xref: /linux/drivers/gpu/drm/i915/display/intel_hdmi.c (revision bcfe43f0ea77c42c2154fb79b99b7d1d82ac3231)
1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 #include <linux/string_helpers.h>
34 
35 #include <drm/display/drm_hdcp_helper.h>
36 #include <drm/display/drm_hdmi_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_crtc.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/intel/intel_lpe_audio.h>
43 
44 #include <media/cec-notifier.h>
45 
46 #include "g4x_hdmi.h"
47 #include "i915_drv.h"
48 #include "i915_reg.h"
49 #include "intel_atomic.h"
50 #include "intel_audio.h"
51 #include "intel_connector.h"
52 #include "intel_cx0_phy.h"
53 #include "intel_ddi.h"
54 #include "intel_de.h"
55 #include "intel_display_driver.h"
56 #include "intel_display_types.h"
57 #include "intel_dp.h"
58 #include "intel_gmbus.h"
59 #include "intel_hdcp.h"
60 #include "intel_hdcp_regs.h"
61 #include "intel_hdcp_shim.h"
62 #include "intel_hdmi.h"
63 #include "intel_lspcon.h"
64 #include "intel_panel.h"
65 #include "intel_snps_phy.h"
66 
67 static void
68 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
69 {
70 	struct intel_display *display = to_intel_display(intel_hdmi);
71 	u32 enabled_bits;
72 
73 	enabled_bits = HAS_DDI(display) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
74 
75 	drm_WARN(display->drm,
76 		 intel_de_read(display, intel_hdmi->hdmi_reg) & enabled_bits,
77 		 "HDMI port enabled, expecting disabled\n");
78 }
79 
80 static void
81 assert_hdmi_transcoder_func_disabled(struct intel_display *display,
82 				     enum transcoder cpu_transcoder)
83 {
84 	drm_WARN(display->drm,
85 		 intel_de_read(display, TRANS_DDI_FUNC_CTL(display, cpu_transcoder)) &
86 		 TRANS_DDI_FUNC_ENABLE,
87 		 "HDMI transcoder function enabled, expecting disabled\n");
88 }
89 
90 static u32 g4x_infoframe_index(unsigned int type)
91 {
92 	switch (type) {
93 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
94 		return VIDEO_DIP_SELECT_GAMUT;
95 	case HDMI_INFOFRAME_TYPE_AVI:
96 		return VIDEO_DIP_SELECT_AVI;
97 	case HDMI_INFOFRAME_TYPE_SPD:
98 		return VIDEO_DIP_SELECT_SPD;
99 	case HDMI_INFOFRAME_TYPE_VENDOR:
100 		return VIDEO_DIP_SELECT_VENDOR;
101 	default:
102 		MISSING_CASE(type);
103 		return 0;
104 	}
105 }
106 
107 static u32 g4x_infoframe_enable(unsigned int type)
108 {
109 	switch (type) {
110 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
111 		return VIDEO_DIP_ENABLE_GCP;
112 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
113 		return VIDEO_DIP_ENABLE_GAMUT;
114 	case DP_SDP_VSC:
115 		return 0;
116 	case DP_SDP_ADAPTIVE_SYNC:
117 		return 0;
118 	case HDMI_INFOFRAME_TYPE_AVI:
119 		return VIDEO_DIP_ENABLE_AVI;
120 	case HDMI_INFOFRAME_TYPE_SPD:
121 		return VIDEO_DIP_ENABLE_SPD;
122 	case HDMI_INFOFRAME_TYPE_VENDOR:
123 		return VIDEO_DIP_ENABLE_VENDOR;
124 	case HDMI_INFOFRAME_TYPE_DRM:
125 		return 0;
126 	default:
127 		MISSING_CASE(type);
128 		return 0;
129 	}
130 }
131 
132 static u32 hsw_infoframe_enable(unsigned int type)
133 {
134 	switch (type) {
135 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
136 		return VIDEO_DIP_ENABLE_GCP_HSW;
137 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
138 		return VIDEO_DIP_ENABLE_GMP_HSW;
139 	case DP_SDP_VSC:
140 		return VIDEO_DIP_ENABLE_VSC_HSW;
141 	case DP_SDP_ADAPTIVE_SYNC:
142 		return VIDEO_DIP_ENABLE_AS_ADL;
143 	case DP_SDP_PPS:
144 		return VDIP_ENABLE_PPS;
145 	case HDMI_INFOFRAME_TYPE_AVI:
146 		return VIDEO_DIP_ENABLE_AVI_HSW;
147 	case HDMI_INFOFRAME_TYPE_SPD:
148 		return VIDEO_DIP_ENABLE_SPD_HSW;
149 	case HDMI_INFOFRAME_TYPE_VENDOR:
150 		return VIDEO_DIP_ENABLE_VS_HSW;
151 	case HDMI_INFOFRAME_TYPE_DRM:
152 		return VIDEO_DIP_ENABLE_DRM_GLK;
153 	default:
154 		MISSING_CASE(type);
155 		return 0;
156 	}
157 }
158 
159 static i915_reg_t
160 hsw_dip_data_reg(struct intel_display *display,
161 		 enum transcoder cpu_transcoder,
162 		 unsigned int type,
163 		 int i)
164 {
165 	switch (type) {
166 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
167 		return HSW_TVIDEO_DIP_GMP_DATA(display, cpu_transcoder, i);
168 	case DP_SDP_VSC:
169 		return HSW_TVIDEO_DIP_VSC_DATA(display, cpu_transcoder, i);
170 	case DP_SDP_ADAPTIVE_SYNC:
171 		return ADL_TVIDEO_DIP_AS_SDP_DATA(display, cpu_transcoder, i);
172 	case DP_SDP_PPS:
173 		return ICL_VIDEO_DIP_PPS_DATA(display, cpu_transcoder, i);
174 	case HDMI_INFOFRAME_TYPE_AVI:
175 		return HSW_TVIDEO_DIP_AVI_DATA(display, cpu_transcoder, i);
176 	case HDMI_INFOFRAME_TYPE_SPD:
177 		return HSW_TVIDEO_DIP_SPD_DATA(display, cpu_transcoder, i);
178 	case HDMI_INFOFRAME_TYPE_VENDOR:
179 		return HSW_TVIDEO_DIP_VS_DATA(display, cpu_transcoder, i);
180 	case HDMI_INFOFRAME_TYPE_DRM:
181 		return GLK_TVIDEO_DIP_DRM_DATA(display, cpu_transcoder, i);
182 	default:
183 		MISSING_CASE(type);
184 		return INVALID_MMIO_REG;
185 	}
186 }
187 
188 static int hsw_dip_data_size(struct intel_display *display,
189 			     unsigned int type)
190 {
191 	switch (type) {
192 	case DP_SDP_VSC:
193 		return VIDEO_DIP_VSC_DATA_SIZE;
194 	case DP_SDP_ADAPTIVE_SYNC:
195 		return VIDEO_DIP_ASYNC_DATA_SIZE;
196 	case DP_SDP_PPS:
197 		return VIDEO_DIP_PPS_DATA_SIZE;
198 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
199 		if (DISPLAY_VER(display) >= 11)
200 			return VIDEO_DIP_GMP_DATA_SIZE;
201 		else
202 			return VIDEO_DIP_DATA_SIZE;
203 	default:
204 		return VIDEO_DIP_DATA_SIZE;
205 	}
206 }
207 
208 static void g4x_write_infoframe(struct intel_encoder *encoder,
209 				const struct intel_crtc_state *crtc_state,
210 				unsigned int type,
211 				const void *frame, ssize_t len)
212 {
213 	struct intel_display *display = to_intel_display(encoder);
214 	const u32 *data = frame;
215 	u32 val = intel_de_read(display, VIDEO_DIP_CTL);
216 	int i;
217 
218 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
219 		 "Writing DIP with CTL reg disabled\n");
220 
221 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
222 	val |= g4x_infoframe_index(type);
223 
224 	val &= ~g4x_infoframe_enable(type);
225 
226 	intel_de_write(display, VIDEO_DIP_CTL, val);
227 
228 	for (i = 0; i < len; i += 4) {
229 		intel_de_write(display, VIDEO_DIP_DATA, *data);
230 		data++;
231 	}
232 	/* Write every possible data byte to force correct ECC calculation. */
233 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
234 		intel_de_write(display, VIDEO_DIP_DATA, 0);
235 
236 	val |= g4x_infoframe_enable(type);
237 	val &= ~VIDEO_DIP_FREQ_MASK;
238 	val |= VIDEO_DIP_FREQ_VSYNC;
239 
240 	intel_de_write(display, VIDEO_DIP_CTL, val);
241 	intel_de_posting_read(display, VIDEO_DIP_CTL);
242 }
243 
244 static void g4x_read_infoframe(struct intel_encoder *encoder,
245 			       const struct intel_crtc_state *crtc_state,
246 			       unsigned int type,
247 			       void *frame, ssize_t len)
248 {
249 	struct intel_display *display = to_intel_display(encoder);
250 	u32 *data = frame;
251 	int i;
252 
253 	intel_de_rmw(display, VIDEO_DIP_CTL,
254 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
255 
256 	for (i = 0; i < len; i += 4)
257 		*data++ = intel_de_read(display, VIDEO_DIP_DATA);
258 }
259 
260 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
261 				  const struct intel_crtc_state *pipe_config)
262 {
263 	struct intel_display *display = to_intel_display(encoder);
264 	u32 val = intel_de_read(display, VIDEO_DIP_CTL);
265 
266 	if ((val & VIDEO_DIP_ENABLE) == 0)
267 		return 0;
268 
269 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
270 		return 0;
271 
272 	return val & (VIDEO_DIP_ENABLE_AVI |
273 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
274 }
275 
276 static void ibx_write_infoframe(struct intel_encoder *encoder,
277 				const struct intel_crtc_state *crtc_state,
278 				unsigned int type,
279 				const void *frame, ssize_t len)
280 {
281 	struct intel_display *display = to_intel_display(encoder);
282 	const u32 *data = frame;
283 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
284 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
285 	u32 val = intel_de_read(display, reg);
286 	int i;
287 
288 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
289 		 "Writing DIP with CTL reg disabled\n");
290 
291 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
292 	val |= g4x_infoframe_index(type);
293 
294 	val &= ~g4x_infoframe_enable(type);
295 
296 	intel_de_write(display, reg, val);
297 
298 	for (i = 0; i < len; i += 4) {
299 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
300 			       *data);
301 		data++;
302 	}
303 	/* Write every possible data byte to force correct ECC calculation. */
304 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
305 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
306 
307 	val |= g4x_infoframe_enable(type);
308 	val &= ~VIDEO_DIP_FREQ_MASK;
309 	val |= VIDEO_DIP_FREQ_VSYNC;
310 
311 	intel_de_write(display, reg, val);
312 	intel_de_posting_read(display, reg);
313 }
314 
315 static void ibx_read_infoframe(struct intel_encoder *encoder,
316 			       const struct intel_crtc_state *crtc_state,
317 			       unsigned int type,
318 			       void *frame, ssize_t len)
319 {
320 	struct intel_display *display = to_intel_display(encoder);
321 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
322 	u32 *data = frame;
323 	int i;
324 
325 	intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
326 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
327 
328 	for (i = 0; i < len; i += 4)
329 		*data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
330 }
331 
332 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
333 				  const struct intel_crtc_state *pipe_config)
334 {
335 	struct intel_display *display = to_intel_display(encoder);
336 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
337 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
338 	u32 val = intel_de_read(display, reg);
339 
340 	if ((val & VIDEO_DIP_ENABLE) == 0)
341 		return 0;
342 
343 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
344 		return 0;
345 
346 	return val & (VIDEO_DIP_ENABLE_AVI |
347 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
348 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
349 }
350 
351 static void cpt_write_infoframe(struct intel_encoder *encoder,
352 				const struct intel_crtc_state *crtc_state,
353 				unsigned int type,
354 				const void *frame, ssize_t len)
355 {
356 	struct intel_display *display = to_intel_display(encoder);
357 	const u32 *data = frame;
358 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
359 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
360 	u32 val = intel_de_read(display, reg);
361 	int i;
362 
363 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
364 		 "Writing DIP with CTL reg disabled\n");
365 
366 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
367 	val |= g4x_infoframe_index(type);
368 
369 	/* The DIP control register spec says that we need to update the AVI
370 	 * infoframe without clearing its enable bit */
371 	if (type != HDMI_INFOFRAME_TYPE_AVI)
372 		val &= ~g4x_infoframe_enable(type);
373 
374 	intel_de_write(display, reg, val);
375 
376 	for (i = 0; i < len; i += 4) {
377 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
378 			       *data);
379 		data++;
380 	}
381 	/* Write every possible data byte to force correct ECC calculation. */
382 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
383 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
384 
385 	val |= g4x_infoframe_enable(type);
386 	val &= ~VIDEO_DIP_FREQ_MASK;
387 	val |= VIDEO_DIP_FREQ_VSYNC;
388 
389 	intel_de_write(display, reg, val);
390 	intel_de_posting_read(display, reg);
391 }
392 
393 static void cpt_read_infoframe(struct intel_encoder *encoder,
