409 return false; 410 411 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC && 412 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 413 return true; 414 415 if (display->platform.broadwell && 416 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW) 417 return true; 418 419 return false; 420 } 421 422 static bool wrpll_uses_pch_ssc(struct intel_display *display, enum intel_dpll_id id) 423 { 424 u32 fuse_strap = intel_de_read(display, FUSE_STRAP); 425 u32 ctl = intel_de_read(display, WRPLL_CTL(id)); 426 427 if ((ctl & WRPLL_PLL_ENABLE) == 0) 428 return false; 429 430 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC) 431 return true; 432 433 if ((display->platform.broadwell || display->platform.haswell_ult) && 434 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW && 435 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0) 436 return true; 437 438 return false; 439 } 440 441 static void lpt_init_pch_refclk(struct intel_display *display) 442 { 443 struct intel_encoder *encoder; 444 bool has_fdi = false; 445 446 for_each_intel_encoder(display->drm, encoder) { 447 switch (encoder->type) { 448 case INTEL_OUTPUT_ANALOG: 449 has_fdi = true; 450 break; 451 default: 452 break; 453 } 454 } 455 456 /* 457 * The BIOS may have decided to use the PCH SSC 458 * reference so we must not disable it until the 459 * relevant PLLs have stopped relying on it. We'll 460 * just leave the PCH SSC reference enabled in case 461 * any active PLL is using it. It will get disabled 462 * after runtime suspend if we don't have FDI. 463 * 464 * TODO: Move the whole reference clock handling 465 * to the modeset sequence proper so that we can 466 * actually enable/disable/reconfigure these things 467 * safely. To do that we need to introduce a real 468 * clock hierarchy. That would also allow us to do 469 * clock bending finally. 470 */ 471 display->dpll.pch_ssc_use = 0; 472 473 if (spll_uses_pch_ssc(display)) { 474 drm_dbg_kms(display->drm, "SPLL using PCH SSC\n"); 475 display->dpll.pch_ssc_use |= BIT(DPLL_ID_SPLL); 476 } 477 478 if (wrpll_uses_pch_ssc(display, DPLL_ID_WRPLL1)) { 479 drm_dbg_kms(display->drm, "WRPLL1 using PCH SSC\n"); 480 display->dpll.pch_ssc_use |= BIT(DPLL_ID_WRPLL1); 481 } 482 483 if (wrpll_uses_pch_ssc(display, DPLL_ID_WRPLL2)) { 484 drm_dbg_kms(display->drm, "WRPLL2 using PCH SSC\n"); 485 display->dpll.pch_ssc_use |= BIT(DPLL_ID_WRPLL2); 486 } 487 488 if (display->dpll.pch_ssc_use) 489 return; 490 491 if (has_fdi) { 492 lpt_bend_clkout_dp(display, 0); 493 lpt_enable_clkout_dp(display, true, true); 494 } else { 495 lpt_disable_clkout_dp(display); 496 } 497 } 498 499 static void ilk_init_pch_refclk(struct intel_display *display) 500 { 501 struct intel_encoder *encoder; 502 struct intel_dpll *pll; 503 int i; 504 u32 val, final; 505 bool has_lvds = false; 506 bool has_cpu_edp = false; 507 bool has_panel = false; 508 bool has_ck505 = false; 509 bool can_ssc = false; 510 bool using_ssc_source = false; 511 512 /* We need to take the global config into account */ 513 for_each_intel_encoder(display->drm, encoder) { 514 switch (encoder->type) { 515 case INTEL_OUTPUT_LVDS: 516 has_panel = true; 517 has_lvds = true; 518 break; 519 case INTEL_OUTPUT_EDP: 520 has_panel = true; 521 if (encoder->port == PORT_A) 522 has_cpu_edp = true; 523 break; 524 default: 525 break; 526 } 527 } 528 529 if (HAS_PCH_IBX(display)) { 530 has_ck505 = display->vbt.display_clock_mode; 531 can_ssc = has_ck505; 532 } else { 533 has_ck505 = false; 534 can_ssc = true; 535 } 536 537 /* Check if any DPLLs are using the SSC source */ 538 for_each_dpll(display, pll, i) { 539 u32 temp; 540 541 temp = intel_de_read(display, PCH_DPLL(pll->info->id)); 542 543 if (!