xref: /linux/drivers/gpu/drm/i915/display/intel_hdmi.c (revision e6a901a00822659181c93c86d8bbc2a17779fddc)
1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 #include <linux/string_helpers.h>
34 
35 #include <drm/display/drm_hdcp_helper.h>
36 #include <drm/display/drm_hdmi_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_crtc.h>
40 #include <drm/drm_edid.h>
41 #include <drm/intel_lpe_audio.h>
42 
43 #include "g4x_hdmi.h"
44 #include "i915_drv.h"
45 #include "i915_reg.h"
46 #include "intel_atomic.h"
47 #include "intel_audio.h"
48 #include "intel_connector.h"
49 #include "intel_cx0_phy.h"
50 #include "intel_ddi.h"
51 #include "intel_de.h"
52 #include "intel_display_driver.h"
53 #include "intel_display_types.h"
54 #include "intel_dp.h"
55 #include "intel_gmbus.h"
56 #include "intel_hdcp.h"
57 #include "intel_hdcp_regs.h"
58 #include "intel_hdmi.h"
59 #include "intel_lspcon.h"
60 #include "intel_panel.h"
61 #include "intel_snps_phy.h"
62 
63 inline struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi)
64 {
65 	return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev);
66 }
67 
68 static void
69 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
70 {
71 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi);
72 	u32 enabled_bits;
73 
74 	enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
75 
76 	drm_WARN(&dev_priv->drm,
77 		 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
78 		 "HDMI port enabled, expecting disabled\n");
79 }
80 
81 static void
82 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
83 				     enum transcoder cpu_transcoder)
84 {
85 	drm_WARN(&dev_priv->drm,
86 		 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
87 		 TRANS_DDI_FUNC_ENABLE,
88 		 "HDMI transcoder function enabled, expecting disabled\n");
89 }
90 
91 static u32 g4x_infoframe_index(unsigned int type)
92 {
93 	switch (type) {
94 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
95 		return VIDEO_DIP_SELECT_GAMUT;
96 	case HDMI_INFOFRAME_TYPE_AVI:
97 		return VIDEO_DIP_SELECT_AVI;
98 	case HDMI_INFOFRAME_TYPE_SPD:
99 		return VIDEO_DIP_SELECT_SPD;
100 	case HDMI_INFOFRAME_TYPE_VENDOR:
101 		return VIDEO_DIP_SELECT_VENDOR;
102 	default:
103 		MISSING_CASE(type);
104 		return 0;
105 	}
106 }
107 
108 static u32 g4x_infoframe_enable(unsigned int type)
109 {
110 	switch (type) {
111 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
112 		return VIDEO_DIP_ENABLE_GCP;
113 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
114 		return VIDEO_DIP_ENABLE_GAMUT;
115 	case DP_SDP_VSC:
116 		return 0;
117 	case DP_SDP_ADAPTIVE_SYNC:
118 		return 0;
119 	case HDMI_INFOFRAME_TYPE_AVI:
120 		return VIDEO_DIP_ENABLE_AVI;
121 	case HDMI_INFOFRAME_TYPE_SPD:
122 		return VIDEO_DIP_ENABLE_SPD;
123 	case HDMI_INFOFRAME_TYPE_VENDOR:
124 		return VIDEO_DIP_ENABLE_VENDOR;
125 	case HDMI_INFOFRAME_TYPE_DRM:
126 		return 0;
127 	default:
128 		MISSING_CASE(type);
129 		return 0;
130 	}
131 }
132 
133 static u32 hsw_infoframe_enable(unsigned int type)
134 {
135 	switch (type) {
136 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
137 		return VIDEO_DIP_ENABLE_GCP_HSW;
138 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
139 		return VIDEO_DIP_ENABLE_GMP_HSW;
140 	case DP_SDP_VSC:
141 		return VIDEO_DIP_ENABLE_VSC_HSW;
142 	case DP_SDP_ADAPTIVE_SYNC:
143 		return VIDEO_DIP_ENABLE_AS_ADL;
144 	case DP_SDP_PPS:
145 		return VDIP_ENABLE_PPS;
146 	case HDMI_INFOFRAME_TYPE_AVI:
147 		return VIDEO_DIP_ENABLE_AVI_HSW;
148 	case HDMI_INFOFRAME_TYPE_SPD:
149 		return VIDEO_DIP_ENABLE_SPD_HSW;
150 	case HDMI_INFOFRAME_TYPE_VENDOR:
151 		return VIDEO_DIP_ENABLE_VS_HSW;
152 	case HDMI_INFOFRAME_TYPE_DRM:
153 		return VIDEO_DIP_ENABLE_DRM_GLK;
154 	default:
155 		MISSING_CASE(type);
156 		return 0;
157 	}
158 }
159 
160 static i915_reg_t
161 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
162 		 enum transcoder cpu_transcoder,
163 		 unsigned int type,
164 		 int i)
165 {
166 	switch (type) {
167 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
168 		return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
169 	case DP_SDP_VSC:
170 		return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
171 	case DP_SDP_ADAPTIVE_SYNC:
172 		return ADL_TVIDEO_DIP_AS_SDP_DATA(cpu_transcoder, i);
173 	case DP_SDP_PPS:
174 		return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
175 	case HDMI_INFOFRAME_TYPE_AVI:
176 		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
177 	case HDMI_INFOFRAME_TYPE_SPD:
178 		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
179 	case HDMI_INFOFRAME_TYPE_VENDOR:
180 		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
181 	case HDMI_INFOFRAME_TYPE_DRM:
182 		return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
183 	default:
184 		MISSING_CASE(type);
185 		return INVALID_MMIO_REG;
186 	}
187 }
188 
189 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
190 			     unsigned int type)
191 {
192 	switch (type) {
193 	case DP_SDP_VSC:
194 		return VIDEO_DIP_VSC_DATA_SIZE;
195 	case DP_SDP_ADAPTIVE_SYNC:
196 		return VIDEO_DIP_ASYNC_DATA_SIZE;
197 	case DP_SDP_PPS:
198 		return VIDEO_DIP_PPS_DATA_SIZE;
199 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
200 		if (DISPLAY_VER(dev_priv) >= 11)
201 			return VIDEO_DIP_GMP_DATA_SIZE;
202 		else
203 			return VIDEO_DIP_DATA_SIZE;
204 	default:
205 		return VIDEO_DIP_DATA_SIZE;
206 	}
207 }
208 
209 static void g4x_write_infoframe(struct intel_encoder *encoder,
210 				const struct intel_crtc_state *crtc_state,
211 				unsigned int type,
212 				const void *frame, ssize_t len)
213 {
214 	const u32 *data = frame;
215 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
216 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
217 	int i;
218 
219 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
220 		 "Writing DIP with CTL reg disabled\n");
221 
222 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
223 	val |= g4x_infoframe_index(type);
224 
225 	val &= ~g4x_infoframe_enable(type);
226 
227 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
228 
229 	for (i = 0; i < len; i += 4) {
230 		intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
231 		data++;
232 	}
233 	/* Write every possible data byte to force correct ECC calculation. */
234 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
235 		intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
236 
237 	val |= g4x_infoframe_enable(type);
238 	val &= ~VIDEO_DIP_FREQ_MASK;
239 	val |= VIDEO_DIP_FREQ_VSYNC;
240 
241 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
242 	intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
243 }
244 
245 static void g4x_read_infoframe(struct intel_encoder *encoder,
246 			       const struct intel_crtc_state *crtc_state,
247 			       unsigned int type,
248 			       void *frame, ssize_t len)
249 {
250 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
251 	u32 *data = frame;
252 	int i;
253 
254 	intel_de_rmw(dev_priv, VIDEO_DIP_CTL,
255 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
256 
257 	for (i = 0; i < len; i += 4)
258 		*data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
259 }
260 
261 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
262 				  const struct intel_crtc_state *pipe_config)
263 {
264 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
265 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
266 
267 	if ((val & VIDEO_DIP_ENABLE) == 0)
268 		return 0;
269 
270 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
271 		return 0;
272 
273 	return val & (VIDEO_DIP_ENABLE_AVI |
274 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
275 }
276 
277 static void ibx_write_infoframe(struct intel_encoder *encoder,
278 				const struct intel_crtc_state *crtc_state,
279 				unsigned int type,
280 				const void *frame, ssize_t len)
281 {
282 	const u32 *data = frame;
283 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
284 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
285 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
286 	u32 val = intel_de_read(dev_priv, reg);
287 	int i;
288 
289 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
290 		 "Writing DIP with CTL reg disabled\n");
291 
292 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
293 	val |= g4x_infoframe_index(type);
294 
295 	val &= ~g4x_infoframe_enable(type);
296 
297 	intel_de_write(dev_priv, reg, val);
298 
299 	for (i = 0; i < len; i += 4) {
300 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
301 			       *data);
302 		data++;
303 	}
304 	/* Write every possible data byte to force correct ECC calculation. */
305 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
306 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
307 
308 	val |= g4x_infoframe_enable(type);
309 	val &= ~VIDEO_DIP_FREQ_MASK;
310 	val |= VIDEO_DIP_FREQ_VSYNC;
311 
312 	intel_de_write(dev_priv, reg, val);
313 	intel_de_posting_read(dev_priv, reg);
314 }
315 
316 static void ibx_read_infoframe(struct intel_encoder *encoder,
317 			       const struct intel_crtc_state *crtc_state,
318 			       unsigned int type,
319 			       void *frame, ssize_t len)
320 {
321 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
322 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
323 	u32 *data = frame;
324 	int i;
325 
326 	intel_de_rmw(dev_priv, TVIDEO_DIP_CTL(crtc->pipe),
327 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
328 
329 	for (i = 0; i < len; i += 4)
330 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
331 }
332 
333 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
334 				  const struct intel_crtc_state *pipe_config)
335 {
336 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
337 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
338 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
339 	u32 val = intel_de_read(dev_priv, reg);
340 
341 	if ((val & VIDEO_DIP_ENABLE) == 0)
342 		return 0;
343 
344 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
345 		return 0;
346 
347 	return val & (VIDEO_DIP_ENABLE_AVI |
348 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
349 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
350 }
351 
352 static void cpt_write_infoframe(struct intel_encoder *encoder,
353 				const struct intel_crtc_state *crtc_state,
354 				unsigned int type,
355 				const void *frame, ssize_t len)
356 {
357 	const u32 *data = frame;
358 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
359 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
360 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
361 	u32 val = intel_de_read(dev_priv, reg);
362 	int i;
363 
364 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
365 		 "Writing DIP with CTL reg disabled\n");
366 
367 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
368 	val |= g4x_infoframe_index(type);
369 
370 	/* The DIP control register spec says that we need to update the AVI
371 	 * infoframe without clearing its enable bit */
372 	if (type != HDMI_INFOFRAME_TYPE_AVI)
373 		val &= ~g4x_infoframe_enable(type);
374 
375 	intel_de_write(dev_priv, reg, val);
376 
377 	for (i = 0; i < len; i += 4) {
378 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
379 			       *data);
380 		data++;
381 	}
382 	/* Write every possible data byte to force correct ECC calculation. */
383 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
384 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
385 
386 	val |= g4x_infoframe_enable(type);
387 	val &= ~VIDEO_DIP_FREQ_MASK;
388 	val |= VIDEO_DIP_FREQ_VSYNC;
389 
390 	intel_de_write(dev_priv, reg, val);
391 	intel_de_posting_read(dev_priv, reg);
392 }
393 
394 static void cpt_read_infoframe(struct intel_encoder *encoder,
395 			       const struct intel_crtc_state *crtc_state,
396 			       unsigned int type,
397 			       void *frame, ssize_t len)
398 {
399 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
400 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
401 	u32 *data = frame;
402 	int i;
403 
404 	intel_de_rmw(dev_priv, TVIDEO_DIP_CTL(crtc->pipe),
405 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
406 
407 	for (i = 0; i < len; i += 4)
408 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
409 }
410 
411 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
412 				  const struct intel_crtc_state *pipe_config)
413 {
414 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
415 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
416 	u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
417 
418 	if ((val & VIDEO_DIP_ENABLE) == 0)
419 		return 0;
420 
421 	return val & (VIDEO_DIP_ENABLE_AVI |
422 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
423 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
424 }
425 
426 static void vlv_write_infoframe(struct intel_encoder *encoder,
427 				const struct intel_crtc_state *crtc_state,
428 				unsigned int type,
429 				const void *frame, ssize_t len)
430 {
431 	const u32 *data = frame;
432 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
433 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
434 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
435 	u32 val = intel_de_read(dev_priv, reg);
436 	int i;
437 
438 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
439 		 "Writing DIP with CTL reg disabled\n");
440 
441 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
442 	val |= g4x_infoframe_index(type);
443 
444 	val &= ~g4x_infoframe_enable(type);
445 
446 	intel_de_write(dev_priv, reg, val);
447 
448 	for (i = 0; i < len; i += 4) {
449 		intel_de_write(dev_priv,
450 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
451 		data++;
452 	}
453 	/* Write every possible data byte to force correct ECC calculation. */
454 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
455 		intel_de_write(dev_priv,
456 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
457 
458 	val |= g4x_infoframe_enable(type);
459 	val &= ~VIDEO_DIP_FREQ_MASK;
460 	val |= VIDEO_DIP_FREQ_VSYNC;
461 
462 	intel_de_write(dev_priv, reg, val);
463 	intel_de_posting_read(dev_priv, reg);
464 }
465 
466 static void vlv_read_infoframe(struct intel_encoder *encoder,
467 			       const struct intel_crtc_state *crtc_state,
468 			       unsigned int type,
469 			       void *frame, ssize_t len)
470 {
471 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
472 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
473 	u32 *data = frame;
474 	int i;
475 
476 	intel_de_rmw(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe),
477 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
478 
479 	for (i = 0; i < len; i += 4)
480 		*data++ = intel_de_read(dev_priv,
