xref: /linux/drivers/gpu/drm/i915/display/intel_hdmi.c (revision de848da12f752170c2ebe114804a985314fd5a6a)
1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 #include <linux/string_helpers.h>
34 
35 #include <drm/display/drm_hdcp_helper.h>
36 #include <drm/display/drm_hdmi_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_crtc.h>
40 #include <drm/drm_edid.h>
41 #include <drm/intel/intel_lpe_audio.h>
42 
43 #include "g4x_hdmi.h"
44 #include "i915_drv.h"
45 #include "i915_reg.h"
46 #include "intel_atomic.h"
47 #include "intel_audio.h"
48 #include "intel_connector.h"
49 #include "intel_cx0_phy.h"
50 #include "intel_ddi.h"
51 #include "intel_de.h"
52 #include "intel_display_driver.h"
53 #include "intel_display_types.h"
54 #include "intel_dp.h"
55 #include "intel_gmbus.h"
56 #include "intel_hdcp.h"
57 #include "intel_hdcp_regs.h"
58 #include "intel_hdmi.h"
59 #include "intel_lspcon.h"
60 #include "intel_panel.h"
61 #include "intel_snps_phy.h"
62 
63 static void
64 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
65 {
66 	struct intel_display *display = to_intel_display(intel_hdmi);
67 	u32 enabled_bits;
68 
69 	enabled_bits = HAS_DDI(display) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
70 
71 	drm_WARN(display->drm,
72 		 intel_de_read(display, intel_hdmi->hdmi_reg) & enabled_bits,
73 		 "HDMI port enabled, expecting disabled\n");
74 }
75 
76 static void
77 assert_hdmi_transcoder_func_disabled(struct intel_display *display,
78 				     enum transcoder cpu_transcoder)
79 {
80 	drm_WARN(display->drm,
81 		 intel_de_read(display, TRANS_DDI_FUNC_CTL(display, cpu_transcoder)) &
82 		 TRANS_DDI_FUNC_ENABLE,
83 		 "HDMI transcoder function enabled, expecting disabled\n");
84 }
85 
86 static u32 g4x_infoframe_index(unsigned int type)
87 {
88 	switch (type) {
89 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
90 		return VIDEO_DIP_SELECT_GAMUT;
91 	case HDMI_INFOFRAME_TYPE_AVI:
92 		return VIDEO_DIP_SELECT_AVI;
93 	case HDMI_INFOFRAME_TYPE_SPD:
94 		return VIDEO_DIP_SELECT_SPD;
95 	case HDMI_INFOFRAME_TYPE_VENDOR:
96 		return VIDEO_DIP_SELECT_VENDOR;
97 	default:
98 		MISSING_CASE(type);
99 		return 0;
100 	}
101 }
102 
103 static u32 g4x_infoframe_enable(unsigned int type)
104 {
105 	switch (type) {
106 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
107 		return VIDEO_DIP_ENABLE_GCP;
108 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
109 		return VIDEO_DIP_ENABLE_GAMUT;
110 	case DP_SDP_VSC:
111 		return 0;
112 	case DP_SDP_ADAPTIVE_SYNC:
113 		return 0;
114 	case HDMI_INFOFRAME_TYPE_AVI:
115 		return VIDEO_DIP_ENABLE_AVI;
116 	case HDMI_INFOFRAME_TYPE_SPD:
117 		return VIDEO_DIP_ENABLE_SPD;
118 	case HDMI_INFOFRAME_TYPE_VENDOR:
119 		return VIDEO_DIP_ENABLE_VENDOR;
120 	case HDMI_INFOFRAME_TYPE_DRM:
121 		return 0;
122 	default:
123 		MISSING_CASE(type);
124 		return 0;
125 	}
126 }
127 
128 static u32 hsw_infoframe_enable(unsigned int type)
129 {
130 	switch (type) {
131 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
132 		return VIDEO_DIP_ENABLE_GCP_HSW;
133 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
134 		return VIDEO_DIP_ENABLE_GMP_HSW;
135 	case DP_SDP_VSC:
136 		return VIDEO_DIP_ENABLE_VSC_HSW;
137 	case DP_SDP_ADAPTIVE_SYNC:
138 		return VIDEO_DIP_ENABLE_AS_ADL;
139 	case DP_SDP_PPS:
140 		return VDIP_ENABLE_PPS;
141 	case HDMI_INFOFRAME_TYPE_AVI:
142 		return VIDEO_DIP_ENABLE_AVI_HSW;
143 	case HDMI_INFOFRAME_TYPE_SPD:
144 		return VIDEO_DIP_ENABLE_SPD_HSW;
145 	case HDMI_INFOFRAME_TYPE_VENDOR:
146 		return VIDEO_DIP_ENABLE_VS_HSW;
147 	case HDMI_INFOFRAME_TYPE_DRM:
148 		return VIDEO_DIP_ENABLE_DRM_GLK;
149 	default:
150 		MISSING_CASE(type);
151 		return 0;
152 	}
153 }
154 
155 static i915_reg_t
156 hsw_dip_data_reg(struct intel_display *display,
157 		 enum transcoder cpu_transcoder,
158 		 unsigned int type,
159 		 int i)
160 {
161 	switch (type) {
162 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
163 		return HSW_TVIDEO_DIP_GMP_DATA(display, cpu_transcoder, i);
164 	case DP_SDP_VSC:
165 		return HSW_TVIDEO_DIP_VSC_DATA(display, cpu_transcoder, i);
166 	case DP_SDP_ADAPTIVE_SYNC:
167 		return ADL_TVIDEO_DIP_AS_SDP_DATA(display, cpu_transcoder, i);
168 	case DP_SDP_PPS:
169 		return ICL_VIDEO_DIP_PPS_DATA(display, cpu_transcoder, i);
170 	case HDMI_INFOFRAME_TYPE_AVI:
171 		return HSW_TVIDEO_DIP_AVI_DATA(display, cpu_transcoder, i);
172 	case HDMI_INFOFRAME_TYPE_SPD:
173 		return HSW_TVIDEO_DIP_SPD_DATA(display, cpu_transcoder, i);
174 	case HDMI_INFOFRAME_TYPE_VENDOR:
175 		return HSW_TVIDEO_DIP_VS_DATA(display, cpu_transcoder, i);
176 	case HDMI_INFOFRAME_TYPE_DRM:
177 		return GLK_TVIDEO_DIP_DRM_DATA(display, cpu_transcoder, i);
178 	default:
179 		MISSING_CASE(type);
180 		return INVALID_MMIO_REG;
181 	}
182 }
183 
184 static int hsw_dip_data_size(struct intel_display *display,
185 			     unsigned int type)
186 {
187 	switch (type) {
188 	case DP_SDP_VSC:
189 		return VIDEO_DIP_VSC_DATA_SIZE;
190 	case DP_SDP_ADAPTIVE_SYNC:
191 		return VIDEO_DIP_ASYNC_DATA_SIZE;
192 	case DP_SDP_PPS:
193 		return VIDEO_DIP_PPS_DATA_SIZE;
194 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
195 		if (DISPLAY_VER(display) >= 11)
196 			return VIDEO_DIP_GMP_DATA_SIZE;
197 		else
198 			return VIDEO_DIP_DATA_SIZE;
199 	default:
200 		return VIDEO_DIP_DATA_SIZE;
201 	}
202 }
203 
204 static void g4x_write_infoframe(struct intel_encoder *encoder,
205 				const struct intel_crtc_state *crtc_state,
206 				unsigned int type,
207 				const void *frame, ssize_t len)
208 {
209 	struct intel_display *display = to_intel_display(encoder);
210 	const u32 *data = frame;
211 	u32 val = intel_de_read(display, VIDEO_DIP_CTL);
212 	int i;
213 
214 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
215 		 "Writing DIP with CTL reg disabled\n");
216 
217 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
218 	val |= g4x_infoframe_index(type);
219 
220 	val &= ~g4x_infoframe_enable(type);
221 
222 	intel_de_write(display, VIDEO_DIP_CTL, val);
223 
224 	for (i = 0; i < len; i += 4) {
225 		intel_de_write(display, VIDEO_DIP_DATA, *data);
226 		data++;
227 	}
228 	/* Write every possible data byte to force correct ECC calculation. */
229 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
230 		intel_de_write(display, VIDEO_DIP_DATA, 0);
231 
232 	val |= g4x_infoframe_enable(type);
233 	val &= ~VIDEO_DIP_FREQ_MASK;
234 	val |= VIDEO_DIP_FREQ_VSYNC;
235 
236 	intel_de_write(display, VIDEO_DIP_CTL, val);
237 	intel_de_posting_read(display, VIDEO_DIP_CTL);
238 }
239 
240 static void g4x_read_infoframe(struct intel_encoder *encoder,
241 			       const struct intel_crtc_state *crtc_state,
242 			       unsigned int type,
243 			       void *frame, ssize_t len)
244 {
245 	struct intel_display *display = to_intel_display(encoder);
246 	u32 *data = frame;
247 	int i;
248 
249 	intel_de_rmw(display, VIDEO_DIP_CTL,
250 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
251 
252 	for (i = 0; i < len; i += 4)
253 		*data++ = intel_de_read(display, VIDEO_DIP_DATA);
254 }
255 
256 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
257 				  const struct intel_crtc_state *pipe_config)
258 {
259 	struct intel_display *display = to_intel_display(encoder);
260 	u32 val = intel_de_read(display, VIDEO_DIP_CTL);
261 
262 	if ((val & VIDEO_DIP_ENABLE) == 0)
263 		return 0;
264 
265 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
266 		return 0;
267 
268 	return val & (VIDEO_DIP_ENABLE_AVI |
269 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
270 }
271 
272 static void ibx_write_infoframe(struct intel_encoder *encoder,
273 				const struct intel_crtc_state *crtc_state,
274 				unsigned int type,
275 				const void *frame, ssize_t len)
276 {
277 	struct intel_display *display = to_intel_display(encoder);
278 	const u32 *data = frame;
279 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
280 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
281 	u32 val = intel_de_read(display, reg);
282 	int i;
283 
284 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
285 		 "Writing DIP with CTL reg disabled\n");
286 
287 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
288 	val |= g4x_infoframe_index(type);
289 
290 	val &= ~g4x_infoframe_enable(type);
291 
292 	intel_de_write(display, reg, val);
293 
294 	for (i = 0; i < len; i += 4) {
295 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
296 			       *data);
297 		data++;
298 	}
299 	/* Write every possible data byte to force correct ECC calculation. */
300 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
301 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
302 
303 	val |= g4x_infoframe_enable(type);
304 	val &= ~VIDEO_DIP_FREQ_MASK;
305 	val |= VIDEO_DIP_FREQ_VSYNC;
306 
307 	intel_de_write(display, reg, val);
308 	intel_de_posting_read(display, reg);
309 }
310 
311 static void ibx_read_infoframe(struct intel_encoder *encoder,
312 			       const struct intel_crtc_state *crtc_state,
313 			       unsigned int type,
314 			       void *frame, ssize_t len)
315 {
316 	struct intel_display *display = to_intel_display(encoder);
317 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
318 	u32 *data = frame;
319 	int i;
320 
321 	intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
322 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
323 
324 	for (i = 0; i < len; i += 4)
325 		*data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
326 }
327 
328 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
329 				  const struct intel_crtc_state *pipe_config)
330 {
331 	struct intel_display *display = to_intel_display(encoder);
332 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
333 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
334 	u32 val = intel_de_read(display, reg);
335 
336 	if ((val & VIDEO_DIP_ENABLE) == 0)
337 		return 0;
338 
339 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
340 		return 0;
341 
342 	return val & (VIDEO_DIP_ENABLE_AVI |
343 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
344 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
345 }
346 
347 static void cpt_write_infoframe(struct intel_encoder *encoder,
348 				const struct intel_crtc_state *crtc_state,
349 				unsigned int type,
350 				const void *frame, ssize_t len)
351 {
352 	struct intel_display *display = to_intel_display(encoder);
353 	const u32 *data = frame;
354 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
355 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
356 	u32 val = intel_de_read(display, reg);
357 	int i;
358 
359 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
360 		 "Writing DIP with CTL reg disabled\n");
361 
362 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
363 	val |= g4x_infoframe_index(type);
364 
365 	/* The DIP control register spec says that we need to update the AVI
366 	 * infoframe without clearing its enable bit */
367 	if (type != HDMI_INFOFRAME_TYPE_AVI)
368 		val &= ~g4x_infoframe_enable(type);
369 
370 	intel_de_write(display, reg, val);
371 
372 	for (i = 0; i < len; i += 4) {
373 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
374 			       *data);
375 		data++;
376 	}
377 	/* Write every possible data byte to force correct ECC calculation. */
378 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
379 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
380 
381 	val |= g4x_infoframe_enable(type);
382 	val &= ~VIDEO_DIP_FREQ_MASK;
383 	val |= VIDEO_DIP_FREQ_VSYNC;
384 
385 	intel_de_write(display, reg, val);
386 	intel_de_posting_read(display, reg);
387 }
388 
389 static void cpt_read_infoframe(struct intel_encoder *encoder,