394 			       const struct intel_crtc_state *crtc_state,
395 			       unsigned int type,
396 			       void *frame, ssize_t len)
397 {
398 	struct intel_display *display = to_intel_display(encoder);
399 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
400 	u32 *data = frame;
401 	int i;
402 
403 	intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
404 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
405 
406 	for (i = 0; i < len; i += 4)
407 		*data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
408 }
409 
410 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
411 				  const struct intel_crtc_state *pipe_config)
412 {
413 	struct intel_display *display = to_intel_display(encoder);
414 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
415 	u32 val = intel_de_read(display, TVIDEO_DIP_CTL(pipe));
416 
417 	if ((val & VIDEO_DIP_ENABLE) == 0)
418 		return 0;
419 
420 	return val & (VIDEO_DIP_ENABLE_AVI |
421 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
422 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
423 }
424 
425 static void vlv_write_infoframe(struct intel_encoder *encoder,
426 				const struct intel_crtc_state *crtc_state,
427 				unsigned int type,
428 				const void *frame, ssize_t len)
429 {
430 	struct intel_display *display = to_intel_display(encoder);
431 	const u32 *data = frame;
432 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
433 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
434 	u32 val = intel_de_read(display, reg);
435 	int i;
436 
437 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
438 		 "Writing DIP with CTL reg disabled\n");
439 
440 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
441 	val |= g4x_infoframe_index(type);
442 
443 	val &= ~g4x_infoframe_enable(type);
444 
445 	intel_de_write(display, reg, val);
446 
447 	for (i = 0; i < len; i += 4) {
448 		intel_de_write(display,
449 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
450 		data++;
451 	}
452 	/* Write every possible data byte to force correct ECC calculation. */
453 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
454 		intel_de_write(display,
455 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
456 
457 	val |= g4x_infoframe_enable(type);
458 	val &= ~VIDEO_DIP_FREQ_MASK;
459 	val |= VIDEO_DIP_FREQ_VSYNC;
460 
461 	intel_de_write(display, reg, val);
462 	intel_de_posting_read(display, reg);
463 }
464 
465 static void vlv_read_infoframe(struct intel_encoder *encoder,
466 			       const struct intel_crtc_state *crtc_state,
467 			       unsigned int type,
468 			       void *frame, ssize_t len)
469 {
470 	struct intel_display *display = to_intel_display(encoder);
471 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
472 	u32 *data = frame;
473 	int i;
474 
475 	intel_de_rmw(display, VLV_TVIDEO_DIP_CTL(crtc->pipe),
476 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
477 
478 	for (i = 0; i < len; i += 4)
479 		*data++ = intel_de_read(display,
480 				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
481 }
482 
483 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
484 				  const struct intel_crtc_state *pipe_config)
485 {
486 	struct intel_display *display = to_intel_display(encoder);
487 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
488 	u32 val = intel_de_read(display, VLV_TVIDEO_DIP_CTL(pipe));
489 
490 	if ((val & VIDEO_DIP_ENABLE) == 0)
491 		return 0;
492 
493 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
494 		return 0;
495 
496 	return val & (VIDEO_DIP_ENABLE_AVI |
497 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
498 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
499 }
500 
501 void hsw_write_infoframe(struct intel_encoder *encoder,
502 			 const struct intel_crtc_state *crtc_state,
503 			 unsigned int type,
504 			 const void *frame, ssize_t len)
505 {
506 	struct intel_display *display = to_intel_display(encoder);
507 	const u32 *data = frame;
508 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
509 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(display, cpu_transcoder);
510 	int data_size;
511 	int i;
512 	u32 val = intel_de_read(display, ctl_reg);
513 
514 	data_size = hsw_dip_data_size(display, type);
515 
516 	drm_WARN_ON(display->drm, len > data_size);
517 
518 	val &= ~hsw_infoframe_enable(type);
519 	intel_de_write(display, ctl_reg, val);
520 
521 	for (i = 0; i < len; i += 4) {
522 		intel_de_write(display,
523 			       hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
524 			       *data);
525 		data++;
526 	}
527 	/* Write every possible data byte to force correct ECC calculation. */
528 	for (; i < data_size; i += 4)
529 		intel_de_write(display,
530 			       hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
531 			       0);
532 
533 	/* Wa_14013475917 */
534 	if (!(IS_DISPLAY_VER(display, 13, 14) && crtc_state->has_psr &&
535 	      !crtc_state->has_panel_replay && type == DP_SDP_VSC))
536 		val |= hsw_infoframe_enable(type);
537 
538 	if (type == DP_SDP_VSC)
539 		val |= VSC_DIP_HW_DATA_SW_HEA;
540 
541 	intel_de_write(display, ctl_reg, val);
542 	intel_de_posting_read(display, ctl_reg);
543 }
544 
545 void hsw_read_infoframe(struct intel_encoder *encoder,
546 			const struct intel_crtc_state *crtc_state,
547 			unsigned int type, void *frame, ssize_t len)
548 {
549 	struct intel_display *display = to_intel_display(encoder);
550 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
551 	u32 *data = frame;
552 	int i;
553 
554 	for (i = 0; i < len; i += 4)
555 		*data++ = intel_de_read(display,
556 					hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2));
557 }
558 
559 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
560 				  const struct intel_crtc_state *pipe_config)
561 {
562 	struct intel_display *display = to_intel_display(encoder);
563 	u32 val = intel_de_read(display,
564 				HSW_TVIDEO_DIP_CTL(display, pipe_config->cpu_transcoder));
565 	u32 mask;
566 
567 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
568 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
569 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
570 
571 	if (DISPLAY_VER(display) >= 10)
572 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
573 
574 	if (HAS_AS_SDP(display))
575 		mask |= VIDEO_DIP_ENABLE_AS_ADL;
576 
577 	return val & mask;
578 }
579 
580 static const u8 infoframe_type_to_idx[] = {
581 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
582 	HDMI_PACKET_TYPE_GAMUT_METADATA,
583 	DP_SDP_VSC,
584 	DP_SDP_ADAPTIVE_SYNC,
585 	HDMI_INFOFRAME_TYPE_AVI,
586 	HDMI_INFOFRAME_TYPE_SPD,
587 	HDMI_INFOFRAME_TYPE_VENDOR,
588 	HDMI_INFOFRAME_TYPE_DRM,
589 };
590 
591 u32 intel_hdmi_infoframe_enable(unsigned int type)
592 {
593 	int i;
594 
595 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
596 		if (infoframe_type_to_idx[i] == type)
597 			return BIT(i);
598 	}
599 
600 	return 0;
601 }
602 
603 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
604 				  const struct intel_crtc_state *crtc_state)
605 {
606 	struct intel_display *display = to_intel_display(encoder);
607 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
608 	u32 val, ret = 0;
609 	int i;
610 
611 	val = dig_port->infoframes_enabled(encoder, crtc_state);
612 
613 	/* map from hardware bits to dip idx */
614 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
615 		unsigned int type = infoframe_type_to_idx[i];
616 
617 		if (HAS_DDI(display)) {
618 			if (val & hsw_infoframe_enable(type))
619 				ret |= BIT(i);
620 		} else {
621 			if (val & g4x_infoframe_enable(type))
622 				ret |= BIT(i);
623 		}
624 	}
625 
626 	return ret;
627 }
628 
629 /*
630  * The data we write to the DIP data buffer registers is 1 byte bigger than the
631  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
632  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
633  * used for both technologies.
634  *
635  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
636  * DW1:       DB3       | DB2 | DB1 | DB0
637  * DW2:       DB7       | DB6 | DB5 | DB4
638  * DW3: ...
639  *
640  * (HB is Header Byte, DB is Data Byte)
641  *
642  * The hdmi pack() functions don't know about that hardware specific hole so we
643  * trick them by giving an offset into the buffer and moving back the header
644  * bytes by one.
645  */
646 static void intel_write_infoframe(struct intel_encoder *encoder,
647 				  const struct intel_crtc_state *crtc_state,
648 				  enum hdmi_infoframe_type type,
649 				  const union hdmi_infoframe *frame)
650 {
651 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
652 	u8 buffer[VIDEO_DIP_DATA_SIZE];
653 	ssize_t len;
654 
655 	if ((crtc_state->infoframes.enable &
656 	     intel_hdmi_infoframe_enable(type)) == 0)
657 		return;
658 
659 	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
660 		return;
661 
662 	/* see comment above for the reason for this offset */
663 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
664 	if (drm_WARN_ON(encoder->base.dev, len < 0))
665 		return;
666 
667 	/* Insert the 'hole' (see big comment above) at position 3 */
668 	memmove(&buffer[0], &buffer[1], 3);
669 	buffer[3] = 0;
670 	len++;
671 
672 	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
673 }
674 
675 void intel_read_infoframe(struct intel_encoder *encoder,
676 			  const struct intel_crtc_state *crtc_state,
677 			  enum hdmi_infoframe_type type,
678 			  union hdmi_infoframe *frame)
679 {
680 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
681 	u8 buffer[VIDEO_DIP_DATA_SIZE];
682 	int ret;
683 
684 	if ((crtc_state->infoframes.enable &
685 	     intel_hdmi_infoframe_enable(type)) == 0)
686 		return;
687 
688 	dig_port->read_infoframe(encoder, crtc_state,
689 				       type, buffer, sizeof(buffer));
690 
691 	/* Fill the 'hole' (see big comment above) at position 3 */
692 	memmove(&buffer[1], &buffer[0], 3);
693 
694 	/* see comment above for the reason for this offset */
695 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
696 	if (ret) {
697 		drm_dbg_kms(encoder->base.dev,
698 			    "Failed to unpack infoframe type 0x%02x\n", type);
699 		return;
700 	}
701 
702 	if (frame->any.type != type)
703 		drm_dbg_kms(encoder->base.dev,
704 			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
705 			    frame->any.type, type);
706 }
707 
708 static bool
709 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
710 				 struct intel_crtc_state *crtc_state,
711 				 struct drm_connector_state *conn_state)
712 {
713 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
714 	const struct drm_display_mode *adjusted_mode =
715 		&crtc_state->hw.adjusted_mode;
716 	struct drm_connector *connector = conn_state->connector;
717 	int ret;
718 
719 	if (!crtc_state->has_infoframe)
720 		return true;
721 
722 	crtc_state->infoframes.enable |=
723 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
724 
725 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
726 						       adjusted_mode);
727 	if (ret)
728 		return false;
729 
730 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
731 		frame->colorspace = HDMI_COLORSPACE_YUV420;
732 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
733 		frame->colorspace = HDMI_COLORSPACE_YUV444;
734 	else
735 		frame->colorspace = HDMI_COLORSPACE_RGB;
736 
737 	drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
738 
739 	/* nonsense combination */
740 	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
741 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
742 
743 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
744 		drm_hdmi_avi_infoframe_quant_range(frame, connector,
745 						   adjusted_mode,
746 						   crtc_state->limited_color_range ?