481 				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
482 }
483 
484 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
485 				  const struct intel_crtc_state *pipe_config)
486 {
487 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
488 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
489 	u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
490 
491 	if ((val & VIDEO_DIP_ENABLE) == 0)
492 		return 0;
493 
494 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
495 		return 0;
496 
497 	return val & (VIDEO_DIP_ENABLE_AVI |
498 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
499 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
500 }
501 
502 void hsw_write_infoframe(struct intel_encoder *encoder,
503 			 const struct intel_crtc_state *crtc_state,
504 			 unsigned int type,
505 			 const void *frame, ssize_t len)
506 {
507 	const u32 *data = frame;
508 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
509 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
510 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
511 	int data_size;
512 	int i;
513 	u32 val = intel_de_read(dev_priv, ctl_reg);
514 
515 	data_size = hsw_dip_data_size(dev_priv, type);
516 
517 	drm_WARN_ON(&dev_priv->drm, len > data_size);
518 
519 	val &= ~hsw_infoframe_enable(type);
520 	intel_de_write(dev_priv, ctl_reg, val);
521 
522 	for (i = 0; i < len; i += 4) {
523 		intel_de_write(dev_priv,
524 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
525 			       *data);
526 		data++;
527 	}
528 	/* Write every possible data byte to force correct ECC calculation. */
529 	for (; i < data_size; i += 4)
530 		intel_de_write(dev_priv,
531 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
532 			       0);
533 
534 	/* Wa_14013475917 */
535 	if (!(IS_DISPLAY_VER(dev_priv, 13, 14) && crtc_state->has_psr && type == DP_SDP_VSC))
536 		val |= hsw_infoframe_enable(type);
537 
538 	if (type == DP_SDP_VSC)
539 		val |= VSC_DIP_HW_DATA_SW_HEA;
540 
541 	intel_de_write(dev_priv, ctl_reg, val);
542 	intel_de_posting_read(dev_priv, ctl_reg);
543 }
544 
545 void hsw_read_infoframe(struct intel_encoder *encoder,
546 			const struct intel_crtc_state *crtc_state,
547 			unsigned int type, void *frame, ssize_t len)
548 {
549 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
550 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
551 	u32 *data = frame;
552 	int i;
553 
554 	for (i = 0; i < len; i += 4)
555 		*data++ = intel_de_read(dev_priv,
556 				        hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
557 }
558 
559 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
560 				  const struct intel_crtc_state *pipe_config)
561 {
562 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
563 	u32 val = intel_de_read(dev_priv,
564 				HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
565 	u32 mask;
566 
567 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
568 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
569 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
570 
571 	if (DISPLAY_VER(dev_priv) >= 10)
572 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
573 
574 	if (HAS_AS_SDP(dev_priv))
575 		mask |= VIDEO_DIP_ENABLE_AS_ADL;
576 
577 	return val & mask;
578 }
579 
580 static const u8 infoframe_type_to_idx[] = {
581 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
582 	HDMI_PACKET_TYPE_GAMUT_METADATA,
583 	DP_SDP_VSC,
584 	DP_SDP_ADAPTIVE_SYNC,
585 	HDMI_INFOFRAME_TYPE_AVI,
586 	HDMI_INFOFRAME_TYPE_SPD,
587 	HDMI_INFOFRAME_TYPE_VENDOR,
588 	HDMI_INFOFRAME_TYPE_DRM,
589 };
590 
591 u32 intel_hdmi_infoframe_enable(unsigned int type)
592 {
593 	int i;
594 
595 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
596 		if (infoframe_type_to_idx[i] == type)
597 			return BIT(i);
598 	}
599 
600 	return 0;
601 }
602 
603 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
604 				  const struct intel_crtc_state *crtc_state)
605 {
606 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
607 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
608 	u32 val, ret = 0;
609 	int i;
610 
611 	val = dig_port->infoframes_enabled(encoder, crtc_state);
612 
613 	/* map from hardware bits to dip idx */
614 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
615 		unsigned int type = infoframe_type_to_idx[i];
616 
617 		if (HAS_DDI(dev_priv)) {
618 			if (val & hsw_infoframe_enable(type))
619 				ret |= BIT(i);
620 		} else {
621 			if (val & g4x_infoframe_enable(type))
622 				ret |= BIT(i);
623 		}
624 	}
625 
626 	return ret;
627 }
628 
629 /*
630  * The data we write to the DIP data buffer registers is 1 byte bigger than the
631  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
632  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
633  * used for both technologies.
634  *
635  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
636  * DW1:       DB3       | DB2 | DB1 | DB0
637  * DW2:       DB7       | DB6 | DB5 | DB4
638  * DW3: ...
639  *
640  * (HB is Header Byte, DB is Data Byte)
641  *
642  * The hdmi pack() functions don't know about that hardware specific hole so we
643  * trick them by giving an offset into the buffer and moving back the header
644  * bytes by one.
645  */
646 static void intel_write_infoframe(struct intel_encoder *encoder,
647 				  const struct intel_crtc_state *crtc_state,
648 				  enum hdmi_infoframe_type type,
649 				  const union hdmi_infoframe *frame)
650 {
651 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
652 	u8 buffer[VIDEO_DIP_DATA_SIZE];
653 	ssize_t len;
654 
655 	if ((crtc_state->infoframes.enable &
656 	     intel_hdmi_infoframe_enable(type)) == 0)
657 		return;
658 
659 	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
660 		return;
661 
662 	/* see comment above for the reason for this offset */
663 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
664 	if (drm_WARN_ON(encoder->base.dev, len < 0))
665 		return;
666 
667 	/* Insert the 'hole' (see big comment above) at position 3 */
668 	memmove(&buffer[0], &buffer[1], 3);
669 	buffer[3] = 0;
670 	len++;
671 
672 	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
673 }
674 
675 void intel_read_infoframe(struct intel_encoder *encoder,
676 			  const struct intel_crtc_state *crtc_state,
677 			  enum hdmi_infoframe_type type,
678 			  union hdmi_infoframe *frame)
679 {
680 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
681 	u8 buffer[VIDEO_DIP_DATA_SIZE];
682 	int ret;
683 
684 	if ((crtc_state->infoframes.enable &
685 	     intel_hdmi_infoframe_enable(type)) == 0)
686 		return;
687 
688 	dig_port->read_infoframe(encoder, crtc_state,
689 				       type, buffer, sizeof(buffer));
690 
691 	/* Fill the 'hole' (see big comment above) at position 3 */
692 	memmove(&buffer[1], &buffer[0], 3);
693 
694 	/* see comment above for the reason for this offset */
695 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
696 	if (ret) {
697 		drm_dbg_kms(encoder->base.dev,
698 			    "Failed to unpack infoframe type 0x%02x\n", type);
699 		return;
700 	}
701 
702 	if (frame->any.type != type)
703 		drm_dbg_kms(encoder->base.dev,
704 			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
705 			    frame->any.type, type);
706 }
707 
708 static bool
709 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
710 				 struct intel_crtc_state *crtc_state,
711 				 struct drm_connector_state *conn_state)
712 {
713 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
714 	const struct drm_display_mode *adjusted_mode =
715 		&crtc_state->hw.adjusted_mode;
716 	struct drm_connector *connector = conn_state->connector;
717 	int ret;
718 
719 	if (!crtc_state->has_infoframe)
720 		return true;
721 
722 	crtc_state->infoframes.enable |=
723 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
724 
725 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
726 						       adjusted_mode);
727 	if (ret)
728 		return false;
729 
730 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
731 		frame->colorspace = HDMI_COLORSPACE_YUV420;
732 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
733 		frame->colorspace = HDMI_COLORSPACE_YUV444;
734 	else
735 		frame->colorspace = HDMI_COLORSPACE_RGB;
736 
737 	drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
738 
739 	/* nonsense combination */
740 	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
741 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
742 
743 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
744 		drm_hdmi_avi_infoframe_quant_range(frame, connector,
745 						   adjusted_mode,
746 						   crtc_state->limited_color_range ?
747 						   HDMI_QUANTIZATION_RANGE_LIMITED :
748 						   HDMI_QUANTIZATION_RANGE_FULL);
749 	} else {
750 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
751 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
752 	}
753 
754 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
755 
756 	/* TODO: handle pixel repetition for YCBCR420 outputs */
757 
758 	ret = hdmi_avi_infoframe_check(frame);
759 	if (drm_WARN_ON(encoder->base.dev, ret))
760 		return false;
761 
762 	return true;
763 }
764 
765 static bool
766 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
767 				 struct intel_crtc_state *crtc_state,
768 				 struct drm_connector_state *conn_state)
769 {
770 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
771 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
772 	int ret;
773 
774 	if (!crtc_state->has_infoframe)
775 		return true;
776 
777 	crtc_state->infoframes.enable |=
778 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
779 
780 	if (IS_DGFX(i915))
781 		ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx");
782 	else
783 		ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
784 
785 	if (drm_WARN_ON(encoder->base.dev, ret))
786 		return false;
787 
788 	frame->sdi = HDMI_SPD_SDI_PC;
789 
790 	ret = hdmi_spd_infoframe_check(frame);
791 	if (drm_WARN_ON(encoder->base.dev, ret))
792 		return false;
793 
794 	return true;
795 }
796 
797 static bool
798 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
799 				  struct intel_crtc_state *crtc_state,
800 				  struct drm_connector_state *conn_state)
801 {
802 	struct hdmi_vendor_infoframe *frame =
803 		&crtc_state->infoframes.hdmi.vendor.hdmi;
804 	const struct drm_display_info *info =
805 		&conn_state->connector->display_info;
806 	int ret;
807 
808 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
809 		return true;
810 
811 	crtc_state->infoframes.enable |=
812 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
813 
814 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
815 							  conn_state->connector,
816 							  &crtc_state->hw.adjusted_mode);
817 	if (drm_WARN_ON(encoder->base.dev, ret))
818 		return false;
819 
820 	ret = hdmi_vendor_infoframe_check(frame);
821 	if (drm_WARN_ON(encoder->base.dev, ret))
822 		return false;
823 
824 	return true;
825 }
826 
827 static bool
828 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
829 				 struct intel_crtc_state *crtc_state,
830 				 struct drm_connector_state *conn_state)
831 {
832 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
833 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
834 	int ret;
835 
836 	if (DISPLAY_VER(dev_priv) < 10)
837 		return true;
838 
839 	if (!crtc_state->has_infoframe)
840 		return true;
841 
842 	if (!conn_state->hdr_output_metadata)
843 		return true;
844 
845 	crtc_state->infoframes.enable |=
846 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
847 
848 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
849 	if (ret < 0) {
850 		drm_dbg_kms(&dev_priv->drm,
851 			    "couldn't set HDR metadata in infoframe\n");
852 		return false;
853 	}
854 
855 	ret = hdmi_drm_infoframe_check(frame);
856 	if (drm_WARN_ON(&dev_priv->drm, ret))
857 		return false;
858 
859 	return true;
860 }
861 
862 static void g4x_set_infoframes(struct intel_encoder *encoder,
863 			       bool enable,
864 			       const struct intel_crtc_state *crtc_state,
865 			       const struct drm_connector_state *conn_state)
866 {
867 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
868 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
869 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
870 	i915_reg_t reg = VIDEO_DIP_CTL;
871 	u32 val = intel_de_read(dev_priv, reg);
872 	u32 port = VIDEO_DIP_PORT(encoder->port);
873 
874 	assert_hdmi_port_disabled(intel_hdmi);
875 
876 	/* If the registers were not initialized yet, they might be zeroes,
877 	 * which means we're selecting the AVI DIP and we're setting its
878 	 * frequency to once. This seems to really confuse the HW and make
879 	 * things stop working (the register spec says the AVI always needs to
880 	 * be sent every VSync). So here we avoid writing to the register more
881 	 * than we need and also explicitly select the AVI DIP and explicitly
882 	 * set its frequency to every VSync. Avoiding to write it twice seems to
883 	 * be enough to solve the problem, but being defensive shouldn't hurt us
884 	 * either. */
885 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
886 
887 	if (!enable) {
888 		if (!(val & VIDEO_DIP_ENABLE))
889 			return;
890 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
891 			drm_dbg_kms(&dev_priv->drm,
892 				    "video DIP still enabled on port %c\n",
893 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
894 			return;
895 		}
896 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
897 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
898 		intel_de_write(dev_priv, reg, val);
899 		intel_de_posting_read(dev_priv, reg);
900 		return;
901 	}
902 
903 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
904 		if (val & VIDEO_DIP_ENABLE) {
905 			drm_dbg_kms(&dev_priv->drm,
906 				    "video DIP already enabled on port %c\n",
907 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
908 			return;
909 		}
910 		val &= ~VIDEO_DIP_PORT_MASK;
911 		val |= port;
912 	}
913 
914 	val |= VIDEO_DIP_ENABLE;
915 	val &= ~(VIDEO_DIP_ENABLE_AVI |
916 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
917 
918 	intel_de_write(dev_priv, reg, val);
919 	intel_de_posting_read(dev_priv, reg);
920 
921 	intel_write_infoframe(encoder, crtc_state,
922 			      HDMI_INFOFRAME_TYPE_AVI,
923 			      &crtc_state->infoframes.avi);
924 	intel_write_infoframe(encoder, crtc_state,
925 			      HDMI_INFOFRAME_TYPE_SPD,
926 			      &crtc_state->infoframes.spd);
927 	intel_write_infoframe(encoder, crtc_state,
928 			      HDMI_INFOFRAME_TYPE_VENDOR,
929 			      &crtc_state->infoframes.hdmi);
930 }
931 
932 /*
933  * Determine if default_phase=1 can be indicated in the GCP infoframe.
