xref: /linux/drivers/gpu/drm/i915/display/intel_hdmi.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_hdcp.h>
38 #include <drm/drm_scdc_helper.h>
39 #include <drm/intel_lpe_audio.h>
40 
41 #include "i915_debugfs.h"
42 #include "i915_drv.h"
43 #include "intel_atomic.h"
44 #include "intel_connector.h"
45 #include "intel_ddi.h"
46 #include "intel_de.h"
47 #include "intel_display_types.h"
48 #include "intel_dp.h"
49 #include "intel_gmbus.h"
50 #include "intel_hdcp.h"
51 #include "intel_hdmi.h"
52 #include "intel_lspcon.h"
53 #include "intel_panel.h"
54 #include "intel_snps_phy.h"
55 
56 static struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi)
57 {
58 	return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev);
59 }
60 
61 static void
62 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
63 {
64 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi);
65 	u32 enabled_bits;
66 
67 	enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
68 
69 	drm_WARN(&dev_priv->drm,
70 		 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
71 		 "HDMI port enabled, expecting disabled\n");
72 }
73 
74 static void
75 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
76 				     enum transcoder cpu_transcoder)
77 {
78 	drm_WARN(&dev_priv->drm,
79 		 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
80 		 TRANS_DDI_FUNC_ENABLE,
81 		 "HDMI transcoder function enabled, expecting disabled\n");
82 }
83 
84 static u32 g4x_infoframe_index(unsigned int type)
85 {
86 	switch (type) {
87 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
88 		return VIDEO_DIP_SELECT_GAMUT;
89 	case HDMI_INFOFRAME_TYPE_AVI:
90 		return VIDEO_DIP_SELECT_AVI;
91 	case HDMI_INFOFRAME_TYPE_SPD:
92 		return VIDEO_DIP_SELECT_SPD;
93 	case HDMI_INFOFRAME_TYPE_VENDOR:
94 		return VIDEO_DIP_SELECT_VENDOR;
95 	default:
96 		MISSING_CASE(type);
97 		return 0;
98 	}
99 }
100 
101 static u32 g4x_infoframe_enable(unsigned int type)
102 {
103 	switch (type) {
104 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
105 		return VIDEO_DIP_ENABLE_GCP;
106 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
107 		return VIDEO_DIP_ENABLE_GAMUT;
108 	case DP_SDP_VSC:
109 		return 0;
110 	case HDMI_INFOFRAME_TYPE_AVI:
111 		return VIDEO_DIP_ENABLE_AVI;
112 	case HDMI_INFOFRAME_TYPE_SPD:
113 		return VIDEO_DIP_ENABLE_SPD;
114 	case HDMI_INFOFRAME_TYPE_VENDOR:
115 		return VIDEO_DIP_ENABLE_VENDOR;
116 	case HDMI_INFOFRAME_TYPE_DRM:
117 		return 0;
118 	default:
119 		MISSING_CASE(type);
120 		return 0;
121 	}
122 }
123 
124 static u32 hsw_infoframe_enable(unsigned int type)
125 {
126 	switch (type) {
127 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
128 		return VIDEO_DIP_ENABLE_GCP_HSW;
129 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
130 		return VIDEO_DIP_ENABLE_GMP_HSW;
131 	case DP_SDP_VSC:
132 		return VIDEO_DIP_ENABLE_VSC_HSW;
133 	case DP_SDP_PPS:
134 		return VDIP_ENABLE_PPS;
135 	case HDMI_INFOFRAME_TYPE_AVI:
136 		return VIDEO_DIP_ENABLE_AVI_HSW;
137 	case HDMI_INFOFRAME_TYPE_SPD:
138 		return VIDEO_DIP_ENABLE_SPD_HSW;
139 	case HDMI_INFOFRAME_TYPE_VENDOR:
140 		return VIDEO_DIP_ENABLE_VS_HSW;
141 	case HDMI_INFOFRAME_TYPE_DRM:
142 		return VIDEO_DIP_ENABLE_DRM_GLK;
143 	default:
144 		MISSING_CASE(type);
145 		return 0;
146 	}
147 }
148 
149 static i915_reg_t
150 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
151 		 enum transcoder cpu_transcoder,
152 		 unsigned int type,
153 		 int i)
154 {
155 	switch (type) {
156 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
157 		return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
158 	case DP_SDP_VSC:
159 		return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
160 	case DP_SDP_PPS:
161 		return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
162 	case HDMI_INFOFRAME_TYPE_AVI:
163 		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
164 	case HDMI_INFOFRAME_TYPE_SPD:
165 		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
166 	case HDMI_INFOFRAME_TYPE_VENDOR:
167 		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
168 	case HDMI_INFOFRAME_TYPE_DRM:
169 		return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
170 	default:
171 		MISSING_CASE(type);
172 		return INVALID_MMIO_REG;
173 	}
174 }
175 
176 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
177 			     unsigned int type)
178 {
179 	switch (type) {
180 	case DP_SDP_VSC:
181 		return VIDEO_DIP_VSC_DATA_SIZE;
182 	case DP_SDP_PPS:
183 		return VIDEO_DIP_PPS_DATA_SIZE;
184 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
185 		if (DISPLAY_VER(dev_priv) >= 11)
186 			return VIDEO_DIP_GMP_DATA_SIZE;
187 		else
188 			return VIDEO_DIP_DATA_SIZE;
189 	default:
190 		return VIDEO_DIP_DATA_SIZE;
191 	}
192 }
193 
194 static void g4x_write_infoframe(struct intel_encoder *encoder,
195 				const struct intel_crtc_state *crtc_state,
196 				unsigned int type,
197 				const void *frame, ssize_t len)
198 {
199 	const u32 *data = frame;
200 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
201 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
202 	int i;
203 
204 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
205 		 "Writing DIP with CTL reg disabled\n");
206 
207 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
208 	val |= g4x_infoframe_index(type);
209 
210 	val &= ~g4x_infoframe_enable(type);
211 
212 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
213 
214 	for (i = 0; i < len; i += 4) {
215 		intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
216 		data++;
217 	}
218 	/* Write every possible data byte to force correct ECC calculation. */
219 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
220 		intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
221 
222 	val |= g4x_infoframe_enable(type);
223 	val &= ~VIDEO_DIP_FREQ_MASK;
224 	val |= VIDEO_DIP_FREQ_VSYNC;
225 
226 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
227 	intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
228 }
229 
230 static void g4x_read_infoframe(struct intel_encoder *encoder,
231 			       const struct intel_crtc_state *crtc_state,
232 			       unsigned int type,
233 			       void *frame, ssize_t len)
234 {
235 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
236 	u32 val, *data = frame;
237 	int i;
238 
239 	val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
240 
241 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
242 	val |= g4x_infoframe_index(type);
243 
244 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
245 
246 	for (i = 0; i < len; i += 4)
247 		*data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
248 }
249 
250 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
251 				  const struct intel_crtc_state *pipe_config)
252 {
253 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
254 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
255 
256 	if ((val & VIDEO_DIP_ENABLE) == 0)
257 		return 0;
258 
259 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
260 		return 0;
261 
262 	return val & (VIDEO_DIP_ENABLE_AVI |
263 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
264 }
265 
266 static void ibx_write_infoframe(struct intel_encoder *encoder,
267 				const struct intel_crtc_state *crtc_state,
268 				unsigned int type,
269 				const void *frame, ssize_t len)
270 {
271 	const u32 *data = frame;
272 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
273 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
274 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
275 	u32 val = intel_de_read(dev_priv, reg);
276 	int i;
277 
278 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
279 		 "Writing DIP with CTL reg disabled\n");
280 
281 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
282 	val |= g4x_infoframe_index(type);
283 
284 	val &= ~g4x_infoframe_enable(type);
285 
286 	intel_de_write(dev_priv, reg, val);
287 
288 	for (i = 0; i < len; i += 4) {
289 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
290 			       *data);
291 		data++;
292 	}
293 	/* Write every possible data byte to force correct ECC calculation. */
294 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
295 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
296 
297 	val |= g4x_infoframe_enable(type);
298 	val &= ~VIDEO_DIP_FREQ_MASK;
299 	val |= VIDEO_DIP_FREQ_VSYNC;
300 
301 	intel_de_write(dev_priv, reg, val);
302 	intel_de_posting_read(dev_priv, reg);
303 }
304 
305 static void ibx_read_infoframe(struct intel_encoder *encoder,
306 			       const struct intel_crtc_state *crtc_state,
307 			       unsigned int type,
308 			       void *frame, ssize_t len)
309 {
310 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
311 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
312 	u32 val, *data = frame;
313 	int i;
314 
315 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
316 
317 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
318 	val |= g4x_infoframe_index(type);
319 
320 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
321 
322 	for (i = 0; i < len; i += 4)
323 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
324 }
325 
326 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
327 				  const struct intel_crtc_state *pipe_config)
328 {
329 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
330 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
331 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
332 	u32 val = intel_de_read(dev_priv, reg);
333 
334 	if ((val & VIDEO_DIP_ENABLE) == 0)
335 		return 0;
336 
337 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
338 		return 0;
339 
340 	return val & (VIDEO_DIP_ENABLE_AVI |
341 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
342 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
343 }
344 
345 static void cpt_write_infoframe(struct intel_encoder *encoder,
346 				const struct intel_crtc_state *crtc_state,
347 				unsigned int type,
348 				const void *frame, ssize_t len)
349 {
350 	const u32 *data = frame;
351 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
352 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
353 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
354 	u32 val = intel_de_read(dev_priv, reg);
355 	int i;
356 
357 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
358 		 "Writing DIP with CTL reg disabled\n");
359 
360 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
361 	val |= g4x_infoframe_index(type);
362 
363 	/* The DIP control register spec says that we need to update the AVI
364 	 * infoframe without clearing its enable bit */
365 	if (type != HDMI_INFOFRAME_TYPE_AVI)
366 		val &= ~g4x_infoframe_enable(type);
367 
368 	intel_de_write(dev_priv, reg, val);
369 
370 	for (i = 0; i < len; i += 4) {
371 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
372 			       *data);
373 		data++;
374 	}
375 	/* Write every possible data byte to force correct ECC calculation. */
376 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
377 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
378 
379 	val |= g4x_infoframe_enable(type);
380 	val &= ~VIDEO_DIP_FREQ_MASK;
381 	val |= VIDEO_DIP_FREQ_VSYNC;
382 
383 	intel_de_write(dev_priv, reg, val);
384 	intel_de_posting_read(dev_priv, reg);
385 }
386 
387 static void cpt_read_infoframe(struct intel_encoder *encoder,
388 			       const struct intel_crtc_state *crtc_state,
389 			       unsigned int type,
390 			       void *frame, ssize_t len)
391 {