390 			       const struct intel_crtc_state *crtc_state,
391 			       unsigned int type,
392 			       void *frame, ssize_t len)
393 {
394 	struct intel_display *display = to_intel_display(encoder);
395 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
396 	u32 *data = frame;
397 	int i;
398 
399 	intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
400 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
401 
402 	for (i = 0; i < len; i += 4)
403 		*data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
404 }
405 
406 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
407 				  const struct intel_crtc_state *pipe_config)
408 {
409 	struct intel_display *display = to_intel_display(encoder);
410 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
411 	u32 val = intel_de_read(display, TVIDEO_DIP_CTL(pipe));
412 
413 	if ((val & VIDEO_DIP_ENABLE) == 0)
414 		return 0;
415 
416 	return val & (VIDEO_DIP_ENABLE_AVI |
417 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
418 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
419 }
420 
421 static void vlv_write_infoframe(struct intel_encoder *encoder,
422 				const struct intel_crtc_state *crtc_state,
423 				unsigned int type,
424 				const void *frame, ssize_t len)
425 {
426 	struct intel_display *display = to_intel_display(encoder);
427 	const u32 *data = frame;
428 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
429 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
430 	u32 val = intel_de_read(display, reg);
431 	int i;
432 
433 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
434 		 "Writing DIP with CTL reg disabled\n");
435 
436 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
437 	val |= g4x_infoframe_index(type);
438 
439 	val &= ~g4x_infoframe_enable(type);
440 
441 	intel_de_write(display, reg, val);
442 
443 	for (i = 0; i < len; i += 4) {
444 		intel_de_write(display,
445 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
446 		data++;
447 	}
448 	/* Write every possible data byte to force correct ECC calculation. */
449 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
450 		intel_de_write(display,
451 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
452 
453 	val |= g4x_infoframe_enable(type);
454 	val &= ~VIDEO_DIP_FREQ_MASK;
455 	val |= VIDEO_DIP_FREQ_VSYNC;
456 
457 	intel_de_write(display, reg, val);
458 	intel_de_posting_read(display, reg);
459 }
460 
461 static void vlv_read_infoframe(struct intel_encoder *encoder,
462 			       const struct intel_crtc_state *crtc_state,
463 			       unsigned int type,
464 			       void *frame, ssize_t len)
465 {
466 	struct intel_display *display = to_intel_display(encoder);
467 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
468 	u32 *data = frame;
469 	int i;
470 
471 	intel_de_rmw(display, VLV_TVIDEO_DIP_CTL(crtc->pipe),
472 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
473 
474 	for (i = 0; i < len; i += 4)
475 		*data++ = intel_de_read(display,
476 				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
477 }
478 
479 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
480 				  const struct intel_crtc_state *pipe_config)
481 {
482 	struct intel_display *display = to_intel_display(encoder);
483 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
484 	u32 val = intel_de_read(display, VLV_TVIDEO_DIP_CTL(pipe));
485 
486 	if ((val & VIDEO_DIP_ENABLE) == 0)
487 		return 0;
488 
489 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
490 		return 0;
491 
492 	return val & (VIDEO_DIP_ENABLE_AVI |
493 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
494 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
495 }
496 
497 void hsw_write_infoframe(struct intel_encoder *encoder,
498 			 const struct intel_crtc_state *crtc_state,
499 			 unsigned int type,
500 			 const void *frame, ssize_t len)
501 {
502 	struct intel_display *display = to_intel_display(encoder);
503 	const u32 *data = frame;
504 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
505 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(display, cpu_transcoder);
506 	int data_size;
507 	int i;
508 	u32 val = intel_de_read(display, ctl_reg);
509 
510 	data_size = hsw_dip_data_size(display, type);
511 
512 	drm_WARN_ON(display->drm, len > data_size);
513 
514 	val &= ~hsw_infoframe_enable(type);
515 	intel_de_write(display, ctl_reg, val);
516 
517 	for (i = 0; i < len; i += 4) {
518 		intel_de_write(display,
519 			       hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
520 			       *data);
521 		data++;
522 	}
523 	/* Write every possible data byte to force correct ECC calculation. */
524 	for (; i < data_size; i += 4)
525 		intel_de_write(display,
526 			       hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
527 			       0);
528 
529 	/* Wa_14013475917 */
530 	if (!(IS_DISPLAY_VER(display, 13, 14) && crtc_state->has_psr &&
531 	      !crtc_state->has_panel_replay && type == DP_SDP_VSC))
532 		val |= hsw_infoframe_enable(type);
533 
534 	if (type == DP_SDP_VSC)
535 		val |= VSC_DIP_HW_DATA_SW_HEA;
536 
537 	intel_de_write(display, ctl_reg, val);
538 	intel_de_posting_read(display, ctl_reg);
539 }
540 
541 void hsw_read_infoframe(struct intel_encoder *encoder,
542 			const struct intel_crtc_state *crtc_state,
543 			unsigned int type, void *frame, ssize_t len)
544 {
545 	struct intel_display *display = to_intel_display(encoder);
546 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
547 	u32 *data = frame;
548 	int i;
549 
550 	for (i = 0; i < len; i += 4)
551 		*data++ = intel_de_read(display,
552 					hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2));
553 }
554 
555 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
556 				  const struct intel_crtc_state *pipe_config)
557 {
558 	struct intel_display *display = to_intel_display(encoder);
559 	u32 val = intel_de_read(display,
560 				HSW_TVIDEO_DIP_CTL(display, pipe_config->cpu_transcoder));
561 	u32 mask;
562 
563 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
564 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
565 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
566 
567 	if (DISPLAY_VER(display) >= 10)
568 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
569 
570 	if (HAS_AS_SDP(display))
571 		mask |= VIDEO_DIP_ENABLE_AS_ADL;
572 
573 	return val & mask;
574 }
575 
576 static const u8 infoframe_type_to_idx[] = {
577 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
578 	HDMI_PACKET_TYPE_GAMUT_METADATA,
579 	DP_SDP_VSC,
580 	DP_SDP_ADAPTIVE_SYNC,
581 	HDMI_INFOFRAME_TYPE_AVI,
582 	HDMI_INFOFRAME_TYPE_SPD,
583 	HDMI_INFOFRAME_TYPE_VENDOR,
584 	HDMI_INFOFRAME_TYPE_DRM,
585 };
586 
587 u32 intel_hdmi_infoframe_enable(unsigned int type)
588 {
589 	int i;
590 
591 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
592 		if (infoframe_type_to_idx[i] == type)
593 			return BIT(i);
594 	}
595 
596 	return 0;
597 }
598 
599 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
600 				  const struct intel_crtc_state *crtc_state)
601 {
602 	struct intel_display *display = to_intel_display(encoder);
603 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
604 	u32 val, ret = 0;
605 	int i;
606 
607 	val = dig_port->infoframes_enabled(encoder, crtc_state);
608 
609 	/* map from hardware bits to dip idx */
610 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
611 		unsigned int type = infoframe_type_to_idx[i];
612 
613 		if (HAS_DDI(display)) {
614 			if (val & hsw_infoframe_enable(type))
615 				ret |= BIT(i);
616 		} else {
617 			if (val & g4x_infoframe_enable(type))
618 				ret |= BIT(i);
619 		}
620 	}
621 
622 	return ret;
623 }
624 
625 /*
626  * The data we write to the DIP data buffer registers is 1 byte bigger than the
627  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
628  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
629  * used for both technologies.
630  *
631  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
632  * DW1:       DB3       | DB2 | DB1 | DB0
633  * DW2:       DB7       | DB6 | DB5 | DB4
634  * DW3: ...
635  *
636  * (HB is Header Byte, DB is Data Byte)
637  *
638  * The hdmi pack() functions don't know about that hardware specific hole so we
639  * trick them by giving an offset into the buffer and moving back the header
640  * bytes by one.
641  */
642 static void intel_write_infoframe(struct intel_encoder *encoder,
643 				  const struct intel_crtc_state *crtc_state,
644 				  enum hdmi_infoframe_type type,
645 				  const union hdmi_infoframe *frame)
646 {
647 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
648 	u8 buffer[VIDEO_DIP_DATA_SIZE];
649 	ssize_t len;
650 
651 	if ((crtc_state->infoframes.enable &
652 	     intel_hdmi_infoframe_enable(type)) == 0)
653 		return;
654 
655 	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
656 		return;
657 
658 	/* see comment above for the reason for this offset */
659 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
660 	if (drm_WARN_ON(encoder->base.dev, len < 0))
661 		return;
662 
663 	/* Insert the 'hole' (see big comment above) at position 3 */
664 	memmove(&buffer[0], &buffer[1], 3);
665 	buffer[3] = 0;
666 	len++;
667 
668 	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
669 }
670 
671 void intel_read_infoframe(struct intel_encoder *encoder,
672 			  const struct intel_crtc_state *crtc_state,
673 			  enum hdmi_infoframe_type type,
674 			  union hdmi_infoframe *frame)
675 {
676 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
677 	u8 buffer[VIDEO_DIP_DATA_SIZE];
678 	int ret;
679 
680 	if ((crtc_state->infoframes.enable &
681 	     intel_hdmi_infoframe_enable(type)) == 0)
682 		return;
683 
684 	dig_port->read_infoframe(encoder, crtc_state,
685 				       type, buffer, sizeof(buffer));
686 
687 	/* Fill the 'hole' (see big comment above) at position 3 */
688 	memmove(&buffer[1], &buffer[0], 3);
689 
690 	/* see comment above for the reason for this offset */
691 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
692 	if (ret) {
693 		drm_dbg_kms(encoder->base.dev,
694 			    "Failed to unpack infoframe type 0x%02x\n", type);
695 		return;
696 	}
697 
698 	if (frame->any.type != type)
699 		drm_dbg_kms(encoder->base.dev,
700 			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
701 			    frame->any.type, type);
702 }
703 
704 static bool
705 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
706 				 struct intel_crtc_state *crtc_state,
707 				 struct drm_connector_state *conn_state)
708 {
709 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
710 	const struct drm_display_mode *adjusted_mode =
711 		&crtc_state->hw.adjusted_mode;
712 	struct drm_connector *connector = conn_state->connector;
713 	int ret;
714 
715 	if (!crtc_state->has_infoframe)
716 		return true;
717 
718 	crtc_state->infoframes.enable |=
719 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
720 
721 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
722 						       adjusted_mode);
723 	if (ret)
724 		return false;
725 
726 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
727 		frame->colorspace = HDMI_COLORSPACE_YUV420;
728 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
729 		frame->colorspace = HDMI_COLORSPACE_YUV444;
730 	else
731 		frame->colorspace = HDMI_COLORSPACE_RGB;
732 
733 	drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
734 
735 	/* nonsense combination */
736 	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
737 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
738 
739 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
740 		drm_hdmi_avi_infoframe_quant_range(frame, connector,
741 						   adjusted_mode,
742 						   crtc_state->limited_color_range ?