747 						   HDMI_QUANTIZATION_RANGE_LIMITED :
748 						   HDMI_QUANTIZATION_RANGE_FULL);
749 	} else {
750 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
751 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
752 	}
753 
754 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
755 
756 	/* TODO: handle pixel repetition for YCBCR420 outputs */
757 
758 	ret = hdmi_avi_infoframe_check(frame);
759 	if (drm_WARN_ON(encoder->base.dev, ret))
760 		return false;
761 
762 	return true;
763 }
764 
765 static bool
766 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
767 				 struct intel_crtc_state *crtc_state,
768 				 struct drm_connector_state *conn_state)
769 {
770 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
771 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
772 	int ret;
773 
774 	if (!crtc_state->has_infoframe)
775 		return true;
776 
777 	crtc_state->infoframes.enable |=
778 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
779 
780 	if (IS_DGFX(i915))
781 		ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx");
782 	else
783 		ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
784 
785 	if (drm_WARN_ON(encoder->base.dev, ret))
786 		return false;
787 
788 	frame->sdi = HDMI_SPD_SDI_PC;
789 
790 	ret = hdmi_spd_infoframe_check(frame);
791 	if (drm_WARN_ON(encoder->base.dev, ret))
792 		return false;
793 
794 	return true;
795 }
796 
797 static bool
798 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
799 				  struct intel_crtc_state *crtc_state,
800 				  struct drm_connector_state *conn_state)
801 {
802 	struct hdmi_vendor_infoframe *frame =
803 		&crtc_state->infoframes.hdmi.vendor.hdmi;
804 	const struct drm_display_info *info =
805 		&conn_state->connector->display_info;
806 	int ret;
807 
808 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
809 		return true;
810 
811 	crtc_state->infoframes.enable |=
812 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
813 
814 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
815 							  conn_state->connector,
816 							  &crtc_state->hw.adjusted_mode);
817 	if (drm_WARN_ON(encoder->base.dev, ret))
818 		return false;
819 
820 	ret = hdmi_vendor_infoframe_check(frame);
821 	if (drm_WARN_ON(encoder->base.dev, ret))
822 		return false;
823 
824 	return true;
825 }
826 
827 static bool
828 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
829 				 struct intel_crtc_state *crtc_state,
830 				 struct drm_connector_state *conn_state)
831 {
832 	struct intel_display *display = to_intel_display(encoder);
833 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
834 	int ret;
835 
836 	if (DISPLAY_VER(display) < 10)
837 		return true;
838 
839 	if (!crtc_state->has_infoframe)
840 		return true;
841 
842 	if (!conn_state->hdr_output_metadata)
843 		return true;
844 
845 	crtc_state->infoframes.enable |=
846 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
847 
848 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
849 	if (ret < 0) {
850 		drm_dbg_kms(display->drm,
851 			    "couldn't set HDR metadata in infoframe\n");
852 		return false;
853 	}
854 
855 	ret = hdmi_drm_infoframe_check(frame);
856 	if (drm_WARN_ON(display->drm, ret))
857 		return false;
858 
859 	return true;
860 }
861 
862 static void g4x_set_infoframes(struct intel_encoder *encoder,
863 			       bool enable,
864 			       const struct intel_crtc_state *crtc_state,
865 			       const struct drm_connector_state *conn_state)
866 {
867 	struct intel_display *display = to_intel_display(encoder);
868 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
869 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
870 	i915_reg_t reg = VIDEO_DIP_CTL;
871 	u32 val = intel_de_read(display, reg);
872 	u32 port = VIDEO_DIP_PORT(encoder->port);
873 
874 	assert_hdmi_port_disabled(intel_hdmi);
875 
876 	/* If the registers were not initialized yet, they might be zeroes,
877 	 * which means we're selecting the AVI DIP and we're setting its
878 	 * frequency to once. This seems to really confuse the HW and make
879 	 * things stop working (the register spec says the AVI always needs to
880 	 * be sent every VSync). So here we avoid writing to the register more
881 	 * than we need and also explicitly select the AVI DIP and explicitly
882 	 * set its frequency to every VSync. Avoiding to write it twice seems to
883 	 * be enough to solve the problem, but being defensive shouldn't hurt us
884 	 * either. */
885 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
886 
887 	if (!enable) {
888 		if (!(val & VIDEO_DIP_ENABLE))
889 			return;
890 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
891 			drm_dbg_kms(display->drm,
892 				    "video DIP still enabled on port %c\n",
893 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
894 			return;
895 		}
896 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
897 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
898 		intel_de_write(display, reg, val);
899 		intel_de_posting_read(display, reg);
900 		return;
901 	}
902 
903 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
904 		if (val & VIDEO_DIP_ENABLE) {
905 			drm_dbg_kms(display->drm,
906 				    "video DIP already enabled on port %c\n",
907 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
908 			return;
909 		}
910 		val &= ~VIDEO_DIP_PORT_MASK;
911 		val |= port;
912 	}
913 
914 	val |= VIDEO_DIP_ENABLE;
915 	val &= ~(VIDEO_DIP_ENABLE_AVI |
916 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
917 
918 	intel_de_write(display, reg, val);
919 	intel_de_posting_read(display, reg);
920 
921 	intel_write_infoframe(encoder, crtc_state,
922 			      HDMI_INFOFRAME_TYPE_AVI,
923 			      &crtc_state->infoframes.avi);
924 	intel_write_infoframe(encoder, crtc_state,
925 			      HDMI_INFOFRAME_TYPE_SPD,
926 			      &crtc_state->infoframes.spd);
927 	intel_write_infoframe(encoder, crtc_state,
928 			      HDMI_INFOFRAME_TYPE_VENDOR,
929 			      &crtc_state->infoframes.hdmi);
930 }
931 
932 /*
933  * Determine if default_phase=1 can be indicated in the GCP infoframe.
934  *
935  * From HDMI specification 1.4a:
936  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
937  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
938  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
939  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
940  *   phase of 0
941  */
942 static bool gcp_default_phase_possible(int pipe_bpp,
943 				       const struct drm_display_mode *mode)
944 {
945 	unsigned int pixels_per_group;
946 
947 	switch (pipe_bpp) {
948 	case 30:
949 		/* 4 pixels in 5 clocks */
950 		pixels_per_group = 4;
951 		break;
952 	case 36:
953 		/* 2 pixels in 3 clocks */
954 		pixels_per_group = 2;
955 		break;
956 	case 48:
957 		/* 1 pixel in 2 clocks */
958 		pixels_per_group = 1;
959 		break;
960 	default:
961 		/* phase information not relevant for 8bpc */
962 		return false;
963 	}
964 
965 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
966 		mode->crtc_htotal % pixels_per_group == 0 &&
967 		mode->crtc_hblank_start % pixels_per_group == 0 &&
968 		mode->crtc_hblank_end % pixels_per_group == 0 &&
969 		mode->crtc_hsync_start % pixels_per_group == 0 &&
970 		mode->crtc_hsync_end % pixels_per_group == 0 &&
971 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
972 		 mode->crtc_htotal/2 % pixels_per_group == 0);
973 }
974 
975 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
976 					 const struct intel_crtc_state *crtc_state,
977 					 const struct drm_connector_state *conn_state)
978 {
979 	struct intel_display *display = to_intel_display(encoder);
980 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
981 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
982 	i915_reg_t reg;
983 
984 	if ((crtc_state->infoframes.enable &
985 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
986 		return false;
987 
988 	if (HAS_DDI(display))
989 		reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
990 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
991 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
992 	else if (HAS_PCH_SPLIT(dev_priv))
993 		reg = TVIDEO_DIP_GCP(crtc->pipe);
994 	else
995 		return false;
996 
997 	intel_de_write(display, reg, crtc_state->infoframes.gcp);
998 
999 	return true;
1000 }
1001 
1002 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
1003 				   struct intel_crtc_state *crtc_state)
1004 {
1005 	struct intel_display *display = to_intel_display(encoder);
1006 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1007 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1008 	i915_reg_t reg;
1009 
1010 	if ((crtc_state->infoframes.enable &
1011 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1012 		return;
1013 
1014 	if (HAS_DDI(display))
1015 		reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
1016 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1017 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1018 	else if (HAS_PCH_SPLIT(dev_priv))
1019 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1020 	else
1021 		return;
1022 
1023 	crtc_state->infoframes.gcp = intel_de_read(display, reg);
1024 }
1025 
1026 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1027 					     struct intel_crtc_state *crtc_state,
1028 					     struct drm_connector_state *conn_state)
1029 {
1030 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1031 
1032 	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1033 		return;
1034 
1035 	crtc_state->infoframes.enable |=
1036 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1037 
1038 	/* Indicate color indication for deep color mode */
1039 	if (crtc_state->pipe_bpp > 24)
1040 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1041 
1042 	/* Enable default_phase whenever the display mode is suitably aligned */
1043 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1044 				       &crtc_state->hw.adjusted_mode))
1045 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1046 }
1047 
1048 static void ibx_set_infoframes(struct intel_encoder *encoder,
1049 			       bool enable,
1050 			       const struct intel_crtc_state *crtc_state,
1051 			       const struct drm_connector_state *conn_state)
1052 {
1053 	struct intel_display *display = to_intel_display(encoder);
1054 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1055 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1056 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1057 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1058 	u32 val = intel_de_read(display, reg);
1059 	u32 port = VIDEO_DIP_PORT(encoder->port);
1060 
1061 	assert_hdmi_port_disabled(intel_hdmi);
1062 
1063 	/* See the big comment in g4x_set_infoframes() */
1064 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1065 
1066 	if (!enable) {
1067 		if (!(val & VIDEO_DIP_ENABLE))
1068 			return;
1069 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1070 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1071 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1072 		intel_de_write(display, reg, val);
1073 		intel_de_posting_read(display, reg);
1074 		return;
1075 	}
1076 
1077 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1078 		drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1079 			 "DIP already enabled on port %c\n",
1080 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1081 		val &= ~VIDEO_DIP_PORT_MASK;
1082 		val |= port;
1083 	}
1084 
1085 	val |= VIDEO_DIP_ENABLE;
1086 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1087 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1088 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1089 
1090 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1091 		val |= VIDEO_DIP_ENABLE_GCP;
1092 
1093 	intel_de_write(display, reg, val);
1094 	intel_de_posting_read(display, reg);
1095 
1096 	intel_write_infoframe(encoder, crtc_state,
1097 			      HDMI_INFOFRAME_TYPE_AVI,
1098 			      &crtc_state->infoframes.avi);
1099 	intel_write_infoframe(encoder, crtc_state,
1100 			      HDMI_INFOFRAME_TYPE_SPD,
1101 			      &crtc_state->infoframes.spd);
1102 	intel_write_infoframe(encoder, crtc_state,
1103 			      HDMI_INFOFRAME_TYPE_VENDOR,
1104 			      &crtc_state->infoframes.hdmi);
1105 }
1106 
1107 static void cpt_set_infoframes(struct intel_encoder *encoder,
1108 			       bool enable,
1109 			       const struct intel_crtc_state *crtc_state,
1110 			       const struct drm_connector_state *conn_state)
1111 {
1112 	struct intel_display *display = to_intel_display(encoder);
1113 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1114 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1115 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1116 	u32 val = intel_de_read(display, reg);
1117 
1118 	assert_hdmi_port_disabled(intel_hdmi);
1119 
1120 	/* See the big comment in g4x_set_infoframes() */
1121 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1122 
1123 	if (!enable) {
1124 		if (!(val & VIDEO_DIP_ENABLE))
1125 			return;
1126 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1127 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1128 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1129 		intel_de_write(display, reg, val);
1130 		intel_de_posting_read(display, reg);
1131 		return;
1132 	}
1133 
1134 	/* Set both together, unset both together: see the spec. */
1135 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1136 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1137 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1138 
1139 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1140 		val |= VIDEO_DIP_ENABLE_GCP;
1141 
1142 	intel_de_write(display, reg, val);
1143 	intel_de_posting_read(display, reg);
1144 
1145 	intel_write_infoframe(encoder, crtc_state,
1146 			      HDMI_INFOFRAME_TYPE_AVI,
1147 			      &crtc_state->infoframes.avi);
1148 	intel_write_infoframe(encoder, crtc_state,
1149 			      HDMI_INFOFRAME_TYPE_SPD,
1150 			      &crtc_state->infoframes.spd);
1151 	intel_write_infoframe(encoder, crtc_state,
1152 			      HDMI_INFOFRAME_TYPE_VENDOR,
1153 			      &crtc_state->infoframes.hdmi);
1154 }
1155 
1156 static void vlv_set_infoframes(struct intel_encoder *encoder,
1157 			       bool enable,
1158 			       const struct intel_crtc_state *crtc_state,
1159 			       const struct drm_connector_state *conn_state)
1160 {
1161 	struct intel_display *display = to_intel_display(encoder);
1162 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1163 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1164 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1165 	u32 val = intel_de_read(display, reg);
1166 	u32 port = VIDEO_DIP_PORT(encoder->port);
1167 
1168 	assert_hdmi_port_disabled(intel_hdmi);
1169 
1170 	/* See the big comment in g4x_set_infoframes() */
1171 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1172 
1173 	if (!enable) {
1174 		if (!(val & VIDEO_DIP_ENABLE))
1175 			return;
1176 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1177 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1178 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1179 		intel_de_write(display, reg, val);
1180 		intel_de_posting_read(display, reg);
1181 		return;
1182 	}
1183 
1184 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1185 		drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1186 			 "DIP already enabled on port %c\n",
1187 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1188 		val &= ~VIDEO_DIP_PORT_MASK;
1189 		val |= port;
1190 	}
1191 
1192 	val |= VIDEO_DIP_ENABLE;
1193 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1194 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1195 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1196 
1197 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1198 		val |= VIDEO_DIP_ENABLE_GCP;
1199 
1200 	intel_de_write(display, reg, val);
1201 	intel_de_posting_read(display, reg);
1202 
1203 	intel_write_infoframe(encoder, crtc_state,
1204 			      HDMI_INFOFRAME_TYPE_AVI,
1205 			      &crtc_state->infoframes.avi);
1206 	intel_write_infoframe(encoder, crtc_state,
1207 			      HDMI_INFOFRAME_TYPE_SPD,
1208 			      &crtc_state->infoframes.spd);