392 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
393 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
394 	u32 val, *data = frame;
395 	int i;
396 
397 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
398 
399 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
400 	val |= g4x_infoframe_index(type);
401 
402 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
403 
404 	for (i = 0; i < len; i += 4)
405 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
406 }
407 
408 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
409 				  const struct intel_crtc_state *pipe_config)
410 {
411 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
412 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
413 	u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
414 
415 	if ((val & VIDEO_DIP_ENABLE) == 0)
416 		return 0;
417 
418 	return val & (VIDEO_DIP_ENABLE_AVI |
419 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
420 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
421 }
422 
423 static void vlv_write_infoframe(struct intel_encoder *encoder,
424 				const struct intel_crtc_state *crtc_state,
425 				unsigned int type,
426 				const void *frame, ssize_t len)
427 {
428 	const u32 *data = frame;
429 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
430 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
431 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
432 	u32 val = intel_de_read(dev_priv, reg);
433 	int i;
434 
435 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
436 		 "Writing DIP with CTL reg disabled\n");
437 
438 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
439 	val |= g4x_infoframe_index(type);
440 
441 	val &= ~g4x_infoframe_enable(type);
442 
443 	intel_de_write(dev_priv, reg, val);
444 
445 	for (i = 0; i < len; i += 4) {
446 		intel_de_write(dev_priv,
447 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
448 		data++;
449 	}
450 	/* Write every possible data byte to force correct ECC calculation. */
451 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
452 		intel_de_write(dev_priv,
453 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
454 
455 	val |= g4x_infoframe_enable(type);
456 	val &= ~VIDEO_DIP_FREQ_MASK;
457 	val |= VIDEO_DIP_FREQ_VSYNC;
458 
459 	intel_de_write(dev_priv, reg, val);
460 	intel_de_posting_read(dev_priv, reg);
461 }
462 
463 static void vlv_read_infoframe(struct intel_encoder *encoder,
464 			       const struct intel_crtc_state *crtc_state,
465 			       unsigned int type,
466 			       void *frame, ssize_t len)
467 {
468 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
469 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
470 	u32 val, *data = frame;
471 	int i;
472 
473 	val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
474 
475 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
476 	val |= g4x_infoframe_index(type);
477 
478 	intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
479 
480 	for (i = 0; i < len; i += 4)
481 		*data++ = intel_de_read(dev_priv,
482 				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
483 }
484 
485 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
486 				  const struct intel_crtc_state *pipe_config)
487 {
488 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
489 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
490 	u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
491 
492 	if ((val & VIDEO_DIP_ENABLE) == 0)
493 		return 0;
494 
495 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
496 		return 0;
497 
498 	return val & (VIDEO_DIP_ENABLE_AVI |
499 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
500 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
501 }
502 
503 void hsw_write_infoframe(struct intel_encoder *encoder,
504 			 const struct intel_crtc_state *crtc_state,
505 			 unsigned int type,
506 			 const void *frame, ssize_t len)
507 {
508 	const u32 *data = frame;
509 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
510 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
511 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
512 	int data_size;
513 	int i;
514 	u32 val = intel_de_read(dev_priv, ctl_reg);
515 
516 	data_size = hsw_dip_data_size(dev_priv, type);
517 
518 	drm_WARN_ON(&dev_priv->drm, len > data_size);
519 
520 	val &= ~hsw_infoframe_enable(type);
521 	intel_de_write(dev_priv, ctl_reg, val);
522 
523 	for (i = 0; i < len; i += 4) {
524 		intel_de_write(dev_priv,
525 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
526 			       *data);
527 		data++;
528 	}
529 	/* Write every possible data byte to force correct ECC calculation. */
530 	for (; i < data_size; i += 4)
531 		intel_de_write(dev_priv,
532 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
533 			       0);
534 
535 	/* Wa_14013475917 */
536 	if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr &&
537 	    type == DP_SDP_VSC)
538 		return;
539 
540 	val |= hsw_infoframe_enable(type);
541 	intel_de_write(dev_priv, ctl_reg, val);
542 	intel_de_posting_read(dev_priv, ctl_reg);
543 }
544 
545 void hsw_read_infoframe(struct intel_encoder *encoder,
546 			const struct intel_crtc_state *crtc_state,
547 			unsigned int type, void *frame, ssize_t len)
548 {
549 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
550 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
551 	u32 *data = frame;
552 	int i;
553 
554 	for (i = 0; i < len; i += 4)
555 		*data++ = intel_de_read(dev_priv,
556 				        hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
557 }
558 
559 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
560 				  const struct intel_crtc_state *pipe_config)
561 {
562 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
563 	u32 val = intel_de_read(dev_priv,
564 				HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
565 	u32 mask;
566 
567 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
568 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
569 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
570 
571 	if (DISPLAY_VER(dev_priv) >= 10)
572 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
573 
574 	return val & mask;
575 }
576 
577 static const u8 infoframe_type_to_idx[] = {
578 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
579 	HDMI_PACKET_TYPE_GAMUT_METADATA,
580 	DP_SDP_VSC,
581 	HDMI_INFOFRAME_TYPE_AVI,
582 	HDMI_INFOFRAME_TYPE_SPD,
583 	HDMI_INFOFRAME_TYPE_VENDOR,
584 	HDMI_INFOFRAME_TYPE_DRM,
585 };
586 
587 u32 intel_hdmi_infoframe_enable(unsigned int type)
588 {
589 	int i;
590 
591 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
592 		if (infoframe_type_to_idx[i] == type)
593 			return BIT(i);
594 	}
595 
596 	return 0;
597 }
598 
599 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
600 				  const struct intel_crtc_state *crtc_state)
601 {
602 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
603 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
604 	u32 val, ret = 0;
605 	int i;
606 
607 	val = dig_port->infoframes_enabled(encoder, crtc_state);
608 
609 	/* map from hardware bits to dip idx */
610 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
611 		unsigned int type = infoframe_type_to_idx[i];
612 
613 		if (HAS_DDI(dev_priv)) {
614 			if (val & hsw_infoframe_enable(type))
615 				ret |= BIT(i);
616 		} else {
617 			if (val & g4x_infoframe_enable(type))
618 				ret |= BIT(i);
619 		}
620 	}
621 
622 	return ret;
623 }
624 
625 /*
626  * The data we write to the DIP data buffer registers is 1 byte bigger than the
627  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
628  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
629  * used for both technologies.
630  *
631  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
632  * DW1:       DB3       | DB2 | DB1 | DB0
633  * DW2:       DB7       | DB6 | DB5 | DB4
634  * DW3: ...
635  *
636  * (HB is Header Byte, DB is Data Byte)
637  *
638  * The hdmi pack() functions don't know about that hardware specific hole so we
639  * trick them by giving an offset into the buffer and moving back the header
640  * bytes by one.
641  */
642 static void intel_write_infoframe(struct intel_encoder *encoder,
643 				  const struct intel_crtc_state *crtc_state,
644 				  enum hdmi_infoframe_type type,
645 				  const union hdmi_infoframe *frame)
646 {
647 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
648 	u8 buffer[VIDEO_DIP_DATA_SIZE];
649 	ssize_t len;
650 
651 	if ((crtc_state->infoframes.enable &
652 	     intel_hdmi_infoframe_enable(type)) == 0)
653 		return;
654 
655 	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
656 		return;
657 
658 	/* see comment above for the reason for this offset */
659 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
660 	if (drm_WARN_ON(encoder->base.dev, len < 0))
661 		return;
662 
663 	/* Insert the 'hole' (see big comment above) at position 3 */
664 	memmove(&buffer[0], &buffer[1], 3);
665 	buffer[3] = 0;
666 	len++;
667 
668 	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
669 }
670 
671 void intel_read_infoframe(struct intel_encoder *encoder,
672 			  const struct intel_crtc_state *crtc_state,
673 			  enum hdmi_infoframe_type type,
674 			  union hdmi_infoframe *frame)
675 {
676 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
677 	u8 buffer[VIDEO_DIP_DATA_SIZE];
678 	int ret;
679 
680 	if ((crtc_state->infoframes.enable &
681 	     intel_hdmi_infoframe_enable(type)) == 0)
682 		return;
683 
684 	dig_port->read_infoframe(encoder, crtc_state,
685 				       type, buffer, sizeof(buffer));
686 
687 	/* Fill the 'hole' (see big comment above) at position 3 */
688 	memmove(&buffer[1], &buffer[0], 3);
689 
690 	/* see comment above for the reason for this offset */
691 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
692 	if (ret) {
693 		drm_dbg_kms(encoder->base.dev,
694 			    "Failed to unpack infoframe type 0x%02x\n", type);
695 		return;
696 	}
697 
698 	if (frame->any.type != type)
699 		drm_dbg_kms(encoder->base.dev,
700 			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
701 			    frame->any.type, type);
702 }
703 
704 static bool
705 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
706 				 struct intel_crtc_state *crtc_state,
707 				 struct drm_connector_state *conn_state)
708 {
709 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
710 	const struct drm_display_mode *adjusted_mode =
711 		&crtc_state->hw.adjusted_mode;
712 	struct drm_connector *connector = conn_state->connector;
713 	int ret;
714 
715 	if (!crtc_state->has_infoframe)
716 		return true;
717 
718 	crtc_state->infoframes.enable |=
719 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
720 
721 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
722 						       adjusted_mode);
723 	if (ret)
724 		return false;
725 
726 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
727 		frame->colorspace = HDMI_COLORSPACE_YUV420;
728 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
729 		frame->colorspace = HDMI_COLORSPACE_YUV444;
730 	else
731 		frame->colorspace = HDMI_COLORSPACE_RGB;
732 
733 	drm_hdmi_avi_infoframe_colorspace(frame, conn_state);
734 
735 	/* nonsense combination */
736 	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
737 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
738 
739 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
740 		drm_hdmi_avi_infoframe_quant_range(frame, connector,
741 						   adjusted_mode,
742 						   crtc_state->limited_color_range ?