743 						   HDMI_QUANTIZATION_RANGE_LIMITED :
744 						   HDMI_QUANTIZATION_RANGE_FULL);
745 	} else {
746 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
747 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
748 	}
749 
750 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
751 
752 	/* TODO: handle pixel repetition for YCBCR420 outputs */
753 
754 	ret = hdmi_avi_infoframe_check(frame);
755 	if (drm_WARN_ON(encoder->base.dev, ret))
756 		return false;
757 
758 	return true;
759 }
760 
761 static bool
762 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
763 				 struct intel_crtc_state *crtc_state,
764 				 struct drm_connector_state *conn_state)
765 {
766 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
767 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
768 	int ret;
769 
770 	if (!crtc_state->has_infoframe)
771 		return true;
772 
773 	crtc_state->infoframes.enable |=
774 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
775 
776 	if (IS_DGFX(i915))
777 		ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx");
778 	else
779 		ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
780 
781 	if (drm_WARN_ON(encoder->base.dev, ret))
782 		return false;
783 
784 	frame->sdi = HDMI_SPD_SDI_PC;
785 
786 	ret = hdmi_spd_infoframe_check(frame);
787 	if (drm_WARN_ON(encoder->base.dev, ret))
788 		return false;
789 
790 	return true;
791 }
792 
793 static bool
794 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
795 				  struct intel_crtc_state *crtc_state,
796 				  struct drm_connector_state *conn_state)
797 {
798 	struct hdmi_vendor_infoframe *frame =
799 		&crtc_state->infoframes.hdmi.vendor.hdmi;
800 	const struct drm_display_info *info =
801 		&conn_state->connector->display_info;
802 	int ret;
803 
804 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
805 		return true;
806 
807 	crtc_state->infoframes.enable |=
808 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
809 
810 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
811 							  conn_state->connector,
812 							  &crtc_state->hw.adjusted_mode);
813 	if (drm_WARN_ON(encoder->base.dev, ret))
814 		return false;
815 
816 	ret = hdmi_vendor_infoframe_check(frame);
817 	if (drm_WARN_ON(encoder->base.dev, ret))
818 		return false;
819 
820 	return true;
821 }
822 
823 static bool
824 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
825 				 struct intel_crtc_state *crtc_state,
826 				 struct drm_connector_state *conn_state)
827 {
828 	struct intel_display *display = to_intel_display(encoder);
829 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
830 	int ret;
831 
832 	if (DISPLAY_VER(display) < 10)
833 		return true;
834 
835 	if (!crtc_state->has_infoframe)
836 		return true;
837 
838 	if (!conn_state->hdr_output_metadata)
839 		return true;
840 
841 	crtc_state->infoframes.enable |=
842 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
843 
844 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
845 	if (ret < 0) {
846 		drm_dbg_kms(display->drm,
847 			    "couldn't set HDR metadata in infoframe\n");
848 		return false;
849 	}
850 
851 	ret = hdmi_drm_infoframe_check(frame);
852 	if (drm_WARN_ON(display->drm, ret))
853 		return false;
854 
855 	return true;
856 }
857 
858 static void g4x_set_infoframes(struct intel_encoder *encoder,
859 			       bool enable,
860 			       const struct intel_crtc_state *crtc_state,
861 			       const struct drm_connector_state *conn_state)
862 {
863 	struct intel_display *display = to_intel_display(encoder);
864 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
865 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
866 	i915_reg_t reg = VIDEO_DIP_CTL;
867 	u32 val = intel_de_read(display, reg);
868 	u32 port = VIDEO_DIP_PORT(encoder->port);
869 
870 	assert_hdmi_port_disabled(intel_hdmi);
871 
872 	/* If the registers were not initialized yet, they might be zeroes,
873 	 * which means we're selecting the AVI DIP and we're setting its
874 	 * frequency to once. This seems to really confuse the HW and make
875 	 * things stop working (the register spec says the AVI always needs to
876 	 * be sent every VSync). So here we avoid writing to the register more
877 	 * than we need and also explicitly select the AVI DIP and explicitly
878 	 * set its frequency to every VSync. Avoiding to write it twice seems to
879 	 * be enough to solve the problem, but being defensive shouldn't hurt us
880 	 * either. */
881 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
882 
883 	if (!enable) {
884 		if (!(val & VIDEO_DIP_ENABLE))
885 			return;
886 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
887 			drm_dbg_kms(display->drm,
888 				    "video DIP still enabled on port %c\n",
889 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
890 			return;
891 		}
892 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
893 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
894 		intel_de_write(display, reg, val);
895 		intel_de_posting_read(display, reg);
896 		return;
897 	}
898 
899 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
900 		if (val & VIDEO_DIP_ENABLE) {
901 			drm_dbg_kms(display->drm,
902 				    "video DIP already enabled on port %c\n",
903 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
904 			return;
905 		}
906 		val &= ~VIDEO_DIP_PORT_MASK;
907 		val |= port;
908 	}
909 
910 	val |= VIDEO_DIP_ENABLE;
911 	val &= ~(VIDEO_DIP_ENABLE_AVI |
912 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
913 
914 	intel_de_write(display, reg, val);
915 	intel_de_posting_read(display, reg);
916 
917 	intel_write_infoframe(encoder, crtc_state,
918 			      HDMI_INFOFRAME_TYPE_AVI,
919 			      &crtc_state->infoframes.avi);
920 	intel_write_infoframe(encoder, crtc_state,
921 			      HDMI_INFOFRAME_TYPE_SPD,
922 			      &crtc_state->infoframes.spd);
923 	intel_write_infoframe(encoder, crtc_state,
924 			      HDMI_INFOFRAME_TYPE_VENDOR,
925 			      &crtc_state->infoframes.hdmi);
926 }
927 
928 /*
929  * Determine if default_phase=1 can be indicated in the GCP infoframe.
930  *
931  * From HDMI specification 1.4a:
932  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
933  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
934  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
935  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
936  *   phase of 0
937  */
938 static bool gcp_default_phase_possible(int pipe_bpp,
939 				       const struct drm_display_mode *mode)
940 {
941 	unsigned int pixels_per_group;
942 
943 	switch (pipe_bpp) {
944 	case 30:
945 		/* 4 pixels in 5 clocks */
946 		pixels_per_group = 4;
947 		break;
948 	case 36:
949 		/* 2 pixels in 3 clocks */
950 		pixels_per_group = 2;
951 		break;
952 	case 48:
953 		/* 1 pixel in 2 clocks */
954 		pixels_per_group = 1;
955 		break;
956 	default:
957 		/* phase information not relevant for 8bpc */
958 		return false;
959 	}
960 
961 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
962 		mode->crtc_htotal % pixels_per_group == 0 &&
963 		mode->crtc_hblank_start % pixels_per_group == 0 &&
964 		mode->crtc_hblank_end % pixels_per_group == 0 &&
965 		mode->crtc_hsync_start % pixels_per_group == 0 &&
966 		mode->crtc_hsync_end % pixels_per_group == 0 &&
967 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
968 		 mode->crtc_htotal/2 % pixels_per_group == 0);
969 }
970 
971 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
972 					 const struct intel_crtc_state *crtc_state,
973 					 const struct drm_connector_state *conn_state)
974 {
975 	struct intel_display *display = to_intel_display(encoder);
976 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
977 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
978 	i915_reg_t reg;
979 
980 	if ((crtc_state->infoframes.enable &
981 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
982 		return false;
983 
984 	if (HAS_DDI(display))
985 		reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
986 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
987 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
988 	else if (HAS_PCH_SPLIT(dev_priv))
989 		reg = TVIDEO_DIP_GCP(crtc->pipe);
990 	else
991 		return false;
992 
993 	intel_de_write(display, reg, crtc_state->infoframes.gcp);
994 
995 	return true;
996 }
997 
998 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
999 				   struct intel_crtc_state *crtc_state)
1000 {
1001 	struct intel_display *display = to_intel_display(encoder);
1002 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1003 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1004 	i915_reg_t reg;
1005 
1006 	if ((crtc_state->infoframes.enable &
1007 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1008 		return;
1009 
1010 	if (HAS_DDI(display))
1011 		reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
1012 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1013 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1014 	else if (HAS_PCH_SPLIT(dev_priv))
1015 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1016 	else
1017 		return;
1018 
1019 	crtc_state->infoframes.gcp = intel_de_read(display, reg);
1020 }
1021 
1022 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1023 					     struct intel_crtc_state *crtc_state,
1024 					     struct drm_connector_state *conn_state)
1025 {
1026 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1027 
1028 	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1029 		return;
1030 
1031 	crtc_state->infoframes.enable |=
1032 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1033 
1034 	/* Indicate color indication for deep color mode */
1035 	if (crtc_state->pipe_bpp > 24)
1036 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1037 
1038 	/* Enable default_phase whenever the display mode is suitably aligned */
1039 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1040 				       &crtc_state->hw.adjusted_mode))
1041 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1042 }
1043 
1044 static void ibx_set_infoframes(struct intel_encoder *encoder,
1045 			       bool enable,
1046 			       const struct intel_crtc_state *crtc_state,
1047 			       const struct drm_connector_state *conn_state)
1048 {
1049 	struct intel_display *display = to_intel_display(encoder);
1050 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1051 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1052 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1053 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1054 	u32 val = intel_de_read(display, reg);
1055 	u32 port = VIDEO_DIP_PORT(encoder->port);
1056 
1057 	assert_hdmi_port_disabled(intel_hdmi);
1058 
1059 	/* See the big comment in g4x_set_infoframes() */
1060 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1061 
1062 	if (!enable) {
1063 		if (!(val & VIDEO_DIP_ENABLE))
1064 			return;
1065 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1066 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1067 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1068 		intel_de_write(display, reg, val);
1069 		intel_de_posting_read(display, reg);
1070 		return;
1071 	}
1072 
1073 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1074 		drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1075 			 "DIP already enabled on port %c\n",
1076 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1077 		val &= ~VIDEO_DIP_PORT_MASK;
1078 		val |= port;
1079 	}
1080 
1081 	val |= VIDEO_DIP_ENABLE;
1082 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1083 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1084 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1085 
1086 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1087 		val |= VIDEO_DIP_ENABLE_GCP;
1088 
1089 	intel_de_write(display, reg, val);
1090 	intel_de_posting_read(display, reg);
1091 
1092 	intel_write_infoframe(encoder, crtc_state,
1093 			      HDMI_INFOFRAME_TYPE_AVI,
1094 			      &crtc_state->infoframes.avi);
1095 	intel_write_infoframe(encoder, crtc_state,
1096 			      HDMI_INFOFRAME_TYPE_SPD,
1097 			      &crtc_state->infoframes.spd);
1098 	intel_write_infoframe(encoder, crtc_state,
1099 			      HDMI_INFOFRAME_TYPE_VENDOR,
1100 			      &crtc_state->infoframes.hdmi);
1101 }
1102 
1103 static void cpt_set_infoframes(struct intel_encoder *encoder,
1104 			       bool enable,
1105 			       const struct intel_crtc_state *crtc_state,
1106 			       const struct drm_connector_state *conn_state)
1107 {
1108 	struct intel_display *display = to_intel_display(encoder);
1109 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1110 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1111 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1112 	u32 val = intel_de_read(display, reg);
1113 
1114 	assert_hdmi_port_disabled(intel_hdmi);
1115 
1116 	/* See the big comment in g4x_set_infoframes() */
1117 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1118 
1119 	if (!enable) {
1120 		if (!(val & VIDEO_DIP_ENABLE))
1121 			return;
1122 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1123 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1124 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1125 		intel_de_write(display, reg, val);
1126 		intel_de_posting_read(display, reg);
1127 		return;
1128 	}
1129 
1130 	/* Set both together, unset both together: see the spec. */
1131 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1132 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1133 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1134 
1135 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1136 		val |= VIDEO_DIP_ENABLE_GCP;
1137 
1138 	intel_de_write(display, reg, val);
1139 	intel_de_posting_read(display, reg);
1140 
1141 	intel_write_infoframe(encoder, crtc_state,
1142 			      HDMI_INFOFRAME_TYPE_AVI,
1143 			      &crtc_state->infoframes.avi);
1144 	intel_write_infoframe(encoder, crtc_state,
1145 			      HDMI_INFOFRAME_TYPE_SPD,
1146 			      &crtc_state->infoframes.spd);
1147 	intel_write_infoframe(encoder, crtc_state,
1148 			      HDMI_INFOFRAME_TYPE_VENDOR,
1149 			      &crtc_state->infoframes.hdmi);
1150 }
1151 
1152 static void vlv_set_infoframes(struct intel_encoder *encoder,
1153 			       bool enable,
1154 			       const struct intel_crtc_state *crtc_state,
1155 			       const struct drm_connector_state *conn_state)
1156 {
1157 	struct intel_display *display = to_intel_display(encoder);
1158 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1159 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1160 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1161 	u32 val = intel_de_read(display, reg);
1162 	u32 port = VIDEO_DIP_PORT(encoder->port);
1163 
1164 	assert_hdmi_port_disabled(intel_hdmi);
1165 
1166 	/* See the big comment in g4x_set_infoframes() */
1167 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1168 
1169 	if (!enable) {
1170 		if (!(val & VIDEO_DIP_ENABLE))
1171 			return;
1172 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1173 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1174 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1175 		intel_de_write(display, reg, val);
1176 		intel_de_posting_read(display, reg);
1177 		return;
1178 	}
1179 
1180 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1181 		drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1182 			 "DIP already enabled on port %c\n",
1183 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1184 		val &= ~VIDEO_DIP_PORT_MASK;
1185 		val |= port;
1186 	}
1187 
1188 	val |= VIDEO_DIP_ENABLE;
1189 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1190 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1191 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1192 
1193 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1194 		val |= VIDEO_DIP_ENABLE_GCP;
1195 
1196 	intel_de_write(display, reg, val);
1197 	intel_de_posting_read(display, reg);
1198 
1199 	intel_write_infoframe(encoder, crtc_state,
1200 			      HDMI_INFOFRAME_TYPE_AVI,
1201 			      &crtc_state->infoframes.avi);
1202 	intel_write_infoframe(encoder, crtc_state,
1203 			      HDMI_INFOFRAME_TYPE_SPD,
1204 			      &crtc_state->infoframes.spd);