934  *
935  * From HDMI specification 1.4a:
936  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
937  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
938  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
939  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
940  *   phase of 0
941  */
942 static bool gcp_default_phase_possible(int pipe_bpp,
943 				       const struct drm_display_mode *mode)
944 {
945 	unsigned int pixels_per_group;
946 
947 	switch (pipe_bpp) {
948 	case 30:
949 		/* 4 pixels in 5 clocks */
950 		pixels_per_group = 4;
951 		break;
952 	case 36:
953 		/* 2 pixels in 3 clocks */
954 		pixels_per_group = 2;
955 		break;
956 	case 48:
957 		/* 1 pixel in 2 clocks */
958 		pixels_per_group = 1;
959 		break;
960 	default:
961 		/* phase information not relevant for 8bpc */
962 		return false;
963 	}
964 
965 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
966 		mode->crtc_htotal % pixels_per_group == 0 &&
967 		mode->crtc_hblank_start % pixels_per_group == 0 &&
968 		mode->crtc_hblank_end % pixels_per_group == 0 &&
969 		mode->crtc_hsync_start % pixels_per_group == 0 &&
970 		mode->crtc_hsync_end % pixels_per_group == 0 &&
971 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
972 		 mode->crtc_htotal/2 % pixels_per_group == 0);
973 }
974 
975 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
976 					 const struct intel_crtc_state *crtc_state,
977 					 const struct drm_connector_state *conn_state)
978 {
979 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
980 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
981 	i915_reg_t reg;
982 
983 	if ((crtc_state->infoframes.enable &
984 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
985 		return false;
986 
987 	if (HAS_DDI(dev_priv))
988 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
989 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
990 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
991 	else if (HAS_PCH_SPLIT(dev_priv))
992 		reg = TVIDEO_DIP_GCP(crtc->pipe);
993 	else
994 		return false;
995 
996 	intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
997 
998 	return true;
999 }
1000 
1001 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
1002 				   struct intel_crtc_state *crtc_state)
1003 {
1004 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1005 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1006 	i915_reg_t reg;
1007 
1008 	if ((crtc_state->infoframes.enable &
1009 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1010 		return;
1011 
1012 	if (HAS_DDI(dev_priv))
1013 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1014 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1015 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1016 	else if (HAS_PCH_SPLIT(dev_priv))
1017 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1018 	else
1019 		return;
1020 
1021 	crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1022 }
1023 
1024 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1025 					     struct intel_crtc_state *crtc_state,
1026 					     struct drm_connector_state *conn_state)
1027 {
1028 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1029 
1030 	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1031 		return;
1032 
1033 	crtc_state->infoframes.enable |=
1034 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1035 
1036 	/* Indicate color indication for deep color mode */
1037 	if (crtc_state->pipe_bpp > 24)
1038 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1039 
1040 	/* Enable default_phase whenever the display mode is suitably aligned */
1041 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1042 				       &crtc_state->hw.adjusted_mode))
1043 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1044 }
1045 
1046 static void ibx_set_infoframes(struct intel_encoder *encoder,
1047 			       bool enable,
1048 			       const struct intel_crtc_state *crtc_state,
1049 			       const struct drm_connector_state *conn_state)
1050 {
1051 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1052 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1053 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1054 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1055 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1056 	u32 val = intel_de_read(dev_priv, reg);
1057 	u32 port = VIDEO_DIP_PORT(encoder->port);
1058 
1059 	assert_hdmi_port_disabled(intel_hdmi);
1060 
1061 	/* See the big comment in g4x_set_infoframes() */
1062 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1063 
1064 	if (!enable) {
1065 		if (!(val & VIDEO_DIP_ENABLE))
1066 			return;
1067 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1068 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1069 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1070 		intel_de_write(dev_priv, reg, val);
1071 		intel_de_posting_read(dev_priv, reg);
1072 		return;
1073 	}
1074 
1075 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1076 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1077 			 "DIP already enabled on port %c\n",
1078 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1079 		val &= ~VIDEO_DIP_PORT_MASK;
1080 		val |= port;
1081 	}
1082 
1083 	val |= VIDEO_DIP_ENABLE;
1084 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1085 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1086 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1087 
1088 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1089 		val |= VIDEO_DIP_ENABLE_GCP;
1090 
1091 	intel_de_write(dev_priv, reg, val);
1092 	intel_de_posting_read(dev_priv, reg);
1093 
1094 	intel_write_infoframe(encoder, crtc_state,
1095 			      HDMI_INFOFRAME_TYPE_AVI,
1096 			      &crtc_state->infoframes.avi);
1097 	intel_write_infoframe(encoder, crtc_state,
1098 			      HDMI_INFOFRAME_TYPE_SPD,
1099 			      &crtc_state->infoframes.spd);
1100 	intel_write_infoframe(encoder, crtc_state,
1101 			      HDMI_INFOFRAME_TYPE_VENDOR,
1102 			      &crtc_state->infoframes.hdmi);
1103 }
1104 
1105 static void cpt_set_infoframes(struct intel_encoder *encoder,
1106 			       bool enable,
1107 			       const struct intel_crtc_state *crtc_state,
1108 			       const struct drm_connector_state *conn_state)
1109 {
1110 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1111 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1112 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1113 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1114 	u32 val = intel_de_read(dev_priv, reg);
1115 
1116 	assert_hdmi_port_disabled(intel_hdmi);
1117 
1118 	/* See the big comment in g4x_set_infoframes() */
1119 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1120 
1121 	if (!enable) {
1122 		if (!(val & VIDEO_DIP_ENABLE))
1123 			return;
1124 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1125 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1126 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1127 		intel_de_write(dev_priv, reg, val);
1128 		intel_de_posting_read(dev_priv, reg);
1129 		return;
1130 	}
1131 
1132 	/* Set both together, unset both together: see the spec. */
1133 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1134 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1135 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1136 
1137 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1138 		val |= VIDEO_DIP_ENABLE_GCP;
1139 
1140 	intel_de_write(dev_priv, reg, val);
1141 	intel_de_posting_read(dev_priv, reg);
1142 
1143 	intel_write_infoframe(encoder, crtc_state,
1144 			      HDMI_INFOFRAME_TYPE_AVI,
1145 			      &crtc_state->infoframes.avi);
1146 	intel_write_infoframe(encoder, crtc_state,
1147 			      HDMI_INFOFRAME_TYPE_SPD,
1148 			      &crtc_state->infoframes.spd);
1149 	intel_write_infoframe(encoder, crtc_state,
1150 			      HDMI_INFOFRAME_TYPE_VENDOR,
1151 			      &crtc_state->infoframes.hdmi);
1152 }
1153 
1154 static void vlv_set_infoframes(struct intel_encoder *encoder,
1155 			       bool enable,
1156 			       const struct intel_crtc_state *crtc_state,
1157 			       const struct drm_connector_state *conn_state)
1158 {
1159 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1160 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1161 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1162 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1163 	u32 val = intel_de_read(dev_priv, reg);
1164 	u32 port = VIDEO_DIP_PORT(encoder->port);
1165 
1166 	assert_hdmi_port_disabled(intel_hdmi);
1167 
1168 	/* See the big comment in g4x_set_infoframes() */
1169 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1170 
1171 	if (!enable) {
1172 		if (!(val & VIDEO_DIP_ENABLE))
1173 			return;
1174 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1175 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1176 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1177 		intel_de_write(dev_priv, reg, val);
1178 		intel_de_posting_read(dev_priv, reg);
1179 		return;
1180 	}
1181 
1182 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1183 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1184 			 "DIP already enabled on port %c\n",
1185 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1186 		val &= ~VIDEO_DIP_PORT_MASK;
1187 		val |= port;
1188 	}
1189 
1190 	val |= VIDEO_DIP_ENABLE;
1191 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1192 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1193 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1194 
1195 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1196 		val |= VIDEO_DIP_ENABLE_GCP;
1197 
1198 	intel_de_write(dev_priv, reg, val);
1199 	intel_de_posting_read(dev_priv, reg);
1200 
1201 	intel_write_infoframe(encoder, crtc_state,
1202 			      HDMI_INFOFRAME_TYPE_AVI,
1203 			      &crtc_state->infoframes.avi);
1204 	intel_write_infoframe(encoder, crtc_state,
1205 			      HDMI_INFOFRAME_TYPE_SPD,
1206 			      &crtc_state->infoframes.spd);
1207 	intel_write_infoframe(encoder, crtc_state,
1208 			      HDMI_INFOFRAME_TYPE_VENDOR,
1209 			      &crtc_state->infoframes.hdmi);
1210 }
1211 
1212 static void hsw_set_infoframes(struct intel_encoder *encoder,
1213 			       bool enable,
1214 			       const struct intel_crtc_state *crtc_state,
1215 			       const struct drm_connector_state *conn_state)
1216 {
1217 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1218 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1219 	u32 val = intel_de_read(dev_priv, reg);
1220 
1221 	assert_hdmi_transcoder_func_disabled(dev_priv,
1222 					     crtc_state->cpu_transcoder);
1223 
1224 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1225 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1226 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1227 		 VIDEO_DIP_ENABLE_DRM_GLK | VIDEO_DIP_ENABLE_AS_ADL);
1228 
1229 	if (!enable) {
1230 		intel_de_write(dev_priv, reg, val);
1231 		intel_de_posting_read(dev_priv, reg);
1232 		return;
1233 	}
1234 
1235 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1236 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1237 
1238 	intel_de_write(dev_priv, reg, val);
1239 	intel_de_posting_read(dev_priv, reg);
1240 
1241 	intel_write_infoframe(encoder, crtc_state,
1242 			      HDMI_INFOFRAME_TYPE_AVI,
1243 			      &crtc_state->infoframes.avi);
1244 	intel_write_infoframe(encoder, crtc_state,
1245 			      HDMI_INFOFRAME_TYPE_SPD,
1246 			      &crtc_state->infoframes.spd);
1247 	intel_write_infoframe(encoder, crtc_state,
1248 			      HDMI_INFOFRAME_TYPE_VENDOR,
1249 			      &crtc_state->infoframes.hdmi);
1250 	intel_write_infoframe(encoder, crtc_state,
1251 			      HDMI_INFOFRAME_TYPE_DRM,
1252 			      &crtc_state->infoframes.drm);
1253 }
1254 
1255 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1256 {
1257 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1258 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1259 
1260 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1261 		return;
1262 
1263 	drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1264 		    enable ? "Enabling" : "Disabling");
1265 
1266 	drm_dp_dual_mode_set_tmds_output(&dev_priv->drm,
1267 					 hdmi->dp_dual_mode.type, ddc, enable);
1268 }
1269 
1270 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1271 				unsigned int offset, void *buffer, size_t size)
1272 {
1273 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1274 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1275 	int ret;
1276 	u8 start = offset & 0xff;
1277 	struct i2c_msg msgs[] = {
1278 		{
1279 			.addr = DRM_HDCP_DDC_ADDR,
1280 			.flags = 0,
1281 			.len = 1,
1282 			.buf = &start,
1283 		},
1284 		{
1285 			.addr = DRM_HDCP_DDC_ADDR,
1286 			.flags = I2C_M_RD,
1287 			.len = size,
1288 			.buf = buffer
1289 		}
1290 	};
1291 	ret = i2c_transfer(ddc, msgs, ARRAY_SIZE(msgs));