(temp & DPLL_VCO_ENABLE)) 544 continue; 545 546 if ((temp & PLL_REF_INPUT_MASK) == 547 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 548 using_ssc_source = true; 549 break; 550 } 551 } 552 553 drm_dbg_kms(display->drm, 554 "has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 555 has_panel, has_lvds, has_ck505, using_ssc_source); 556 557 /* Ironlake: try to setup display ref clock before DPLL 558 * enabling. This is only under driver's control after 559 * PCH B stepping, previous chipset stepping should be 560 * ignoring this setting. 561 */ 562 val = intel_de_read(display, PCH_DREF_CONTROL); 563 564 /* As we must carefully and slowly disable/enable each source in turn, 565 * compute the final state we want first and check if we need to 566 * make any changes at all. 567 */ 568 final = val; 569 final &= ~DREF_NONSPREAD_SOURCE_MASK; 570 if (has_ck505) 571 final |= DREF_NONSPREAD_CK505_ENABLE; 572 else 573 final |= DREF_NONSPREAD_SOURCE_ENABLE; 574 575 final &= ~DREF_SSC_SOURCE_MASK; 576 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 577 final &= ~DREF_SSC1_ENABLE; 578 579 if (has_panel) { 580 final |= DREF_SSC_SOURCE_ENABLE; 581 582 if (intel_panel_use_ssc(display) && can_ssc) 583 final |= DREF_SSC1_ENABLE; 584 585 if (has_cpu_edp) { 586 if (intel_panel_use_ssc(display) && can_ssc) 587 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 588 else 589 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 590 } else { 591 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 592 } 593 } else if (using_ssc_source) { 594 final |= DREF_SSC_SOURCE_ENABLE; 595 final |= DREF_SSC1_ENABLE; 596 } 597 598 if (final == val) 599 return; 600 601 /* Always enable nonspread source */ 602 val &= ~DREF_NONSPREAD_SOURCE_MASK; 603 604 if (has_ck505) 605 val |= DREF_NONSPREAD_CK505_ENABLE; 606 else 607 val |= DREF_NONSPREAD_SOURCE_ENABLE; 608 609 if (has_panel) { 610 val &= ~DREF_SSC_SOURCE_MASK; 611 val |= DREF_SSC_SOURCE_ENABLE; 612 613 /* SSC must be turned on before enabling the CPU output */ 614 if (intel_panel_use_ssc(display) && can_ssc) { 615 drm_dbg_kms(display->drm, "Using SSC on panel\n"); 616 val |= DREF_SSC1_ENABLE; 617 } else { 618 val &= ~DREF_SSC1_ENABLE; 619 } 620 621 /* Get SSC going before enabling the outputs */ 622 intel_de_write(display, PCH_DREF_CONTROL, val); 623 intel_de_posting_read(display, PCH_DREF_CONTROL); 624 udelay(200); 625 626 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 627 628 /* Enable CPU source on CPU attached eDP */ 629 if (has_cpu_edp) { 630 if (intel_panel_use_ssc(display) && can_ssc) { 631 drm_dbg_kms(display->drm, 632 "Using SSC on eDP\n"); 633 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 634 } else { 635 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 636 } 637 } else { 638 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 639 } 640 641 intel_de_write(display, PCH_DREF_CONTROL, val); 642 intel_de_posting_read(display, PCH_DREF_CONTROL); 643 udelay(200); 644 } else { 645 drm_dbg_kms(display->drm, "Disabling CPU source output\n"); 646 647 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 648 649 /* Turn off CPU output */ 650 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 651 652 intel_de_write(display, PCH_DREF_CONTROL, val); 653 intel_de_posting_read(display, PCH_DREF_CONTROL); 654 udelay(200); 655 656 if (!using_ssc_source) { 657 drm_dbg_kms(display->drm, "Disabling SSC source\n"); 658 659 /* Turn off the SSC source */ 660 val &= ~DREF_SSC_SOURCE_MASK; 661 val |= DREF_SSC_SOURCE_DISABLE; 662 663 /* Turn off SSC1 */ 664 val &= ~DREF_SSC1_ENABLE; 665 666 intel_de_write(display, PCH_DREF_CONTROL, val); 667 intel_de_posting_read(display, PCH_DREF_CONTROL); 668 udelay(200); 669 } 670 } 671 672 drm_WARN_ON(display->drm, val != final); 673 } 674 675 /* 676 * Initialize reference clocks when the driver loads 677 */ 678 void intel_init_pch_refclk(struct intel_display *display) 679 { 680 if (HAS_PCH_IBX(display) || HAS_PCH_CPT(display)) 681 ilk_init_pch_refclk(display); 682 else if (HAS_PCH_LPT(display)) 683 lpt_init_pch_refclk(display); 684 } 685