1205 	intel_write_infoframe(encoder, crtc_state,
1206 			      HDMI_INFOFRAME_TYPE_VENDOR,
1207 			      &crtc_state->infoframes.hdmi);
1208 }
1209 
1210 static void hsw_set_infoframes(struct intel_encoder *encoder,
1211 			       bool enable,
1212 			       const struct intel_crtc_state *crtc_state,
1213 			       const struct drm_connector_state *conn_state)
1214 {
1215 	struct intel_display *display = to_intel_display(encoder);
1216 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display,
1217 					    crtc_state->cpu_transcoder);
1218 	u32 val = intel_de_read(display, reg);
1219 
1220 	assert_hdmi_transcoder_func_disabled(display,
1221 					     crtc_state->cpu_transcoder);
1222 
1223 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1224 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1225 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1226 		 VIDEO_DIP_ENABLE_DRM_GLK | VIDEO_DIP_ENABLE_AS_ADL);
1227 
1228 	if (!enable) {
1229 		intel_de_write(display, reg, val);
1230 		intel_de_posting_read(display, reg);
1231 		return;
1232 	}
1233 
1234 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1235 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1236 
1237 	intel_de_write(display, reg, val);
1238 	intel_de_posting_read(display, reg);
1239 
1240 	intel_write_infoframe(encoder, crtc_state,
1241 			      HDMI_INFOFRAME_TYPE_AVI,
1242 			      &crtc_state->infoframes.avi);
1243 	intel_write_infoframe(encoder, crtc_state,
1244 			      HDMI_INFOFRAME_TYPE_SPD,
1245 			      &crtc_state->infoframes.spd);
1246 	intel_write_infoframe(encoder, crtc_state,
1247 			      HDMI_INFOFRAME_TYPE_VENDOR,
1248 			      &crtc_state->infoframes.hdmi);
1249 	intel_write_infoframe(encoder, crtc_state,
1250 			      HDMI_INFOFRAME_TYPE_DRM,
1251 			      &crtc_state->infoframes.drm);
1252 }
1253 
1254 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1255 {
1256 	struct intel_display *display = to_intel_display(hdmi);
1257 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1258 
1259 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1260 		return;
1261 
1262 	drm_dbg_kms(display->drm, "%s DP dual mode adaptor TMDS output\n",
1263 		    enable ? "Enabling" : "Disabling");
1264 
1265 	drm_dp_dual_mode_set_tmds_output(display->drm,
1266 					 hdmi->dp_dual_mode.type, ddc, enable);
1267 }
1268 
1269 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1270 				unsigned int offset, void *buffer, size_t size)
1271 {
1272 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1273 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1274 	int ret;
1275 	u8 start = offset & 0xff;
1276 	struct i2c_msg msgs[] = {
1277 		{
1278 			.addr = DRM_HDCP_DDC_ADDR,
1279 			.flags = 0,
1280 			.len = 1,
1281 			.buf = &start,
1282 		},
1283 		{
1284 			.addr = DRM_HDCP_DDC_ADDR,
1285 			.flags = I2C_M_RD,
1286 			.len = size,
1287 			.buf = buffer
1288 		}
1289 	};
1290 	ret = i2c_transfer(ddc, msgs, ARRAY_SIZE(msgs));
1291 	if (ret == ARRAY_SIZE(msgs))
1292 		return 0;
1293 	return ret >= 0 ? -EIO : ret;
1294 }
1295 
1296 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1297 				 unsigned int offset, void *buffer, size_t size)
1298 {
1299 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1300 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1301 	int ret;
1302 	u8 *write_buf;
1303 	struct i2c_msg msg;
1304 
1305 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1306 	if (!write_buf)
1307 		return -ENOMEM;
1308 
1309 	write_buf[0] = offset & 0xff;
1310 	memcpy(&write_buf[1], buffer, size);
1311 
1312 	msg.addr = DRM_HDCP_DDC_ADDR;
1313 	msg.flags = 0,
1314 	msg.len = size + 1,
1315 	msg.buf = write_buf;
1316 
1317 	ret = i2c_transfer(ddc, &msg, 1);
1318 	if (ret == 1)
1319 		ret = 0;
1320 	else if (ret >= 0)
1321 		ret = -EIO;
1322 
1323 	kfree(write_buf);
1324 	return ret;
1325 }
1326 
1327 static
1328 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1329 				  u8 *an)
1330 {
1331 	struct intel_display *display = to_intel_display(dig_port);
1332 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1333 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1334 	int ret;
1335 
1336 	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1337 				    DRM_HDCP_AN_LEN);
1338 	if (ret) {
1339 		drm_dbg_kms(display->drm, "Write An over DDC failed (%d)\n",
1340 			    ret);
1341 		return ret;
1342 	}
1343 
1344 	ret = intel_gmbus_output_aksv(ddc);
1345 	if (ret < 0) {
1346 		drm_dbg_kms(display->drm, "Failed to output aksv (%d)\n", ret);
1347 		return ret;
1348 	}
1349 	return 0;
1350 }
1351 
1352 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1353 				     u8 *bksv)
1354 {
1355 	struct intel_display *display = to_intel_display(dig_port);
1356 
1357 	int ret;
1358 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1359 				   DRM_HDCP_KSV_LEN);
1360 	if (ret)
1361 		drm_dbg_kms(display->drm, "Read Bksv over DDC failed (%d)\n",
1362 			    ret);
1363 	return ret;
1364 }
1365 
1366 static
1367 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1368 				 u8 *bstatus)
1369 {
1370 	struct intel_display *display = to_intel_display(dig_port);
1371 
1372 	int ret;
1373 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1374 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1375 	if (ret)
1376 		drm_dbg_kms(display->drm,
1377 			    "Read bstatus over DDC failed (%d)\n",
1378 			    ret);
1379 	return ret;
1380 }
1381 
1382 static
1383 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1384 				     bool *repeater_present)
1385 {
1386 	struct intel_display *display = to_intel_display(dig_port);
1387 	int ret;
1388 	u8 val;
1389 
1390 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1391 	if (ret) {
1392 		drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1393 			    ret);
1394 		return ret;
1395 	}
1396 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1397 	return 0;
1398 }
1399 
1400 static
1401 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1402 				  u8 *ri_prime)
1403 {
1404 	struct intel_display *display = to_intel_display(dig_port);
1405 
1406 	int ret;
1407 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1408 				   ri_prime, DRM_HDCP_RI_LEN);
1409 	if (ret)
1410 		drm_dbg_kms(display->drm, "Read Ri' over DDC failed (%d)\n",
1411 			    ret);
1412 	return ret;
1413 }
1414 
1415 static
1416 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1417 				   bool *ksv_ready)
1418 {
1419 	struct intel_display *display = to_intel_display(dig_port);
1420 	int ret;
1421 	u8 val;
1422 
1423 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1424 	if (ret) {
1425 		drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1426 			    ret);
1427 		return ret;
1428 	}
1429 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1430 	return 0;
1431 }
1432 
1433 static
1434 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1435 				  int num_downstream, u8 *ksv_fifo)
1436 {
1437 	struct intel_display *display = to_intel_display(dig_port);
1438 	int ret;
1439 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1440 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1441 	if (ret) {
1442 		drm_dbg_kms(display->drm,
1443 			    "Read ksv fifo over DDC failed (%d)\n", ret);
1444 		return ret;
1445 	}
1446 	return 0;
1447 }
1448 
1449 static
1450 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1451 				      int i, u32 *part)
1452 {
1453 	struct intel_display *display = to_intel_display(dig_port);
1454 	int ret;
1455 
1456 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1457 		return -EINVAL;
1458 
1459 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1460 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1461 	if (ret)
1462 		drm_dbg_kms(display->drm,
1463 			    "Read V'[%d] over DDC failed (%d)\n",
1464 			    i, ret);
1465 	return ret;
1466 }
1467 
1468 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1469 					   enum transcoder cpu_transcoder)
1470 {
1471 	struct intel_display *display = to_intel_display(connector);
1472 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1473 	struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1474 	u32 scanline;
1475 	int ret;
1476 
1477 	for (;;) {
1478 		scanline = intel_de_read(display,
1479 					 PIPEDSL(display, crtc->pipe));
1480 		if (scanline > 100 && scanline < 200)
1481 			break;
1482 		usleep_range(25, 50);
1483 	}
1484 
1485 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1486 					 false, TRANS_DDI_HDCP_SIGNALLING);
1487 	if (ret) {
1488 		drm_err(display->drm,
1489 			"Disable HDCP signalling failed (%d)\n", ret);
1490 		return ret;
1491 	}
1492 
1493 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1494 					 true, TRANS_DDI_HDCP_SIGNALLING);
1495 	if (ret) {
1496 		drm_err(display->drm,
1497 			"Enable HDCP signalling failed (%d)\n", ret);
1498 		return ret;
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 static
1505 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1506 				      enum transcoder cpu_transcoder,
1507 				      bool enable)
1508 {
1509 	struct intel_display *display = to_intel_display(dig_port);
1510 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1511 	struct intel_connector *connector = hdmi->attached_connector;
1512 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1513 	int ret;
1514 
1515 	if (!enable)
1516 		usleep_range(6, 60); /* Bspec says >= 6us */
1517 
1518 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1519 					 cpu_transcoder, enable,
1520 					 TRANS_DDI_HDCP_SIGNALLING);
1521 	if (ret) {
1522 		drm_err(display->drm, "%s HDCP signalling failed (%d)\n",
1523 			enable ? "Enable" : "Disable", ret);
1524 		return ret;
1525 	}
1526 
1527 	/*
1528 	 * WA: To fix incorrect positioning of the window of
1529 	 * opportunity and enc_en signalling in KABYLAKE.
1530 	 */
1531 	if (IS_KABYLAKE(dev_priv) && enable)
1532 		return kbl_repositioning_enc_en_signal(connector,
1533 						       cpu_transcoder);
1534 
1535 	return 0;
1536 }
1537 
1538 static
1539 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1540 				     struct intel_connector *connector)
1541 {
1542 	struct intel_display *display = to_intel_display(dig_port);
1543 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1544 	enum port port = dig_port->base.port;
1545 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1546 	int ret;
1547 	union {
1548 		u32 reg;
1549 		u8 shim[DRM_HDCP_RI_LEN];
1550 	} ri;
1551 
1552 	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1553 	if (ret)
1554 		return false;
1555 
1556 	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1557 
1558 	/* Wait for Ri prime match */
1559 	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1560 		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1561 		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1562 		drm_dbg_kms(display->drm, "Ri' mismatch detected (%x)\n",
1563 			    intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1564 							    port)));
1565 		return false;
1566 	}
1567 	return true;
1568 }
1569 
1570 static
1571 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1572 				struct intel_connector *connector)
1573 {
1574 	struct intel_display *display = to_intel_display(dig_port);
1575 	int retry;
1576 
1577 	for (retry = 0; retry < 3; retry++)
1578 		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1579 			return true;
1580 
1581 	drm_err(display->drm, "Link check failed\n");
1582 	return false;
1583 }
1584 
1585 struct hdcp2_hdmi_msg_timeout {
1586 	u8 msg_id;
1587 	u16 timeout;
1588 };
1589 
1590 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1591 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1592 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1593 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1594 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1595 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1596 };
1597 
1598 static
1599 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1600 				    u8 *rx_status)
1601 {
1602 	return intel_hdmi_hdcp_read(dig_port,
1603 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1604 				    rx_status,
1605 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1606 }
1607 
1608 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1609 {
1610 	int i;
1611 
1612 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1613 		if (is_paired)
1614 			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1615 		else
1616 			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1617 	}
1618 
1619 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1620 		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1621 			return hdcp2_msg_timeout[i].timeout;
1622 	}
1623 
1624 	return -EINVAL;
1625 }
1626 
1627 static int
1628 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1629 			      u8 msg_id, bool *msg_ready,
1630 			      ssize_t *msg_sz)
1631 {
1632 	struct intel_display *display = to_intel_display(dig_port);
1633 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1634 	int ret;
1635 
1636 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1637 	if (ret < 0) {
1638 		drm_dbg_kms(display->drm, "rx_status read failed. Err %d\n",
1639 			    ret);
1640 		return ret;
1641 	}
1642 
1643 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1644 		  rx_status[0]);
1645 
1646 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1647 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1648 			     *msg_sz);
1649 	else
1650 		*msg_ready = *msg_sz;
1651 
1652 	return 0;
1653 }
1654 
1655 static ssize_t
1656 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1657 			      u8 msg_id, bool paired)
1658 {
1659 	struct intel_display *display = to_intel_display(dig_port);
1660 	bool msg_ready = false;
1661 	int timeout, ret;
1662 	ssize_t msg_sz = 0;
1663 
1664 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1665 	if (timeout < 0)
1666 		return timeout;
1667 
1668 	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1669 							     msg_id, &msg_ready,
1670 							     &msg_sz),
1671 			 !ret && msg_ready && msg_sz, timeout * 1000,
1672 			 1000, 5 * 1000);
1673 	if (ret)
1674 		drm_dbg_kms(display->drm,
1675 			    "msg_id: %d, ret: %d, timeout: %d\n",
1676 			    msg_id, ret, timeout);
1677 
1678 	return ret ? ret : msg_sz;
1679 }
1680 
1681 static
1682 int intel_hdmi_hdcp2_write_msg(struct intel_connector *connector,
1683 			       void *buf, size_t size)
1684 {
1685 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1686 	unsigned int offset;
1687 
1688 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1689 	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1690 }
1691 
1692 static
1693 int intel_hdmi_hdcp2_read_msg(struct intel_connector *connector,
1694 			      u8 msg_id, void *buf, size_t size)
1695 {
1696 	struct intel_display *display = to_intel_display(connector);
1697 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1698 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1699 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1700 	unsigned int offset;
1701 	ssize_t ret;
1702 
1703 	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1704 					    hdcp->is_paired);
1705 	if (ret < 0)
1706 		return ret;
1707 
1708 	/*
1709 	 * Available msg size should be equal to or lesser than the
1710 	 * available buffer.
1711 	 */
1712 	if (ret > size) {
1713 		drm_dbg_kms(display->drm,
1714 			    "msg_sz(%zd) is more than exp size(%zu)\n",
1715 			    ret, size);
1716 		return -EINVAL;
1717 	}
1718 
1719 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1720 	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1721 	if (ret)
1722 		drm_dbg_kms(display->drm, "Failed to read msg_id: %d(%zd)\n",
1723 			    msg_id, ret);
1724 
1725 	return ret;
1726 }
1727 
1728 static
1729 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1730 				struct intel_connector *connector)
1731 {
1732 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1733 	int ret;
1734 
1735 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1736 	if (ret)
1737 		return ret;
1738 
1739 	/*
1740 	 * Re-auth request and Link Integrity Failures are represented by
1741 	 * same bit. i.e reauth_req.