1292 	if (ret == ARRAY_SIZE(msgs))
1293 		return 0;
1294 	return ret >= 0 ? -EIO : ret;
1295 }
1296 
1297 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1298 				 unsigned int offset, void *buffer, size_t size)
1299 {
1300 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1301 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1302 	int ret;
1303 	u8 *write_buf;
1304 	struct i2c_msg msg;
1305 
1306 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1307 	if (!write_buf)
1308 		return -ENOMEM;
1309 
1310 	write_buf[0] = offset & 0xff;
1311 	memcpy(&write_buf[1], buffer, size);
1312 
1313 	msg.addr = DRM_HDCP_DDC_ADDR;
1314 	msg.flags = 0,
1315 	msg.len = size + 1,
1316 	msg.buf = write_buf;
1317 
1318 	ret = i2c_transfer(ddc, &msg, 1);
1319 	if (ret == 1)
1320 		ret = 0;
1321 	else if (ret >= 0)
1322 		ret = -EIO;
1323 
1324 	kfree(write_buf);
1325 	return ret;
1326 }
1327 
1328 static
1329 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1330 				  u8 *an)
1331 {
1332 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1333 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1334 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1335 	int ret;
1336 
1337 	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1338 				    DRM_HDCP_AN_LEN);
1339 	if (ret) {
1340 		drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1341 			    ret);
1342 		return ret;
1343 	}
1344 
1345 	ret = intel_gmbus_output_aksv(ddc);
1346 	if (ret < 0) {
1347 		drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1348 		return ret;
1349 	}
1350 	return 0;
1351 }
1352 
1353 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1354 				     u8 *bksv)
1355 {
1356 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1357 
1358 	int ret;
1359 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1360 				   DRM_HDCP_KSV_LEN);
1361 	if (ret)
1362 		drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1363 			    ret);
1364 	return ret;
1365 }
1366 
1367 static
1368 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1369 				 u8 *bstatus)
1370 {
1371 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1372 
1373 	int ret;
1374 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1375 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1376 	if (ret)
1377 		drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1378 			    ret);
1379 	return ret;
1380 }
1381 
1382 static
1383 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1384 				     bool *repeater_present)
1385 {
1386 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1387 	int ret;
1388 	u8 val;
1389 
1390 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1391 	if (ret) {
1392 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1393 			    ret);
1394 		return ret;
1395 	}
1396 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1397 	return 0;
1398 }
1399 
1400 static
1401 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1402 				  u8 *ri_prime)
1403 {
1404 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1405 
1406 	int ret;
1407 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1408 				   ri_prime, DRM_HDCP_RI_LEN);
1409 	if (ret)
1410 		drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1411 			    ret);
1412 	return ret;
1413 }
1414 
1415 static
1416 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1417 				   bool *ksv_ready)
1418 {
1419 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1420 	int ret;
1421 	u8 val;
1422 
1423 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1424 	if (ret) {
1425 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1426 			    ret);
1427 		return ret;
1428 	}
1429 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1430 	return 0;
1431 }
1432 
1433 static
1434 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1435 				  int num_downstream, u8 *ksv_fifo)
1436 {
1437 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1438 	int ret;
1439 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1440 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1441 	if (ret) {
1442 		drm_dbg_kms(&i915->drm,
1443 			    "Read ksv fifo over DDC failed (%d)\n", ret);
1444 		return ret;
1445 	}
1446 	return 0;
1447 }
1448 
1449 static
1450 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1451 				      int i, u32 *part)
1452 {
1453 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1454 	int ret;
1455 
1456 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1457 		return -EINVAL;
1458 
1459 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1460 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1461 	if (ret)
1462 		drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1463 			    i, ret);
1464 	return ret;
1465 }
1466 
1467 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1468 					   enum transcoder cpu_transcoder)
1469 {
1470 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1471 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1472 	struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1473 	u32 scanline;
1474 	int ret;
1475 
1476 	for (;;) {
1477 		scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe));
1478 		if (scanline > 100 && scanline < 200)
1479 			break;
1480 		usleep_range(25, 50);
1481 	}
1482 
1483 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1484 					 false, TRANS_DDI_HDCP_SIGNALLING);
1485 	if (ret) {
1486 		drm_err(&dev_priv->drm,
1487 			"Disable HDCP signalling failed (%d)\n", ret);
1488 		return ret;
1489 	}
1490 
1491 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1492 					 true, TRANS_DDI_HDCP_SIGNALLING);
1493 	if (ret) {
1494 		drm_err(&dev_priv->drm,
1495 			"Enable HDCP signalling failed (%d)\n", ret);
1496 		return ret;
1497 	}
1498 
1499 	return 0;
1500 }
1501 
1502 static
1503 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1504 				      enum transcoder cpu_transcoder,
1505 				      bool enable)
1506 {
1507 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1508 	struct intel_connector *connector = hdmi->attached_connector;
1509 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1510 	int ret;
1511 
1512 	if (!enable)
1513 		usleep_range(6, 60); /* Bspec says >= 6us */
1514 
1515 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1516 					 cpu_transcoder, enable,
1517 					 TRANS_DDI_HDCP_SIGNALLING);
1518 	if (ret) {
1519 		drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1520 			enable ? "Enable" : "Disable", ret);
1521 		return ret;
1522 	}
1523 
1524 	/*
1525 	 * WA: To fix incorrect positioning of the window of
1526 	 * opportunity and enc_en signalling in KABYLAKE.
1527 	 */
1528 	if (IS_KABYLAKE(dev_priv) && enable)
1529 		return kbl_repositioning_enc_en_signal(connector,
1530 						       cpu_transcoder);
1531 
1532 	return 0;
1533 }
1534 
1535 static
1536 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1537 				     struct intel_connector *connector)
1538 {
1539 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1540 	enum port port = dig_port->base.port;
1541 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1542 	int ret;
1543 	union {
1544 		u32 reg;
1545 		u8 shim[DRM_HDCP_RI_LEN];
1546 	} ri;
1547 
1548 	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1549 	if (ret)
1550 		return false;
1551 
1552 	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1553 
1554 	/* Wait for Ri prime match */
1555 	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1556 		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1557 		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1558 		drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1559 			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1560 							port)));
1561 		return false;
1562 	}
1563 	return true;
1564 }
1565 
1566 static
1567 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1568 				struct intel_connector *connector)
1569 {
1570 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1571 	int retry;
1572 
1573 	for (retry = 0; retry < 3; retry++)
1574 		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1575 			return true;
1576 
1577 	drm_err(&i915->drm, "Link check failed\n");
1578 	return false;
1579 }
1580 
1581 struct hdcp2_hdmi_msg_timeout {
1582 	u8 msg_id;
1583 	u16 timeout;
1584 };
1585 
1586 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1587 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1588 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1589 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1590 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1591 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1592 };
1593 
1594 static
1595 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1596 				    u8 *rx_status)
1597 {
1598 	return intel_hdmi_hdcp_read(dig_port,
1599 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1600 				    rx_status,
1601 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1602 }
1603 
1604 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1605 {
1606 	int i;
1607 
1608 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1609 		if (is_paired)
1610 			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1611 		else
1612 			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1613 	}
1614 
1615 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1616 		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1617 			return hdcp2_msg_timeout[i].timeout;
1618 	}
1619 
1620 	return -EINVAL;
1621 }
1622 
1623 static int
1624 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1625 			      u8 msg_id, bool *msg_ready,
1626 			      ssize_t *msg_sz)
1627 {
1628 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1629 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1630 	int ret;
1631 
1632 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1633 	if (ret < 0) {
1634 		drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1635 			    ret);
1636 		return ret;
1637 	}
1638 
1639 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1640 		  rx_status[0]);
1641 
1642 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1643 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1644 			     *msg_sz);
1645 	else
1646 		*msg_ready = *msg_sz;
1647 
1648 	return 0;
1649 }
1650 
1651 static ssize_t
1652 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1653 			      u8 msg_id, bool paired)
1654 {
1655 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1656 	bool msg_ready = false;
1657 	int timeout, ret;
1658 	ssize_t msg_sz = 0;
1659 
1660 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1661 	if (timeout < 0)
1662 		return timeout;
1663 
1664 	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1665 							     msg_id, &msg_ready,
1666 							     &msg_sz),
1667 			 !ret && msg_ready && msg_sz, timeout * 1000,
1668 			 1000, 5 * 1000);
1669 	if (ret)
1670 		drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1671 			    msg_id, ret, timeout);
1672 
1673 	return ret ? ret : msg_sz;
1674 }
1675 
1676 static
1677 int intel_hdmi_hdcp2_write_msg(struct intel_connector *connector,
1678 			       void *buf, size_t size)
1679 {
1680 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1681 	unsigned int offset;
1682 
1683 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1684 	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1685 }
1686 
1687 static
1688 int intel_hdmi_hdcp2_read_msg(struct intel_connector *connector,
1689 			      u8 msg_id, void *buf, size_t size)
1690 {
1691 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1692 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1693 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1694 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1695 	unsigned int offset;
1696 	ssize_t ret;
1697 
1698 	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1699 					    hdcp->is_paired);
1700 	if (ret < 0)
1701 		return ret;
1702 
1703 	/*
1704 	 * Available msg size should be equal to or lesser than the
1705 	 * available buffer.
1706 	 */
1707 	if (ret > size) {
1708 		drm_dbg_kms(&i915->drm,
1709 			    "msg_sz(%zd) is more than exp size(%zu)\n",
1710 			    ret, size);
1711 		return -EINVAL;
1712 	}
1713 
1714 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1715 	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1716 	if (ret)
1717 		drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1718 			    msg_id, ret);
1719 
1720 	return ret;
1721 }
1722 
1723 static
1724 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1725 				struct intel_connector *connector)
1726 {
1727 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1728 	int ret;
1729 
1730 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1731 	if (ret)
1732 		return ret;
1733 
1734 	/*
1735 	 * Re-auth request and Link Integrity Failures are represented by
1736 	 * same bit. i.e reauth_req.