743 						   HDMI_QUANTIZATION_RANGE_LIMITED :
744 						   HDMI_QUANTIZATION_RANGE_FULL);
745 	} else {
746 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
747 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
748 	}
749 
750 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
751 
752 	/* TODO: handle pixel repetition for YCBCR420 outputs */
753 
754 	ret = hdmi_avi_infoframe_check(frame);
755 	if (drm_WARN_ON(encoder->base.dev, ret))
756 		return false;
757 
758 	return true;
759 }
760 
761 static bool
762 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
763 				 struct intel_crtc_state *crtc_state,
764 				 struct drm_connector_state *conn_state)
765 {
766 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
767 	int ret;
768 
769 	if (!crtc_state->has_infoframe)
770 		return true;
771 
772 	crtc_state->infoframes.enable |=
773 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
774 
775 	ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
776 	if (drm_WARN_ON(encoder->base.dev, ret))
777 		return false;
778 
779 	frame->sdi = HDMI_SPD_SDI_PC;
780 
781 	ret = hdmi_spd_infoframe_check(frame);
782 	if (drm_WARN_ON(encoder->base.dev, ret))
783 		return false;
784 
785 	return true;
786 }
787 
788 static bool
789 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
790 				  struct intel_crtc_state *crtc_state,
791 				  struct drm_connector_state *conn_state)
792 {
793 	struct hdmi_vendor_infoframe *frame =
794 		&crtc_state->infoframes.hdmi.vendor.hdmi;
795 	const struct drm_display_info *info =
796 		&conn_state->connector->display_info;
797 	int ret;
798 
799 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
800 		return true;
801 
802 	crtc_state->infoframes.enable |=
803 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
804 
805 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
806 							  conn_state->connector,
807 							  &crtc_state->hw.adjusted_mode);
808 	if (drm_WARN_ON(encoder->base.dev, ret))
809 		return false;
810 
811 	ret = hdmi_vendor_infoframe_check(frame);
812 	if (drm_WARN_ON(encoder->base.dev, ret))
813 		return false;
814 
815 	return true;
816 }
817 
818 static bool
819 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
820 				 struct intel_crtc_state *crtc_state,
821 				 struct drm_connector_state *conn_state)
822 {
823 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
824 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
825 	int ret;
826 
827 	if (DISPLAY_VER(dev_priv) < 10)
828 		return true;
829 
830 	if (!crtc_state->has_infoframe)
831 		return true;
832 
833 	if (!conn_state->hdr_output_metadata)
834 		return true;
835 
836 	crtc_state->infoframes.enable |=
837 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
838 
839 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
840 	if (ret < 0) {
841 		drm_dbg_kms(&dev_priv->drm,
842 			    "couldn't set HDR metadata in infoframe\n");
843 		return false;
844 	}
845 
846 	ret = hdmi_drm_infoframe_check(frame);
847 	if (drm_WARN_ON(&dev_priv->drm, ret))
848 		return false;
849 
850 	return true;
851 }
852 
853 static void g4x_set_infoframes(struct intel_encoder *encoder,
854 			       bool enable,
855 			       const struct intel_crtc_state *crtc_state,
856 			       const struct drm_connector_state *conn_state)
857 {
858 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
859 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
860 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
861 	i915_reg_t reg = VIDEO_DIP_CTL;
862 	u32 val = intel_de_read(dev_priv, reg);
863 	u32 port = VIDEO_DIP_PORT(encoder->port);
864 
865 	assert_hdmi_port_disabled(intel_hdmi);
866 
867 	/* If the registers were not initialized yet, they might be zeroes,
868 	 * which means we're selecting the AVI DIP and we're setting its
869 	 * frequency to once. This seems to really confuse the HW and make
870 	 * things stop working (the register spec says the AVI always needs to
871 	 * be sent every VSync). So here we avoid writing to the register more
872 	 * than we need and also explicitly select the AVI DIP and explicitly
873 	 * set its frequency to every VSync. Avoiding to write it twice seems to
874 	 * be enough to solve the problem, but being defensive shouldn't hurt us
875 	 * either. */
876 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
877 
878 	if (!enable) {
879 		if (!(val & VIDEO_DIP_ENABLE))
880 			return;
881 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
882 			drm_dbg_kms(&dev_priv->drm,
883 				    "video DIP still enabled on port %c\n",
884 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
885 			return;
886 		}
887 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
888 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
889 		intel_de_write(dev_priv, reg, val);
890 		intel_de_posting_read(dev_priv, reg);
891 		return;
892 	}
893 
894 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
895 		if (val & VIDEO_DIP_ENABLE) {
896 			drm_dbg_kms(&dev_priv->drm,
897 				    "video DIP already enabled on port %c\n",
898 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
899 			return;
900 		}
901 		val &= ~VIDEO_DIP_PORT_MASK;
902 		val |= port;
903 	}
904 
905 	val |= VIDEO_DIP_ENABLE;
906 	val &= ~(VIDEO_DIP_ENABLE_AVI |
907 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
908 
909 	intel_de_write(dev_priv, reg, val);
910 	intel_de_posting_read(dev_priv, reg);
911 
912 	intel_write_infoframe(encoder, crtc_state,
913 			      HDMI_INFOFRAME_TYPE_AVI,
914 			      &crtc_state->infoframes.avi);
915 	intel_write_infoframe(encoder, crtc_state,
916 			      HDMI_INFOFRAME_TYPE_SPD,
917 			      &crtc_state->infoframes.spd);
918 	intel_write_infoframe(encoder, crtc_state,
919 			      HDMI_INFOFRAME_TYPE_VENDOR,
920 			      &crtc_state->infoframes.hdmi);
921 }
922 
923 /*
924  * Determine if default_phase=1 can be indicated in the GCP infoframe.
925  *
926  * From HDMI specification 1.4a:
927  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
928  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
929  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
930  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
931  *   phase of 0
932  */
933 static bool gcp_default_phase_possible(int pipe_bpp,
934 				       const struct drm_display_mode *mode)
935 {
936 	unsigned int pixels_per_group;
937 
938 	switch (pipe_bpp) {
939 	case 30:
940 		/* 4 pixels in 5 clocks */
941 		pixels_per_group = 4;
942 		break;
943 	case 36:
944 		/* 2 pixels in 3 clocks */
945 		pixels_per_group = 2;
946 		break;
947 	case 48:
948 		/* 1 pixel in 2 clocks */
949 		pixels_per_group = 1;
950 		break;
951 	default:
952 		/* phase information not relevant for 8bpc */
953 		return false;
954 	}
955 
956 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
957 		mode->crtc_htotal % pixels_per_group == 0 &&
958 		mode->crtc_hblank_start % pixels_per_group == 0 &&
959 		mode->crtc_hblank_end % pixels_per_group == 0 &&
960 		mode->crtc_hsync_start % pixels_per_group == 0 &&
961 		mode->crtc_hsync_end % pixels_per_group == 0 &&
962 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
963 		 mode->crtc_htotal/2 % pixels_per_group == 0);
964 }
965 
966 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
967 					 const struct intel_crtc_state *crtc_state,
968 					 const struct drm_connector_state *conn_state)
969 {
970 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
971 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
972 	i915_reg_t reg;
973 
974 	if ((crtc_state->infoframes.enable &
975 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
976 		return false;
977 
978 	if (HAS_DDI(dev_priv))
979 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
980 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
981 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
982 	else if (HAS_PCH_SPLIT(dev_priv))
983 		reg = TVIDEO_DIP_GCP(crtc->pipe);
984 	else
985 		return false;
986 
987 	intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
988 
989 	return true;
990 }
991 
992 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
993 				   struct intel_crtc_state *crtc_state)
994 {
995 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
996 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
997 	i915_reg_t reg;
998 
999 	if ((crtc_state->infoframes.enable &
1000 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1001 		return;
1002 
1003 	if (HAS_DDI(dev_priv))
1004 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1005 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1006 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1007 	else if (HAS_PCH_SPLIT(dev_priv))
1008 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1009 	else
1010 		return;
1011 
1012 	crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1013 }
1014 
1015 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1016 					     struct intel_crtc_state *crtc_state,
1017 					     struct drm_connector_state *conn_state)
1018 {
1019 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1020 
1021 	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1022 		return;
1023 
1024 	crtc_state->infoframes.enable |=
1025 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1026 
1027 	/* Indicate color indication for deep color mode */
1028 	if (crtc_state->pipe_bpp > 24)
1029 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1030 
1031 	/* Enable default_phase whenever the display mode is suitably aligned */
1032 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1033 				       &crtc_state->hw.adjusted_mode))
1034 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1035 }
1036 
1037 static void ibx_set_infoframes(struct intel_encoder *encoder,
1038 			       bool enable,
1039 			       const struct intel_crtc_state *crtc_state,
1040 			       const struct drm_connector_state *conn_state)
1041 {
1042 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1043 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1044 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1045 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1046 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1047 	u32 val = intel_de_read(dev_priv, reg);
1048 	u32 port = VIDEO_DIP_PORT(encoder->port);
1049 
1050 	assert_hdmi_port_disabled(intel_hdmi);
1051 
1052 	/* See the big comment in g4x_set_infoframes() */
1053 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1054 
1055 	if (!enable) {
1056 		if (!(val & VIDEO_DIP_ENABLE))
1057 			return;
1058 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1059 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1060 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1061 		intel_de_write(dev_priv, reg, val);
1062 		intel_de_posting_read(dev_priv, reg);
1063 		return;
1064 	}
1065 
1066 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1067 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1068 			 "DIP already enabled on port %c\n",
1069 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1070 		val &= ~VIDEO_DIP_PORT_MASK;
1071 		val |= port;
1072 	}
1073 
1074 	val |= VIDEO_DIP_ENABLE;
1075 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1076 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1077 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1078 
1079 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1080 		val |= VIDEO_DIP_ENABLE_GCP;
1081 
1082 	intel_de_write(dev_priv, reg, val);
1083 	intel_de_posting_read(dev_priv, reg);
1084 
1085 	intel_write_infoframe(encoder, crtc_state,
1086 			      HDMI_INFOFRAME_TYPE_AVI,
1087 			      &crtc_state->infoframes.avi);
1088 	intel_write_infoframe(encoder, crtc_state,
1089 			      HDMI_INFOFRAME_TYPE_SPD,
1090 			      &crtc_state->infoframes.spd);
1091 	intel_write_infoframe(encoder, crtc_state,
1092 			      HDMI_INFOFRAME_TYPE_VENDOR,
1093 			      &crtc_state->infoframes.hdmi);
1094 }
1095 
1096 static void cpt_set_infoframes(struct intel_encoder *encoder,
1097 			       bool enable,
1098 			       const struct intel_crtc_state *crtc_state,
1099 			       const struct drm_connector_state *conn_state)
1100 {
1101 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1102 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1103 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1104 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1105 	u32 val = intel_de_read(dev_priv, reg);
1106 
1107 	assert_hdmi_port_disabled(intel_hdmi);
1108 
1109 	/* See the big comment in g4x_set_infoframes() */
1110 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1111 
1112 	if (!enable) {
1113 		if (!(val & VIDEO_DIP_ENABLE))
1114 			return;
1115 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1116 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1117 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1118 		intel_de_write(dev_priv, reg, val);
1119 		intel_de_posting_read(dev_priv, reg);
1120 		return;
1121 	}
1122 
1123 	/* Set both together, unset both together: see the spec. */
1124 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1125 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1126 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1127 
1128 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1129 		val |= VIDEO_DIP_ENABLE_GCP;
1130 
1131 	intel_de_write(dev_priv, reg, val);
1132 	intel_de_posting_read(dev_priv, reg);
1133 
1134 	intel_write_infoframe(encoder, crtc_state,
1135 			      HDMI_INFOFRAME_TYPE_AVI,
1136 			      &crtc_state->infoframes.avi);
1137 	intel_write_infoframe(encoder, crtc_state,
1138 			      HDMI_INFOFRAME_TYPE_SPD,
1139 			      &crtc_state->infoframes.spd);
1140 	intel_write_infoframe(encoder, crtc_state,
1141 			      HDMI_INFOFRAME_TYPE_VENDOR,
1142 			      &crtc_state->infoframes.hdmi);
1143 }
1144 
1145 static void vlv_set_infoframes(struct intel_encoder *encoder,
1146 			       bool enable,
1147 			       const struct intel_crtc_state *crtc_state,
1148 			       const struct drm_connector_state *conn_state)
1149 {
1150 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1151 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1152 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1153 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1154 	u32 val = intel_de_read(dev_priv, reg);
1155 	u32 port = VIDEO_DIP_PORT(encoder->port);
1156 
1157 	assert_hdmi_port_disabled(intel_hdmi);
1158 
1159 	/* See the big comment in g4x_set_infoframes() */
1160 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1161 
1162 	if (!enable) {
1163 		if (!(val & VIDEO_DIP_ENABLE))
1164 			return;
1165 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1166 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1167 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1168 		intel_de_write(dev_priv, reg, val);
1169 		intel_de_posting_read(dev_priv, reg);
1170 		return;
1171 	}
1172 
1173 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1174 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1175 			 "DIP already enabled on port %c\n",
1176 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1177 		val &= ~VIDEO_DIP_PORT_MASK;
1178 		val |= port;
1179 	}
1180 
1181 	val |= VIDEO_DIP_ENABLE;
1182 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1183 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1184 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1185 