1209 	intel_write_infoframe(encoder, crtc_state,
1210 			      HDMI_INFOFRAME_TYPE_VENDOR,
1211 			      &crtc_state->infoframes.hdmi);
1212 }
1213 
1214 static void hsw_set_infoframes(struct intel_encoder *encoder,
1215 			       bool enable,
1216 			       const struct intel_crtc_state *crtc_state,
1217 			       const struct drm_connector_state *conn_state)
1218 {
1219 	struct intel_display *display = to_intel_display(encoder);
1220 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display,
1221 					    crtc_state->cpu_transcoder);
1222 	u32 val = intel_de_read(display, reg);
1223 
1224 	assert_hdmi_transcoder_func_disabled(display,
1225 					     crtc_state->cpu_transcoder);
1226 
1227 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1228 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1229 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1230 		 VIDEO_DIP_ENABLE_DRM_GLK | VIDEO_DIP_ENABLE_AS_ADL);
1231 
1232 	if (!enable) {
1233 		intel_de_write(display, reg, val);
1234 		intel_de_posting_read(display, reg);
1235 		return;
1236 	}
1237 
1238 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1239 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1240 
1241 	intel_de_write(display, reg, val);
1242 	intel_de_posting_read(display, reg);
1243 
1244 	intel_write_infoframe(encoder, crtc_state,
1245 			      HDMI_INFOFRAME_TYPE_AVI,
1246 			      &crtc_state->infoframes.avi);
1247 	intel_write_infoframe(encoder, crtc_state,
1248 			      HDMI_INFOFRAME_TYPE_SPD,
1249 			      &crtc_state->infoframes.spd);
1250 	intel_write_infoframe(encoder, crtc_state,
1251 			      HDMI_INFOFRAME_TYPE_VENDOR,
1252 			      &crtc_state->infoframes.hdmi);
1253 	intel_write_infoframe(encoder, crtc_state,
1254 			      HDMI_INFOFRAME_TYPE_DRM,
1255 			      &crtc_state->infoframes.drm);
1256 }
1257 
1258 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1259 {
1260 	struct intel_display *display = to_intel_display(hdmi);
1261 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1262 
1263 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1264 		return;
1265 
1266 	drm_dbg_kms(display->drm, "%s DP dual mode adaptor TMDS output\n",
1267 		    enable ? "Enabling" : "Disabling");
1268 
1269 	drm_dp_dual_mode_set_tmds_output(display->drm,
1270 					 hdmi->dp_dual_mode.type, ddc, enable);
1271 }
1272 
1273 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1274 				unsigned int offset, void *buffer, size_t size)
1275 {
1276 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1277 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1278 	int ret;
1279 	u8 start = offset & 0xff;
1280 	struct i2c_msg msgs[] = {
1281 		{
1282 			.addr = DRM_HDCP_DDC_ADDR,
1283 			.flags = 0,
1284 			.len = 1,
1285 			.buf = &start,
1286 		},
1287 		{
1288 			.addr = DRM_HDCP_DDC_ADDR,
1289 			.flags = I2C_M_RD,
1290 			.len = size,
1291 			.buf = buffer
1292 		}
1293 	};
1294 	ret = i2c_transfer(ddc, msgs, ARRAY_SIZE(msgs));
1295 	if (ret == ARRAY_SIZE(msgs))
1296 		return 0;
1297 	return ret >= 0 ? -EIO : ret;
1298 }
1299 
1300 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1301 				 unsigned int offset, void *buffer, size_t size)
1302 {
1303 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1304 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1305 	int ret;
1306 	u8 *write_buf;
1307 	struct i2c_msg msg;
1308 
1309 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1310 	if (!write_buf)
1311 		return -ENOMEM;
1312 
1313 	write_buf[0] = offset & 0xff;
1314 	memcpy(&write_buf[1], buffer, size);
1315 
1316 	msg.addr = DRM_HDCP_DDC_ADDR;
1317 	msg.flags = 0;
1318 	msg.len = size + 1;
1319 	msg.buf = write_buf;
1320 
1321 	ret = i2c_transfer(ddc, &msg, 1);
1322 	if (ret == 1)
1323 		ret = 0;
1324 	else if (ret >= 0)
1325 		ret = -EIO;
1326 
1327 	kfree(write_buf);
1328 	return ret;
1329 }
1330 
1331 static
1332 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1333 				  u8 *an)
1334 {
1335 	struct intel_display *display = to_intel_display(dig_port);
1336 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1337 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1338 	int ret;
1339 
1340 	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1341 				    DRM_HDCP_AN_LEN);
1342 	if (ret) {
1343 		drm_dbg_kms(display->drm, "Write An over DDC failed (%d)\n",
1344 			    ret);
1345 		return ret;
1346 	}
1347 
1348 	ret = intel_gmbus_output_aksv(ddc);
1349 	if (ret < 0) {
1350 		drm_dbg_kms(display->drm, "Failed to output aksv (%d)\n", ret);
1351 		return ret;
1352 	}
1353 	return 0;
1354 }
1355 
1356 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1357 				     u8 *bksv)
1358 {
1359 	struct intel_display *display = to_intel_display(dig_port);
1360 
1361 	int ret;
1362 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1363 				   DRM_HDCP_KSV_LEN);
1364 	if (ret)
1365 		drm_dbg_kms(display->drm, "Read Bksv over DDC failed (%d)\n",
1366 			    ret);
1367 	return ret;
1368 }
1369 
1370 static
1371 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1372 				 u8 *bstatus)
1373 {
1374 	struct intel_display *display = to_intel_display(dig_port);
1375 
1376 	int ret;
1377 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1378 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1379 	if (ret)
1380 		drm_dbg_kms(display->drm,
1381 			    "Read bstatus over DDC failed (%d)\n",
1382 			    ret);
1383 	return ret;
1384 }
1385 
1386 static
1387 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1388 				     bool *repeater_present)
1389 {
1390 	struct intel_display *display = to_intel_display(dig_port);
1391 	int ret;
1392 	u8 val;
1393 
1394 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1395 	if (ret) {
1396 		drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1397 			    ret);
1398 		return ret;
1399 	}
1400 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1401 	return 0;
1402 }
1403 
1404 static
1405 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1406 				  u8 *ri_prime)
1407 {
1408 	struct intel_display *display = to_intel_display(dig_port);
1409 
1410 	int ret;
1411 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1412 				   ri_prime, DRM_HDCP_RI_LEN);
1413 	if (ret)
1414 		drm_dbg_kms(display->drm, "Read Ri' over DDC failed (%d)\n",
1415 			    ret);
1416 	return ret;
1417 }
1418 
1419 static
1420 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1421 				   bool *ksv_ready)
1422 {
1423 	struct intel_display *display = to_intel_display(dig_port);
1424 	int ret;
1425 	u8 val;
1426 
1427 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1428 	if (ret) {
1429 		drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1430 			    ret);
1431 		return ret;
1432 	}
1433 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1434 	return 0;
1435 }
1436 
1437 static
1438 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1439 				  int num_downstream, u8 *ksv_fifo)
1440 {
1441 	struct intel_display *display = to_intel_display(dig_port);
1442 	int ret;
1443 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1444 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1445 	if (ret) {
1446 		drm_dbg_kms(display->drm,
1447 			    "Read ksv fifo over DDC failed (%d)\n", ret);
1448 		return ret;
1449 	}
1450 	return 0;
1451 }
1452 
1453 static
1454 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1455 				      int i, u32 *part)
1456 {
1457 	struct intel_display *display = to_intel_display(dig_port);
1458 	int ret;
1459 
1460 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1461 		return -EINVAL;
1462 
1463 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1464 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1465 	if (ret)
1466 		drm_dbg_kms(display->drm,
1467 			    "Read V'[%d] over DDC failed (%d)\n",
1468 			    i, ret);
1469 	return ret;
1470 }
1471 
1472 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1473 					   enum transcoder cpu_transcoder)
1474 {
1475 	struct intel_display *display = to_intel_display(connector);
1476 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1477 	struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1478 	u32 scanline;
1479 	int ret;
1480 
1481 	for (;;) {
1482 		scanline = intel_de_read(display,
1483 					 PIPEDSL(display, crtc->pipe));
1484 		if (scanline > 100 && scanline < 200)
1485 			break;
1486 		usleep_range(25, 50);
1487 	}
1488 
1489 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1490 					 false, TRANS_DDI_HDCP_SIGNALLING);
1491 	if (ret) {
1492 		drm_err(display->drm,
1493 			"Disable HDCP signalling failed (%d)\n", ret);
1494 		return ret;
1495 	}
1496 
1497 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1498 					 true, TRANS_DDI_HDCP_SIGNALLING);
1499 	if (ret) {
1500 		drm_err(display->drm,
1501 			"Enable HDCP signalling failed (%d)\n", ret);
1502 		return ret;
1503 	}
1504 
1505 	return 0;
1506 }
1507 
1508 static
1509 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1510 				      enum transcoder cpu_transcoder,
1511 				      bool enable)
1512 {
1513 	struct intel_display *display = to_intel_display(dig_port);
1514 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1515 	struct intel_connector *connector = hdmi->attached_connector;
1516 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1517 	int ret;
1518 
1519 	if (!enable)
1520 		usleep_range(6, 60); /* Bspec says >= 6us */
1521 
1522 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1523 					 cpu_transcoder, enable,
1524 					 TRANS_DDI_HDCP_SIGNALLING);
1525 	if (ret) {
1526 		drm_err(display->drm, "%s HDCP signalling failed (%d)\n",
1527 			enable ? "Enable" : "Disable", ret);
1528 		return ret;
1529 	}
1530 
1531 	/*
1532 	 * WA: To fix incorrect positioning of the window of
1533 	 * opportunity and enc_en signalling in KABYLAKE.
1534 	 */
1535 	if (IS_KABYLAKE(dev_priv) && enable)
1536 		return kbl_repositioning_enc_en_signal(connector,
1537 						       cpu_transcoder);
1538 
1539 	return 0;
1540 }
1541 
1542 static
1543 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1544 				     struct intel_connector *connector)
1545 {
1546 	struct intel_display *display = to_intel_display(dig_port);
1547 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1548 	enum port port = dig_port->base.port;
1549 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1550 	int ret;
1551 	union {
1552 		u32 reg;
1553 		u8 shim[DRM_HDCP_RI_LEN];
1554 	} ri;
1555 
1556 	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1557 	if (ret)
1558 		return false;
1559 
1560 	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1561 
1562 	/* Wait for Ri prime match */
1563 	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1564 		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1565 		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1566 		drm_dbg_kms(display->drm, "Ri' mismatch detected (%x)\n",
1567 			    intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1568 							    port)));
1569 		return false;
1570 	}
1571 	return true;
1572 }
1573 
1574 static
1575 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1576 				struct intel_connector *connector)
1577 {
1578 	struct intel_display *display = to_intel_display(dig_port);
1579 	int retry;
1580 
1581 	for (retry = 0; retry < 3; retry++)
1582 		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1583 			return true;
1584 
1585 	drm_err(display->drm, "Link check failed\n");
1586 	return false;
1587 }
1588 
1589 struct hdcp2_hdmi_msg_timeout {
1590 	u8 msg_id;
1591 	u16 timeout;
1592 };
1593 
1594 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1595 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1596 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1597 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1598 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1599 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1600 };
1601 
1602 static
1603 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1604 				    u8 *rx_status)
1605 {
1606 	return intel_hdmi_hdcp_read(dig_port,
1607 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1608 				    rx_status,
1609 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1610 }
1611 
1612 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1613 {
1614 	int i;
1615 
1616 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1617 		if (is_paired)
1618 			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1619 		else
1620 			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1621 	}
1622 
1623 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1624 		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1625 			return hdcp2_msg_timeout[i].timeout;
1626 	}
1627 
1628 	return -EINVAL;
1629 }
1630 
1631 static int
1632 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1633 			      u8 msg_id, bool *msg_ready,
1634 			      ssize_t *msg_sz)
1635 {
1636 	struct intel_display *display = to_intel_display(dig_port);
1637 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1638 	int ret;
1639 
1640 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1641 	if (ret < 0) {
1642 		drm_dbg_kms(display->drm, "rx_status read failed. Err %d\n",
1643 			    ret);
1644 		return ret;
1645 	}
1646 
1647 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1648 		  rx_status[0]);
1649 
1650 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1651 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1652 			     *msg_sz);
1653 	else
1654 		*msg_ready = *msg_sz;
1655 
1656 	return 0;
1657 }
1658 
1659 static ssize_t
1660 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1661 			      u8 msg_id, bool paired)
1662 {
1663 	struct intel_display *display = to_intel_display(dig_port);
1664 	bool msg_ready = false;
1665 	int timeout, ret;
1666 	ssize_t msg_sz = 0;
1667 
1668 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1669 	if (timeout < 0)
1670 		return timeout;
1671 
1672 	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1673 							     msg_id, &msg_ready,
1674 							     &msg_sz),
1675 			 !ret && msg_ready && msg_sz, timeout * 1000,
1676 			 1000, 5 * 1000);
1677 	if (ret)
1678 		drm_dbg_kms(display->drm,
1679 			    "msg_id: %d, ret: %d, timeout: %d\n",
1680 			    msg_id, ret, timeout);
1681 
1682 	return ret ? ret : msg_sz;
1683 }
1684 
1685 static
1686 int intel_hdmi_hdcp2_write_msg(struct intel_connector *connector,
1687 			       void *buf, size_t size)
1688 {
1689 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1690 	unsigned int offset;
1691 
1692 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1693 	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1694 }
1695 
1696 static
1697 int intel_hdmi_hdcp2_read_msg(struct intel_connector *connector,
1698 			      u8 msg_id, void *buf, size_t size)
1699 {
1700 	struct intel_display *display = to_intel_display(connector);
1701 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1702 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1703 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1704 	unsigned int offset;
1705 	ssize_t ret;
1706 
1707 	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1708 					    hdcp->is_paired);
1709 	if (ret < 0)
1710 		return ret;
1711 
1712 	/*
1713 	 * Available msg size should be equal to or lesser than the
1714 	 * available buffer.
1715 	 */
1716 	if (ret > size) {
1717 		drm_dbg_kms(display->drm,
1718 			    "msg_sz(%zd) is more than exp size(%zu)\n",
1719 			    ret, size);
1720 		return -EINVAL;
1721 	}
1722 
1723 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1724 	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1725 	if (ret)
1726 		drm_dbg_kms(display->drm, "Failed to read msg_id: %d(%zd)\n",
1727 			    msg_id, ret);
1728 
1729 	return ret;
1730 }
1731 
1732 static
1733 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1734 				struct intel_connector *connector)
1735 {
1736 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1737 	int ret;
1738 
1739 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1740 	if (ret)
1741 		return ret;
1742 
1743 	/*
1744 	 * Re-auth request and Link Integrity Failures are represented by
1745 	 * same bit. i.e reauth_req.