1737 	 */
1738 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1739 		ret = HDCP_REAUTH_REQUEST;
1740 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1741 		ret = HDCP_TOPOLOGY_CHANGE;
1742 
1743 	return ret;
1744 }
1745 
1746 static
1747 int intel_hdmi_hdcp2_get_capability(struct intel_connector *connector,
1748 				    bool *capable)
1749 {
1750 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1751 	u8 hdcp2_version;
1752 	int ret;
1753 
1754 	*capable = false;
1755 	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1756 				   &hdcp2_version, sizeof(hdcp2_version));
1757 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1758 		*capable = true;
1759 
1760 	return ret;
1761 }
1762 
1763 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1764 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1765 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1766 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1767 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1768 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1769 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1770 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1771 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1772 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1773 	.check_link = intel_hdmi_hdcp_check_link,
1774 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1775 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1776 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1777 	.hdcp_2_2_get_capability = intel_hdmi_hdcp2_get_capability,
1778 	.protocol = HDCP_PROTOCOL_HDMI,
1779 };
1780 
1781 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1782 {
1783 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1784 	int max_tmds_clock, vbt_max_tmds_clock;
1785 
1786 	if (DISPLAY_VER(dev_priv) >= 10)
1787 		max_tmds_clock = 594000;
1788 	else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1789 		max_tmds_clock = 300000;
1790 	else if (DISPLAY_VER(dev_priv) >= 5)
1791 		max_tmds_clock = 225000;
1792 	else
1793 		max_tmds_clock = 165000;
1794 
1795 	vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata);
1796 	if (vbt_max_tmds_clock)
1797 		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1798 
1799 	return max_tmds_clock;
1800 }
1801 
1802 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1803 				const struct drm_connector_state *conn_state)
1804 {
1805 	struct intel_connector *connector = hdmi->attached_connector;
1806 
1807 	return connector->base.display_info.is_hdmi &&
1808 		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1809 }
1810 
1811 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1812 {
1813 	return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1814 }
1815 
1816 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1817 				 bool respect_downstream_limits,
1818 				 bool has_hdmi_sink)
1819 {
1820 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1821 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1822 
1823 	if (respect_downstream_limits) {
1824 		struct intel_connector *connector = hdmi->attached_connector;
1825 		const struct drm_display_info *info = &connector->base.display_info;
1826 
1827 		if (hdmi->dp_dual_mode.max_tmds_clock)
1828 			max_tmds_clock = min(max_tmds_clock,
1829 					     hdmi->dp_dual_mode.max_tmds_clock);
1830 
1831 		if (info->max_tmds_clock)
1832 			max_tmds_clock = min(max_tmds_clock,
1833 					     info->max_tmds_clock);
1834 		else if (!has_hdmi_sink)
1835 			max_tmds_clock = min(max_tmds_clock, 165000);
1836 	}
1837 
1838 	return max_tmds_clock;
1839 }
1840 
1841 static enum drm_mode_status
1842 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1843 		      int clock, bool respect_downstream_limits,
1844 		      bool has_hdmi_sink)
1845 {
1846 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1847 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1848 
1849 	if (clock < 25000)
1850 		return MODE_CLOCK_LOW;
1851 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1852 					  has_hdmi_sink))
1853 		return MODE_CLOCK_HIGH;
1854 
1855 	/* GLK DPLL can't generate 446-480 MHz */
1856 	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1857 		return MODE_CLOCK_RANGE;
1858 
1859 	/* BXT/GLK DPLL can't generate 223-240 MHz */
1860 	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1861 	    clock > 223333 && clock < 240000)
1862 		return MODE_CLOCK_RANGE;
1863 
1864 	/* CHV DPLL can't generate 216-240 MHz */
1865 	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1866 		return MODE_CLOCK_RANGE;
1867 
1868 	/* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1869 	if (intel_encoder_is_combo(encoder) && clock > 500000 && clock < 533200)
1870 		return MODE_CLOCK_RANGE;
1871 
1872 	/* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1873 	if (intel_encoder_is_tc(encoder) && clock > 500000 && clock < 532800)
1874 		return MODE_CLOCK_RANGE;
1875 
1876 	/*
1877 	 * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1878 	 * set of link rates.
1879 	 *
1880 	 * FIXME: We will hopefully get an algorithmic way of programming
1881 	 * the MPLLB for HDMI in the future.
1882 	 */
1883 	if (DISPLAY_VER(dev_priv) >= 14)
1884 		return intel_cx0_phy_check_hdmi_link_rate(hdmi, clock);
1885 	else if (IS_DG2(dev_priv))
1886 		return intel_snps_phy_check_hdmi_link_rate(clock);
1887 
1888 	return MODE_OK;
1889 }
1890 
1891 int intel_hdmi_tmds_clock(int clock, int bpc,
1892 			  enum intel_output_format sink_format)
1893 {
1894 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
1895 	if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1896 		clock /= 2;
1897 
1898 	/*
1899 	 * Need to adjust the port link by:
1900 	 *  1.5x for 12bpc
1901 	 *  1.25x for 10bpc
1902 	 */
1903 	return DIV_ROUND_CLOSEST(clock * bpc, 8);
1904 }
1905 
1906 static bool intel_hdmi_source_bpc_possible(struct drm_i915_private *i915, int bpc)
1907 {
1908 	switch (bpc) {
1909 	case 12:
1910 		return !HAS_GMCH(i915);
1911 	case 10:
1912 		return DISPLAY_VER(i915) >= 11;
1913 	case 8:
1914 		return true;
1915 	default:
1916 		MISSING_CASE(bpc);
1917 		return false;
1918 	}
1919 }
1920 
1921 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1922 					 int bpc, bool has_hdmi_sink,
1923 					 enum intel_output_format sink_format)
1924 {
1925 	const struct drm_display_info *info = &connector->display_info;
1926 	const struct drm_hdmi_info *hdmi = &info->hdmi;
1927 
1928 	switch (bpc) {
1929 	case 12:
1930 		if (!has_hdmi_sink)
1931 			return false;
1932 
1933 		if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1934 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1935 		else
1936 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1937 	case 10:
1938 		if (!has_hdmi_sink)
1939 			return false;
1940 
1941 		if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1942 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1943 		else
1944 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1945 	case 8:
1946 		return true;
1947 	default:
1948 		MISSING_CASE(bpc);
1949 		return false;
1950 	}
1951 }
1952 
1953 static enum drm_mode_status
1954 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1955 			    bool has_hdmi_sink,
1956 			    enum intel_output_format sink_format)
1957 {
1958 	struct drm_i915_private *i915 = to_i915(connector->dev);
1959 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1960 	enum drm_mode_status status = MODE_OK;
1961 	int bpc;
1962 
1963 	/*
1964 	 * Try all color depths since valid port clock range
1965 	 * can have holes. Any mode that can be used with at
1966 	 * least one color depth is accepted.
1967 	 */
1968 	for (bpc = 12; bpc >= 8; bpc -= 2) {
1969 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format);
1970 
1971 		if (!intel_hdmi_source_bpc_possible(i915, bpc))
1972 			continue;
1973 
1974 		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, sink_format))
1975 			continue;
1976 
1977 		status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
1978 		if (status == MODE_OK)
1979 			return MODE_OK;
1980 	}
1981 
1982 	/* can never happen */
1983 	drm_WARN_ON(&i915->drm, status == MODE_OK);
1984 
1985 	return status;
1986 }
1987 
1988 static enum drm_mode_status
1989 intel_hdmi_mode_valid(struct drm_connector *connector,
1990 		      struct drm_display_mode *mode)
1991 {
1992 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1993 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1994 	enum drm_mode_status status;
1995 	int clock = mode->clock;
1996 	int max_dotclk = to_i915(connector->dev)->display.cdclk.max_dotclk_freq;
1997 	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1998 	bool ycbcr_420_only;
1999 	enum intel_output_format sink_format;
2000 
2001 	status = intel_cpu_transcoder_mode_valid(dev_priv, mode);
2002 	if (status != MODE_OK)
2003 		return status;
2004 
2005 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
2006 		clock *= 2;
2007 
2008 	if (clock > max_dotclk)
2009 		return MODE_CLOCK_HIGH;
2010 
2011 	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
2012 		if (!has_hdmi_sink)
2013 			return MODE_CLOCK_LOW;
2014 		clock *= 2;
2015 	}
2016 
2017 	/*
2018 	 * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
2019 	 * enumerated only if FRL is supported. Current platforms do not support
2020 	 * FRL so prune the higher resolution modes that require doctclock more
2021 	 * than 600MHz.
2022 	 */
2023 	if (clock > 600000)
2024 		return MODE_CLOCK_HIGH;
2025 
2026 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
2027 
2028 	if (ycbcr_420_only)
2029 		sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2030 	else
2031 		sink_format = INTEL_OUTPUT_FORMAT_RGB;
2032 
2033 	status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2034 	if (status != MODE_OK) {
2035 		if (ycbcr_420_only ||
2036 		    !connector->ycbcr_420_allowed ||
2037 		    !drm_mode_is_420_also(&connector->display_info, mode))
2038 			return status;
2039 
2040 		sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2041 		status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2042 		if (status != MODE_OK)
2043 			return status;
2044 	}
2045 
2046 	return intel_mode_valid_max_plane_size(dev_priv, mode, false);
2047 }
2048 
2049 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2050 			     int bpc, bool has_hdmi_sink)
2051 {
2052 	struct drm_atomic_state *state = crtc_state->uapi.state;
2053 	struct drm_connector_state *connector_state;
2054 	struct drm_connector *connector;
2055 	int i;
2056 
2057 	for_each_new_connector_in_state(state, connector, connector_state, i) {
2058 		if (connector_state->crtc != crtc_state->uapi.crtc)
2059 			continue;
2060 
2061 		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink,
2062 						  crtc_state->sink_format))
2063 			return false;
2064 	}
2065 
2066 	return true;
2067 }
2068 
2069 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
2070 {
2071 	struct drm_i915_private *dev_priv =
2072 		to_i915(crtc_state->uapi.crtc->dev);
2073 	const struct drm_display_mode *adjusted_mode =
2074 		&crtc_state->hw.adjusted_mode;
2075 
2076 	if (!intel_hdmi_source_bpc_possible(dev_priv, bpc))
2077 		return false;
2078 
2079 	/* Display Wa_1405510057:icl,ehl */
2080 	if (intel_hdmi_is_ycbcr420(crtc_state) &&
2081 	    bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2082 	    (adjusted_mode->crtc_hblank_end -
2083 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2084 		return false;
2085 
2086 	return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink);
2087 }
2088 
2089 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2090 				  struct intel_crtc_state *crtc_state,
2091 				  int clock, bool respect_downstream_limits)
2092 {
2093 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2094 	int bpc;
2095 
2096 	/*
2097 	 * pipe_bpp could already be below 8bpc due to FDI
2098 	 * bandwidth constraints. HDMI minimum is 8bpc however.
2099 	 */
2100 	bpc = max(crtc_state->pipe_bpp / 3, 8);
2101 
2102 	/*
2103 	 * We will never exceed downstream TMDS clock limits while
2104 	 * attempting deep color. If the user insists on forcing an
2105 	 * out of spec mode they will have to be satisfied with 8bpc.
2106 	 */
2107 	if (!respect_downstream_limits)
2108 		bpc = 8;
2109 
2110 	for (; bpc >= 8; bpc -= 2) {
2111 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc,
2112 						       crtc_state->sink_format);
2113 
2114 		if (hdmi_bpc_possible(crtc_state, bpc) &&
2115 		    hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2116 					  respect_downstream_limits,
2117 					  crtc_state->has_hdmi_sink) == MODE_OK)
2118 			return bpc;
2119 	}
2120 
2121 	return -EINVAL;
2122 }
2123 
2124 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2125 				    struct intel_crtc_state *crtc_state,
2126 				    bool respect_downstream_limits)
2127 {
2128 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2129 	const struct drm_display_mode *adjusted_mode =
2130 		&crtc_state->hw.adjusted_mode;
2131 	int bpc, clock = adjusted_mode->crtc_clock;
2132 
2133 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2134 		clock *= 2;
2135 
2136 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2137 				     respect_downstream_limits);
2138 	if (bpc < 0)
2139 		return bpc;
2140 
2141 	crtc_state->port_clock =
2142 		intel_hdmi_tmds_clock(clock, bpc, crtc_state->sink_format);
2143 
2144 	/*
2145 	 * pipe_bpp could already be below 8bpc due to
2146 	 * FDI bandwidth constraints. We shouldn't bump it
2147 	 * back up to the HDMI minimum 8bpc in that case.
2148 	 */
2149 	crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
2150 
2151 	drm_dbg_kms(&i915->drm,
2152 		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2153 		    bpc, crtc_state->pipe_bpp);
2154 
2155 	return 0;
2156 }
2157 
2158 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2159 				    const struct drm_connector_state *conn_state)
2160 {
2161 	const struct intel_digital_connector_state *intel_conn_state =
2162 		to_intel_digital_connector_state(conn_state);
2163 	const struct drm_display_mode *adjusted_mode =
2164 		&crtc_state->hw.adjusted_mode;
2165 
2166 	/*
2167 	 * Our YCbCr output is always limited range.