1742 	 */
1743 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1744 		ret = HDCP_REAUTH_REQUEST;
1745 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1746 		ret = HDCP_TOPOLOGY_CHANGE;
1747 
1748 	return ret;
1749 }
1750 
1751 static
1752 int intel_hdmi_hdcp2_get_capability(struct intel_connector *connector,
1753 				    bool *capable)
1754 {
1755 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1756 	u8 hdcp2_version;
1757 	int ret;
1758 
1759 	*capable = false;
1760 	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1761 				   &hdcp2_version, sizeof(hdcp2_version));
1762 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1763 		*capable = true;
1764 
1765 	return ret;
1766 }
1767 
1768 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1769 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1770 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1771 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1772 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1773 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1774 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1775 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1776 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1777 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1778 	.check_link = intel_hdmi_hdcp_check_link,
1779 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1780 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1781 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1782 	.hdcp_2_2_get_capability = intel_hdmi_hdcp2_get_capability,
1783 	.protocol = HDCP_PROTOCOL_HDMI,
1784 };
1785 
1786 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1787 {
1788 	struct intel_display *display = to_intel_display(encoder);
1789 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1790 	int max_tmds_clock, vbt_max_tmds_clock;
1791 
1792 	if (DISPLAY_VER(display) >= 13 || IS_ALDERLAKE_S(dev_priv))
1793 		max_tmds_clock = 600000;
1794 	else if (DISPLAY_VER(display) >= 10)
1795 		max_tmds_clock = 594000;
1796 	else if (DISPLAY_VER(display) >= 8 || IS_HASWELL(dev_priv))
1797 		max_tmds_clock = 300000;
1798 	else if (DISPLAY_VER(display) >= 5)
1799 		max_tmds_clock = 225000;
1800 	else
1801 		max_tmds_clock = 165000;
1802 
1803 	vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata);
1804 	if (vbt_max_tmds_clock)
1805 		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1806 
1807 	return max_tmds_clock;
1808 }
1809 
1810 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1811 				const struct drm_connector_state *conn_state)
1812 {
1813 	struct intel_connector *connector = hdmi->attached_connector;
1814 
1815 	return connector->base.display_info.is_hdmi &&
1816 		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1817 }
1818 
1819 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1820 {
1821 	return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1822 }
1823 
1824 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1825 				 bool respect_downstream_limits,
1826 				 bool has_hdmi_sink)
1827 {
1828 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1829 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1830 
1831 	if (respect_downstream_limits) {
1832 		struct intel_connector *connector = hdmi->attached_connector;
1833 		const struct drm_display_info *info = &connector->base.display_info;
1834 
1835 		if (hdmi->dp_dual_mode.max_tmds_clock)
1836 			max_tmds_clock = min(max_tmds_clock,
1837 					     hdmi->dp_dual_mode.max_tmds_clock);
1838 
1839 		if (info->max_tmds_clock)
1840 			max_tmds_clock = min(max_tmds_clock,
1841 					     info->max_tmds_clock);
1842 		else if (!has_hdmi_sink)
1843 			max_tmds_clock = min(max_tmds_clock, 165000);
1844 	}
1845 
1846 	return max_tmds_clock;
1847 }
1848 
1849 static enum drm_mode_status
1850 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1851 		      int clock, bool respect_downstream_limits,
1852 		      bool has_hdmi_sink)
1853 {
1854 	struct intel_display *display = to_intel_display(hdmi);
1855 	struct drm_i915_private *dev_priv = to_i915(display->drm);
1856 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1857 
1858 	if (clock < 25000)
1859 		return MODE_CLOCK_LOW;
1860 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1861 					  has_hdmi_sink))
1862 		return MODE_CLOCK_HIGH;
1863 
1864 	/* GLK DPLL can't generate 446-480 MHz */
1865 	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1866 		return MODE_CLOCK_RANGE;
1867 
1868 	/* BXT/GLK DPLL can't generate 223-240 MHz */
1869 	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1870 	    clock > 223333 && clock < 240000)
1871 		return MODE_CLOCK_RANGE;
1872 
1873 	/* CHV DPLL can't generate 216-240 MHz */
1874 	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1875 		return MODE_CLOCK_RANGE;
1876 
1877 	/* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1878 	if (intel_encoder_is_combo(encoder) && clock > 500000 && clock < 533200)
1879 		return MODE_CLOCK_RANGE;
1880 
1881 	/* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1882 	if (intel_encoder_is_tc(encoder) && clock > 500000 && clock < 532800)
1883 		return MODE_CLOCK_RANGE;
1884 
1885 	/*
1886 	 * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1887 	 * set of link rates.
1888 	 *
1889 	 * FIXME: We will hopefully get an algorithmic way of programming
1890 	 * the MPLLB for HDMI in the future.
1891 	 */
1892 	if (DISPLAY_VER(display) >= 14)
1893 		return intel_cx0_phy_check_hdmi_link_rate(hdmi, clock);
1894 	else if (IS_DG2(dev_priv))
1895 		return intel_snps_phy_check_hdmi_link_rate(clock);
1896 
1897 	return MODE_OK;
1898 }
1899 
1900 int intel_hdmi_tmds_clock(int clock, int bpc,
1901 			  enum intel_output_format sink_format)
1902 {
1903 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
1904 	if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1905 		clock /= 2;
1906 
1907 	/*
1908 	 * Need to adjust the port link by:
1909 	 *  1.5x for 12bpc
1910 	 *  1.25x for 10bpc
1911 	 */
1912 	return DIV_ROUND_CLOSEST(clock * bpc, 8);
1913 }
1914 
1915 static bool intel_hdmi_source_bpc_possible(struct intel_display *display, int bpc)
1916 {
1917 	switch (bpc) {
1918 	case 12:
1919 		return !HAS_GMCH(display);
1920 	case 10:
1921 		return DISPLAY_VER(display) >= 11;
1922 	case 8:
1923 		return true;
1924 	default:
1925 		MISSING_CASE(bpc);
1926 		return false;
1927 	}
1928 }
1929 
1930 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1931 					 int bpc, bool has_hdmi_sink,
1932 					 enum intel_output_format sink_format)
1933 {
1934 	const struct drm_display_info *info = &connector->display_info;
1935 	const struct drm_hdmi_info *hdmi = &info->hdmi;
1936 
1937 	switch (bpc) {
1938 	case 12:
1939 		if (!has_hdmi_sink)
1940 			return false;
1941 
1942 		if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1943 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1944 		else
1945 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1946 	case 10:
1947 		if (!has_hdmi_sink)
1948 			return false;
1949 
1950 		if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1951 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1952 		else
1953 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1954 	case 8:
1955 		return true;
1956 	default:
1957 		MISSING_CASE(bpc);
1958 		return false;
1959 	}
1960 }
1961 
1962 static enum drm_mode_status
1963 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1964 			    bool has_hdmi_sink,
1965 			    enum intel_output_format sink_format)
1966 {
1967 	struct intel_display *display = to_intel_display(connector->dev);
1968 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1969 	enum drm_mode_status status = MODE_OK;
1970 	int bpc;
1971 
1972 	/*
1973 	 * Try all color depths since valid port clock range
1974 	 * can have holes. Any mode that can be used with at
1975 	 * least one color depth is accepted.
1976 	 */
1977 	for (bpc = 12; bpc >= 8; bpc -= 2) {
1978 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format);
1979 
1980 		if (!intel_hdmi_source_bpc_possible(display, bpc))
1981 			continue;
1982 
1983 		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, sink_format))
1984 			continue;
1985 
1986 		status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
1987 		if (status == MODE_OK)
1988 			return MODE_OK;
1989 	}
1990 
1991 	/* can never happen */
1992 	drm_WARN_ON(display->drm, status == MODE_OK);
1993 
1994 	return status;
1995 }
1996 
1997 static enum drm_mode_status
1998 intel_hdmi_mode_valid(struct drm_connector *connector,
1999 		      struct drm_display_mode *mode)
2000 {
2001 	struct intel_display *display = to_intel_display(connector->dev);
2002 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2003 	struct drm_i915_private *dev_priv = to_i915(display->drm);
2004 	enum drm_mode_status status;
2005 	int clock = mode->clock;
2006 	int max_dotclk = to_i915(connector->dev)->display.cdclk.max_dotclk_freq;
2007 	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
2008 	bool ycbcr_420_only;
2009 	enum intel_output_format sink_format;
2010 
2011 	status = intel_cpu_transcoder_mode_valid(dev_priv, mode);
2012 	if (status != MODE_OK)
2013 		return status;
2014 
2015 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
2016 		clock *= 2;
2017 
2018 	if (clock > max_dotclk)
2019 		return MODE_CLOCK_HIGH;
2020 
2021 	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
2022 		if (!has_hdmi_sink)
2023 			return MODE_CLOCK_LOW;
2024 		clock *= 2;
2025 	}
2026 
2027 	/*
2028 	 * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
2029 	 * enumerated only if FRL is supported. Current platforms do not support
2030 	 * FRL so prune the higher resolution modes that require doctclock more
2031 	 * than 600MHz.
2032 	 */
2033 	if (clock > 600000)
2034 		return MODE_CLOCK_HIGH;
2035 
2036 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
2037 
2038 	if (ycbcr_420_only)
2039 		sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2040 	else
2041 		sink_format = INTEL_OUTPUT_FORMAT_RGB;
2042 
2043 	status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2044 	if (status != MODE_OK) {
2045 		if (ycbcr_420_only ||
2046 		    !connector->ycbcr_420_allowed ||
2047 		    !drm_mode_is_420_also(&connector->display_info, mode))
2048 			return status;
2049 
2050 		sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2051 		status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2052 		if (status != MODE_OK)
2053 			return status;
2054 	}
2055 
2056 	return intel_mode_valid_max_plane_size(dev_priv, mode, false);
2057 }
2058 
2059 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2060 			     int bpc, bool has_hdmi_sink)
2061 {
2062 	struct drm_atomic_state *state = crtc_state->uapi.state;
2063 	struct drm_connector_state *connector_state;
2064 	struct drm_connector *connector;
2065 	int i;
2066 
2067 	for_each_new_connector_in_state(state, connector, connector_state, i) {
2068 		if (connector_state->crtc != crtc_state->uapi.crtc)
2069 			continue;
2070 
2071 		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink,
2072 						  crtc_state->sink_format))
2073 			return false;
2074 	}
2075 
2076 	return true;
2077 }
2078 
2079 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
2080 {
2081 	struct intel_display *display = to_intel_display(crtc_state);
2082 	const struct drm_display_mode *adjusted_mode =
2083 		&crtc_state->hw.adjusted_mode;
2084 
2085 	if (!intel_hdmi_source_bpc_possible(display, bpc))
2086 		return false;
2087 
2088 	/* Display Wa_1405510057:icl,ehl */
2089 	if (intel_hdmi_is_ycbcr420(crtc_state) &&
2090 	    bpc == 10 && DISPLAY_VER(display) == 11 &&
2091 	    (adjusted_mode->crtc_hblank_end -
2092 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2093 		return false;
2094 
2095 	return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink);
2096 }
2097 
2098 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2099 				  struct intel_crtc_state *crtc_state,
2100 				  int clock, bool respect_downstream_limits)
2101 {
2102 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2103 	int bpc;
2104 
2105 	/*
2106 	 * pipe_bpp could already be below 8bpc due to FDI
2107 	 * bandwidth constraints. HDMI minimum is 8bpc however.
2108 	 */
2109 	bpc = max(crtc_state->pipe_bpp / 3, 8);
2110 
2111 	/*
2112 	 * We will never exceed downstream TMDS clock limits while
2113 	 * attempting deep color. If the user insists on forcing an
2114 	 * out of spec mode they will have to be satisfied with 8bpc.
2115 	 */
2116 	if (!respect_downstream_limits)
2117 		bpc = 8;
2118 
2119 	for (; bpc >= 8; bpc -= 2) {
2120 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc,
2121 						       crtc_state->sink_format);
2122 
2123 		if (hdmi_bpc_possible(crtc_state, bpc) &&
2124 		    hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2125 					  respect_downstream_limits,
2126 					  crtc_state->has_hdmi_sink) == MODE_OK)
2127 			return bpc;
2128 	}
2129 
2130 	return -EINVAL;
2131 }
2132 
2133 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2134 				    struct intel_crtc_state *crtc_state,
2135 				    bool respect_downstream_limits)
2136 {
2137 	struct intel_display *display = to_intel_display(encoder);
2138 	const struct drm_display_mode *adjusted_mode =
2139 		&crtc_state->hw.adjusted_mode;
2140 	int bpc, clock = adjusted_mode->crtc_clock;
2141 
2142 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2143 		clock *= 2;
2144 
2145 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2146 				     respect_downstream_limits);
2147 	if (bpc < 0)
2148 		return bpc;
2149 
2150 	crtc_state->port_clock =
2151 		intel_hdmi_tmds_clock(clock, bpc, crtc_state->sink_format);
2152 
2153 	/*
2154 	 * pipe_bpp could already be below 8bpc due to
2155 	 * FDI bandwidth constraints. We shouldn't bump it
2156 	 * back up to the HDMI minimum 8bpc in that case.