1186 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1187 		val |= VIDEO_DIP_ENABLE_GCP;
1188 
1189 	intel_de_write(dev_priv, reg, val);
1190 	intel_de_posting_read(dev_priv, reg);
1191 
1192 	intel_write_infoframe(encoder, crtc_state,
1193 			      HDMI_INFOFRAME_TYPE_AVI,
1194 			      &crtc_state->infoframes.avi);
1195 	intel_write_infoframe(encoder, crtc_state,
1196 			      HDMI_INFOFRAME_TYPE_SPD,
1197 			      &crtc_state->infoframes.spd);
1198 	intel_write_infoframe(encoder, crtc_state,
1199 			      HDMI_INFOFRAME_TYPE_VENDOR,
1200 			      &crtc_state->infoframes.hdmi);
1201 }
1202 
1203 static void hsw_set_infoframes(struct intel_encoder *encoder,
1204 			       bool enable,
1205 			       const struct intel_crtc_state *crtc_state,
1206 			       const struct drm_connector_state *conn_state)
1207 {
1208 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1209 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1210 	u32 val = intel_de_read(dev_priv, reg);
1211 
1212 	assert_hdmi_transcoder_func_disabled(dev_priv,
1213 					     crtc_state->cpu_transcoder);
1214 
1215 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1216 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1217 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1218 		 VIDEO_DIP_ENABLE_DRM_GLK);
1219 
1220 	if (!enable) {
1221 		intel_de_write(dev_priv, reg, val);
1222 		intel_de_posting_read(dev_priv, reg);
1223 		return;
1224 	}
1225 
1226 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1227 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1228 
1229 	intel_de_write(dev_priv, reg, val);
1230 	intel_de_posting_read(dev_priv, reg);
1231 
1232 	intel_write_infoframe(encoder, crtc_state,
1233 			      HDMI_INFOFRAME_TYPE_AVI,
1234 			      &crtc_state->infoframes.avi);
1235 	intel_write_infoframe(encoder, crtc_state,
1236 			      HDMI_INFOFRAME_TYPE_SPD,
1237 			      &crtc_state->infoframes.spd);
1238 	intel_write_infoframe(encoder, crtc_state,
1239 			      HDMI_INFOFRAME_TYPE_VENDOR,
1240 			      &crtc_state->infoframes.hdmi);
1241 	intel_write_infoframe(encoder, crtc_state,
1242 			      HDMI_INFOFRAME_TYPE_DRM,
1243 			      &crtc_state->infoframes.drm);
1244 }
1245 
1246 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1247 {
1248 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1249 	struct i2c_adapter *adapter;
1250 
1251 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1252 		return;
1253 
1254 	adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1255 
1256 	drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1257 		    enable ? "Enabling" : "Disabling");
1258 
1259 	drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
1260 }
1261 
1262 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1263 				unsigned int offset, void *buffer, size_t size)
1264 {
1265 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1266 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1267 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1268 							      hdmi->ddc_bus);
1269 	int ret;
1270 	u8 start = offset & 0xff;
1271 	struct i2c_msg msgs[] = {
1272 		{
1273 			.addr = DRM_HDCP_DDC_ADDR,
1274 			.flags = 0,
1275 			.len = 1,
1276 			.buf = &start,
1277 		},
1278 		{
1279 			.addr = DRM_HDCP_DDC_ADDR,
1280 			.flags = I2C_M_RD,
1281 			.len = size,
1282 			.buf = buffer
1283 		}
1284 	};
1285 	ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1286 	if (ret == ARRAY_SIZE(msgs))
1287 		return 0;
1288 	return ret >= 0 ? -EIO : ret;
1289 }
1290 
1291 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1292 				 unsigned int offset, void *buffer, size_t size)
1293 {
1294 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1295 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1296 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1297 							      hdmi->ddc_bus);
1298 	int ret;
1299 	u8 *write_buf;
1300 	struct i2c_msg msg;
1301 
1302 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1303 	if (!write_buf)
1304 		return -ENOMEM;
1305 
1306 	write_buf[0] = offset & 0xff;
1307 	memcpy(&write_buf[1], buffer, size);
1308 
1309 	msg.addr = DRM_HDCP_DDC_ADDR;
1310 	msg.flags = 0,
1311 	msg.len = size + 1,
1312 	msg.buf = write_buf;
1313 
1314 	ret = i2c_transfer(adapter, &msg, 1);
1315 	if (ret == 1)
1316 		ret = 0;
1317 	else if (ret >= 0)
1318 		ret = -EIO;
1319 
1320 	kfree(write_buf);
1321 	return ret;
1322 }
1323 
1324 static
1325 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1326 				  u8 *an)
1327 {
1328 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1329 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1330 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1331 							      hdmi->ddc_bus);
1332 	int ret;
1333 
1334 	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1335 				    DRM_HDCP_AN_LEN);
1336 	if (ret) {
1337 		drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1338 			    ret);
1339 		return ret;
1340 	}
1341 
1342 	ret = intel_gmbus_output_aksv(adapter);
1343 	if (ret < 0) {
1344 		drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1345 		return ret;
1346 	}
1347 	return 0;
1348 }
1349 
1350 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1351 				     u8 *bksv)
1352 {
1353 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1354 
1355 	int ret;
1356 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1357 				   DRM_HDCP_KSV_LEN);
1358 	if (ret)
1359 		drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1360 			    ret);
1361 	return ret;
1362 }
1363 
1364 static
1365 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1366 				 u8 *bstatus)
1367 {
1368 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1369 
1370 	int ret;
1371 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1372 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1373 	if (ret)
1374 		drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1375 			    ret);
1376 	return ret;
1377 }
1378 
1379 static
1380 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1381 				     bool *repeater_present)
1382 {
1383 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1384 	int ret;
1385 	u8 val;
1386 
1387 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1388 	if (ret) {
1389 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1390 			    ret);
1391 		return ret;
1392 	}
1393 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1394 	return 0;
1395 }
1396 
1397 static
1398 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1399 				  u8 *ri_prime)
1400 {
1401 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1402 
1403 	int ret;
1404 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1405 				   ri_prime, DRM_HDCP_RI_LEN);
1406 	if (ret)
1407 		drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1408 			    ret);
1409 	return ret;
1410 }
1411 
1412 static
1413 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1414 				   bool *ksv_ready)
1415 {
1416 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1417 	int ret;
1418 	u8 val;
1419 
1420 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1421 	if (ret) {
1422 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1423 			    ret);
1424 		return ret;
1425 	}
1426 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1427 	return 0;
1428 }
1429 
1430 static
1431 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1432 				  int num_downstream, u8 *ksv_fifo)
1433 {
1434 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1435 	int ret;
1436 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1437 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1438 	if (ret) {
1439 		drm_dbg_kms(&i915->drm,
1440 			    "Read ksv fifo over DDC failed (%d)\n", ret);
1441 		return ret;
1442 	}
1443 	return 0;
1444 }
1445 
1446 static
1447 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1448 				      int i, u32 *part)
1449 {
1450 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1451 	int ret;
1452 
1453 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1454 		return -EINVAL;
1455 
1456 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1457 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1458 	if (ret)
1459 		drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1460 			    i, ret);
1461 	return ret;
1462 }
1463 
1464 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1465 					   enum transcoder cpu_transcoder)
1466 {
1467 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1468 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1469 	struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1470 	u32 scanline;
1471 	int ret;
1472 
1473 	for (;;) {
1474 		scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe));
1475 		if (scanline > 100 && scanline < 200)
1476 			break;
1477 		usleep_range(25, 50);
1478 	}
1479 
1480 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1481 					 false, TRANS_DDI_HDCP_SIGNALLING);
1482 	if (ret) {
1483 		drm_err(&dev_priv->drm,
1484 			"Disable HDCP signalling failed (%d)\n", ret);
1485 		return ret;
1486 	}
1487 
1488 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1489 					 true, TRANS_DDI_HDCP_SIGNALLING);
1490 	if (ret) {
1491 		drm_err(&dev_priv->drm,
1492 			"Enable HDCP signalling failed (%d)\n", ret);
1493 		return ret;
1494 	}
1495 
1496 	return 0;
1497 }
1498 
1499 static
1500 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1501 				      enum transcoder cpu_transcoder,
1502 				      bool enable)
1503 {
1504 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1505 	struct intel_connector *connector = hdmi->attached_connector;
1506 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1507 	int ret;
1508 
1509 	if (!enable)
1510 		usleep_range(6, 60); /* Bspec says >= 6us */
1511 
1512 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1513 					 cpu_transcoder, enable,
1514 					 TRANS_DDI_HDCP_SIGNALLING);
1515 	if (ret) {
1516 		drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1517 			enable ? "Enable" : "Disable", ret);
1518 		return ret;
1519 	}
1520 
1521 	/*
1522 	 * WA: To fix incorrect positioning of the window of
1523 	 * opportunity and enc_en signalling in KABYLAKE.
1524 	 */
1525 	if (IS_KABYLAKE(dev_priv) && enable)
1526 		return kbl_repositioning_enc_en_signal(connector,
1527 						       cpu_transcoder);
1528 
1529 	return 0;
1530 }
1531 
1532 static
1533 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1534 				     struct intel_connector *connector)
1535 {
1536 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1537 	enum port port = dig_port->base.port;
1538 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1539 	int ret;
1540 	union {
1541 		u32 reg;
1542 		u8 shim[DRM_HDCP_RI_LEN];
1543 	} ri;
1544 
1545 	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1546 	if (ret)
1547 		return false;
1548 
1549 	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1550 
1551 	/* Wait for Ri prime match */
1552 	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1553 		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1554 		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1555 		drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1556 			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1557 							port)));
1558 		return false;
1559 	}
1560 	return true;
1561 }
1562 
1563 static
1564 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1565 				struct intel_connector *connector)
1566 {
1567 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1568 	int retry;
1569 
1570 	for (retry = 0; retry < 3; retry++)
1571 		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1572 			return true;
1573 
1574 	drm_err(&i915->drm, "Link check failed\n");
1575 	return false;
1576 }
1577 
1578 struct hdcp2_hdmi_msg_timeout {
1579 	u8 msg_id;
1580 	u16 timeout;
1581 };
1582 
1583 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1584 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1585 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1586 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1587 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1588 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1589 };
1590 
1591 static
1592 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1593 				    u8 *rx_status)
1594 {
1595 	return intel_hdmi_hdcp_read(dig_port,
1596 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1597 				    rx_status,
1598 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1599 }
1600 
1601 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1602 {
1603 	int i;
1604 
1605 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1606 		if (is_paired)
1607 			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1608 		else
1609 			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1610 	}
1611 
1612 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1613 		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1614 			return hdcp2_msg_timeout[i].timeout;
1615 	}
1616 
1617 	return -EINVAL;
1618 }
1619 
1620 static int
1621 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1622 			      u8 msg_id, bool *msg_ready,
1623 			      ssize_t *msg_sz)
1624 {
1625 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1626 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1627 	int ret;
1628 
1629 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1630 	if (ret < 0) {
1631 		drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1632 			    ret);
1633 		return ret;
1634 	}
1635 
1636 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1637 		  rx_status[0]);
1638 
1639 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1640 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1641 			     *msg_sz);
1642 	else
1643 		*msg_ready = *msg_sz;
1644 
1645 	return 0;
1646 }
1647 
1648 static ssize_t
1649 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1650 			      u8 msg_id, bool paired)
1651 {
1652 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1653 	bool msg_ready = false;
1654 	int timeout, ret;
1655 	ssize_t msg_sz = 0;
1656 
1657 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1658 	if (timeout < 0)
1659 		return timeout;
1660 
1661 	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1662 							     msg_id, &msg_ready,
1663 							     &msg_sz),
1664 			 !ret && msg_ready && msg_sz, timeout * 1000,
1665 			 1000, 5 * 1000);
1666 	if (ret)
1667 		drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1668 			    msg_id, ret, timeout);
1669 
1670 	return ret ? ret : msg_sz;
1671 }
1672 
1673 static
1674 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1675 			       void *buf, size_t size)
1676 {
1677 	unsigned int offset;
1678 
1679 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1680 	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1681 }
1682 
1683 static
1684 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1685 			      u8 msg_id, void *buf, size_t size)
1686 {
1687 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1688 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1689 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1690 	unsigned int offset;
1691 	ssize_t ret;
1692 
1693 	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1694 					    hdcp->is_paired);
1695 	if (ret < 0)
1696 		return ret;
1697 
1698 	/*
1699 	 * Available msg size should be equal to or lesser than the
1700 	 * available buffer.