2168 	 * crtc_state->limited_color_range only applies to RGB,
2169 	 * and it must never be set for YCbCr or we risk setting
2170 	 * some conflicting bits in TRANSCONF which will mess up
2171 	 * the colors on the monitor.
2172 	 */
2173 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2174 		return false;
2175 
2176 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2177 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2178 		return crtc_state->has_hdmi_sink &&
2179 			drm_default_rgb_quant_range(adjusted_mode) ==
2180 			HDMI_QUANTIZATION_RANGE_LIMITED;
2181 	} else {
2182 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2183 	}
2184 }
2185 
2186 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2187 				 const struct intel_crtc_state *crtc_state,
2188 				 const struct drm_connector_state *conn_state)
2189 {
2190 	struct drm_connector *connector = conn_state->connector;
2191 	const struct intel_digital_connector_state *intel_conn_state =
2192 		to_intel_digital_connector_state(conn_state);
2193 
2194 	if (!crtc_state->has_hdmi_sink)
2195 		return false;
2196 
2197 	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2198 		return connector->display_info.has_audio;
2199 	else
2200 		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2201 }
2202 
2203 static enum intel_output_format
2204 intel_hdmi_sink_format(const struct intel_crtc_state *crtc_state,
2205 		       struct intel_connector *connector,
2206 		       bool ycbcr_420_output)
2207 {
2208 	if (!crtc_state->has_hdmi_sink)
2209 		return INTEL_OUTPUT_FORMAT_RGB;
2210 
2211 	if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2212 		return INTEL_OUTPUT_FORMAT_YCBCR420;
2213 	else
2214 		return INTEL_OUTPUT_FORMAT_RGB;
2215 }
2216 
2217 static enum intel_output_format
2218 intel_hdmi_output_format(const struct intel_crtc_state *crtc_state)
2219 {
2220 	return crtc_state->sink_format;
2221 }
2222 
2223 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2224 					    struct intel_crtc_state *crtc_state,
2225 					    const struct drm_connector_state *conn_state,
2226 					    bool respect_downstream_limits)
2227 {
2228 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
2229 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2230 	const struct drm_display_info *info = &connector->base.display_info;
2231 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2232 	bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2233 	int ret;
2234 
2235 	crtc_state->sink_format =
2236 		intel_hdmi_sink_format(crtc_state, connector, ycbcr_420_only);
2237 
2238 	if (ycbcr_420_only && crtc_state->sink_format != INTEL_OUTPUT_FORMAT_YCBCR420) {
2239 		drm_dbg_kms(&i915->drm,
2240 			    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2241 		crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB;
2242 	}
2243 
2244 	crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2245 	ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2246 	if (ret) {
2247 		if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
2248 		    !crtc_state->has_hdmi_sink ||
2249 		    !connector->base.ycbcr_420_allowed ||
2250 		    !drm_mode_is_420_also(info, adjusted_mode))
2251 			return ret;
2252 
2253 		crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2254 		crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2255 		ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2256 	}
2257 
2258 	return ret;
2259 }
2260 
2261 static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state)
2262 {
2263 	return crtc_state->uapi.encoder_mask &&
2264 		!is_power_of_2(crtc_state->uapi.encoder_mask);
2265 }
2266 
2267 static bool source_supports_scrambling(struct intel_encoder *encoder)
2268 {
2269 	/*
2270 	 * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and
2271 	 * scrambling is supported.
2272 	 * But there seem to be cases where certain platforms that support
2273 	 * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is
2274 	 * capped by VBT to less than 340MHz.
2275 	 *
2276 	 * In such cases when an HDMI2.0 sink is connected, it creates a
2277 	 * problem : the platform and the sink both support scrambling but the
2278 	 * HDMI 1.4 retimer chip doesn't.
2279 	 *
2280 	 * So go for scrambling, based on the max tmds clock taking into account,
2281 	 * restrictions coming from VBT.
2282 	 */
2283 	return intel_hdmi_source_max_tmds_clock(encoder) > 340000;
2284 }
2285 
2286 bool intel_hdmi_compute_has_hdmi_sink(struct intel_encoder *encoder,
2287 				      const struct intel_crtc_state *crtc_state,
2288 				      const struct drm_connector_state *conn_state)
2289 {
2290 	struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder);
2291 
2292 	return intel_has_hdmi_sink(hdmi, conn_state) &&
2293 		!intel_hdmi_is_cloned(crtc_state);
2294 }
2295 
2296 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2297 			      struct intel_crtc_state *pipe_config,
2298 			      struct drm_connector_state *conn_state)
2299 {
2300 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2301 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2302 	struct drm_connector *connector = conn_state->connector;
2303 	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2304 	int ret;
2305 
2306 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2307 		return -EINVAL;
2308 
2309 	if (!connector->interlace_allowed &&
2310 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2311 		return -EINVAL;
2312 
2313 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2314 
2315 	if (pipe_config->has_hdmi_sink)
2316 		pipe_config->has_infoframe = true;
2317 
2318 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2319 		pipe_config->pixel_multiplier = 2;
2320 
2321 	pipe_config->has_audio =
2322 		intel_hdmi_has_audio(encoder, pipe_config, conn_state) &&
2323 		intel_audio_compute_config(encoder, pipe_config, conn_state);
2324 
2325 	/*
2326 	 * Try to respect downstream TMDS clock limits first, if
2327 	 * that fails assume the user might know something we don't.
2328 	 */
2329 	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2330 	if (ret)
2331 		ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2332 	if (ret) {
2333 		drm_dbg_kms(&dev_priv->drm,
2334 			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2335 			    pipe_config->hw.adjusted_mode.crtc_clock);
2336 		return ret;
2337 	}
2338 
2339 	if (intel_hdmi_is_ycbcr420(pipe_config)) {
2340 		ret = intel_panel_fitting(pipe_config, conn_state);
2341 		if (ret)
2342 			return ret;
2343 	}
2344 
2345 	pipe_config->limited_color_range =
2346 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2347 
2348 	if (conn_state->picture_aspect_ratio)
2349 		adjusted_mode->picture_aspect_ratio =
2350 			conn_state->picture_aspect_ratio;
2351 
2352 	pipe_config->lane_count = 4;
2353 
2354 	if (scdc->scrambling.supported && source_supports_scrambling(encoder)) {
2355 		if (scdc->scrambling.low_rates)
2356 			pipe_config->hdmi_scrambling = true;
2357 
2358 		if (pipe_config->port_clock > 340000) {
2359 			pipe_config->hdmi_scrambling = true;
2360 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2361 		}
2362 	}
2363 
2364 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2365 					 conn_state);
2366 
2367 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2368 		drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2369 		return -EINVAL;
2370 	}
2371 
2372 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2373 		drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2374 		return -EINVAL;
2375 	}
2376 
2377 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2378 		drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2379 		return -EINVAL;
2380 	}
2381 
2382 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2383 		drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2384 		return -EINVAL;
2385 	}
2386 
2387 	return 0;
2388 }
2389 
2390 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2391 {
2392 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2393 
2394 	/*
2395 	 * Give a hand to buggy BIOSen which forget to turn
2396 	 * the TMDS output buffers back on after a reboot.
2397 	 */
2398 	intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2399 }
2400 
2401 static void
2402 intel_hdmi_unset_edid(struct drm_connector *connector)
2403 {
2404 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2405 
2406 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2407 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2408 
2409 	drm_edid_free(to_intel_connector(connector)->detect_edid);
2410 	to_intel_connector(connector)->detect_edid = NULL;
2411 }
2412 
2413 static void
2414 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector)
2415 {
2416 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2417 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2418 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
2419 	struct i2c_adapter *ddc = connector->ddc;
2420 	enum drm_dp_dual_mode_type type;
2421 
2422 	type = drm_dp_dual_mode_detect(&dev_priv->drm, ddc);
2423 
2424 	/*
2425 	 * Type 1 DVI adaptors are not required to implement any
2426 	 * registers, so we can't always detect their presence.
2427 	 * Ideally we should be able to check the state of the
2428 	 * CONFIG1 pin, but no such luck on our hardware.
2429 	 *
2430 	 * The only method left to us is to check the VBT to see
2431 	 * if the port is a dual mode capable DP port.
2432 	 */
2433 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2434 		if (!connector->force &&
2435 		    intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2436 			drm_dbg_kms(&dev_priv->drm,
2437 				    "Assuming DP dual mode adaptor presence based on VBT\n");
2438 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2439 		} else {
2440 			type = DRM_DP_DUAL_MODE_NONE;
2441 		}
2442 	}
2443 
2444 	if (type == DRM_DP_DUAL_MODE_NONE)
2445 		return;
2446 
2447 	hdmi->dp_dual_mode.type = type;
2448 	hdmi->dp_dual_mode.max_tmds_clock =
2449 		drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, ddc);
2450 
2451 	drm_dbg_kms(&dev_priv->drm,
2452 		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2453 		    drm_dp_get_dual_mode_type_name(type),
2454 		    hdmi->dp_dual_mode.max_tmds_clock);
2455 
2456 	/* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2457 	if ((DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) &&
2458 	    !intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2459 		drm_dbg_kms(&dev_priv->drm,
2460 			    "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2461 		hdmi->dp_dual_mode.max_tmds_clock = 0;
2462 	}
2463 }
2464 
2465 static bool
2466 intel_hdmi_set_edid(struct drm_connector *connector)
2467 {
2468 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2469 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2470 	struct i2c_adapter *ddc = connector->ddc;
2471 	intel_wakeref_t wakeref;
2472 	const struct drm_edid *drm_edid;
2473 	bool connected = false;
2474 
2475 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2476 
2477 	drm_edid = drm_edid_read_ddc(connector, ddc);
2478 
2479 	if (!drm_edid && !intel_gmbus_is_forced_bit(ddc)) {
2480 		drm_dbg_kms(&dev_priv->drm,
2481 			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2482 		intel_gmbus_force_bit(ddc, true);
2483 		drm_edid = drm_edid_read_ddc(connector, ddc);
2484 		intel_gmbus_force_bit(ddc, false);
2485 	}
2486 
2487 	/* Below we depend on display info having been updated */
2488 	drm_edid_connector_update(connector, drm_edid);
2489 
2490 	to_intel_connector(connector)->detect_edid = drm_edid;
2491 
2492 	if (drm_edid_is_digital(drm_edid)) {
2493 		intel_hdmi_dp_dual_mode_detect(connector);
2494 
2495 		connected = true;
2496 	}
2497 
2498 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2499 
2500 	cec_notifier_set_phys_addr(intel_hdmi->cec_notifier,
2501 				   connector->display_info.source_physical_address);
2502 
2503 	return connected;
2504 }
2505 
2506 static enum drm_connector_status
2507 intel_hdmi_detect(struct drm_connector *connector, bool force)
2508 {
2509 	enum drm_connector_status status = connector_status_disconnected;
2510 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2511 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2512 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2513 	intel_wakeref_t wakeref;
2514 
2515 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2516 		    connector->base.id, connector->name);
2517 
2518 	if (!intel_display_device_enabled(dev_priv))
2519 		return connector_status_disconnected;
2520 
2521 	if (!intel_display_driver_check_access(dev_priv))
2522 		return connector->status;
2523 
2524 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2525 
2526 	if (DISPLAY_VER(dev_priv) >= 11 &&
2527 	    !intel_digital_port_connected(encoder))
2528 		goto out;
2529 
2530 	intel_hdmi_unset_edid(connector);
2531 
2532 	if (intel_hdmi_set_edid(connector))
2533 		status = connector_status_connected;
2534 
2535 out:
2536 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2537 
2538 	if (status != connector_status_connected)
2539 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2540 
2541 	return status;
2542 }
2543 
2544 static void
2545 intel_hdmi_force(struct drm_connector *connector)
2546 {
2547 	struct drm_i915_private *i915 = to_i915(connector->dev);
2548 
2549 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2550 		    connector->base.id, connector->name);
2551 
2552 	if (!intel_display_driver_check_access(i915))
2553 		return;
2554 
2555 	intel_hdmi_unset_edid(connector);
2556 
2557 	if (connector->status != connector_status_connected)
2558 		return;
2559 
2560 	intel_hdmi_set_edid(connector);
2561 }
2562 
2563 static int intel_hdmi_get_modes(struct drm_connector *connector)
2564 {
2565 	/* drm_edid_connector_update() done in ->detect() or ->force() */
2566 	return drm_edid_connector_add_modes(connector);
2567 }
2568 
2569 static int
2570 intel_hdmi_connector_register(struct drm_connector *connector)
2571 {
2572 	int ret;
2573 
2574 	ret = intel_connector_register(connector);
2575 	if (ret)
2576 		return ret;
2577 
2578 	return ret;
2579 }
2580 
2581 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2582 {
2583 	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2584 
2585 	cec_notifier_conn_unregister(n);
2586 
2587 	intel_connector_unregister(connector);
2588 }
2589 
2590 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2591 	.detect = intel_hdmi_detect,
2592 	.force = intel_hdmi_force,
2593 	.fill_modes = drm_helper_probe_single_connector_modes,
2594 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2595 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2596 	.late_register = intel_hdmi_connector_register,
2597 	.early_unregister = intel_hdmi_connector_unregister,
2598 	.destroy = intel_connector_destroy,
2599 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2600 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2601 };
2602 
2603 static int intel_hdmi_connector_atomic_check(struct drm_connector *connector,
2604 					     struct drm_atomic_state *state)
2605 {
2606 	struct drm_i915_private *i915 = to_i915(state->dev);
2607 
2608 	if (HAS_DDI(i915))
2609 		return intel_digital_connector_atomic_check(connector, state);
2610 	else
2611 		return g4x_hdmi_connector_atomic_check(connector, state);
2612 }
2613 
2614 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2615 	.get_modes = intel_hdmi_get_modes,
2616 	.mode_valid = intel_hdmi_mode_valid,
2617 	.atomic_check = intel_hdmi_connector_atomic_check,
2618 };
2619 
2620 static void
2621 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2622 {
2623 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2624 
2625 	intel_attach_force_audio_property(connector);
2626 	intel_attach_broadcast_rgb_property(connector);
2627 	intel_attach_aspect_ratio_property(connector);
2628 
2629 	intel_attach_hdmi_colorspace_property(connector);
2630 	drm_connector_attach_content_type_property(connector);
2631 
2632 	if (DISPLAY_VER(dev_priv) >= 10)
2633 		drm_connector_attach_hdr_output_metadata_property(connector);
2634 
2635 	if (!HAS_GMCH(dev_priv))
2636 		drm_connector_attach_max_bpc_property(connector, 8, 12);
2637 }
2638 
2639 /*
2640  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2641  * @encoder: intel_encoder
2642  * @connector: drm_connector
2643  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2644  *  or reset the high tmds clock ratio for scrambling
2645  * @scrambling: bool to Indicate if the function needs to set or reset
2646  *  sink scrambling
2647  *
2648  * This function handles scrambling on HDMI 2.0 capable sinks.