2157 	 */
2158 	crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
2159 
2160 	drm_dbg_kms(display->drm,
2161 		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2162 		    bpc, crtc_state->pipe_bpp);
2163 
2164 	return 0;
2165 }
2166 
2167 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2168 				    const struct drm_connector_state *conn_state)
2169 {
2170 	const struct intel_digital_connector_state *intel_conn_state =
2171 		to_intel_digital_connector_state(conn_state);
2172 	const struct drm_display_mode *adjusted_mode =
2173 		&crtc_state->hw.adjusted_mode;
2174 
2175 	/*
2176 	 * Our YCbCr output is always limited range.
2177 	 * crtc_state->limited_color_range only applies to RGB,
2178 	 * and it must never be set for YCbCr or we risk setting
2179 	 * some conflicting bits in TRANSCONF which will mess up
2180 	 * the colors on the monitor.
2181 	 */
2182 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2183 		return false;
2184 
2185 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2186 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2187 		return crtc_state->has_hdmi_sink &&
2188 			drm_default_rgb_quant_range(adjusted_mode) ==
2189 			HDMI_QUANTIZATION_RANGE_LIMITED;
2190 	} else {
2191 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2192 	}
2193 }
2194 
2195 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2196 				 const struct intel_crtc_state *crtc_state,
2197 				 const struct drm_connector_state *conn_state)
2198 {
2199 	struct drm_connector *connector = conn_state->connector;
2200 	const struct intel_digital_connector_state *intel_conn_state =
2201 		to_intel_digital_connector_state(conn_state);
2202 
2203 	if (!crtc_state->has_hdmi_sink)
2204 		return false;
2205 
2206 	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2207 		return connector->display_info.has_audio;
2208 	else
2209 		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2210 }
2211 
2212 static enum intel_output_format
2213 intel_hdmi_sink_format(const struct intel_crtc_state *crtc_state,
2214 		       struct intel_connector *connector,
2215 		       bool ycbcr_420_output)
2216 {
2217 	if (!crtc_state->has_hdmi_sink)
2218 		return INTEL_OUTPUT_FORMAT_RGB;
2219 
2220 	if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2221 		return INTEL_OUTPUT_FORMAT_YCBCR420;
2222 	else
2223 		return INTEL_OUTPUT_FORMAT_RGB;
2224 }
2225 
2226 static enum intel_output_format
2227 intel_hdmi_output_format(const struct intel_crtc_state *crtc_state)
2228 {
2229 	return crtc_state->sink_format;
2230 }
2231 
2232 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2233 					    struct intel_crtc_state *crtc_state,
2234 					    const struct drm_connector_state *conn_state,
2235 					    bool respect_downstream_limits)
2236 {
2237 	struct intel_display *display = to_intel_display(encoder);
2238 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
2239 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2240 	const struct drm_display_info *info = &connector->base.display_info;
2241 	bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2242 	int ret;
2243 
2244 	crtc_state->sink_format =
2245 		intel_hdmi_sink_format(crtc_state, connector, ycbcr_420_only);
2246 
2247 	if (ycbcr_420_only && crtc_state->sink_format != INTEL_OUTPUT_FORMAT_YCBCR420) {
2248 		drm_dbg_kms(display->drm,
2249 			    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2250 		crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB;
2251 	}
2252 
2253 	crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2254 	ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2255 	if (ret) {
2256 		if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
2257 		    !crtc_state->has_hdmi_sink ||
2258 		    !connector->base.ycbcr_420_allowed ||
2259 		    !drm_mode_is_420_also(info, adjusted_mode))
2260 			return ret;
2261 
2262 		crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2263 		crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2264 		ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2265 	}
2266 
2267 	return ret;
2268 }
2269 
2270 static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state)
2271 {
2272 	return crtc_state->uapi.encoder_mask &&
2273 		!is_power_of_2(crtc_state->uapi.encoder_mask);
2274 }
2275 
2276 static bool source_supports_scrambling(struct intel_encoder *encoder)
2277 {
2278 	/*
2279 	 * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and
2280 	 * scrambling is supported.
2281 	 * But there seem to be cases where certain platforms that support
2282 	 * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is
2283 	 * capped by VBT to less than 340MHz.
2284 	 *
2285 	 * In such cases when an HDMI2.0 sink is connected, it creates a
2286 	 * problem : the platform and the sink both support scrambling but the
2287 	 * HDMI 1.4 retimer chip doesn't.
2288 	 *
2289 	 * So go for scrambling, based on the max tmds clock taking into account,
2290 	 * restrictions coming from VBT.
2291 	 */
2292 	return intel_hdmi_source_max_tmds_clock(encoder) > 340000;
2293 }
2294 
2295 bool intel_hdmi_compute_has_hdmi_sink(struct intel_encoder *encoder,
2296 				      const struct intel_crtc_state *crtc_state,
2297 				      const struct drm_connector_state *conn_state)
2298 {
2299 	struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder);
2300 
2301 	return intel_has_hdmi_sink(hdmi, conn_state) &&
2302 		!intel_hdmi_is_cloned(crtc_state);
2303 }
2304 
2305 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2306 			      struct intel_crtc_state *pipe_config,
2307 			      struct drm_connector_state *conn_state)
2308 {
2309 	struct intel_display *display = to_intel_display(encoder);
2310 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2311 	struct drm_connector *connector = conn_state->connector;
2312 	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2313 	int ret;
2314 
2315 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2316 		return -EINVAL;
2317 
2318 	if (!connector->interlace_allowed &&
2319 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2320 		return -EINVAL;
2321 
2322 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2323 
2324 	if (pipe_config->has_hdmi_sink)
2325 		pipe_config->has_infoframe = true;
2326 
2327 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2328 		pipe_config->pixel_multiplier = 2;
2329 
2330 	pipe_config->has_audio =
2331 		intel_hdmi_has_audio(encoder, pipe_config, conn_state) &&
2332 		intel_audio_compute_config(encoder, pipe_config, conn_state);
2333 
2334 	/*
2335 	 * Try to respect downstream TMDS clock limits first, if
2336 	 * that fails assume the user might know something we don't.
2337 	 */
2338 	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2339 	if (ret)
2340 		ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2341 	if (ret) {
2342 		drm_dbg_kms(display->drm,
2343 			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2344 			    pipe_config->hw.adjusted_mode.crtc_clock);
2345 		return ret;
2346 	}
2347 
2348 	if (intel_hdmi_is_ycbcr420(pipe_config)) {
2349 		ret = intel_panel_fitting(pipe_config, conn_state);
2350 		if (ret)
2351 			return ret;
2352 	}
2353 
2354 	pipe_config->limited_color_range =
2355 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2356 
2357 	if (conn_state->picture_aspect_ratio)
2358 		adjusted_mode->picture_aspect_ratio =
2359 			conn_state->picture_aspect_ratio;
2360 
2361 	pipe_config->lane_count = 4;
2362 
2363 	if (scdc->scrambling.supported && source_supports_scrambling(encoder)) {
2364 		if (scdc->scrambling.low_rates)
2365 			pipe_config->hdmi_scrambling = true;
2366 
2367 		if (pipe_config->port_clock > 340000) {
2368 			pipe_config->hdmi_scrambling = true;
2369 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2370 		}
2371 	}
2372 
2373 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2374 					 conn_state);
2375 
2376 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2377 		drm_dbg_kms(display->drm, "bad AVI infoframe\n");
2378 		return -EINVAL;
2379 	}
2380 
2381 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2382 		drm_dbg_kms(display->drm, "bad SPD infoframe\n");
2383 		return -EINVAL;
2384 	}
2385 
2386 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2387 		drm_dbg_kms(display->drm, "bad HDMI infoframe\n");
2388 		return -EINVAL;
2389 	}
2390 
2391 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2392 		drm_dbg_kms(display->drm, "bad DRM infoframe\n");
2393 		return -EINVAL;
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2400 {
2401 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2402 
2403 	/*
2404 	 * Give a hand to buggy BIOSen which forget to turn
2405 	 * the TMDS output buffers back on after a reboot.
2406 	 */
2407 	intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2408 }
2409 
2410 static void
2411 intel_hdmi_unset_edid(struct drm_connector *connector)
2412 {
2413 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2414 
2415 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2416 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2417 
2418 	drm_edid_free(to_intel_connector(connector)->detect_edid);
2419 	to_intel_connector(connector)->detect_edid = NULL;
2420 }
2421 
2422 static void
2423 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector)
2424 {
2425 	struct intel_display *display = to_intel_display(connector->dev);
2426 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2427 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2428 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
2429 	struct i2c_adapter *ddc = connector->ddc;
2430 	enum drm_dp_dual_mode_type type;
2431 
2432 	type = drm_dp_dual_mode_detect(display->drm, ddc);
2433 
2434 	/*
2435 	 * Type 1 DVI adaptors are not required to implement any
2436 	 * registers, so we can't always detect their presence.
2437 	 * Ideally we should be able to check the state of the
2438 	 * CONFIG1 pin, but no such luck on our hardware.
2439 	 *
2440 	 * The only method left to us is to check the VBT to see
2441 	 * if the port is a dual mode capable DP port.
2442 	 */
2443 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2444 		if (!connector->force &&
2445 		    intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2446 			drm_dbg_kms(display->drm,
2447 				    "Assuming DP dual mode adaptor presence based on VBT\n");
2448 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2449 		} else {
2450 			type = DRM_DP_DUAL_MODE_NONE;
2451 		}
2452 	}
2453 
2454 	if (type == DRM_DP_DUAL_MODE_NONE)
2455 		return;
2456 
2457 	hdmi->dp_dual_mode.type = type;
2458 	hdmi->dp_dual_mode.max_tmds_clock =
2459 		drm_dp_dual_mode_max_tmds_clock(display->drm, type, ddc);
2460 
2461 	drm_dbg_kms(display->drm,
2462 		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2463 		    drm_dp_get_dual_mode_type_name(type),
2464 		    hdmi->dp_dual_mode.max_tmds_clock);
2465 
2466 	/* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2467 	if ((DISPLAY_VER(display) >= 8 || IS_HASWELL(dev_priv)) &&
2468 	    !intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2469 		drm_dbg_kms(display->drm,
2470 			    "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2471 		hdmi->dp_dual_mode.max_tmds_clock = 0;
2472 	}
2473 }
2474 
2475 static bool
2476 intel_hdmi_set_edid(struct drm_connector *connector)
2477 {
2478 	struct intel_display *display = to_intel_display(connector->dev);
2479 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2480 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2481 	struct i2c_adapter *ddc = connector->ddc;
2482 	intel_wakeref_t wakeref;
2483 	const struct drm_edid *drm_edid;
2484 	bool connected = false;
2485 
2486 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2487 
2488 	drm_edid = drm_edid_read_ddc(connector, ddc);
2489 
2490 	if (!drm_edid && !intel_gmbus_is_forced_bit(ddc)) {
2491 		drm_dbg_kms(display->drm,
2492 			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2493 		intel_gmbus_force_bit(ddc, true);
2494 		drm_edid = drm_edid_read_ddc(connector, ddc);
2495 		intel_gmbus_force_bit(ddc, false);
2496 	}
2497 
2498 	/* Below we depend on display info having been updated */
2499 	drm_edid_connector_update(connector, drm_edid);
2500 
2501 	to_intel_connector(connector)->detect_edid = drm_edid;
2502 
2503 	if (drm_edid_is_digital(drm_edid)) {
2504 		intel_hdmi_dp_dual_mode_detect(connector);
2505 
2506 		connected = true;
2507 	}
2508 
2509 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2510 
2511 	cec_notifier_set_phys_addr(intel_hdmi->cec_notifier,
2512 				   connector->display_info.source_physical_address);
2513 
2514 	return connected;
2515 }
2516 
2517 static enum drm_connector_status
2518 intel_hdmi_detect(struct drm_connector *connector, bool force)
2519 {
2520 	struct intel_display *display = to_intel_display(connector->dev);
2521 	enum drm_connector_status status = connector_status_disconnected;
2522 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2523 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2524 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2525 	intel_wakeref_t wakeref;
2526 
2527 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2528 		    connector->base.id, connector->name);
2529 
2530 	if (!intel_display_device_enabled(dev_priv))
2531 		return connector_status_disconnected;
2532 
2533 	if (!intel_display_driver_check_access(dev_priv))
2534 		return connector->status;
2535 
2536 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2537 
2538 	if (DISPLAY_VER(display) >= 11 &&
2539 	    !intel_digital_port_connected(encoder))
2540 		goto out;
2541 
2542 	intel_hdmi_unset_edid(connector);
2543 
2544 	if (intel_hdmi_set_edid(connector))
2545 		status = connector_status_connected;
2546 
2547 out:
2548 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2549 
2550 	if (status != connector_status_connected)
2551 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2552 
2553 	return status;
2554 }
2555 
2556 static void
2557 intel_hdmi_force(struct drm_connector *connector)
2558 {
2559 	struct intel_display *display = to_intel_display(connector->dev);
2560 	struct drm_i915_private *i915 = to_i915(connector->dev);
2561 
2562 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2563 		    connector->base.id, connector->name);
2564 
2565 	if (!intel_display_driver_check_access(i915))
2566 		return;
2567 
2568 	intel_hdmi_unset_edid(connector);
2569 
2570 	if (connector->status != connector_status_connected)
2571 		return;
2572 
2573 	intel_hdmi_set_edid(connector);
2574 }
2575 
2576 static int intel_hdmi_get_modes(struct drm_connector *connector)
2577 {
2578 	/* drm_edid_connector_update() done in ->detect() or ->force() */
2579 	return drm_edid_connector_add_modes(connector);
2580 }
2581 
2582 static int
2583 intel_hdmi_connector_register(struct drm_connector *connector)
2584 {
2585 	int ret;
2586 
2587 	ret = intel_connector_register(connector);
2588 	if (ret)
2589 		return ret;
2590 
2591 	return ret;
2592 }
2593 
2594 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2595 {
2596 	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2597 
2598 	cec_notifier_conn_unregister(n);
2599 
2600 	intel_connector_unregister(connector);
2601 }
2602 
2603 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2604 	.detect = intel_hdmi_detect,
2605 	.force = intel_hdmi_force,
2606 	.fill_modes = drm_helper_probe_single_connector_modes,
2607 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2608 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2609 	.late_register = intel_hdmi_connector_register,
2610 	.early_unregister = intel_hdmi_connector_unregister,
2611 	.destroy = intel_connector_destroy,
2612 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2613 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2614 };
2615 
2616 static int intel_hdmi_connector_atomic_check(struct drm_connector *connector,
2617 					     struct drm_atomic_state *state)
2618 {
2619 	struct intel_display *display = to_intel_display(connector->dev);
2620 
2621 	if (HAS_DDI(display))
2622 		return intel_digital_connector_atomic_check(connector, state);
2623 	else
2624 		return g4x_hdmi_connector_atomic_check(connector, state);
2625 }
2626 
2627 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2628 	.get_modes = intel_hdmi_get_modes,
2629 	.mode_valid = intel_hdmi_mode_valid,
2630 	.atomic_check = intel_hdmi_connector_atomic_check,
2631 };
2632 
2633 static void
2634 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2635 {
2636 	struct intel_display *display = to_intel_display(intel_hdmi);
2637 
2638 	intel_attach_force_audio_property(connector);
2639 	intel_attach_broadcast_rgb_property(connector);
2640 	intel_attach_aspect_ratio_property(connector);
2641 
2642 	intel_attach_hdmi_colorspace_property(connector);
2643 	drm_connector_attach_content_type_property(connector);
2644 
2645 	if (DISPLAY_VER(display) >= 10)
2646 		drm_connector_attach_hdr_output_metadata_property(connector);
2647 
2648 	if (!HAS_GMCH(display))
2649 		drm_connector_attach_max_bpc_property(connector, 8, 12);
2650 }
2651 
2652 /*
2653  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2654  * @encoder: intel_encoder
2655  * @connector: drm_connector
2656  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2657  *  or reset the high tmds clock ratio for scrambling
2658  * @scrambling: bool to Indicate if the function needs to set or reset
2659  *  sink scrambling
2660  *
2661  * This function handles scrambling on HDMI 2.0 capable sinks.