1701 	 */
1702 	if (ret > size) {
1703 		drm_dbg_kms(&i915->drm,
1704 			    "msg_sz(%zd) is more than exp size(%zu)\n",
1705 			    ret, size);
1706 		return -EINVAL;
1707 	}
1708 
1709 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1710 	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1711 	if (ret)
1712 		drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1713 			    msg_id, ret);
1714 
1715 	return ret;
1716 }
1717 
1718 static
1719 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1720 				struct intel_connector *connector)
1721 {
1722 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1723 	int ret;
1724 
1725 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1726 	if (ret)
1727 		return ret;
1728 
1729 	/*
1730 	 * Re-auth request and Link Integrity Failures are represented by
1731 	 * same bit. i.e reauth_req.
1732 	 */
1733 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1734 		ret = HDCP_REAUTH_REQUEST;
1735 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1736 		ret = HDCP_TOPOLOGY_CHANGE;
1737 
1738 	return ret;
1739 }
1740 
1741 static
1742 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1743 			     bool *capable)
1744 {
1745 	u8 hdcp2_version;
1746 	int ret;
1747 
1748 	*capable = false;
1749 	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1750 				   &hdcp2_version, sizeof(hdcp2_version));
1751 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1752 		*capable = true;
1753 
1754 	return ret;
1755 }
1756 
1757 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1758 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1759 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1760 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1761 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1762 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1763 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1764 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1765 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1766 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1767 	.check_link = intel_hdmi_hdcp_check_link,
1768 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1769 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1770 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1771 	.hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1772 	.protocol = HDCP_PROTOCOL_HDMI,
1773 };
1774 
1775 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1776 {
1777 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1778 	int max_tmds_clock, vbt_max_tmds_clock;
1779 
1780 	if (DISPLAY_VER(dev_priv) >= 10)
1781 		max_tmds_clock = 594000;
1782 	else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1783 		max_tmds_clock = 300000;
1784 	else if (DISPLAY_VER(dev_priv) >= 5)
1785 		max_tmds_clock = 225000;
1786 	else
1787 		max_tmds_clock = 165000;
1788 
1789 	vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
1790 	if (vbt_max_tmds_clock)
1791 		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1792 
1793 	return max_tmds_clock;
1794 }
1795 
1796 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1797 				const struct drm_connector_state *conn_state)
1798 {
1799 	return hdmi->has_hdmi_sink &&
1800 		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1801 }
1802 
1803 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1804 {
1805 	return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1806 }
1807 
1808 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1809 				 bool respect_downstream_limits,
1810 				 bool has_hdmi_sink)
1811 {
1812 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1813 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1814 
1815 	if (respect_downstream_limits) {
1816 		struct intel_connector *connector = hdmi->attached_connector;
1817 		const struct drm_display_info *info = &connector->base.display_info;
1818 
1819 		if (hdmi->dp_dual_mode.max_tmds_clock)
1820 			max_tmds_clock = min(max_tmds_clock,
1821 					     hdmi->dp_dual_mode.max_tmds_clock);
1822 
1823 		if (info->max_tmds_clock)
1824 			max_tmds_clock = min(max_tmds_clock,
1825 					     info->max_tmds_clock);
1826 		else if (!has_hdmi_sink)
1827 			max_tmds_clock = min(max_tmds_clock, 165000);
1828 	}
1829 
1830 	return max_tmds_clock;
1831 }
1832 
1833 static enum drm_mode_status
1834 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1835 		      int clock, bool respect_downstream_limits,
1836 		      bool has_hdmi_sink)
1837 {
1838 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1839 
1840 	if (clock < 25000)
1841 		return MODE_CLOCK_LOW;
1842 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1843 					  has_hdmi_sink))
1844 		return MODE_CLOCK_HIGH;
1845 
1846 	/* GLK DPLL can't generate 446-480 MHz */
1847 	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1848 		return MODE_CLOCK_RANGE;
1849 
1850 	/* BXT/GLK DPLL can't generate 223-240 MHz */
1851 	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1852 	    clock > 223333 && clock < 240000)
1853 		return MODE_CLOCK_RANGE;
1854 
1855 	/* CHV DPLL can't generate 216-240 MHz */
1856 	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1857 		return MODE_CLOCK_RANGE;
1858 
1859 	/*
1860 	 * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1861 	 * set of link rates.
1862 	 *
1863 	 * FIXME: We will hopefully get an algorithmic way of programming
1864 	 * the MPLLB for HDMI in the future.
1865 	 */
1866 	if (IS_DG2(dev_priv))
1867 		return intel_snps_phy_check_hdmi_link_rate(clock);
1868 
1869 	return MODE_OK;
1870 }
1871 
1872 static int intel_hdmi_tmds_clock(int clock, int bpc, bool ycbcr420_output)
1873 {
1874 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
1875 	if (ycbcr420_output)
1876 		clock /= 2;
1877 
1878 	/*
1879 	 * Need to adjust the port link by:
1880 	 *  1.5x for 12bpc
1881 	 *  1.25x for 10bpc
1882 	 */
1883 	return clock * bpc / 8;
1884 }
1885 
1886 static bool intel_hdmi_source_bpc_possible(struct drm_i915_private *i915, int bpc)
1887 {
1888 	switch (bpc) {
1889 	case 12:
1890 		return !HAS_GMCH(i915);
1891 	case 10:
1892 		return DISPLAY_VER(i915) >= 11;
1893 	case 8:
1894 		return true;
1895 	default:
1896 		MISSING_CASE(bpc);
1897 		return false;
1898 	}
1899 }
1900 
1901 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1902 					 int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1903 {
1904 	const struct drm_display_info *info = &connector->display_info;
1905 	const struct drm_hdmi_info *hdmi = &info->hdmi;
1906 
1907 	switch (bpc) {
1908 	case 12:
1909 		if (!has_hdmi_sink)
1910 			return false;
1911 
1912 		if (ycbcr420_output)
1913 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1914 		else
1915 			return info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_36;
1916 	case 10:
1917 		if (!has_hdmi_sink)
1918 			return false;
1919 
1920 		if (ycbcr420_output)
1921 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1922 		else
1923 			return info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_30;
1924 	case 8:
1925 		return true;
1926 	default:
1927 		MISSING_CASE(bpc);
1928 		return false;
1929 	}
1930 }
1931 
1932 static enum drm_mode_status
1933 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1934 			    bool has_hdmi_sink, bool ycbcr420_output)
1935 {
1936 	struct drm_i915_private *i915 = to_i915(connector->dev);
1937 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1938 	enum drm_mode_status status;
1939 
1940 	/* check if we can do 8bpc */
1941 	status = hdmi_port_clock_valid(hdmi, intel_hdmi_tmds_clock(clock, 8, ycbcr420_output),
1942 				       true, has_hdmi_sink);
1943 
1944 	/* if we can't do 8bpc we may still be able to do 12bpc */
1945 	if (status != MODE_OK &&
1946 	    intel_hdmi_source_bpc_possible(i915, 12) &&
1947 	    intel_hdmi_sink_bpc_possible(connector, 12, has_hdmi_sink, ycbcr420_output))
1948 		status = hdmi_port_clock_valid(hdmi, intel_hdmi_tmds_clock(clock, 12, ycbcr420_output),
1949 					       true, has_hdmi_sink);
1950 
1951 	/* if we can't do 8,12bpc we may still be able to do 10bpc */
1952 	if (status != MODE_OK &&
1953 	    intel_hdmi_source_bpc_possible(i915, 10) &&
1954 	    intel_hdmi_sink_bpc_possible(connector, 10, has_hdmi_sink, ycbcr420_output))
1955 		status = hdmi_port_clock_valid(hdmi, intel_hdmi_tmds_clock(clock, 10, ycbcr420_output),
1956 					       true, has_hdmi_sink);
1957 
1958 	return status;
1959 }
1960 
1961 static enum drm_mode_status
1962 intel_hdmi_mode_valid(struct drm_connector *connector,
1963 		      struct drm_display_mode *mode)
1964 {
1965 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1966 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1967 	enum drm_mode_status status;
1968 	int clock = mode->clock;
1969 	int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1970 	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1971 	bool ycbcr_420_only;
1972 
1973 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1974 		return MODE_NO_DBLESCAN;
1975 
1976 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1977 		clock *= 2;
1978 
1979 	if (clock > max_dotclk)
1980 		return MODE_CLOCK_HIGH;
1981 
1982 	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1983 		if (!has_hdmi_sink)
1984 			return MODE_CLOCK_LOW;
1985 		clock *= 2;
1986 	}
1987 
1988 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
1989 
1990 	status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, ycbcr_420_only);
1991 	if (status != MODE_OK) {
1992 		if (ycbcr_420_only ||
1993 		    !connector->ycbcr_420_allowed ||
1994 		    !drm_mode_is_420_also(&connector->display_info, mode))
1995 			return status;
1996 
1997 		status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, true);
1998 		if (status != MODE_OK)
1999 			return status;
2000 	}
2001 
2002 	return intel_mode_valid_max_plane_size(dev_priv, mode, false);
2003 }
2004 
2005 bool intel_hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
2006 				    int bpc, bool has_hdmi_sink, bool ycbcr420_output)
2007 {
2008 	struct drm_atomic_state *state = crtc_state->uapi.state;
2009 	struct drm_connector_state *connector_state;
2010 	struct drm_connector *connector;
2011 	int i;
2012 
2013 	if (crtc_state->pipe_bpp < bpc * 3)
2014 		return false;
2015 
2016 	for_each_new_connector_in_state(state, connector, connector_state, i) {
2017 		if (connector_state->crtc != crtc_state->uapi.crtc)
2018 			continue;
2019 
2020 		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
2021 			return false;
2022 	}
2023 
2024 	return true;
2025 }
2026 
2027 static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
2028 				     int bpc)
2029 {
2030 	struct drm_i915_private *dev_priv =
2031 		to_i915(crtc_state->uapi.crtc->dev);
2032 	const struct drm_display_mode *adjusted_mode =
2033 		&crtc_state->hw.adjusted_mode;
2034 
2035 	if (!intel_hdmi_source_bpc_possible(dev_priv, bpc))
2036 		return false;
2037 
2038 	/*
2039 	 * HDMI deep color affects the clocks, so it's only possible
2040 	 * when not cloning with other encoder types.