1746 	 */
1747 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1748 		ret = HDCP_REAUTH_REQUEST;
1749 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1750 		ret = HDCP_TOPOLOGY_CHANGE;
1751 
1752 	return ret;
1753 }
1754 
1755 static
1756 int intel_hdmi_hdcp2_get_capability(struct intel_connector *connector,
1757 				    bool *capable)
1758 {
1759 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1760 	u8 hdcp2_version;
1761 	int ret;
1762 
1763 	*capable = false;
1764 	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1765 				   &hdcp2_version, sizeof(hdcp2_version));
1766 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1767 		*capable = true;
1768 
1769 	return ret;
1770 }
1771 
1772 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1773 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1774 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1775 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1776 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1777 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1778 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1779 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1780 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1781 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1782 	.check_link = intel_hdmi_hdcp_check_link,
1783 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1784 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1785 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1786 	.hdcp_2_2_get_capability = intel_hdmi_hdcp2_get_capability,
1787 	.protocol = HDCP_PROTOCOL_HDMI,
1788 };
1789 
1790 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1791 {
1792 	struct intel_display *display = to_intel_display(encoder);
1793 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1794 	int max_tmds_clock, vbt_max_tmds_clock;
1795 
1796 	if (DISPLAY_VER(display) >= 13 || IS_ALDERLAKE_S(dev_priv))
1797 		max_tmds_clock = 600000;
1798 	else if (DISPLAY_VER(display) >= 10)
1799 		max_tmds_clock = 594000;
1800 	else if (DISPLAY_VER(display) >= 8 || IS_HASWELL(dev_priv))
1801 		max_tmds_clock = 300000;
1802 	else if (DISPLAY_VER(display) >= 5)
1803 		max_tmds_clock = 225000;
1804 	else
1805 		max_tmds_clock = 165000;
1806 
1807 	vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata);
1808 	if (vbt_max_tmds_clock)
1809 		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1810 
1811 	return max_tmds_clock;
1812 }
1813 
1814 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1815 				const struct drm_connector_state *conn_state)
1816 {
1817 	struct intel_connector *connector = hdmi->attached_connector;
1818 
1819 	return connector->base.display_info.is_hdmi &&
1820 		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1821 }
1822 
1823 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1824 {
1825 	return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1826 }
1827 
1828 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1829 				 bool respect_downstream_limits,
1830 				 bool has_hdmi_sink)
1831 {
1832 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1833 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1834 
1835 	if (respect_downstream_limits) {
1836 		struct intel_connector *connector = hdmi->attached_connector;
1837 		const struct drm_display_info *info = &connector->base.display_info;
1838 
1839 		if (hdmi->dp_dual_mode.max_tmds_clock)
1840 			max_tmds_clock = min(max_tmds_clock,
1841 					     hdmi->dp_dual_mode.max_tmds_clock);
1842 
1843 		if (info->max_tmds_clock)
1844 			max_tmds_clock = min(max_tmds_clock,
1845 					     info->max_tmds_clock);
1846 		else if (!has_hdmi_sink)
1847 			max_tmds_clock = min(max_tmds_clock, 165000);
1848 	}
1849 
1850 	return max_tmds_clock;
1851 }
1852 
1853 static enum drm_mode_status
1854 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1855 		      int clock, bool respect_downstream_limits,
1856 		      bool has_hdmi_sink)
1857 {
1858 	struct intel_display *display = to_intel_display(hdmi);
1859 	struct drm_i915_private *dev_priv = to_i915(display->drm);
1860 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1861 
1862 	if (clock < 25000)
1863 		return MODE_CLOCK_LOW;
1864 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1865 					  has_hdmi_sink))
1866 		return MODE_CLOCK_HIGH;
1867 
1868 	/* GLK DPLL can't generate 446-480 MHz */
1869 	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1870 		return MODE_CLOCK_RANGE;
1871 
1872 	/* BXT/GLK DPLL can't generate 223-240 MHz */
1873 	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1874 	    clock > 223333 && clock < 240000)
1875 		return MODE_CLOCK_RANGE;
1876 
1877 	/* CHV DPLL can't generate 216-240 MHz */
1878 	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1879 		return MODE_CLOCK_RANGE;
1880 
1881 	/* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1882 	if (intel_encoder_is_combo(encoder) && clock > 500000 && clock < 533200)
1883 		return MODE_CLOCK_RANGE;
1884 
1885 	/* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1886 	if (intel_encoder_is_tc(encoder) && clock > 500000 && clock < 532800)
1887 		return MODE_CLOCK_RANGE;
1888 
1889 	/*
1890 	 * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1891 	 * set of link rates.
1892 	 *
1893 	 * FIXME: We will hopefully get an algorithmic way of programming
1894 	 * the MPLLB for HDMI in the future.
1895 	 */
1896 	if (DISPLAY_VER(display) >= 14)
1897 		return intel_cx0_phy_check_hdmi_link_rate(hdmi, clock);
1898 	else if (IS_DG2(dev_priv))
1899 		return intel_snps_phy_check_hdmi_link_rate(clock);
1900 
1901 	return MODE_OK;
1902 }
1903 
1904 int intel_hdmi_tmds_clock(int clock, int bpc,
1905 			  enum intel_output_format sink_format)
1906 {
1907 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
1908 	if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1909 		clock /= 2;
1910 
1911 	/*
1912 	 * Need to adjust the port link by:
1913 	 *  1.5x for 12bpc
1914 	 *  1.25x for 10bpc
1915 	 */
1916 	return DIV_ROUND_CLOSEST(clock * bpc, 8);
1917 }
1918 
1919 static bool intel_hdmi_source_bpc_possible(struct intel_display *display, int bpc)
1920 {
1921 	switch (bpc) {
1922 	case 12:
1923 		return !HAS_GMCH(display);
1924 	case 10:
1925 		return DISPLAY_VER(display) >= 11;
1926 	case 8:
1927 		return true;
1928 	default:
1929 		MISSING_CASE(bpc);
1930 		return false;
1931 	}
1932 }
1933 
1934 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1935 					 int bpc, bool has_hdmi_sink,
1936 					 enum intel_output_format sink_format)
1937 {
1938 	const struct drm_display_info *info = &connector->display_info;
1939 	const struct drm_hdmi_info *hdmi = &info->hdmi;
1940 
1941 	switch (bpc) {
1942 	case 12:
1943 		if (!has_hdmi_sink)
1944 			return false;
1945 
1946 		if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1947 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1948 		else
1949 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1950 	case 10:
1951 		if (!has_hdmi_sink)
1952 			return false;
1953 
1954 		if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1955 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1956 		else
1957 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1958 	case 8:
1959 		return true;
1960 	default:
1961 		MISSING_CASE(bpc);
1962 		return false;
1963 	}
1964 }
1965 
1966 static enum drm_mode_status
1967 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1968 			    bool has_hdmi_sink,
1969 			    enum intel_output_format sink_format)
1970 {
1971 	struct intel_display *display = to_intel_display(connector->dev);
1972 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1973 	enum drm_mode_status status = MODE_OK;
1974 	int bpc;
1975 
1976 	/*
1977 	 * Try all color depths since valid port clock range
1978 	 * can have holes. Any mode that can be used with at
1979 	 * least one color depth is accepted.
1980 	 */
1981 	for (bpc = 12; bpc >= 8; bpc -= 2) {
1982 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format);
1983 
1984 		if (!intel_hdmi_source_bpc_possible(display, bpc))
1985 			continue;
1986 
1987 		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, sink_format))
1988 			continue;
1989 
1990 		status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
1991 		if (status == MODE_OK)
1992 			return MODE_OK;
1993 	}
1994 
1995 	/* can never happen */
1996 	drm_WARN_ON(display->drm, status == MODE_OK);
1997 
1998 	return status;
1999 }
2000 
2001 static enum drm_mode_status
2002 intel_hdmi_mode_valid(struct drm_connector *connector,
2003 		      struct drm_display_mode *mode)
2004 {
2005 	struct intel_display *display = to_intel_display(connector->dev);
2006 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2007 	struct drm_i915_private *dev_priv = to_i915(display->drm);
2008 	enum drm_mode_status status;
2009 	int clock = mode->clock;
2010 	int max_dotclk = to_i915(connector->dev)->display.cdclk.max_dotclk_freq;
2011 	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
2012 	bool ycbcr_420_only;
2013 	enum intel_output_format sink_format;
2014 
2015 	status = intel_cpu_transcoder_mode_valid(dev_priv, mode);
2016 	if (status != MODE_OK)
2017 		return status;
2018 
2019 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
2020 		clock *= 2;
2021 
2022 	if (clock > max_dotclk)
2023 		return MODE_CLOCK_HIGH;
2024 
2025 	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
2026 		if (!has_hdmi_sink)
2027 			return MODE_CLOCK_LOW;
2028 		clock *= 2;
2029 	}
2030 
2031 	/*
2032 	 * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
2033 	 * enumerated only if FRL is supported. Current platforms do not support
2034 	 * FRL so prune the higher resolution modes that require doctclock more
2035 	 * than 600MHz.
2036 	 */
2037 	if (clock > 600000)
2038 		return MODE_CLOCK_HIGH;
2039 
2040 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
2041 
2042 	if (ycbcr_420_only)
2043 		sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2044 	else
2045 		sink_format = INTEL_OUTPUT_FORMAT_RGB;
2046 
2047 	status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2048 	if (status != MODE_OK) {
2049 		if (ycbcr_420_only ||
2050 		    !connector->ycbcr_420_allowed ||
2051 		    !drm_mode_is_420_also(&connector->display_info, mode))
2052 			return status;
2053 
2054 		sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2055 		status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2056 		if (status != MODE_OK)
2057 			return status;
2058 	}
2059 
2060 	return intel_mode_valid_max_plane_size(dev_priv, mode, 1);
2061 }
2062 
2063 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2064 			     int bpc, bool has_hdmi_sink)
2065 {
2066 	struct drm_atomic_state *state = crtc_state->uapi.state;
2067 	struct drm_connector_state *connector_state;
2068 	struct drm_connector *connector;
2069 	int i;
2070 
2071 	for_each_new_connector_in_state(state, connector, connector_state, i) {
2072 		if (connector_state->crtc != crtc_state->uapi.crtc)
2073 			continue;
2074 
2075 		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink,
2076 						  crtc_state->sink_format))
2077 			return false;
2078 	}
2079 
2080 	return true;
2081 }
2082 
2083 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
2084 {
2085 	struct intel_display *display = to_intel_display(crtc_state);
2086 	const struct drm_display_mode *adjusted_mode =
2087 		&crtc_state->hw.adjusted_mode;
2088 
2089 	if (!intel_hdmi_source_bpc_possible(display, bpc))
2090 		return false;
2091 
2092 	/* Display Wa_1405510057:icl,ehl */
2093 	if (intel_hdmi_is_ycbcr420(crtc_state) &&
2094 	    bpc == 10 && DISPLAY_VER(display) == 11 &&
2095 	    (adjusted_mode->crtc_hblank_end -
2096 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2097 		return false;
2098 
2099 	return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink);
2100 }
2101 
2102 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2103 				  struct intel_crtc_state *crtc_state,
2104 				  int clock, bool respect_downstream_limits)
2105 {
2106 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2107 	int bpc;
2108 
2109 	/*
2110 	 * pipe_bpp could already be below 8bpc due to FDI
2111 	 * bandwidth constraints. HDMI minimum is 8bpc however.
2112 	 */
2113 	bpc = max(crtc_state->pipe_bpp / 3, 8);
2114 
2115 	/*
2116 	 * We will never exceed downstream TMDS clock limits while
2117 	 * attempting deep color. If the user insists on forcing an
2118 	 * out of spec mode they will have to be satisfied with 8bpc.
2119 	 */
2120 	if (!respect_downstream_limits)
2121 		bpc = 8;
2122 
2123 	for (; bpc >= 8; bpc -= 2) {
2124 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc,
2125 						       crtc_state->sink_format);
2126 
2127 		if (hdmi_bpc_possible(crtc_state, bpc) &&
2128 		    hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2129 					  respect_downstream_limits,
2130 					  crtc_state->has_hdmi_sink) == MODE_OK)
2131 			return bpc;
2132 	}
2133 
2134 	return -EINVAL;
2135 }
2136 
2137 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2138 				    struct intel_crtc_state *crtc_state,
2139 				    bool respect_downstream_limits)
2140 {
2141 	struct intel_display *display = to_intel_display(encoder);
2142 	const struct drm_display_mode *adjusted_mode =
2143 		&crtc_state->hw.adjusted_mode;
2144 	int bpc, clock = adjusted_mode->crtc_clock;
2145 
2146 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2147 		clock *= 2;
2148 
2149 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2150 				     respect_downstream_limits);
2151 	if (bpc < 0)
2152 		return bpc;
2153 
2154 	crtc_state->port_clock =
2155 		intel_hdmi_tmds_clock(clock, bpc, crtc_state->sink_format);
2156 
2157 	/*
2158 	 * pipe_bpp could already be below 8bpc due to
2159 	 * FDI bandwidth constraints. We shouldn't bump it
2160 	 * back up to the HDMI minimum 8bpc in that case.