2662  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2663  * it enables scrambling. This should be called before enabling the HDMI
2664  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2665  * detect a scrambled clock within 100 ms.
2666  *
2667  * Returns:
2668  * True on success, false on failure.
2669  */
2670 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2671 				       struct drm_connector *connector,
2672 				       bool high_tmds_clock_ratio,
2673 				       bool scrambling)
2674 {
2675 	struct intel_display *display = to_intel_display(encoder);
2676 	struct drm_scrambling *sink_scrambling =
2677 		&connector->display_info.hdmi.scdc.scrambling;
2678 
2679 	if (!sink_scrambling->supported)
2680 		return true;
2681 
2682 	drm_dbg_kms(display->drm,
2683 		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2684 		    connector->base.id, connector->name,
2685 		    str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2686 
2687 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2688 	return drm_scdc_set_high_tmds_clock_ratio(connector, high_tmds_clock_ratio) &&
2689 		drm_scdc_set_scrambling(connector, scrambling);
2690 }
2691 
2692 static u8 chv_encoder_to_ddc_pin(struct intel_encoder *encoder)
2693 {
2694 	enum port port = encoder->port;
2695 	u8 ddc_pin;
2696 
2697 	switch (port) {
2698 	case PORT_B:
2699 		ddc_pin = GMBUS_PIN_DPB;
2700 		break;
2701 	case PORT_C:
2702 		ddc_pin = GMBUS_PIN_DPC;
2703 		break;
2704 	case PORT_D:
2705 		ddc_pin = GMBUS_PIN_DPD_CHV;
2706 		break;
2707 	default:
2708 		MISSING_CASE(port);
2709 		ddc_pin = GMBUS_PIN_DPB;
2710 		break;
2711 	}
2712 	return ddc_pin;
2713 }
2714 
2715 static u8 bxt_encoder_to_ddc_pin(struct intel_encoder *encoder)
2716 {
2717 	enum port port = encoder->port;
2718 	u8 ddc_pin;
2719 
2720 	switch (port) {
2721 	case PORT_B:
2722 		ddc_pin = GMBUS_PIN_1_BXT;
2723 		break;
2724 	case PORT_C:
2725 		ddc_pin = GMBUS_PIN_2_BXT;
2726 		break;
2727 	default:
2728 		MISSING_CASE(port);
2729 		ddc_pin = GMBUS_PIN_1_BXT;
2730 		break;
2731 	}
2732 	return ddc_pin;
2733 }
2734 
2735 static u8 cnp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2736 {
2737 	enum port port = encoder->port;
2738 	u8 ddc_pin;
2739 
2740 	switch (port) {
2741 	case PORT_B:
2742 		ddc_pin = GMBUS_PIN_1_BXT;
2743 		break;
2744 	case PORT_C:
2745 		ddc_pin = GMBUS_PIN_2_BXT;
2746 		break;
2747 	case PORT_D:
2748 		ddc_pin = GMBUS_PIN_4_CNP;
2749 		break;
2750 	case PORT_F:
2751 		ddc_pin = GMBUS_PIN_3_BXT;
2752 		break;
2753 	default:
2754 		MISSING_CASE(port);
2755 		ddc_pin = GMBUS_PIN_1_BXT;
2756 		break;
2757 	}
2758 	return ddc_pin;
2759 }
2760 
2761 static u8 icl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2762 {
2763 	struct intel_display *display = to_intel_display(encoder);
2764 	enum port port = encoder->port;
2765 
2766 	if (intel_encoder_is_combo(encoder))
2767 		return GMBUS_PIN_1_BXT + port;
2768 	else if (intel_encoder_is_tc(encoder))
2769 		return GMBUS_PIN_9_TC1_ICP + intel_encoder_to_tc(encoder);
2770 
2771 	drm_WARN(display->drm, 1, "Unknown port:%c\n", port_name(port));
2772 	return GMBUS_PIN_2_BXT;
2773 }
2774 
2775 static u8 mcc_encoder_to_ddc_pin(struct intel_encoder *encoder)
2776 {
2777 	enum phy phy = intel_encoder_to_phy(encoder);
2778 	u8 ddc_pin;
2779 
2780 	switch (phy) {
2781 	case PHY_A:
2782 		ddc_pin = GMBUS_PIN_1_BXT;
2783 		break;
2784 	case PHY_B:
2785 		ddc_pin = GMBUS_PIN_2_BXT;
2786 		break;
2787 	case PHY_C:
2788 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2789 		break;
2790 	default:
2791 		MISSING_CASE(phy);
2792 		ddc_pin = GMBUS_PIN_1_BXT;
2793 		break;
2794 	}
2795 	return ddc_pin;
2796 }
2797 
2798 static u8 rkl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2799 {
2800 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2801 	enum phy phy = intel_encoder_to_phy(encoder);
2802 
2803 	WARN_ON(encoder->port == PORT_C);
2804 
2805 	/*
2806 	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2807 	 * final two outputs use type-c pins, even though they're actually
2808 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2809 	 * all outputs.
2810 	 */
2811 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2812 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2813 
2814 	return GMBUS_PIN_1_BXT + phy;
2815 }
2816 
2817 static u8 gen9bc_tgp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2818 {
2819 	struct intel_display *display = to_intel_display(encoder);
2820 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2821 	enum phy phy = intel_encoder_to_phy(encoder);
2822 
2823 	drm_WARN_ON(display->drm, encoder->port == PORT_A);
2824 
2825 	/*
2826 	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2827 	 * final two outputs use type-c pins, even though they're actually
2828 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2829 	 * all outputs.
2830 	 */
2831 	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2832 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2833 
2834 	return GMBUS_PIN_1_BXT + phy;
2835 }
2836 
2837 static u8 dg1_encoder_to_ddc_pin(struct intel_encoder *encoder)
2838 {
2839 	return intel_encoder_to_phy(encoder) + 1;
2840 }
2841 
2842 static u8 adls_encoder_to_ddc_pin(struct intel_encoder *encoder)
2843 {
2844 	enum phy phy = intel_encoder_to_phy(encoder);
2845 
2846 	WARN_ON(encoder->port == PORT_B || encoder->port == PORT_C);
2847 
2848 	/*
2849 	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2850 	 * except first combo output.