2041 	 */
2042 	if (crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI))
2043 		return false;
2044 
2045 	/* Display Wa_1405510057:icl,ehl */
2046 	if (intel_hdmi_is_ycbcr420(crtc_state) &&
2047 	    bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2048 	    (adjusted_mode->crtc_hblank_end -
2049 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2050 		return false;
2051 
2052 	return intel_hdmi_deep_color_possible(crtc_state, bpc,
2053 					      crtc_state->has_hdmi_sink,
2054 					      intel_hdmi_is_ycbcr420(crtc_state));
2055 }
2056 
2057 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2058 				  struct intel_crtc_state *crtc_state,
2059 				  int clock)
2060 {
2061 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2062 	bool ycbcr420_output = intel_hdmi_is_ycbcr420(crtc_state);
2063 	int bpc;
2064 
2065 	for (bpc = 12; bpc >= 10; bpc -= 2) {
2066 		if (hdmi_deep_color_possible(crtc_state, bpc) &&
2067 		    hdmi_port_clock_valid(intel_hdmi,
2068 					  intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output),
2069 					  true, crtc_state->has_hdmi_sink) == MODE_OK)
2070 			return bpc;
2071 	}
2072 
2073 	return 8;
2074 }
2075 
2076 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2077 				    struct intel_crtc_state *crtc_state)
2078 {
2079 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2080 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2081 	const struct drm_display_mode *adjusted_mode =
2082 		&crtc_state->hw.adjusted_mode;
2083 	int bpc, clock = adjusted_mode->crtc_clock;
2084 
2085 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2086 		clock *= 2;
2087 
2088 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock);
2089 
2090 	crtc_state->port_clock = intel_hdmi_tmds_clock(clock, bpc,
2091 						       intel_hdmi_is_ycbcr420(crtc_state));
2092 
2093 	/*
2094 	 * pipe_bpp could already be below 8bpc due to
2095 	 * FDI bandwidth constraints. We shouldn't bump it
2096 	 * back up to 8bpc in that case.
2097 	 */
2098 	if (crtc_state->pipe_bpp > bpc * 3)
2099 		crtc_state->pipe_bpp = bpc * 3;
2100 
2101 	drm_dbg_kms(&i915->drm,
2102 		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2103 		    bpc, crtc_state->pipe_bpp);
2104 
2105 	if (hdmi_port_clock_valid(intel_hdmi, crtc_state->port_clock,
2106 				  false, crtc_state->has_hdmi_sink) != MODE_OK) {
2107 		drm_dbg_kms(&i915->drm,
2108 			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2109 			    crtc_state->port_clock);
2110 		return -EINVAL;
2111 	}
2112 
2113 	return 0;
2114 }
2115 
2116 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2117 				    const struct drm_connector_state *conn_state)
2118 {
2119 	const struct intel_digital_connector_state *intel_conn_state =
2120 		to_intel_digital_connector_state(conn_state);
2121 	const struct drm_display_mode *adjusted_mode =
2122 		&crtc_state->hw.adjusted_mode;
2123 
2124 	/*
2125 	 * Our YCbCr output is always limited range.
2126 	 * crtc_state->limited_color_range only applies to RGB,
2127 	 * and it must never be set for YCbCr or we risk setting
2128 	 * some conflicting bits in PIPECONF which will mess up
2129 	 * the colors on the monitor.
2130 	 */
2131 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2132 		return false;
2133 
2134 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2135 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2136 		return crtc_state->has_hdmi_sink &&
2137 			drm_default_rgb_quant_range(adjusted_mode) ==
2138 			HDMI_QUANTIZATION_RANGE_LIMITED;
2139 	} else {
2140 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2141 	}
2142 }
2143 
2144 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2145 				 const struct intel_crtc_state *crtc_state,
2146 				 const struct drm_connector_state *conn_state)
2147 {
2148 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2149 	const struct intel_digital_connector_state *intel_conn_state =
2150 		to_intel_digital_connector_state(conn_state);
2151 
2152 	if (!crtc_state->has_hdmi_sink)
2153 		return false;
2154 
2155 	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2156 		return intel_hdmi->has_audio;
2157 	else
2158 		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2159 }
2160 
2161 static enum intel_output_format
2162 intel_hdmi_output_format(struct intel_connector *connector,
2163 			 bool ycbcr_420_output)
2164 {
2165 	if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2166 		return INTEL_OUTPUT_FORMAT_YCBCR420;
2167 	else
2168 		return INTEL_OUTPUT_FORMAT_RGB;
2169 }
2170 
2171 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2172 					    struct intel_crtc_state *crtc_state,
2173 					    const struct drm_connector_state *conn_state)
2174 {
2175 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
2176 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2177 	const struct drm_display_info *info = &connector->base.display_info;
2178 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2179 	bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2180 	int ret;
2181 
2182 	crtc_state->output_format = intel_hdmi_output_format(connector, ycbcr_420_only);
2183 
2184 	if (ycbcr_420_only && !intel_hdmi_is_ycbcr420(crtc_state)) {
2185 		drm_dbg_kms(&i915->drm,
2186 			    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2187 		crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB;
2188 	}
2189 
2190 	ret = intel_hdmi_compute_clock(encoder, crtc_state);
2191 	if (ret) {
2192 		if (intel_hdmi_is_ycbcr420(crtc_state) ||
2193 		    !connector->base.ycbcr_420_allowed ||
2194 		    !drm_mode_is_420_also(info, adjusted_mode))
2195 			return ret;
2196 
2197 		crtc_state->output_format = intel_hdmi_output_format(connector, true);
2198 		ret = intel_hdmi_compute_clock(encoder, crtc_state);
2199 	}
2200 
2201 	return ret;
2202 }
2203 
2204 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2205 			      struct intel_crtc_state *pipe_config,
2206 			      struct drm_connector_state *conn_state)
2207 {
2208 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2209 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2210 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2211 	struct drm_connector *connector = conn_state->connector;
2212 	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2213 	int ret;
2214 
2215 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2216 		return -EINVAL;
2217 
2218 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2219 	pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi,
2220 							 conn_state);
2221 
2222 	if (pipe_config->has_hdmi_sink)
2223 		pipe_config->has_infoframe = true;
2224 
2225 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2226 		pipe_config->pixel_multiplier = 2;
2227 
2228 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
2229 		pipe_config->has_pch_encoder = true;
2230 
2231 	pipe_config->has_audio =
2232 		intel_hdmi_has_audio(encoder, pipe_config, conn_state);
2233 
2234 	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state);
2235 	if (ret)
2236 		return ret;
2237 
2238 	if (intel_hdmi_is_ycbcr420(pipe_config)) {
2239 		ret = intel_panel_fitting(pipe_config, conn_state);
2240 		if (ret)
2241 			return ret;
2242 	}
2243 
2244 	pipe_config->limited_color_range =
2245 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2246 
2247 	if (conn_state->picture_aspect_ratio)
2248 		adjusted_mode->picture_aspect_ratio =
2249 			conn_state->picture_aspect_ratio;
2250 
2251 	pipe_config->lane_count = 4;
2252 
2253 	if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
2254 		if (scdc->scrambling.low_rates)
2255 			pipe_config->hdmi_scrambling = true;
2256 
2257 		if (pipe_config->port_clock > 340000) {
2258 			pipe_config->hdmi_scrambling = true;
2259 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2260 		}
2261 	}
2262 
2263 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2264 					 conn_state);
2265 
2266 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2267 		drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2268 		return -EINVAL;
2269 	}
2270 
2271 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2272 		drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2273 		return -EINVAL;
2274 	}
2275 
2276 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2277 		drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2278 		return -EINVAL;
2279 	}
2280 
2281 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2282 		drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2283 		return -EINVAL;
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2290 {
2291 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2292 
2293 	/*
2294 	 * Give a hand to buggy BIOSen which forget to turn
2295 	 * the TMDS output buffers back on after a reboot.
2296 	 */
2297 	intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2298 }
2299 
2300 static void
2301 intel_hdmi_unset_edid(struct drm_connector *connector)
2302 {
2303 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2304 
2305 	intel_hdmi->has_hdmi_sink = false;
2306 	intel_hdmi->has_audio = false;
2307 
2308 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2309 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2310 
2311 	kfree(to_intel_connector(connector)->detect_edid);
2312 	to_intel_connector(connector)->detect_edid = NULL;
2313 }
2314 
2315 static void
2316 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
2317 {
2318 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2319 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2320 	enum port port = hdmi_to_dig_port(hdmi)->base.port;
2321 	struct i2c_adapter *adapter =
2322 		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2323 	enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
2324 
2325 	/*
2326 	 * Type 1 DVI adaptors are not required to implement any
2327 	 * registers, so we can't always detect their presence.
2328 	 * Ideally we should be able to check the state of the
2329 	 * CONFIG1 pin, but no such luck on our hardware.
2330 	 *
2331 	 * The only method left to us is to check the VBT to see
2332 	 * if the port is a dual mode capable DP port. But let's
2333 	 * only do that when we sucesfully read the EDID, to avoid
2334 	 * confusing log messages about DP dual mode adaptors when
2335 	 * there's nothing connected to the port.
2336 	 */
2337 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2338 		/* An overridden EDID imply that we want this port for testing.
2339 		 * Make sure not to set limits for that port.
2340 		 */
2341 		if (has_edid && !connector->override_edid &&
2342 		    intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2343 			drm_dbg_kms(&dev_priv->drm,
2344 				    "Assuming DP dual mode adaptor presence based on VBT\n");
2345 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2346 		} else {
2347 			type = DRM_DP_DUAL_MODE_NONE;
2348 		}
2349 	}
2350 
2351 	if (type == DRM_DP_DUAL_MODE_NONE)
2352 		return;
2353 
2354 	hdmi->dp_dual_mode.type = type;
2355 	hdmi->dp_dual_mode.max_tmds_clock =
2356 		drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2357 
2358 	drm_dbg_kms(&dev_priv->drm,
2359 		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2360 		    drm_dp_get_dual_mode_type_name(type),
2361 		    hdmi->dp_dual_mode.max_tmds_clock);
2362 }
2363 
2364 static bool
2365 intel_hdmi_set_edid(struct drm_connector *connector)
2366 {
2367 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2368 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2369 	intel_wakeref_t wakeref;
2370 	struct edid *edid;
2371 	bool connected = false;
2372 	struct i2c_adapter *i2c;
2373 
2374 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2375 
2376 	i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2377 
2378 	edid = drm_get_edid(connector, i2c);
2379 
2380 	if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2381 		drm_dbg_kms(&dev_priv->drm,
2382 			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2383 		intel_gmbus_force_bit(i2c, true);
2384 		edid = drm_get_edid(connector, i2c);
2385 		intel_gmbus_force_bit(i2c, false);
2386 	}
2387 
2388 	intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
2389 
2390 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2391 
2392 	to_intel_connector(connector)->detect_edid = edid;
2393 	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2394 		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2395 		intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2396 
2397 		connected = true;
2398 	}
2399 
2400 	cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2401 
2402 	return connected;
2403 }
2404 
2405 static enum drm_connector_status
2406 intel_hdmi_detect(struct drm_connector *connector, bool force)
2407 {
2408 	enum drm_connector_status status = connector_status_disconnected;
2409 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2410 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2411 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2412 	intel_wakeref_t wakeref;
2413 
2414 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2415 		    connector->base.id, connector->name);
2416 
2417 	if (!INTEL_DISPLAY_ENABLED(dev_priv))
2418 		return connector_status_disconnected;
2419 
2420 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2421 
2422 	if (DISPLAY_VER(dev_priv) >= 11 &&
2423 	    !intel_digital_port_connected(encoder))
2424 		goto out;
2425 
2426 	intel_hdmi_unset_edid(connector);
2427 
2428 	if (intel_hdmi_set_edid(connector))
2429 		status = connector_status_connected;
2430 
2431 out:
2432 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2433 
2434 	if (status != connector_status_connected)
2435 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2436 
2437 	/*
2438 	 * Make sure the refs for power wells enabled during detect are
2439 	 * dropped to avoid a new detect cycle triggered by HPD polling.