2649  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2650  * it enables scrambling. This should be called before enabling the HDMI
2651  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2652  * detect a scrambled clock within 100 ms.
2653  *
2654  * Returns:
2655  * True on success, false on failure.
2656  */
2657 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2658 				       struct drm_connector *connector,
2659 				       bool high_tmds_clock_ratio,
2660 				       bool scrambling)
2661 {
2662 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2663 	struct drm_scrambling *sink_scrambling =
2664 		&connector->display_info.hdmi.scdc.scrambling;
2665 
2666 	if (!sink_scrambling->supported)
2667 		return true;
2668 
2669 	drm_dbg_kms(&dev_priv->drm,
2670 		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2671 		    connector->base.id, connector->name,
2672 		    str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2673 
2674 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2675 	return drm_scdc_set_high_tmds_clock_ratio(connector, high_tmds_clock_ratio) &&
2676 		drm_scdc_set_scrambling(connector, scrambling);
2677 }
2678 
2679 static u8 chv_encoder_to_ddc_pin(struct intel_encoder *encoder)
2680 {
2681 	enum port port = encoder->port;
2682 	u8 ddc_pin;
2683 
2684 	switch (port) {
2685 	case PORT_B:
2686 		ddc_pin = GMBUS_PIN_DPB;
2687 		break;
2688 	case PORT_C:
2689 		ddc_pin = GMBUS_PIN_DPC;
2690 		break;
2691 	case PORT_D:
2692 		ddc_pin = GMBUS_PIN_DPD_CHV;
2693 		break;
2694 	default:
2695 		MISSING_CASE(port);
2696 		ddc_pin = GMBUS_PIN_DPB;
2697 		break;
2698 	}
2699 	return ddc_pin;
2700 }
2701 
2702 static u8 bxt_encoder_to_ddc_pin(struct intel_encoder *encoder)
2703 {
2704 	enum port port = encoder->port;
2705 	u8 ddc_pin;
2706 
2707 	switch (port) {
2708 	case PORT_B:
2709 		ddc_pin = GMBUS_PIN_1_BXT;
2710 		break;
2711 	case PORT_C:
2712 		ddc_pin = GMBUS_PIN_2_BXT;
2713 		break;
2714 	default:
2715 		MISSING_CASE(port);
2716 		ddc_pin = GMBUS_PIN_1_BXT;
2717 		break;
2718 	}
2719 	return ddc_pin;
2720 }
2721 
2722 static u8 cnp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2723 {
2724 	enum port port = encoder->port;
2725 	u8 ddc_pin;
2726 
2727 	switch (port) {
2728 	case PORT_B:
2729 		ddc_pin = GMBUS_PIN_1_BXT;
2730 		break;
2731 	case PORT_C:
2732 		ddc_pin = GMBUS_PIN_2_BXT;
2733 		break;
2734 	case PORT_D:
2735 		ddc_pin = GMBUS_PIN_4_CNP;
2736 		break;
2737 	case PORT_F:
2738 		ddc_pin = GMBUS_PIN_3_BXT;
2739 		break;
2740 	default:
2741 		MISSING_CASE(port);
2742 		ddc_pin = GMBUS_PIN_1_BXT;
2743 		break;
2744 	}
2745 	return ddc_pin;
2746 }
2747 
2748 static u8 icl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2749 {
2750 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2751 	enum port port = encoder->port;
2752 
2753 	if (intel_encoder_is_combo(encoder))
2754 		return GMBUS_PIN_1_BXT + port;
2755 	else if (intel_encoder_is_tc(encoder))
2756 		return GMBUS_PIN_9_TC1_ICP + intel_encoder_to_tc(encoder);
2757 
2758 	drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2759 	return GMBUS_PIN_2_BXT;
2760 }
2761 
2762 static u8 mcc_encoder_to_ddc_pin(struct intel_encoder *encoder)
2763 {
2764 	enum phy phy = intel_encoder_to_phy(encoder);
2765 	u8 ddc_pin;
2766 
2767 	switch (phy) {
2768 	case PHY_A:
2769 		ddc_pin = GMBUS_PIN_1_BXT;
2770 		break;
2771 	case PHY_B:
2772 		ddc_pin = GMBUS_PIN_2_BXT;
2773 		break;
2774 	case PHY_C:
2775 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2776 		break;
2777 	default:
2778 		MISSING_CASE(phy);
2779 		ddc_pin = GMBUS_PIN_1_BXT;
2780 		break;
2781 	}
2782 	return ddc_pin;
2783 }
2784 
2785 static u8 rkl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2786 {
2787 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2788 	enum phy phy = intel_encoder_to_phy(encoder);
2789 
2790 	WARN_ON(encoder->port == PORT_C);
2791 
2792 	/*
2793 	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2794 	 * final two outputs use type-c pins, even though they're actually
2795 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2796 	 * all outputs.
2797 	 */
2798 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2799 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2800 
2801 	return GMBUS_PIN_1_BXT + phy;
2802 }
2803 
2804 static u8 gen9bc_tgp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2805 {
2806 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2807 	enum phy phy = intel_encoder_to_phy(encoder);
2808 
2809 	drm_WARN_ON(&i915->drm, encoder->port == PORT_A);
2810 
2811 	/*
2812 	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2813 	 * final two outputs use type-c pins, even though they're actually
2814 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2815 	 * all outputs.
2816 	 */
2817 	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2818 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2819 
2820 	return GMBUS_PIN_1_BXT + phy;
2821 }
2822 
2823 static u8 dg1_encoder_to_ddc_pin(struct intel_encoder *encoder)
2824 {
2825 	return intel_encoder_to_phy(encoder) + 1;
2826 }
2827 
2828 static u8 adls_encoder_to_ddc_pin(struct intel_encoder *encoder)
2829 {
2830 	enum phy phy = intel_encoder_to_phy(encoder);
2831 
2832 	WARN_ON(encoder->port == PORT_B || encoder->port == PORT_C);
2833 
2834 	/*
2835 	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2836 	 * except first combo output.
2837 	 */
2838 	if (phy == PHY_A)
2839 		return GMBUS_PIN_1_BXT;
2840 
2841 	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2842 }
2843 
2844 static u8 g4x_encoder_to_ddc_pin(struct intel_encoder *encoder)
2845 {
2846 	enum port port = encoder->port;
2847 	u8 ddc_pin;
2848 
2849 	switch (port) {
2850 	case PORT_B:
2851 		ddc_pin = GMBUS_PIN_DPB;
2852 		break;
2853 	case PORT_C:
2854 		ddc_pin = GMBUS_PIN_DPC;
2855 		break;
2856 	case PORT_D:
2857 		ddc_pin = GMBUS_PIN_DPD;
2858 		break;
2859 	default:
2860 		MISSING_CASE(port);
2861 		ddc_pin = GMBUS_PIN_DPB;
2862 		break;
2863 	}
2864 	return ddc_pin;
2865 }
2866 
2867 static u8 intel_hdmi_default_ddc_pin(struct intel_encoder *encoder)
2868 {
2869 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2870 	u8 ddc_pin;
2871 
2872 	if (IS_ALDERLAKE_S(dev_priv))
2873 		ddc_pin = adls_encoder_to_ddc_pin(encoder);
2874 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2875 		ddc_pin = dg1_encoder_to_ddc_pin(encoder);
2876 	else if (IS_ROCKETLAKE(dev_priv))
2877 		ddc_pin = rkl_encoder_to_ddc_pin(encoder);
2878 	else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2879 		ddc_pin = gen9bc_tgp_encoder_to_ddc_pin(encoder);
2880 	else if ((IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) &&
2881 		 HAS_PCH_TGP(dev_priv))
2882 		ddc_pin = mcc_encoder_to_ddc_pin(encoder);
2883 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2884 		ddc_pin = icl_encoder_to_ddc_pin(encoder);
2885 	else if (HAS_PCH_CNP(dev_priv))
2886 		ddc_pin = cnp_encoder_to_ddc_pin(encoder);
2887 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2888 		ddc_pin = bxt_encoder_to_ddc_pin(encoder);
2889 	else if (IS_CHERRYVIEW(dev_priv))
2890 		ddc_pin = chv_encoder_to_ddc_pin(encoder);
2891 	else
2892 		ddc_pin = g4x_encoder_to_ddc_pin(encoder);
2893 
2894 	return ddc_pin;
2895 }
2896 
2897 static struct intel_encoder *
2898 get_encoder_by_ddc_pin(struct intel_encoder *encoder, u8 ddc_pin)
2899 {
2900 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2901 	struct intel_encoder *other;
2902 
2903 	for_each_intel_encoder(&i915->drm, other) {
2904 		struct intel_connector *connector;
2905 
2906 		if (other == encoder)
2907 			continue;
2908 
2909 		if (!intel_encoder_is_dig_port(other))
2910 			continue;
2911 
2912 		connector = enc_to_dig_port(other)->hdmi.attached_connector;
2913 
2914 		if (connector && connector->base.ddc == intel_gmbus_get_adapter(i915, ddc_pin))
2915 			return other;
2916 	}
2917 
2918 	return NULL;
2919 }
2920 
2921 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2922 {
2923 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2924 	struct intel_encoder *other;
2925 	const char *source;
2926 	u8 ddc_pin;
2927 
2928 	ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata);
2929 	source = "VBT";
2930 
2931 	if (!ddc_pin) {
2932 		ddc_pin = intel_hdmi_default_ddc_pin(encoder);
2933 		source = "platform default";
2934 	}
2935 
2936 	if (!intel_gmbus_is_valid_pin(i915, ddc_pin)) {
2937 		drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Invalid DDC pin %d\n",
2938 			    encoder->base.base.id, encoder->base.name, ddc_pin);
2939 		return 0;
2940 	}
2941 
2942 	other = get_encoder_by_ddc_pin(encoder, ddc_pin);
2943 	if (other) {
2944 		drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] DDC pin %d already claimed by [ENCODER:%d:%s]\n",
2945 			    encoder->base.base.id, encoder->base.name, ddc_pin,
2946 			    other->base.base.id, other->base.name);
2947 		return 0;
2948 	}
2949 
2950 	drm_dbg_kms(&i915->drm,
2951 		    "[ENCODER:%d:%s] Using DDC pin 0x%x (%s)\n",
2952 		    encoder->base.base.id, encoder->base.name,
2953 		    ddc_pin, source);
2954 
2955 	return ddc_pin;
2956 }
2957 
2958 void intel_infoframe_init(struct intel_digital_port *dig_port)
2959 {
2960 	struct drm_i915_private *dev_priv =
2961 		to_i915(dig_port->base.base.dev);
2962 
2963 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2964 		dig_port->write_infoframe = vlv_write_infoframe;
2965 		dig_port->read_infoframe = vlv_read_infoframe;
2966 		dig_port->set_infoframes = vlv_set_infoframes;
2967 		dig_port->infoframes_enabled = vlv_infoframes_enabled;
2968 	} else if (IS_G4X(dev_priv)) {
2969 		dig_port->write_infoframe = g4x_write_infoframe;
2970 		dig_port->read_infoframe = g4x_read_infoframe;
2971 		dig_port->set_infoframes = g4x_set_infoframes;
2972 		dig_port->infoframes_enabled = g4x_infoframes_enabled;
2973 	} else if (HAS_DDI(dev_priv)) {
2974 		if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) {
2975 			dig_port->write_infoframe = lspcon_write_infoframe;
2976 			dig_port->read_infoframe = lspcon_read_infoframe;
2977 			dig_port->set_infoframes = lspcon_set_infoframes;
2978 			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2979 		} else {
2980 			dig_port->write_infoframe = hsw_write_infoframe;
2981 			dig_port->read_infoframe = hsw_read_infoframe;
2982 			dig_port->set_infoframes = hsw_set_infoframes;
2983 			dig_port->infoframes_enabled = hsw_infoframes_enabled;
2984 		}
2985 	} else if (HAS_PCH_IBX(dev_priv)) {
2986 		dig_port->write_infoframe = ibx_write_infoframe;
2987 		dig_port->read_infoframe = ibx_read_infoframe;
2988 		dig_port->set_infoframes = ibx_set_infoframes;
2989 		dig_port->infoframes_enabled = ibx_infoframes_enabled;
2990 	} else {
2991 		dig_port->write_infoframe = cpt_write_infoframe;
2992 		dig_port->read_infoframe = cpt_read_infoframe;
2993 		dig_port->set_infoframes = cpt_set_infoframes;
2994 		dig_port->infoframes_enabled = cpt_infoframes_enabled;
2995 	}
2996 }
2997 