2161 	 */
2162 	crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
2163 
2164 	drm_dbg_kms(display->drm,
2165 		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2166 		    bpc, crtc_state->pipe_bpp);
2167 
2168 	return 0;
2169 }
2170 
2171 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2172 				    const struct drm_connector_state *conn_state)
2173 {
2174 	const struct intel_digital_connector_state *intel_conn_state =
2175 		to_intel_digital_connector_state(conn_state);
2176 	const struct drm_display_mode *adjusted_mode =
2177 		&crtc_state->hw.adjusted_mode;
2178 
2179 	/*
2180 	 * Our YCbCr output is always limited range.
2181 	 * crtc_state->limited_color_range only applies to RGB,
2182 	 * and it must never be set for YCbCr or we risk setting
2183 	 * some conflicting bits in TRANSCONF which will mess up
2184 	 * the colors on the monitor.
2185 	 */
2186 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2187 		return false;
2188 
2189 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2190 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2191 		return crtc_state->has_hdmi_sink &&
2192 			drm_default_rgb_quant_range(adjusted_mode) ==
2193 			HDMI_QUANTIZATION_RANGE_LIMITED;
2194 	} else {
2195 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2196 	}
2197 }
2198 
2199 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2200 				 const struct intel_crtc_state *crtc_state,
2201 				 const struct drm_connector_state *conn_state)
2202 {
2203 	struct drm_connector *connector = conn_state->connector;
2204 	const struct intel_digital_connector_state *intel_conn_state =
2205 		to_intel_digital_connector_state(conn_state);
2206 
2207 	if (!crtc_state->has_hdmi_sink)
2208 		return false;
2209 
2210 	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2211 		return connector->display_info.has_audio;
2212 	else
2213 		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2214 }
2215 
2216 static enum intel_output_format
2217 intel_hdmi_sink_format(const struct intel_crtc_state *crtc_state,
2218 		       struct intel_connector *connector,
2219 		       bool ycbcr_420_output)
2220 {
2221 	if (!crtc_state->has_hdmi_sink)
2222 		return INTEL_OUTPUT_FORMAT_RGB;
2223 
2224 	if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2225 		return INTEL_OUTPUT_FORMAT_YCBCR420;
2226 	else
2227 		return INTEL_OUTPUT_FORMAT_RGB;
2228 }
2229 
2230 static enum intel_output_format
2231 intel_hdmi_output_format(const struct intel_crtc_state *crtc_state)
2232 {
2233 	return crtc_state->sink_format;
2234 }
2235 
2236 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2237 					    struct intel_crtc_state *crtc_state,
2238 					    const struct drm_connector_state *conn_state,
2239 					    bool respect_downstream_limits)
2240 {
2241 	struct intel_display *display = to_intel_display(encoder);
2242 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
2243 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2244 	const struct drm_display_info *info = &connector->base.display_info;
2245 	bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2246 	int ret;
2247 
2248 	crtc_state->sink_format =
2249 		intel_hdmi_sink_format(crtc_state, connector, ycbcr_420_only);
2250 
2251 	if (ycbcr_420_only && crtc_state->sink_format != INTEL_OUTPUT_FORMAT_YCBCR420) {
2252 		drm_dbg_kms(display->drm,
2253 			    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2254 		crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB;
2255 	}
2256 
2257 	crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2258 	ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2259 	if (ret) {
2260 		if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
2261 		    !crtc_state->has_hdmi_sink ||
2262 		    !connector->base.ycbcr_420_allowed ||
2263 		    !drm_mode_is_420_also(info, adjusted_mode))
2264 			return ret;
2265 
2266 		crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2267 		crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2268 		ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2269 	}
2270 
2271 	return ret;
2272 }
2273 
2274 static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state)
2275 {
2276 	return crtc_state->uapi.encoder_mask &&
2277 		!is_power_of_2(crtc_state->uapi.encoder_mask);
2278 }
2279 
2280 static bool source_supports_scrambling(struct intel_encoder *encoder)
2281 {
2282 	/*
2283 	 * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and
2284 	 * scrambling is supported.
2285 	 * But there seem to be cases where certain platforms that support
2286 	 * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is
2287 	 * capped by VBT to less than 340MHz.
2288 	 *
2289 	 * In such cases when an HDMI2.0 sink is connected, it creates a
2290 	 * problem : the platform and the sink both support scrambling but the
2291 	 * HDMI 1.4 retimer chip doesn't.
2292 	 *
2293 	 * So go for scrambling, based on the max tmds clock taking into account,
2294 	 * restrictions coming from VBT.
2295 	 */
2296 	return intel_hdmi_source_max_tmds_clock(encoder) > 340000;
2297 }
2298 
2299 bool intel_hdmi_compute_has_hdmi_sink(struct intel_encoder *encoder,
2300 				      const struct intel_crtc_state *crtc_state,
2301 				      const struct drm_connector_state *conn_state)
2302 {
2303 	struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder);
2304 
2305 	return intel_has_hdmi_sink(hdmi, conn_state) &&
2306 		!intel_hdmi_is_cloned(crtc_state);
2307 }
2308 
2309 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2310 			      struct intel_crtc_state *pipe_config,
2311 			      struct drm_connector_state *conn_state)
2312 {
2313 	struct intel_display *display = to_intel_display(encoder);
2314 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2315 	struct drm_connector *connector = conn_state->connector;
2316 	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2317 	int ret;
2318 
2319 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2320 		return -EINVAL;
2321 
2322 	if (!connector->interlace_allowed &&
2323 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2324 		return -EINVAL;
2325 
2326 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2327 
2328 	if (pipe_config->has_hdmi_sink)
2329 		pipe_config->has_infoframe = true;
2330 
2331 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2332 		pipe_config->pixel_multiplier = 2;
2333 
2334 	pipe_config->has_audio =
2335 		intel_hdmi_has_audio(encoder, pipe_config, conn_state) &&
2336 		intel_audio_compute_config(encoder, pipe_config, conn_state);
2337 
2338 	/*
2339 	 * Try to respect downstream TMDS clock limits first, if
2340 	 * that fails assume the user might know something we don't.
2341 	 */
2342 	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2343 	if (ret)
2344 		ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2345 	if (ret) {
2346 		drm_dbg_kms(display->drm,
2347 			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2348 			    pipe_config->hw.adjusted_mode.crtc_clock);
2349 		return ret;
2350 	}
2351 
2352 	if (intel_hdmi_is_ycbcr420(pipe_config)) {
2353 		ret = intel_panel_fitting(pipe_config, conn_state);
2354 		if (ret)
2355 			return ret;
2356 	}
2357 
2358 	pipe_config->limited_color_range =
2359 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2360 
2361 	if (conn_state->picture_aspect_ratio)
2362 		adjusted_mode->picture_aspect_ratio =
2363 			conn_state->picture_aspect_ratio;
2364 
2365 	pipe_config->lane_count = 4;
2366 
2367 	if (scdc->scrambling.supported && source_supports_scrambling(encoder)) {
2368 		if (scdc->scrambling.low_rates)
2369 			pipe_config->hdmi_scrambling = true;
2370 
2371 		if (pipe_config->port_clock > 340000) {
2372 			pipe_config->hdmi_scrambling = true;
2373 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2374 		}
2375 	}
2376 
2377 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2378 					 conn_state);
2379 
2380 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2381 		drm_dbg_kms(display->drm, "bad AVI infoframe\n");
2382 		return -EINVAL;
2383 	}
2384 
2385 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2386 		drm_dbg_kms(display->drm, "bad SPD infoframe\n");
2387 		return -EINVAL;
2388 	}
2389 
2390 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2391 		drm_dbg_kms(display->drm, "bad HDMI infoframe\n");
2392 		return -EINVAL;
2393 	}
2394 
2395 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2396 		drm_dbg_kms(display->drm, "bad DRM infoframe\n");
2397 		return -EINVAL;
2398 	}
2399 
2400 	return 0;
2401 }
2402 
2403 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2404 {
2405 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2406 
2407 	/*
2408 	 * Give a hand to buggy BIOSen which forget to turn
2409 	 * the TMDS output buffers back on after a reboot.
2410 	 */
2411 	intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2412 }
2413 
2414 static void
2415 intel_hdmi_unset_edid(struct drm_connector *connector)
2416 {
2417 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2418 
2419 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2420 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2421 
2422 	drm_edid_free(to_intel_connector(connector)->detect_edid);
2423 	to_intel_connector(connector)->detect_edid = NULL;
2424 }
2425 
2426 static void
2427 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector)
2428 {
2429 	struct intel_display *display = to_intel_display(connector->dev);
2430 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2431 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2432 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
2433 	struct i2c_adapter *ddc = connector->ddc;
2434 	enum drm_dp_dual_mode_type type;
2435 
2436 	type = drm_dp_dual_mode_detect(display->drm, ddc);
2437 
2438 	/*
2439 	 * Type 1 DVI adaptors are not required to implement any
2440 	 * registers, so we can't always detect their presence.
2441 	 * Ideally we should be able to check the state of the
2442 	 * CONFIG1 pin, but no such luck on our hardware.
2443 	 *
2444 	 * The only method left to us is to check the VBT to see
2445 	 * if the port is a dual mode capable DP port.
2446 	 */
2447 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2448 		if (!connector->force &&
2449 		    intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2450 			drm_dbg_kms(display->drm,
2451 				    "Assuming DP dual mode adaptor presence based on VBT\n");
2452 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2453 		} else {
2454 			type = DRM_DP_DUAL_MODE_NONE;
2455 		}
2456 	}
2457 
2458 	if (type == DRM_DP_DUAL_MODE_NONE)
2459 		return;
2460 
2461 	hdmi->dp_dual_mode.type = type;
2462 	hdmi->dp_dual_mode.max_tmds_clock =
2463 		drm_dp_dual_mode_max_tmds_clock(display->drm, type, ddc);
2464 
2465 	drm_dbg_kms(display->drm,
2466 		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2467 		    drm_dp_get_dual_mode_type_name(type),
2468 		    hdmi->dp_dual_mode.max_tmds_clock);
2469 
2470 	/* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2471 	if ((DISPLAY_VER(display) >= 8 || IS_HASWELL(dev_priv)) &&
2472 	    !intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2473 		drm_dbg_kms(display->drm,
2474 			    "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2475 		hdmi->dp_dual_mode.max_tmds_clock = 0;
2476 	}
2477 }
2478 
2479 static bool
2480 intel_hdmi_set_edid(struct drm_connector *connector)
2481 {
2482 	struct intel_display *display = to_intel_display(connector->dev);
2483 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2484 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2485 	struct i2c_adapter *ddc = connector->ddc;
2486 	intel_wakeref_t wakeref;
2487 	const struct drm_edid *drm_edid;
2488 	bool connected = false;
2489 
2490 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2491 
2492 	drm_edid = drm_edid_read_ddc(connector, ddc);
2493 
2494 	if (!drm_edid && !intel_gmbus_is_forced_bit(ddc)) {
2495 		drm_dbg_kms(display->drm,
2496 			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2497 		intel_gmbus_force_bit(ddc, true);
2498 		drm_edid = drm_edid_read_ddc(connector, ddc);
2499 		intel_gmbus_force_bit(ddc, false);
2500 	}
2501 
2502 	/* Below we depend on display info having been updated */
2503 	drm_edid_connector_update(connector, drm_edid);
2504 
2505 	to_intel_connector(connector)->detect_edid = drm_edid;
2506 
2507 	if (drm_edid_is_digital(drm_edid)) {
2508 		intel_hdmi_dp_dual_mode_detect(connector);
2509 
2510 		connected = true;
2511 	}
2512 
2513 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2514 
2515 	cec_notifier_set_phys_addr(intel_hdmi->cec_notifier,
2516 				   connector->display_info.source_physical_address);
2517 
2518 	return connected;
2519 }
2520 
2521 static enum drm_connector_status
2522 intel_hdmi_detect(struct drm_connector *connector, bool force)
2523 {
2524 	struct intel_display *display = to_intel_display(connector->dev);
2525 	enum drm_connector_status status = connector_status_disconnected;
2526 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2527 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2528 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2529 	intel_wakeref_t wakeref;
2530 
2531 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2532 		    connector->base.id, connector->name);
2533 
2534 	if (!intel_display_device_enabled(dev_priv))
2535 		return connector_status_disconnected;
2536 
2537 	if (!intel_display_driver_check_access(dev_priv))
2538 		return connector->status;
2539 
2540 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2541 
2542 	if (DISPLAY_VER(display) >= 11 &&
2543 	    !intel_digital_port_connected(encoder))
2544 		goto out;
2545 
2546 	intel_hdmi_unset_edid(connector);
2547 
2548 	if (intel_hdmi_set_edid(connector))
2549 		status = connector_status_connected;
2550 
2551 out:
2552 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2553 
2554 	if (status != connector_status_connected)
2555 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2556 
2557 	return status;
2558 }
2559 
2560 static void
2561 intel_hdmi_force(struct drm_connector *connector)
2562 {
2563 	struct intel_display *display = to_intel_display(connector->dev);
2564 	struct drm_i915_private *i915 = to_i915(connector->dev);
2565 
2566 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2567 		    connector->base.id, connector->name);
2568 
2569 	if (!intel_display_driver_check_access(i915))
2570 		return;
2571 
2572 	intel_hdmi_unset_edid(connector);
2573 
2574 	if (connector->status != connector_status_connected)
2575 		return;
2576 
2577 	intel_hdmi_set_edid(connector);
2578 }
2579 
2580 static int intel_hdmi_get_modes(struct drm_connector *connector)
2581 {
2582 	/* drm_edid_connector_update() done in ->detect() or ->force() */
2583 	return drm_edid_connector_add_modes(connector);
2584 }
2585 
2586 static int
2587 intel_hdmi_connector_register(struct drm_connector *connector)
2588 {
2589 	int ret;
2590 
2591 	ret = intel_connector_register(connector);
2592 	if (ret)
2593 		return ret;
2594 
2595 	return ret;
2596 }
2597 
2598 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2599 {
2600 	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2601 
2602 	cec_notifier_conn_unregister(n);
2603 
2604 	intel_connector_unregister(connector);
2605 }
2606 
2607 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2608 	.detect = intel_hdmi_detect,
2609 	.force = intel_hdmi_force,
2610 	.fill_modes = drm_helper_probe_single_connector_modes,
2611 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2612 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2613 	.late_register = intel_hdmi_connector_register,
2614 	.early_unregister = intel_hdmi_connector_unregister,
2615 	.destroy = intel_connector_destroy,
2616 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2617 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2618 };
2619 
2620 static int intel_hdmi_connector_atomic_check(struct drm_connector *connector,
2621 					     struct drm_atomic_state *state)
2622 {
2623 	struct intel_display *display = to_intel_display(connector->dev);
2624 
2625 	if (HAS_DDI(display))
2626 		return intel_digital_connector_atomic_check(connector, state);
2627 	else
2628 		return g4x_hdmi_connector_atomic_check(connector, state);
2629 }
2630 
2631 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2632 	.get_modes = intel_hdmi_get_modes,
2633 	.mode_valid = intel_hdmi_mode_valid,
2634 	.atomic_check = intel_hdmi_connector_atomic_check,
2635 };
2636 
2637 static void
2638 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2639 {
2640 	struct intel_display *display = to_intel_display(intel_hdmi);
2641 
2642 	intel_attach_force_audio_property(connector);
2643 	intel_attach_broadcast_rgb_property(connector);
2644 	intel_attach_aspect_ratio_property(connector);
2645 
2646 	intel_attach_hdmi_colorspace_property(connector);
2647 	drm_connector_attach_content_type_property(connector);
2648 
2649 	if (DISPLAY_VER(display) >= 10)
2650 		drm_connector_attach_hdr_output_metadata_property(connector);
2651 
2652 	if (!HAS_GMCH(display))
2653 		drm_connector_attach_max_bpc_property(connector, 8, 12);
2654 }
2655 
2656 /*
2657  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2658  * @encoder: intel_encoder
2659  * @connector: drm_connector
2660  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2661  *  or reset the high tmds clock ratio for scrambling
2662  * @scrambling: bool to Indicate if the function needs to set or reset
2663  *  sink scrambling
2664  *
2665  * This function handles scrambling on HDMI 2.0 capable sinks.