2440 	 */
2441 	intel_display_power_flush_work(dev_priv);
2442 
2443 	return status;
2444 }
2445 
2446 static void
2447 intel_hdmi_force(struct drm_connector *connector)
2448 {
2449 	struct drm_i915_private *i915 = to_i915(connector->dev);
2450 
2451 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2452 		    connector->base.id, connector->name);
2453 
2454 	intel_hdmi_unset_edid(connector);
2455 
2456 	if (connector->status != connector_status_connected)
2457 		return;
2458 
2459 	intel_hdmi_set_edid(connector);
2460 }
2461 
2462 static int intel_hdmi_get_modes(struct drm_connector *connector)
2463 {
2464 	struct edid *edid;
2465 
2466 	edid = to_intel_connector(connector)->detect_edid;
2467 	if (edid == NULL)
2468 		return 0;
2469 
2470 	return intel_connector_update_modes(connector, edid);
2471 }
2472 
2473 static struct i2c_adapter *
2474 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2475 {
2476 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2477 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2478 
2479 	return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2480 }
2481 
2482 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2483 {
2484 	struct drm_i915_private *i915 = to_i915(connector->dev);
2485 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2486 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2487 	struct kobject *connector_kobj = &connector->kdev->kobj;
2488 	int ret;
2489 
2490 	ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2491 	if (ret)
2492 		drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2493 }
2494 
2495 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2496 {
2497 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2498 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2499 	struct kobject *connector_kobj = &connector->kdev->kobj;
2500 
2501 	sysfs_remove_link(connector_kobj, i2c_kobj->name);
2502 }
2503 
2504 static int
2505 intel_hdmi_connector_register(struct drm_connector *connector)
2506 {
2507 	int ret;
2508 
2509 	ret = intel_connector_register(connector);
2510 	if (ret)
2511 		return ret;
2512 
2513 	intel_hdmi_create_i2c_symlink(connector);
2514 
2515 	return ret;
2516 }
2517 
2518 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2519 {
2520 	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2521 
2522 	cec_notifier_conn_unregister(n);
2523 
2524 	intel_hdmi_remove_i2c_symlink(connector);
2525 	intel_connector_unregister(connector);
2526 }
2527 
2528 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2529 	.detect = intel_hdmi_detect,
2530 	.force = intel_hdmi_force,
2531 	.fill_modes = drm_helper_probe_single_connector_modes,
2532 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2533 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2534 	.late_register = intel_hdmi_connector_register,
2535 	.early_unregister = intel_hdmi_connector_unregister,
2536 	.destroy = intel_connector_destroy,
2537 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2538 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2539 };
2540 
2541 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2542 	.get_modes = intel_hdmi_get_modes,
2543 	.mode_valid = intel_hdmi_mode_valid,
2544 	.atomic_check = intel_digital_connector_atomic_check,
2545 };
2546 
2547 static void
2548 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2549 {
2550 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2551 
2552 	intel_attach_force_audio_property(connector);
2553 	intel_attach_broadcast_rgb_property(connector);
2554 	intel_attach_aspect_ratio_property(connector);
2555 
2556 	intel_attach_hdmi_colorspace_property(connector);
2557 	drm_connector_attach_content_type_property(connector);
2558 
2559 	if (DISPLAY_VER(dev_priv) >= 10)
2560 		drm_connector_attach_hdr_output_metadata_property(connector);
2561 
2562 	if (!HAS_GMCH(dev_priv))
2563 		drm_connector_attach_max_bpc_property(connector, 8, 12);
2564 }
2565 
2566 /*
2567  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2568  * @encoder: intel_encoder
2569  * @connector: drm_connector
2570  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2571  *  or reset the high tmds clock ratio for scrambling
2572  * @scrambling: bool to Indicate if the function needs to set or reset
2573  *  sink scrambling
2574  *
2575  * This function handles scrambling on HDMI 2.0 capable sinks.
2576  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2577  * it enables scrambling. This should be called before enabling the HDMI
2578  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2579  * detect a scrambled clock within 100 ms.
2580  *
2581  * Returns:
2582  * True on success, false on failure.
2583  */
2584 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2585 				       struct drm_connector *connector,
2586 				       bool high_tmds_clock_ratio,
2587 				       bool scrambling)
2588 {
2589 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2590 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2591 	struct drm_scrambling *sink_scrambling =
2592 		&connector->display_info.hdmi.scdc.scrambling;
2593 	struct i2c_adapter *adapter =
2594 		intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2595 
2596 	if (!sink_scrambling->supported)
2597 		return true;
2598 
2599 	drm_dbg_kms(&dev_priv->drm,
2600 		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2601 		    connector->base.id, connector->name,
2602 		    yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
2603 
2604 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2605 	return drm_scdc_set_high_tmds_clock_ratio(adapter,
2606 						  high_tmds_clock_ratio) &&
2607 		drm_scdc_set_scrambling(adapter, scrambling);
2608 }
2609 
2610 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2611 {
2612 	u8 ddc_pin;
2613 
2614 	switch (port) {
2615 	case PORT_B:
2616 		ddc_pin = GMBUS_PIN_DPB;
2617 		break;
2618 	case PORT_C:
2619 		ddc_pin = GMBUS_PIN_DPC;
2620 		break;
2621 	case PORT_D:
2622 		ddc_pin = GMBUS_PIN_DPD_CHV;
2623 		break;
2624 	default:
2625 		MISSING_CASE(port);
2626 		ddc_pin = GMBUS_PIN_DPB;
2627 		break;
2628 	}
2629 	return ddc_pin;
2630 }
2631 
2632 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2633 {
2634 	u8 ddc_pin;
2635 
2636 	switch (port) {
2637 	case PORT_B:
2638 		ddc_pin = GMBUS_PIN_1_BXT;
2639 		break;
2640 	case PORT_C:
2641 		ddc_pin = GMBUS_PIN_2_BXT;
2642 		break;
2643 	default:
2644 		MISSING_CASE(port);
2645 		ddc_pin = GMBUS_PIN_1_BXT;
2646 		break;
2647 	}
2648 	return ddc_pin;
2649 }
2650 
2651 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2652 			      enum port port)
2653 {
2654 	u8 ddc_pin;
2655 
2656 	switch (port) {
2657 	case PORT_B:
2658 		ddc_pin = GMBUS_PIN_1_BXT;
2659 		break;
2660 	case PORT_C:
2661 		ddc_pin = GMBUS_PIN_2_BXT;
2662 		break;
2663 	case PORT_D:
2664 		ddc_pin = GMBUS_PIN_4_CNP;
2665 		break;
2666 	case PORT_F:
2667 		ddc_pin = GMBUS_PIN_3_BXT;
2668 		break;
2669 	default:
2670 		MISSING_CASE(port);
2671 		ddc_pin = GMBUS_PIN_1_BXT;
2672 		break;
2673 	}
2674 	return ddc_pin;
2675 }
2676 
2677 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2678 {
2679 	enum phy phy = intel_port_to_phy(dev_priv, port);
2680 
2681 	if (intel_phy_is_combo(dev_priv, phy))
2682 		return GMBUS_PIN_1_BXT + port;
2683 	else if (intel_phy_is_tc(dev_priv, phy))
2684 		return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2685 
2686 	drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2687 	return GMBUS_PIN_2_BXT;
2688 }
2689 
2690 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2691 {
2692 	enum phy phy = intel_port_to_phy(dev_priv, port);
2693 	u8 ddc_pin;
2694 
2695 	switch (phy) {
2696 	case PHY_A:
2697 		ddc_pin = GMBUS_PIN_1_BXT;
2698 		break;
2699 	case PHY_B:
2700 		ddc_pin = GMBUS_PIN_2_BXT;
2701 		break;
2702 	case PHY_C:
2703 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2704 		break;
2705 	default:
2706 		MISSING_CASE(phy);
2707 		ddc_pin = GMBUS_PIN_1_BXT;
2708 		break;
2709 	}
2710 	return ddc_pin;
2711 }
2712 
2713 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2714 {
2715 	enum phy phy = intel_port_to_phy(dev_priv, port);
2716 
2717 	WARN_ON(port == PORT_C);
2718 
2719 	/*
2720 	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2721 	 * final two outputs use type-c pins, even though they're actually
2722 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2723 	 * all outputs.
2724 	 */
2725 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2726 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2727 
2728 	return GMBUS_PIN_1_BXT + phy;
2729 }
2730 
2731 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2732 {
2733 	enum phy phy = intel_port_to_phy(i915, port);
2734 
2735 	drm_WARN_ON(&i915->drm, port == PORT_A);
2736 
2737 	/*
2738 	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2739 	 * final two outputs use type-c pins, even though they're actually
2740 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2741 	 * all outputs.
2742 	 */
2743 	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2744 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2745 
2746 	return GMBUS_PIN_1_BXT + phy;
2747 }
2748 
2749 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2750 {
2751 	return intel_port_to_phy(dev_priv, port) + 1;
2752 }
2753 
2754 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2755 {
2756 	enum phy phy = intel_port_to_phy(dev_priv, port);
2757 
2758 	WARN_ON(port == PORT_B || port == PORT_C);
2759 
2760 	/*
2761 	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2762 	 * except first combo output.