2998 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2999 			       struct intel_connector *intel_connector)
3000 {
3001 	struct drm_connector *connector = &intel_connector->base;
3002 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
3003 	struct intel_encoder *intel_encoder = &dig_port->base;
3004 	struct drm_device *dev = intel_encoder->base.dev;
3005 	struct drm_i915_private *dev_priv = to_i915(dev);
3006 	enum port port = intel_encoder->port;
3007 	struct cec_connector_info conn_info;
3008 	u8 ddc_pin;
3009 
3010 	drm_dbg_kms(&dev_priv->drm,
3011 		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
3012 		    intel_encoder->base.base.id, intel_encoder->base.name);
3013 
3014 	if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
3015 		return;
3016 
3017 	if (drm_WARN(dev, dig_port->max_lanes < 4,
3018 		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
3019 		     dig_port->max_lanes, intel_encoder->base.base.id,
3020 		     intel_encoder->base.name))
3021 		return;
3022 
3023 	ddc_pin = intel_hdmi_ddc_pin(intel_encoder);
3024 	if (!ddc_pin)
3025 		return;
3026 
3027 	drm_connector_init_with_ddc(dev, connector,
3028 				    &intel_hdmi_connector_funcs,
3029 				    DRM_MODE_CONNECTOR_HDMIA,
3030 				    intel_gmbus_get_adapter(dev_priv, ddc_pin));
3031 
3032 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
3033 
3034 	if (DISPLAY_VER(dev_priv) < 12)
3035 		connector->interlace_allowed = true;
3036 
3037 	connector->stereo_allowed = true;
3038 
3039 	if (DISPLAY_VER(dev_priv) >= 10)
3040 		connector->ycbcr_420_allowed = true;
3041 
3042 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
3043 	intel_connector->base.polled = intel_connector->polled;
3044 
3045 	if (HAS_DDI(dev_priv))
3046 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3047 	else
3048 		intel_connector->get_hw_state = intel_connector_get_hw_state;
3049 
3050 	intel_hdmi_add_properties(intel_hdmi, connector);
3051 
3052 	intel_connector_attach_encoder(intel_connector, intel_encoder);
3053 	intel_hdmi->attached_connector = intel_connector;
3054 
3055 	if (is_hdcp_supported(dev_priv, port)) {
3056 		int ret = intel_hdcp_init(intel_connector, dig_port,
3057 					  &intel_hdmi_hdcp_shim);
3058 		if (ret)
3059 			drm_dbg_kms(&dev_priv->drm,
3060 				    "HDCP init failed, skipping.\n");
3061 	}
3062 
3063 	cec_fill_conn_info_from_drm(&conn_info, connector);
3064 
3065 	intel_hdmi->cec_notifier =
3066 		cec_notifier_conn_register(dev->dev, port_identifier(port),
3067 					   &conn_info);
3068 	if (!intel_hdmi->cec_notifier)
3069 		drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
3070 }
3071 
3072 /*
3073  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
3074  * @vactive: Vactive of a display mode
3075  *
3076  * @return: appropriate dsc slice height for a given mode.
3077  */
3078 int intel_hdmi_dsc_get_slice_height(int vactive)
3079 {
3080 	int slice_height;
3081 
3082 	/*
3083 	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
3084 	 * Select smallest slice height >=96, that results in a valid PPS and
3085 	 * requires minimum padding lines required for final slice.
3086 	 *
3087 	 * Assumption : Vactive is even.
3088 	 */
3089 	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3090 		if (vactive % slice_height == 0)
3091 			return slice_height;
3092 
3093 	return 0;
3094 }
3095 
3096 /*
3097  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3098  * and dsc decoder capabilities
3099  *
3100  * @crtc_state: intel crtc_state
3101  * @src_max_slices: maximum slices supported by the DSC encoder
3102  * @src_max_slice_width: maximum slice width supported by DSC encoder
3103  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3104  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3105  *
3106  * @return: num of dsc slices that can be supported by the dsc encoder
3107  * and decoder.
3108  */
3109 int
3110 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3111 			      int src_max_slices, int src_max_slice_width,
3112 			      int hdmi_max_slices, int hdmi_throughput)
3113 {
3114 /* Pixel rates in KPixels/sec */
3115 #define HDMI_DSC_PEAK_PIXEL_RATE		2720000
3116 /*
3117  * Rates at which the source and sink are required to process pixels in each
3118  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3119  */
3120 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
3121 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
3122 
3123 /* Spec limits the slice width to 2720 pixels */
3124 #define MAX_HDMI_SLICE_WIDTH			2720
3125 	int kslice_adjust;
3126 	int adjusted_clk_khz;
3127 	int min_slices;
3128 	int target_slices;
3129 	int max_throughput; /* max clock freq. in khz per slice */
3130 	int max_slice_width;
3131 	int slice_width;
3132 	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3133 
3134 	if (!hdmi_throughput)
3135 		return 0;
3136 
3137 	/*
3138 	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3139 	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3140 	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3141 	 * dividing adjusted clock value by 10.
3142 	 */
3143 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3144 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3145 		kslice_adjust = 10;
3146 	else
3147 		kslice_adjust = 5;
3148 
3149 	/*
3150 	 * As per spec, the rate at which the source and the sink process
3151 	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3152 	 * This depends upon the pixel clock rate and output formats
3153 	 * (kslice adjust).
3154 	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3155 	 * at max 340MHz, otherwise they can be processed at max 400MHz.
3156 	 */
3157 
3158 	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3159 
3160 	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3161 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3162 	else
3163 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3164 
3165 	/*
3166 	 * Taking into account the sink's capability for maximum
3167 	 * clock per slice (in MHz) as read from HF-VSDB.
3168 	 */
3169 	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3170 
3171 	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3172 	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3173 
3174 	/*
3175 	 * Keep on increasing the num of slices/line, starting from min_slices
3176 	 * per line till we get such a number, for which the slice_width is
3177 	 * just less than max_slice_width. The slices/line selected should be
3178 	 * less than or equal to the max horizontal slices that the combination
3179 	 * of PCON encoder and HDMI decoder can support.
3180 	 */
3181 	slice_width = max_slice_width;
3182 
3183 	do {
3184 		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3185 			target_slices = 1;
3186 		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3187 			target_slices = 2;
3188 		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3189 			target_slices = 4;
3190 		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3191 			target_slices = 8;
3192 		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3193 			target_slices = 12;
3194 		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3195 			target_slices = 16;
3196 		else
3197 			return 0;
3198 
3199 		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3200 		if (slice_width >= max_slice_width)
3201 			min_slices = target_slices + 1;
3202 	} while (slice_width >= max_slice_width);
3203 
3204 	return target_slices;
3205 }
3206 
3207 /*
3208  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3209  * source and sink capabilities.
3210  *
3211  * @src_fraction_bpp: fractional bpp supported by the source
3212  * @slice_width: dsc slice width supported by the source and sink
3213  * @num_slices: num of slices supported by the source and sink
3214  * @output_format: video output format
3215  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3216  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3217  *
3218  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3219  */
3220 int
3221 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3222 		       int output_format, bool hdmi_all_bpp,
3223 		       int hdmi_max_chunk_bytes)
3224 {
3225 	int max_dsc_bpp, min_dsc_bpp;
3226 	int target_bytes;
3227 	bool bpp_found = false;
3228 	int bpp_decrement_x16;
3229 	int bpp_target;
3230 	int bpp_target_x16;
3231 
3232 	/*
3233 	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3234 	 * Start with the max bpp and keep on decrementing with
3235 	 * fractional bpp, if supported by PCON DSC encoder
3236 	 *
3237 	 * for each bpp we check if no of bytes can be supported by HDMI sink
3238 	 */
3239 
3240 	/* Assuming: bpc as 8*/
3241 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3242 		min_dsc_bpp = 6;
3243 		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3244 	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3245 		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3246 		min_dsc_bpp = 8;
3247 		max_dsc_bpp = 3 * 8; /* 3*bpc */
3248 	} else {
3249 		/* Assuming 4:2:2 encoding */
3250 		min_dsc_bpp = 7;
3251 		max_dsc_bpp = 2 * 8; /* 2*bpc */
3252 	}
3253 
3254 	/*
3255 	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3256 	 * Section 7.7.34 : Source shall not enable compressed Video
3257 	 * Transport with bpp_target settings above 12 bpp unless
3258 	 * DSC_all_bpp is set to 1.
3259 	 */
3260 	if (!hdmi_all_bpp)
3261 		max_dsc_bpp = min(max_dsc_bpp, 12);
3262 
3263 	/*
3264 	 * The Sink has a limit of compressed data in bytes for a scanline,
3265 	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3266 	 * The no. of bytes depend on the target bits per pixel that the
3267 	 * source configures. So we start with the max_bpp and calculate
3268 	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3269 	 * till we get the target_chunk_bytes just less than what the sink's
3270 	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3271 	 *
3272 	 * The decrement is according to the fractional support from PCON DSC
3273 	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3274 	 *
3275 	 * bpp_target_x16 = bpp_target * 16
3276 	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3277 	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3278 	 */
3279 
3280 	bpp_target = max_dsc_bpp;
3281 
3282 	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3283 	if (!src_fractional_bpp)
3284 		src_fractional_bpp = 1;
3285 	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3286 	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3287 
3288 	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3289 		int bpp;
3290 
3291 		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3292 		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3293 		if (target_bytes <= hdmi_max_chunk_bytes) {
3294 			bpp_found = true;
3295 			break;
3296 		}
3297 		bpp_target_x16 -= bpp_decrement_x16;
3298 	}
3299 	if (bpp_found)
3300 		return bpp_target_x16;
3301 
3302 	return 0;
3303 }
3304