2666  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2667  * it enables scrambling. This should be called before enabling the HDMI
2668  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2669  * detect a scrambled clock within 100 ms.
2670  *
2671  * Returns:
2672  * True on success, false on failure.
2673  */
2674 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2675 				       struct drm_connector *connector,
2676 				       bool high_tmds_clock_ratio,
2677 				       bool scrambling)
2678 {
2679 	struct intel_display *display = to_intel_display(encoder);
2680 	struct drm_scrambling *sink_scrambling =
2681 		&connector->display_info.hdmi.scdc.scrambling;
2682 
2683 	if (!sink_scrambling->supported)
2684 		return true;
2685 
2686 	drm_dbg_kms(display->drm,
2687 		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2688 		    connector->base.id, connector->name,
2689 		    str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2690 
2691 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2692 	return drm_scdc_set_high_tmds_clock_ratio(connector, high_tmds_clock_ratio) &&
2693 		drm_scdc_set_scrambling(connector, scrambling);
2694 }
2695 
2696 static u8 chv_encoder_to_ddc_pin(struct intel_encoder *encoder)
2697 {
2698 	enum port port = encoder->port;
2699 	u8 ddc_pin;
2700 
2701 	switch (port) {
2702 	case PORT_B:
2703 		ddc_pin = GMBUS_PIN_DPB;
2704 		break;
2705 	case PORT_C:
2706 		ddc_pin = GMBUS_PIN_DPC;
2707 		break;
2708 	case PORT_D:
2709 		ddc_pin = GMBUS_PIN_DPD_CHV;
2710 		break;
2711 	default:
2712 		MISSING_CASE(port);
2713 		ddc_pin = GMBUS_PIN_DPB;
2714 		break;
2715 	}
2716 	return ddc_pin;
2717 }
2718 
2719 static u8 bxt_encoder_to_ddc_pin(struct intel_encoder *encoder)
2720 {
2721 	enum port port = encoder->port;
2722 	u8 ddc_pin;
2723 
2724 	switch (port) {
2725 	case PORT_B:
2726 		ddc_pin = GMBUS_PIN_1_BXT;
2727 		break;
2728 	case PORT_C:
2729 		ddc_pin = GMBUS_PIN_2_BXT;
2730 		break;
2731 	default:
2732 		MISSING_CASE(port);
2733 		ddc_pin = GMBUS_PIN_1_BXT;
2734 		break;
2735 	}
2736 	return ddc_pin;
2737 }
2738 
2739 static u8 cnp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2740 {
2741 	enum port port = encoder->port;
2742 	u8 ddc_pin;
2743 
2744 	switch (port) {
2745 	case PORT_B:
2746 		ddc_pin = GMBUS_PIN_1_BXT;
2747 		break;
2748 	case PORT_C:
2749 		ddc_pin = GMBUS_PIN_2_BXT;
2750 		break;
2751 	case PORT_D:
2752 		ddc_pin = GMBUS_PIN_4_CNP;
2753 		break;
2754 	case PORT_F:
2755 		ddc_pin = GMBUS_PIN_3_BXT;
2756 		break;
2757 	default:
2758 		MISSING_CASE(port);
2759 		ddc_pin = GMBUS_PIN_1_BXT;
2760 		break;
2761 	}
2762 	return ddc_pin;
2763 }
2764 
2765 static u8 icl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2766 {
2767 	struct intel_display *display = to_intel_display(encoder);
2768 	enum port port = encoder->port;
2769 
2770 	if (intel_encoder_is_combo(encoder))
2771 		return GMBUS_PIN_1_BXT + port;
2772 	else if (intel_encoder_is_tc(encoder))
2773 		return GMBUS_PIN_9_TC1_ICP + intel_encoder_to_tc(encoder);
2774 
2775 	drm_WARN(display->drm, 1, "Unknown port:%c\n", port_name(port));
2776 	return GMBUS_PIN_2_BXT;
2777 }
2778 
2779 static u8 mcc_encoder_to_ddc_pin(struct intel_encoder *encoder)
2780 {
2781 	enum phy phy = intel_encoder_to_phy(encoder);
2782 	u8 ddc_pin;
2783 
2784 	switch (phy) {
2785 	case PHY_A:
2786 		ddc_pin = GMBUS_PIN_1_BXT;
2787 		break;
2788 	case PHY_B:
2789 		ddc_pin = GMBUS_PIN_2_BXT;
2790 		break;
2791 	case PHY_C:
2792 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2793 		break;
2794 	default:
2795 		MISSING_CASE(phy);
2796 		ddc_pin = GMBUS_PIN_1_BXT;
2797 		break;
2798 	}
2799 	return ddc_pin;
2800 }
2801 
2802 static u8 rkl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2803 {
2804 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2805 	enum phy phy = intel_encoder_to_phy(encoder);
2806 
2807 	WARN_ON(encoder->port == PORT_C);
2808 
2809 	/*
2810 	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2811 	 * final two outputs use type-c pins, even though they're actually
2812 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2813 	 * all outputs.
2814 	 */
2815 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2816 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2817 
2818 	return GMBUS_PIN_1_BXT + phy;
2819 }
2820 
2821 static u8 gen9bc_tgp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2822 {
2823 	struct intel_display *display = to_intel_display(encoder);
2824 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2825 	enum phy phy = intel_encoder_to_phy(encoder);
2826 
2827 	drm_WARN_ON(display->drm, encoder->port == PORT_A);
2828 
2829 	/*
2830 	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2831 	 * final two outputs use type-c pins, even though they're actually
2832 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2833 	 * all outputs.
2834 	 */
2835 	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2836 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2837 
2838 	return GMBUS_PIN_1_BXT + phy;
2839 }
2840 
2841 static u8 dg1_encoder_to_ddc_pin(struct intel_encoder *encoder)
2842 {
2843 	return intel_encoder_to_phy(encoder) + 1;
2844 }
2845 
2846 static u8 adls_encoder_to_ddc_pin(struct intel_encoder *encoder)
2847 {
2848 	enum phy phy = intel_encoder_to_phy(encoder);
2849 
2850 	WARN_ON(encoder->port == PORT_B || encoder->port == PORT_C);
2851 
2852 	/*
2853 	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2854 	 * except first combo output.