2851 	 */
2852 	if (phy == PHY_A)
2853 		return GMBUS_PIN_1_BXT;
2854 
2855 	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2856 }
2857 
2858 static u8 g4x_encoder_to_ddc_pin(struct intel_encoder *encoder)
2859 {
2860 	enum port port = encoder->port;
2861 	u8 ddc_pin;
2862 
2863 	switch (port) {
2864 	case PORT_B:
2865 		ddc_pin = GMBUS_PIN_DPB;
2866 		break;
2867 	case PORT_C:
2868 		ddc_pin = GMBUS_PIN_DPC;
2869 		break;
2870 	case PORT_D:
2871 		ddc_pin = GMBUS_PIN_DPD;
2872 		break;
2873 	default:
2874 		MISSING_CASE(port);
2875 		ddc_pin = GMBUS_PIN_DPB;
2876 		break;
2877 	}
2878 	return ddc_pin;
2879 }
2880 
2881 static u8 intel_hdmi_default_ddc_pin(struct intel_encoder *encoder)
2882 {
2883 	struct intel_display *display = to_intel_display(encoder);
2884 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2885 	u8 ddc_pin;
2886 
2887 	if (IS_ALDERLAKE_S(dev_priv))
2888 		ddc_pin = adls_encoder_to_ddc_pin(encoder);
2889 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2890 		ddc_pin = dg1_encoder_to_ddc_pin(encoder);
2891 	else if (IS_ROCKETLAKE(dev_priv))
2892 		ddc_pin = rkl_encoder_to_ddc_pin(encoder);
2893 	else if (DISPLAY_VER(display) == 9 && HAS_PCH_TGP(dev_priv))
2894 		ddc_pin = gen9bc_tgp_encoder_to_ddc_pin(encoder);
2895 	else if ((IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) &&
2896 		 HAS_PCH_TGP(dev_priv))
2897 		ddc_pin = mcc_encoder_to_ddc_pin(encoder);
2898 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2899 		ddc_pin = icl_encoder_to_ddc_pin(encoder);
2900 	else if (HAS_PCH_CNP(dev_priv))
2901 		ddc_pin = cnp_encoder_to_ddc_pin(encoder);
2902 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2903 		ddc_pin = bxt_encoder_to_ddc_pin(encoder);
2904 	else if (IS_CHERRYVIEW(dev_priv))
2905 		ddc_pin = chv_encoder_to_ddc_pin(encoder);
2906 	else
2907 		ddc_pin = g4x_encoder_to_ddc_pin(encoder);
2908 
2909 	return ddc_pin;
2910 }
2911 
2912 static struct intel_encoder *
2913 get_encoder_by_ddc_pin(struct intel_encoder *encoder, u8 ddc_pin)
2914 {
2915 	struct intel_display *display = to_intel_display(encoder);
2916 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2917 	struct intel_encoder *other;
2918 
2919 	for_each_intel_encoder(display->drm, other) {
2920 		struct intel_connector *connector;
2921 
2922 		if (other == encoder)
2923 			continue;
2924 
2925 		if (!intel_encoder_is_dig_port(other))
2926 			continue;
2927 
2928 		connector = enc_to_dig_port(other)->hdmi.attached_connector;
2929 
2930 		if (connector && connector->base.ddc == intel_gmbus_get_adapter(i915, ddc_pin))
2931 			return other;
2932 	}
2933 
2934 	return NULL;
2935 }
2936 
2937 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2938 {
2939 	struct intel_display *display = to_intel_display(encoder);
2940 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2941 	struct intel_encoder *other;
2942 	const char *source;
2943 	u8 ddc_pin;
2944 
2945 	ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata);
2946 	source = "VBT";
2947 
2948 	if (!ddc_pin) {
2949 		ddc_pin = intel_hdmi_default_ddc_pin(encoder);
2950 		source = "platform default";
2951 	}
2952 
2953 	if (!intel_gmbus_is_valid_pin(i915, ddc_pin)) {
2954 		drm_dbg_kms(display->drm,
2955 			    "[ENCODER:%d:%s] Invalid DDC pin %d\n",
2956 			    encoder->base.base.id, encoder->base.name, ddc_pin);
2957 		return 0;
2958 	}
2959 
2960 	other = get_encoder_by_ddc_pin(encoder, ddc_pin);
2961 	if (other) {
2962 		drm_dbg_kms(display->drm,
2963 			    "[ENCODER:%d:%s] DDC pin %d already claimed by [ENCODER:%d:%s]\n",
2964 			    encoder->base.base.id, encoder->base.name, ddc_pin,
2965 			    other->base.base.id, other->base.name);
2966 		return 0;
2967 	}
2968 
2969 	drm_dbg_kms(display->drm,
2970 		    "[ENCODER:%d:%s] Using DDC pin 0x%x (%s)\n",
2971 		    encoder->base.base.id, encoder->base.name,
2972 		    ddc_pin, source);
2973 
2974 	return ddc_pin;
2975 }
2976 
2977 void intel_infoframe_init(struct intel_digital_port *dig_port)
2978 {
2979 	struct intel_display *display = to_intel_display(dig_port);
2980 	struct drm_i915_private *dev_priv =
2981 		to_i915(dig_port->base.base.dev);
2982 
2983 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2984 		dig_port->write_infoframe = vlv_write_infoframe;
2985 		dig_port->read_infoframe = vlv_read_infoframe;
2986 		dig_port->set_infoframes = vlv_set_infoframes;
2987 		dig_port->infoframes_enabled = vlv_infoframes_enabled;
2988 	} else if (IS_G4X(dev_priv)) {
2989 		dig_port->write_infoframe = g4x_write_infoframe;
2990 		dig_port->read_infoframe = g4x_read_infoframe;
2991 		dig_port->set_infoframes = g4x_set_infoframes;
2992 		dig_port->infoframes_enabled = g4x_infoframes_enabled;
2993 	} else if (HAS_DDI(display)) {
2994 		if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) {
2995 			dig_port->write_infoframe = lspcon_write_infoframe;
2996 			dig_port->read_infoframe = lspcon_read_infoframe;
2997 			dig_port->set_infoframes = lspcon_set_infoframes;
2998 			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2999 		} else {
3000 			dig_port->write_infoframe = hsw_write_infoframe;
3001 			dig_port->read_infoframe = hsw_read_infoframe;
3002 			dig_port->set_infoframes = hsw_set_infoframes;
3003 			dig_port->infoframes_enabled = hsw_infoframes_enabled;
3004 		}
3005 	} else if (HAS_PCH_IBX(dev_priv)) {
3006 		dig_port->write_infoframe = ibx_write_infoframe;
3007 		dig_port->read_infoframe = ibx_read_infoframe;
3008 		dig_port->set_infoframes = ibx_set_infoframes;
3009 		dig_port->infoframes_enabled = ibx_infoframes_enabled;
3010 	} else {
3011 		dig_port->write_infoframe = cpt_write_infoframe;
3012 		dig_port->read_infoframe = cpt_read_infoframe;
3013 		dig_port->set_infoframes = cpt_set_infoframes;
3014 		dig_port->infoframes_enabled = cpt_infoframes_enabled;
3015 	}
3016 }
3017 
3018 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
3019 			       struct intel_connector *intel_connector)
3020 {
3021 	struct intel_display *display = to_intel_display(dig_port);
3022 	struct drm_connector *connector = &intel_connector->base;
3023 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
3024 	struct intel_encoder *intel_encoder = &dig_port->base;
3025 	struct drm_device *dev = intel_encoder->base.dev;
3026 	struct drm_i915_private *dev_priv = to_i915(dev);
3027 	enum port port = intel_encoder->port;
3028 	struct cec_connector_info conn_info;
3029 	u8 ddc_pin;
3030 
3031 	drm_dbg_kms(display->drm,
3032 		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
3033 		    intel_encoder->base.base.id, intel_encoder->base.name);
3034 
3035 	if (DISPLAY_VER(display) < 12 && drm_WARN_ON(dev, port == PORT_A))
3036 		return;
3037 
3038 	if (drm_WARN(dev, dig_port->max_lanes < 4,
3039 		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
3040 		     dig_port->max_lanes, intel_encoder->base.base.id,
3041 		     intel_encoder->base.name))
3042 		return;
3043 
3044 	ddc_pin = intel_hdmi_ddc_pin(intel_encoder);
3045 	if (!ddc_pin)
3046 		return;
3047 
3048 	drm_connector_init_with_ddc(dev, connector,
3049 				    &intel_hdmi_connector_funcs,
3050 				    DRM_MODE_CONNECTOR_HDMIA,
3051 				    intel_gmbus_get_adapter(dev_priv, ddc_pin));
3052 
3053 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
3054 
3055 	if (DISPLAY_VER(display) < 12)
3056 		connector->interlace_allowed = true;
3057 
3058 	connector->stereo_allowed = true;
3059 
3060 	if (DISPLAY_VER(display) >= 10)
3061 		connector->ycbcr_420_allowed = true;
3062 
3063 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
3064 	intel_connector->base.polled = intel_connector->polled;
3065 
3066 	if (HAS_DDI(display))
3067 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3068 	else
3069 		intel_connector->get_hw_state = intel_connector_get_hw_state;
3070 
3071 	intel_hdmi_add_properties(intel_hdmi, connector);
3072 
3073 	intel_connector_attach_encoder(intel_connector, intel_encoder);
3074 	intel_hdmi->attached_connector = intel_connector;
3075 
3076 	if (is_hdcp_supported(dev_priv, port)) {
3077 		int ret = intel_hdcp_init(intel_connector, dig_port,
3078 					  &intel_hdmi_hdcp_shim);
3079 		if (ret)
3080 			drm_dbg_kms(display->drm,
3081 				    "HDCP init failed, skipping.\n");
3082 	}
3083 
3084 	cec_fill_conn_info_from_drm(&conn_info, connector);
3085 
3086 	intel_hdmi->cec_notifier =
3087 		cec_notifier_conn_register(dev->dev, port_identifier(port),
3088 					   &conn_info);
3089 	if (!intel_hdmi->cec_notifier)
3090 		drm_dbg_kms(display->drm, "CEC notifier get failed\n");
3091 }
3092 
3093 /*
3094  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
3095  * @vactive: Vactive of a display mode
3096  *
3097  * @return: appropriate dsc slice height for a given mode.
3098  */
3099 int intel_hdmi_dsc_get_slice_height(int vactive)
3100 {
3101 	int slice_height;
3102 
3103 	/*
3104 	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
3105 	 * Select smallest slice height >=96, that results in a valid PPS and
3106 	 * requires minimum padding lines required for final slice.
3107 	 *
3108 	 * Assumption : Vactive is even.
3109 	 */
3110 	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3111 		if (vactive % slice_height == 0)
3112 			return slice_height;
3113 
3114 	return 0;
3115 }
3116 
3117 /*
3118  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3119  * and dsc decoder capabilities
3120  *
3121  * @crtc_state: intel crtc_state
3122  * @src_max_slices: maximum slices supported by the DSC encoder
3123  * @src_max_slice_width: maximum slice width supported by DSC encoder
3124  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3125  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3126  *
3127  * @return: num of dsc slices that can be supported by the dsc encoder
3128  * and decoder.
3129  */
3130 int
3131 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3132 			      int src_max_slices, int src_max_slice_width,
3133 			      int hdmi_max_slices, int hdmi_throughput)
3134 {
3135 /* Pixel rates in KPixels/sec */
3136 #define HDMI_DSC_PEAK_PIXEL_RATE		2720000
3137 /*
3138  * Rates at which the source and sink are required to process pixels in each
3139  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3140  */
3141 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
3142 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
3143 
3144 /* Spec limits the slice width to 2720 pixels */
3145 #define MAX_HDMI_SLICE_WIDTH			2720
3146 	int kslice_adjust;
3147 	int adjusted_clk_khz;
3148 	int min_slices;
3149 	int target_slices;
3150 	int max_throughput; /* max clock freq. in khz per slice */
3151 	int max_slice_width;
3152 	int slice_width;
3153 	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3154 
3155 	if (!hdmi_throughput)
3156 		return 0;
3157 
3158 	/*
3159 	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3160 	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3161 	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3162 	 * dividing adjusted clock value by 10.
3163 	 */
3164 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3165 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3166 		kslice_adjust = 10;
3167 	else
3168 		kslice_adjust = 5;
3169 
3170 	/*
3171 	 * As per spec, the rate at which the source and the sink process
3172 	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3173 	 * This depends upon the pixel clock rate and output formats
3174 	 * (kslice adjust).
3175 	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3176 	 * at max 340MHz, otherwise they can be processed at max 400MHz.
3177 	 */
3178 
3179 	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3180 
3181 	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3182 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3183 	else
3184 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3185 
3186 	/*
3187 	 * Taking into account the sink's capability for maximum
3188 	 * clock per slice (in MHz) as read from HF-VSDB.
3189 	 */
3190 	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3191 
3192 	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3193 	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3194 
3195 	/*
3196 	 * Keep on increasing the num of slices/line, starting from min_slices
3197 	 * per line till we get such a number, for which the slice_width is
3198 	 * just less than max_slice_width. The slices/line selected should be
3199 	 * less than or equal to the max horizontal slices that the combination
3200 	 * of PCON encoder and HDMI decoder can support.
3201 	 */
3202 	slice_width = max_slice_width;
3203 
3204 	do {
3205 		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3206 			target_slices = 1;
3207 		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3208 			target_slices = 2;
3209 		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3210 			target_slices = 4;
3211 		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3212 			target_slices = 8;
3213 		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3214 			target_slices = 12;
3215 		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3216 			target_slices = 16;
3217 		else
3218 			return 0;
3219 
3220 		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3221 		if (slice_width >= max_slice_width)
3222 			min_slices = target_slices + 1;
3223 	} while (slice_width >= max_slice_width);
3224 
3225 	return target_slices;
3226 }
3227 
3228 /*
3229  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3230  * source and sink capabilities.
3231  *
3232  * @src_fraction_bpp: fractional bpp supported by the source
3233  * @slice_width: dsc slice width supported by the source and sink
3234  * @num_slices: num of slices supported by the source and sink
3235  * @output_format: video output format
3236  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3237  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3238  *
3239  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3240  */
3241 int
3242 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3243 		       int output_format, bool hdmi_all_bpp,
3244 		       int hdmi_max_chunk_bytes)
3245 {
3246 	int max_dsc_bpp, min_dsc_bpp;
3247 	int target_bytes;
3248 	bool bpp_found = false;
3249 	int bpp_decrement_x16;
3250 	int bpp_target;
3251 	int bpp_target_x16;
3252 
3253 	/*
3254 	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3255 	 * Start with the max bpp and keep on decrementing with
3256 	 * fractional bpp, if supported by PCON DSC encoder
3257 	 *
3258 	 * for each bpp we check if no of bytes can be supported by HDMI sink
3259 	 */
3260 
3261 	/* Assuming: bpc as 8*/
3262 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3263 		min_dsc_bpp = 6;
3264 		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3265 	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3266 		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3267 		min_dsc_bpp = 8;
3268 		max_dsc_bpp = 3 * 8; /* 3*bpc */
3269 	} else {
3270 		/* Assuming 4:2:2 encoding */
3271 		min_dsc_bpp = 7;
3272 		max_dsc_bpp = 2 * 8; /* 2*bpc */
3273 	}
3274 
3275 	/*
3276 	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3277 	 * Section 7.7.34 : Source shall not enable compressed Video
3278 	 * Transport with bpp_target settings above 12 bpp unless
3279 	 * DSC_all_bpp is set to 1.
3280 	 */
3281 	if (!hdmi_all_bpp)
3282 		max_dsc_bpp = min(max_dsc_bpp, 12);
3283 
3284 	/*
3285 	 * The Sink has a limit of compressed data in bytes for a scanline,
3286 	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3287 	 * The no. of bytes depend on the target bits per pixel that the
3288 	 * source configures. So we start with the max_bpp and calculate
3289 	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3290 	 * till we get the target_chunk_bytes just less than what the sink's
3291 	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3292 	 *
3293 	 * The decrement is according to the fractional support from PCON DSC
3294 	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3295 	 *
3296 	 * bpp_target_x16 = bpp_target * 16
3297 	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3298 	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3299 	 */
3300 
3301 	bpp_target = max_dsc_bpp;
3302 
3303 	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3304 	if (!src_fractional_bpp)
3305 		src_fractional_bpp = 1;
3306 	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3307 	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3308 
3309 	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3310 		int bpp;
3311 
3312 		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3313 		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3314 		if (target_bytes <= hdmi_max_chunk_bytes) {
3315 			bpp_found = true;
3316 			break;
3317 		}
3318 		bpp_target_x16 -= bpp_decrement_x16;
3319 	}
3320 	if (bpp_found)
3321 		return bpp_target_x16;
3322 
3323 	return 0;
3324 }
3325