2763 	 */
2764 	if (phy == PHY_A)
2765 		return GMBUS_PIN_1_BXT;
2766 
2767 	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2768 }
2769 
2770 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2771 			      enum port port)
2772 {
2773 	u8 ddc_pin;
2774 
2775 	switch (port) {
2776 	case PORT_B:
2777 		ddc_pin = GMBUS_PIN_DPB;
2778 		break;
2779 	case PORT_C:
2780 		ddc_pin = GMBUS_PIN_DPC;
2781 		break;
2782 	case PORT_D:
2783 		ddc_pin = GMBUS_PIN_DPD;
2784 		break;
2785 	default:
2786 		MISSING_CASE(port);
2787 		ddc_pin = GMBUS_PIN_DPB;
2788 		break;
2789 	}
2790 	return ddc_pin;
2791 }
2792 
2793 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2794 {
2795 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2796 	enum port port = encoder->port;
2797 	u8 ddc_pin;
2798 
2799 	ddc_pin = intel_bios_alternate_ddc_pin(encoder);
2800 	if (ddc_pin) {
2801 		drm_dbg_kms(&dev_priv->drm,
2802 			    "Using DDC pin 0x%x for port %c (VBT)\n",
2803 			    ddc_pin, port_name(port));
2804 		return ddc_pin;
2805 	}
2806 
2807 	if (IS_ALDERLAKE_S(dev_priv))
2808 		ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2809 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2810 		ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2811 	else if (IS_ROCKETLAKE(dev_priv))
2812 		ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2813 	else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2814 		ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2815 	else if (HAS_PCH_MCC(dev_priv))
2816 		ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2817 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2818 		ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2819 	else if (HAS_PCH_CNP(dev_priv))
2820 		ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2821 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2822 		ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2823 	else if (IS_CHERRYVIEW(dev_priv))
2824 		ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2825 	else
2826 		ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2827 
2828 	drm_dbg_kms(&dev_priv->drm,
2829 		    "Using DDC pin 0x%x for port %c (platform default)\n",
2830 		    ddc_pin, port_name(port));
2831 
2832 	return ddc_pin;
2833 }
2834 
2835 void intel_infoframe_init(struct intel_digital_port *dig_port)
2836 {
2837 	struct drm_i915_private *dev_priv =
2838 		to_i915(dig_port->base.base.dev);
2839 
2840 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2841 		dig_port->write_infoframe = vlv_write_infoframe;
2842 		dig_port->read_infoframe = vlv_read_infoframe;
2843 		dig_port->set_infoframes = vlv_set_infoframes;
2844 		dig_port->infoframes_enabled = vlv_infoframes_enabled;
2845 	} else if (IS_G4X(dev_priv)) {
2846 		dig_port->write_infoframe = g4x_write_infoframe;
2847 		dig_port->read_infoframe = g4x_read_infoframe;
2848 		dig_port->set_infoframes = g4x_set_infoframes;
2849 		dig_port->infoframes_enabled = g4x_infoframes_enabled;
2850 	} else if (HAS_DDI(dev_priv)) {
2851 		if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
2852 			dig_port->write_infoframe = lspcon_write_infoframe;
2853 			dig_port->read_infoframe = lspcon_read_infoframe;
2854 			dig_port->set_infoframes = lspcon_set_infoframes;
2855 			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2856 		} else {
2857 			dig_port->write_infoframe = hsw_write_infoframe;
2858 			dig_port->read_infoframe = hsw_read_infoframe;
2859 			dig_port->set_infoframes = hsw_set_infoframes;
2860 			dig_port->infoframes_enabled = hsw_infoframes_enabled;
2861 		}
2862 	} else if (HAS_PCH_IBX(dev_priv)) {
2863 		dig_port->write_infoframe = ibx_write_infoframe;
2864 		dig_port->read_infoframe = ibx_read_infoframe;
2865 		dig_port->set_infoframes = ibx_set_infoframes;
2866 		dig_port->infoframes_enabled = ibx_infoframes_enabled;
2867 	} else {
2868 		dig_port->write_infoframe = cpt_write_infoframe;
2869 		dig_port->read_infoframe = cpt_read_infoframe;
2870 		dig_port->set_infoframes = cpt_set_infoframes;
2871 		dig_port->infoframes_enabled = cpt_infoframes_enabled;
2872 	}
2873 }
2874 
2875 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2876 			       struct intel_connector *intel_connector)
2877 {
2878 	struct drm_connector *connector = &intel_connector->base;
2879 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2880 	struct intel_encoder *intel_encoder = &dig_port->base;
2881 	struct drm_device *dev = intel_encoder->base.dev;
2882 	struct drm_i915_private *dev_priv = to_i915(dev);
2883 	struct i2c_adapter *ddc;
2884 	enum port port = intel_encoder->port;
2885 	struct cec_connector_info conn_info;
2886 
2887 	drm_dbg_kms(&dev_priv->drm,
2888 		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
2889 		    intel_encoder->base.base.id, intel_encoder->base.name);
2890 
2891 	if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2892 		return;
2893 
2894 	if (drm_WARN(dev, dig_port->max_lanes < 4,
2895 		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2896 		     dig_port->max_lanes, intel_encoder->base.base.id,
2897 		     intel_encoder->base.name))
2898 		return;
2899 
2900 	intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2901 	ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2902 
2903 	drm_connector_init_with_ddc(dev, connector,
2904 				    &intel_hdmi_connector_funcs,
2905 				    DRM_MODE_CONNECTOR_HDMIA,
2906 				    ddc);
2907 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2908 
2909 	connector->interlace_allowed = 1;
2910 	connector->doublescan_allowed = 0;
2911 	connector->stereo_allowed = 1;
2912 
2913 	if (DISPLAY_VER(dev_priv) >= 10)
2914 		connector->ycbcr_420_allowed = true;
2915 
2916 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
2917 
2918 	if (HAS_DDI(dev_priv))
2919 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2920 	else
2921 		intel_connector->get_hw_state = intel_connector_get_hw_state;
2922 
2923 	intel_hdmi_add_properties(intel_hdmi, connector);
2924 
2925 	intel_connector_attach_encoder(intel_connector, intel_encoder);
2926 	intel_hdmi->attached_connector = intel_connector;
2927 
2928 	if (is_hdcp_supported(dev_priv, port)) {
2929 		int ret = intel_hdcp_init(intel_connector, dig_port,
2930 					  &intel_hdmi_hdcp_shim);
2931 		if (ret)
2932 			drm_dbg_kms(&dev_priv->drm,
2933 				    "HDCP init failed, skipping.\n");
2934 	}
2935 
2936 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2937 	 * 0xd.  Failure to do so will result in spurious interrupts being
2938 	 * generated on the port when a cable is not attached.
2939 	 */
2940 	if (IS_G45(dev_priv)) {
2941 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
2942 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
2943 		               (temp & ~0xf) | 0xd);
2944 	}
2945 
2946 	cec_fill_conn_info_from_drm(&conn_info, connector);
2947 
2948 	intel_hdmi->cec_notifier =
2949 		cec_notifier_conn_register(dev->dev, port_identifier(port),
2950 					   &conn_info);
2951 	if (!intel_hdmi->cec_notifier)
2952 		drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
2953 }
2954 
2955 /*
2956  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
2957  * @vactive: Vactive of a display mode
2958  *
2959  * @return: appropriate dsc slice height for a given mode.
2960  */
2961 int intel_hdmi_dsc_get_slice_height(int vactive)
2962 {
2963 	int slice_height;
2964 
2965 	/*
2966 	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
2967 	 * Select smallest slice height >=96, that results in a valid PPS and
2968 	 * requires minimum padding lines required for final slice.
2969 	 *
2970 	 * Assumption : Vactive is even.
2971 	 */
2972 	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
2973 		if (vactive % slice_height == 0)
2974 			return slice_height;
2975 
2976 	return 0;
2977 }
2978 
2979 /*
2980  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
2981  * and dsc decoder capabilities
2982  *
2983  * @crtc_state: intel crtc_state
2984  * @src_max_slices: maximum slices supported by the DSC encoder
2985  * @src_max_slice_width: maximum slice width supported by DSC encoder
2986  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
2987  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
2988  *
2989  * @return: num of dsc slices that can be supported by the dsc encoder
2990  * and decoder.
2991  */
2992 int
2993 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
2994 			      int src_max_slices, int src_max_slice_width,
2995 			      int hdmi_max_slices, int hdmi_throughput)
2996 {
2997 /* Pixel rates in KPixels/sec */
2998 #define HDMI_DSC_PEAK_PIXEL_RATE		2720000
2999 /*
3000  * Rates at which the source and sink are required to process pixels in each
3001  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3002  */
3003 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
3004 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
3005 
3006 /* Spec limits the slice width to 2720 pixels */
3007 #define MAX_HDMI_SLICE_WIDTH			2720
3008 	int kslice_adjust;
3009 	int adjusted_clk_khz;
3010 	int min_slices;
3011 	int target_slices;
3012 	int max_throughput; /* max clock freq. in khz per slice */
3013 	int max_slice_width;
3014 	int slice_width;
3015 	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3016 
3017 	if (!hdmi_throughput)
3018 		return 0;
3019 
3020 	/*
3021 	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3022 	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3023 	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3024 	 * dividing adjusted clock value by 10.
3025 	 */
3026 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3027 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3028 		kslice_adjust = 10;
3029 	else
3030 		kslice_adjust = 5;
3031 
3032 	/*
3033 	 * As per spec, the rate at which the source and the sink process
3034 	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3035 	 * This depends upon the pixel clock rate and output formats
3036 	 * (kslice adjust).
3037 	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3038 	 * at max 340MHz, otherwise they can be processed at max 400MHz.
3039 	 */
3040 
3041 	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3042 
3043 	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3044 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3045 	else
3046 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3047 
3048 	/*
3049 	 * Taking into account the sink's capability for maximum
3050 	 * clock per slice (in MHz) as read from HF-VSDB.
3051 	 */
3052 	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3053 
3054 	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3055 	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3056 
3057 	/*
3058 	 * Keep on increasing the num of slices/line, starting from min_slices
3059 	 * per line till we get such a number, for which the slice_width is
3060 	 * just less than max_slice_width. The slices/line selected should be
3061 	 * less than or equal to the max horizontal slices that the combination
3062 	 * of PCON encoder and HDMI decoder can support.
3063 	 */
3064 	slice_width = max_slice_width;
3065 
3066 	do {
3067 		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3068 			target_slices = 1;
3069 		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3070 			target_slices = 2;
3071 		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3072 			target_slices = 4;
3073 		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3074 			target_slices = 8;
3075 		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3076 			target_slices = 12;
3077 		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3078 			target_slices = 16;
3079 		else
3080 			return 0;
3081 
3082 		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3083 		if (slice_width >= max_slice_width)
3084 			min_slices = target_slices + 1;
3085 	} while (slice_width >= max_slice_width);
3086 
3087 	return target_slices;
3088 }
3089 
3090 /*
3091  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3092  * source and sink capabilities.
3093  *
3094  * @src_fraction_bpp: fractional bpp supported by the source
3095  * @slice_width: dsc slice width supported by the source and sink
3096  * @num_slices: num of slices supported by the source and sink
3097  * @output_format: video output format
3098  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3099  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3100  *
3101  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3102  */
3103 int
3104 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3105 		       int output_format, bool hdmi_all_bpp,
3106 		       int hdmi_max_chunk_bytes)
3107 {
3108 	int max_dsc_bpp, min_dsc_bpp;
3109 	int target_bytes;
3110 	bool bpp_found = false;
3111 	int bpp_decrement_x16;
3112 	int bpp_target;
3113 	int bpp_target_x16;
3114 
3115 	/*
3116 	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3117 	 * Start with the max bpp and keep on decrementing with
3118 	 * fractional bpp, if supported by PCON DSC encoder
3119 	 *
3120 	 * for each bpp we check if no of bytes can be supported by HDMI sink
3121 	 */
3122 
3123 	/* Assuming: bpc as 8*/
3124 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3125 		min_dsc_bpp = 6;
3126 		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3127 	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3128 		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3129 		min_dsc_bpp = 8;
3130 		max_dsc_bpp = 3 * 8; /* 3*bpc */
3131 	} else {
3132 		/* Assuming 4:2:2 encoding */
3133 		min_dsc_bpp = 7;
3134 		max_dsc_bpp = 2 * 8; /* 2*bpc */
3135 	}
3136 
3137 	/*
3138 	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3139 	 * Section 7.7.34 : Source shall not enable compressed Video
3140 	 * Transport with bpp_target settings above 12 bpp unless
3141 	 * DSC_all_bpp is set to 1.
3142 	 */
3143 	if (!hdmi_all_bpp)
3144 		max_dsc_bpp = min(max_dsc_bpp, 12);
3145 
3146 	/*
3147 	 * The Sink has a limit of compressed data in bytes for a scanline,
3148 	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3149 	 * The no. of bytes depend on the target bits per pixel that the
3150 	 * source configures. So we start with the max_bpp and calculate
3151 	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3152 	 * till we get the target_chunk_bytes just less than what the sink's
3153 	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3154 	 *
3155 	 * The decrement is according to the fractional support from PCON DSC
3156 	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3157 	 *
3158 	 * bpp_target_x16 = bpp_target * 16
3159 	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3160 	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3161 	 */
3162 
3163 	bpp_target = max_dsc_bpp;
3164 
3165 	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3166 	if (!src_fractional_bpp)
3167 		src_fractional_bpp = 1;
3168 	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3169 	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3170 
3171 	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3172 		int bpp;
3173 
3174 		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3175 		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3176 		if (target_bytes <= hdmi_max_chunk_bytes) {
3177 			bpp_found = true;
3178 			break;
3179 		}
3180 		bpp_target_x16 -= bpp_decrement_x16;
3181 	}
3182 	if (bpp_found)
3183 		return bpp_target_x16;
3184 
3185 	return 0;
3186 }
3187