2855 	 */
2856 	if (phy == PHY_A)
2857 		return GMBUS_PIN_1_BXT;
2858 
2859 	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2860 }
2861 
2862 static u8 g4x_encoder_to_ddc_pin(struct intel_encoder *encoder)
2863 {
2864 	enum port port = encoder->port;
2865 	u8 ddc_pin;
2866 
2867 	switch (port) {
2868 	case PORT_B:
2869 		ddc_pin = GMBUS_PIN_DPB;
2870 		break;
2871 	case PORT_C:
2872 		ddc_pin = GMBUS_PIN_DPC;
2873 		break;
2874 	case PORT_D:
2875 		ddc_pin = GMBUS_PIN_DPD;
2876 		break;
2877 	default:
2878 		MISSING_CASE(port);
2879 		ddc_pin = GMBUS_PIN_DPB;
2880 		break;
2881 	}
2882 	return ddc_pin;
2883 }
2884 
2885 static u8 intel_hdmi_default_ddc_pin(struct intel_encoder *encoder)
2886 {
2887 	struct intel_display *display = to_intel_display(encoder);
2888 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2889 	u8 ddc_pin;
2890 
2891 	if (IS_ALDERLAKE_S(dev_priv))
2892 		ddc_pin = adls_encoder_to_ddc_pin(encoder);
2893 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2894 		ddc_pin = dg1_encoder_to_ddc_pin(encoder);
2895 	else if (IS_ROCKETLAKE(dev_priv))
2896 		ddc_pin = rkl_encoder_to_ddc_pin(encoder);
2897 	else if (DISPLAY_VER(display) == 9 && HAS_PCH_TGP(dev_priv))
2898 		ddc_pin = gen9bc_tgp_encoder_to_ddc_pin(encoder);
2899 	else if ((IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) &&
2900 		 HAS_PCH_TGP(dev_priv))
2901 		ddc_pin = mcc_encoder_to_ddc_pin(encoder);
2902 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2903 		ddc_pin = icl_encoder_to_ddc_pin(encoder);
2904 	else if (HAS_PCH_CNP(dev_priv))
2905 		ddc_pin = cnp_encoder_to_ddc_pin(encoder);
2906 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2907 		ddc_pin = bxt_encoder_to_ddc_pin(encoder);
2908 	else if (IS_CHERRYVIEW(dev_priv))
2909 		ddc_pin = chv_encoder_to_ddc_pin(encoder);
2910 	else
2911 		ddc_pin = g4x_encoder_to_ddc_pin(encoder);
2912 
2913 	return ddc_pin;
2914 }
2915 
2916 static struct intel_encoder *
2917 get_encoder_by_ddc_pin(struct intel_encoder *encoder, u8 ddc_pin)
2918 {
2919 	struct intel_display *display = to_intel_display(encoder);
2920 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2921 	struct intel_encoder *other;
2922 
2923 	for_each_intel_encoder(display->drm, other) {
2924 		struct intel_connector *connector;
2925 
2926 		if (other == encoder)
2927 			continue;
2928 
2929 		if (!intel_encoder_is_dig_port(other))
2930 			continue;
2931 
2932 		connector = enc_to_dig_port(other)->hdmi.attached_connector;
2933 
2934 		if (connector && connector->base.ddc == intel_gmbus_get_adapter(i915, ddc_pin))
2935 			return other;
2936 	}
2937 
2938 	return NULL;
2939 }
2940 
2941 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2942 {
2943 	struct intel_display *display = to_intel_display(encoder);
2944 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2945 	struct intel_encoder *other;
2946 	const char *source;
2947 	u8 ddc_pin;
2948 
2949 	ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata);
2950 	source = "VBT";
2951 
2952 	if (!ddc_pin) {
2953 		ddc_pin = intel_hdmi_default_ddc_pin(encoder);
2954 		source = "platform default";
2955 	}
2956 
2957 	if (!intel_gmbus_is_valid_pin(i915, ddc_pin)) {
2958 		drm_dbg_kms(display->drm,
2959 			    "[ENCODER:%d:%s] Invalid DDC pin %d\n",
2960 			    encoder->base.base.id, encoder->base.name, ddc_pin);
2961 		return 0;
2962 	}
2963 
2964 	other = get_encoder_by_ddc_pin(encoder, ddc_pin);
2965 	if (other) {
2966 		drm_dbg_kms(display->drm,
2967 			    "[ENCODER:%d:%s] DDC pin %d already claimed by [ENCODER:%d:%s]\n",
2968 			    encoder->base.base.id, encoder->base.name, ddc_pin,
2969 			    other->base.base.id, other->base.name);
2970 		return 0;
2971 	}
2972 
2973 	drm_dbg_kms(display->drm,
2974 		    "[ENCODER:%d:%s] Using DDC pin 0x%x (%s)\n",
2975 		    encoder->base.base.id, encoder->base.name,
2976 		    ddc_pin, source);
2977 
2978 	return ddc_pin;
2979 }
2980 
2981 void intel_infoframe_init(struct intel_digital_port *dig_port)
2982 {
2983 	struct intel_display *display = to_intel_display(dig_port);
2984 	struct drm_i915_private *dev_priv =
2985 		to_i915(dig_port->base.base.dev);
2986 
2987 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2988 		dig_port->write_infoframe = vlv_write_infoframe;
2989 		dig_port->read_infoframe = vlv_read_infoframe;
2990 		dig_port->set_infoframes = vlv_set_infoframes;
2991 		dig_port->infoframes_enabled = vlv_infoframes_enabled;
2992 	} else if (IS_G4X(dev_priv)) {
2993 		dig_port->write_infoframe = g4x_write_infoframe;
2994 		dig_port->read_infoframe = g4x_read_infoframe;
2995 		dig_port->set_infoframes = g4x_set_infoframes;
2996 		dig_port->infoframes_enabled = g4x_infoframes_enabled;
2997 	} else if (HAS_DDI(display)) {
2998 		if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) {
2999 			dig_port->write_infoframe = lspcon_write_infoframe;
3000 			dig_port->read_infoframe = lspcon_read_infoframe;
3001 			dig_port->set_infoframes = lspcon_set_infoframes;
3002 			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
3003 		} else {
3004 			dig_port->write_infoframe = hsw_write_infoframe;
3005 			dig_port->read_infoframe = hsw_read_infoframe;
3006 			dig_port->set_infoframes = hsw_set_infoframes;
3007 			dig_port->infoframes_enabled = hsw_infoframes_enabled;
3008 		}
3009 	} else if (HAS_PCH_IBX(dev_priv)) {
3010 		dig_port->write_infoframe = ibx_write_infoframe;
3011 		dig_port->read_infoframe = ibx_read_infoframe;
3012 		dig_port->set_infoframes = ibx_set_infoframes;
3013 		dig_port->infoframes_enabled = ibx_infoframes_enabled;
3014 	} else {
3015 		dig_port->write_infoframe = cpt_write_infoframe;
3016 		dig_port->read_infoframe = cpt_read_infoframe;
3017 		dig_port->set_infoframes = cpt_set_infoframes;
3018 		dig_port->infoframes_enabled = cpt_infoframes_enabled;
3019 	}
3020 }
3021 
3022 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
3023 			       struct intel_connector *intel_connector)
3024 {
3025 	struct intel_display *display = to_intel_display(dig_port);
3026 	struct drm_connector *connector = &intel_connector->base;
3027 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
3028 	struct intel_encoder *intel_encoder = &dig_port->base;
3029 	struct drm_device *dev = intel_encoder->base.dev;
3030 	struct drm_i915_private *dev_priv = to_i915(dev);
3031 	enum port port = intel_encoder->port;
3032 	struct cec_connector_info conn_info;
3033 	u8 ddc_pin;
3034 
3035 	drm_dbg_kms(display->drm,
3036 		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
3037 		    intel_encoder->base.base.id, intel_encoder->base.name);
3038 
3039 	if (DISPLAY_VER(display) < 12 && drm_WARN_ON(dev, port == PORT_A))
3040 		return;
3041 
3042 	if (drm_WARN(dev, dig_port->max_lanes < 4,
3043 		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
3044 		     dig_port->max_lanes, intel_encoder->base.base.id,
3045 		     intel_encoder->base.name))
3046 		return;
3047 
3048 	ddc_pin = intel_hdmi_ddc_pin(intel_encoder);
3049 	if (!ddc_pin)
3050 		return;
3051 
3052 	drm_connector_init_with_ddc(dev, connector,
3053 				    &intel_hdmi_connector_funcs,
3054 				    DRM_MODE_CONNECTOR_HDMIA,
3055 				    intel_gmbus_get_adapter(dev_priv, ddc_pin));
3056 
3057 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
3058 
3059 	if (DISPLAY_VER(display) < 12)
3060 		connector->interlace_allowed = true;
3061 
3062 	connector->stereo_allowed = true;
3063 
3064 	if (DISPLAY_VER(display) >= 10)
3065 		connector->ycbcr_420_allowed = true;
3066 
3067 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
3068 	intel_connector->base.polled = intel_connector->polled;
3069 
3070 	if (HAS_DDI(display))
3071 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3072 	else
3073 		intel_connector->get_hw_state = intel_connector_get_hw_state;
3074 
3075 	intel_hdmi_add_properties(intel_hdmi, connector);
3076 
3077 	intel_connector_attach_encoder(intel_connector, intel_encoder);
3078 	intel_hdmi->attached_connector = intel_connector;
3079 
3080 	if (is_hdcp_supported(dev_priv, port)) {
3081 		int ret = intel_hdcp_init(intel_connector, dig_port,
3082 					  &intel_hdmi_hdcp_shim);
3083 		if (ret)
3084 			drm_dbg_kms(display->drm,
3085 				    "HDCP init failed, skipping.\n");
3086 	}
3087 
3088 	cec_fill_conn_info_from_drm(&conn_info, connector);
3089 
3090 	intel_hdmi->cec_notifier =
3091 		cec_notifier_conn_register(dev->dev, port_identifier(port),
3092 					   &conn_info);
3093 	if (!intel_hdmi->cec_notifier)
3094 		drm_dbg_kms(display->drm, "CEC notifier get failed\n");
3095 }
3096 
3097 /*
3098  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
3099  * @vactive: Vactive of a display mode
3100  *
3101  * @return: appropriate dsc slice height for a given mode.
3102  */
3103 int intel_hdmi_dsc_get_slice_height(int vactive)
3104 {
3105 	int slice_height;
3106 
3107 	/*
3108 	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
3109 	 * Select smallest slice height >=96, that results in a valid PPS and
3110 	 * requires minimum padding lines required for final slice.
3111 	 *
3112 	 * Assumption : Vactive is even.
3113 	 */
3114 	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3115 		if (vactive % slice_height == 0)
3116 			return slice_height;
3117 
3118 	return 0;
3119 }
3120 
3121 /*
3122  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3123  * and dsc decoder capabilities
3124  *
3125  * @crtc_state: intel crtc_state
3126  * @src_max_slices: maximum slices supported by the DSC encoder
3127  * @src_max_slice_width: maximum slice width supported by DSC encoder
3128  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3129  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3130  *
3131  * @return: num of dsc slices that can be supported by the dsc encoder
3132  * and decoder.
3133  */
3134 int
3135 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3136 			      int src_max_slices, int src_max_slice_width,
3137 			      int hdmi_max_slices, int hdmi_throughput)
3138 {
3139 /* Pixel rates in KPixels/sec */
3140 #define HDMI_DSC_PEAK_PIXEL_RATE		2720000
3141 /*
3142  * Rates at which the source and sink are required to process pixels in each
3143  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3144  */
3145 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
3146 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
3147 
3148 /* Spec limits the slice width to 2720 pixels */
3149 #define MAX_HDMI_SLICE_WIDTH			2720
3150 	int kslice_adjust;
3151 	int adjusted_clk_khz;
3152 	int min_slices;
3153 	int target_slices;
3154 	int max_throughput; /* max clock freq. in khz per slice */
3155 	int max_slice_width;
3156 	int slice_width;
3157 	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3158 
3159 	if (!hdmi_throughput)
3160 		return 0;
3161 
3162 	/*
3163 	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3164 	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3165 	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3166 	 * dividing adjusted clock value by 10.
3167 	 */
3168 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3169 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3170 		kslice_adjust = 10;
3171 	else
3172 		kslice_adjust = 5;
3173 
3174 	/*
3175 	 * As per spec, the rate at which the source and the sink process
3176 	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3177 	 * This depends upon the pixel clock rate and output formats
3178 	 * (kslice adjust).
3179 	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3180 	 * at max 340MHz, otherwise they can be processed at max 400MHz.
3181 	 */
3182 
3183 	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3184 
3185 	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3186 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3187 	else
3188 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3189 
3190 	/*
3191 	 * Taking into account the sink's capability for maximum
3192 	 * clock per slice (in MHz) as read from HF-VSDB.
3193 	 */
3194 	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3195 
3196 	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3197 	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3198 
3199 	/*
3200 	 * Keep on increasing the num of slices/line, starting from min_slices
3201 	 * per line till we get such a number, for which the slice_width is
3202 	 * just less than max_slice_width. The slices/line selected should be
3203 	 * less than or equal to the max horizontal slices that the combination
3204 	 * of PCON encoder and HDMI decoder can support.
3205 	 */
3206 	slice_width = max_slice_width;
3207 
3208 	do {
3209 		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3210 			target_slices = 1;
3211 		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3212 			target_slices = 2;
3213 		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3214 			target_slices = 4;
3215 		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3216 			target_slices = 8;
3217 		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3218 			target_slices = 12;
3219 		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3220 			target_slices = 16;
3221 		else
3222 			return 0;
3223 
3224 		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3225 		if (slice_width >= max_slice_width)
3226 			min_slices = target_slices + 1;
3227 	} while (slice_width >= max_slice_width);
3228 
3229 	return target_slices;
3230 }
3231 
3232 /*
3233  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3234  * source and sink capabilities.
3235  *
3236  * @src_fraction_bpp: fractional bpp supported by the source
3237  * @slice_width: dsc slice width supported by the source and sink
3238  * @num_slices: num of slices supported by the source and sink
3239  * @output_format: video output format
3240  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3241  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3242  *
3243  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3244  */
3245 int
3246 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3247 		       int output_format, bool hdmi_all_bpp,
3248 		       int hdmi_max_chunk_bytes)
3249 {
3250 	int max_dsc_bpp, min_dsc_bpp;
3251 	int target_bytes;
3252 	bool bpp_found = false;
3253 	int bpp_decrement_x16;
3254 	int bpp_target;
3255 	int bpp_target_x16;
3256 
3257 	/*
3258 	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3259 	 * Start with the max bpp and keep on decrementing with
3260 	 * fractional bpp, if supported by PCON DSC encoder
3261 	 *
3262 	 * for each bpp we check if no of bytes can be supported by HDMI sink
3263 	 */
3264 
3265 	/* Assuming: bpc as 8*/
3266 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3267 		min_dsc_bpp = 6;
3268 		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3269 	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3270 		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3271 		min_dsc_bpp = 8;
3272 		max_dsc_bpp = 3 * 8; /* 3*bpc */
3273 	} else {
3274 		/* Assuming 4:2:2 encoding */
3275 		min_dsc_bpp = 7;
3276 		max_dsc_bpp = 2 * 8; /* 2*bpc */
3277 	}
3278 
3279 	/*
3280 	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3281 	 * Section 7.7.34 : Source shall not enable compressed Video
3282 	 * Transport with bpp_target settings above 12 bpp unless
3283 	 * DSC_all_bpp is set to 1.
3284 	 */
3285 	if (!hdmi_all_bpp)
3286 		max_dsc_bpp = min(max_dsc_bpp, 12);
3287 
3288 	/*
3289 	 * The Sink has a limit of compressed data in bytes for a scanline,
3290 	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3291 	 * The no. of bytes depend on the target bits per pixel that the
3292 	 * source configures. So we start with the max_bpp and calculate
3293 	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3294 	 * till we get the target_chunk_bytes just less than what the sink's
3295 	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3296 	 *
3297 	 * The decrement is according to the fractional support from PCON DSC
3298 	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3299 	 *
3300 	 * bpp_target_x16 = bpp_target * 16
3301 	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3302 	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3303 	 */
3304 
3305 	bpp_target = max_dsc_bpp;
3306 
3307 	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3308 	if (!src_fractional_bpp)
3309 		src_fractional_bpp = 1;
3310 	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3311 	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3312 
3313 	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3314 		int bpp;
3315 
3316 		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3317 		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3318 		if (target_bytes <= hdmi_max_chunk_bytes) {
3319 			bpp_found = true;
3320 			break;
3321 		}
3322 		bpp_target_x16 -= bpp_decrement_x16;
3323 	}
3324 	if (bpp_found)
3325 		return bpp_target_x16;
3326 
3327 	return 0;
3328 }
3329