xref: /linux/drivers/gpu/drm/i915/display/intel_hdmi.c (revision a4871e6201c46c8e1d04308265b4b4c5753c8209)
1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 #include <linux/string_helpers.h>
34 
35 #include <drm/display/drm_hdcp_helper.h>
36 #include <drm/display/drm_hdmi_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_crtc.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/intel/intel_lpe_audio.h>
43 
44 #include <media/cec-notifier.h>
45 
46 #include "g4x_hdmi.h"
47 #include "i915_drv.h"
48 #include "i915_reg.h"
49 #include "intel_atomic.h"
50 #include "intel_audio.h"
51 #include "intel_connector.h"
52 #include "intel_cx0_phy.h"
53 #include "intel_ddi.h"
54 #include "intel_de.h"
55 #include "intel_display_driver.h"
56 #include "intel_display_types.h"
57 #include "intel_dp.h"
58 #include "intel_gmbus.h"
59 #include "intel_hdcp.h"
60 #include "intel_hdcp_regs.h"
61 #include "intel_hdcp_shim.h"
62 #include "intel_hdmi.h"
63 #include "intel_lspcon.h"
64 #include "intel_panel.h"
65 #include "intel_pfit.h"
66 #include "intel_snps_phy.h"
67 #include "intel_vrr.h"
68 
69 static void
70 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
71 {
72 	struct intel_display *display = to_intel_display(intel_hdmi);
73 	u32 enabled_bits;
74 
75 	enabled_bits = HAS_DDI(display) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
76 
77 	drm_WARN(display->drm,
78 		 intel_de_read(display, intel_hdmi->hdmi_reg) & enabled_bits,
79 		 "HDMI port enabled, expecting disabled\n");
80 }
81 
82 static void
83 assert_hdmi_transcoder_func_disabled(struct intel_display *display,
84 				     enum transcoder cpu_transcoder)
85 {
86 	drm_WARN(display->drm,
87 		 intel_de_read(display, TRANS_DDI_FUNC_CTL(display, cpu_transcoder)) &
88 		 TRANS_DDI_FUNC_ENABLE,
89 		 "HDMI transcoder function enabled, expecting disabled\n");
90 }
91 
92 static u32 g4x_infoframe_index(unsigned int type)
93 {
94 	switch (type) {
95 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
96 		return VIDEO_DIP_SELECT_GAMUT;
97 	case HDMI_INFOFRAME_TYPE_AVI:
98 		return VIDEO_DIP_SELECT_AVI;
99 	case HDMI_INFOFRAME_TYPE_SPD:
100 		return VIDEO_DIP_SELECT_SPD;
101 	case HDMI_INFOFRAME_TYPE_VENDOR:
102 		return VIDEO_DIP_SELECT_VENDOR;
103 	default:
104 		MISSING_CASE(type);
105 		return 0;
106 	}
107 }
108 
109 static u32 g4x_infoframe_enable(unsigned int type)
110 {
111 	switch (type) {
112 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
113 		return VIDEO_DIP_ENABLE_GCP;
114 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
115 		return VIDEO_DIP_ENABLE_GAMUT;
116 	case DP_SDP_VSC:
117 		return 0;
118 	case DP_SDP_ADAPTIVE_SYNC:
119 		return 0;
120 	case HDMI_INFOFRAME_TYPE_AVI:
121 		return VIDEO_DIP_ENABLE_AVI;
122 	case HDMI_INFOFRAME_TYPE_SPD:
123 		return VIDEO_DIP_ENABLE_SPD;
124 	case HDMI_INFOFRAME_TYPE_VENDOR:
125 		return VIDEO_DIP_ENABLE_VENDOR;
126 	case HDMI_INFOFRAME_TYPE_DRM:
127 		return 0;
128 	default:
129 		MISSING_CASE(type);
130 		return 0;
131 	}
132 }
133 
134 static u32 hsw_infoframe_enable(unsigned int type)
135 {
136 	switch (type) {
137 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
138 		return VIDEO_DIP_ENABLE_GCP_HSW;
139 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
140 		return VIDEO_DIP_ENABLE_GMP_HSW;
141 	case DP_SDP_VSC:
142 		return VIDEO_DIP_ENABLE_VSC_HSW;
143 	case DP_SDP_ADAPTIVE_SYNC:
144 		return VIDEO_DIP_ENABLE_AS_ADL;
145 	case DP_SDP_PPS:
146 		return VDIP_ENABLE_PPS;
147 	case HDMI_INFOFRAME_TYPE_AVI:
148 		return VIDEO_DIP_ENABLE_AVI_HSW;
149 	case HDMI_INFOFRAME_TYPE_SPD:
150 		return VIDEO_DIP_ENABLE_SPD_HSW;
151 	case HDMI_INFOFRAME_TYPE_VENDOR:
152 		return VIDEO_DIP_ENABLE_VS_HSW;
153 	case HDMI_INFOFRAME_TYPE_DRM:
154 		return VIDEO_DIP_ENABLE_DRM_GLK;
155 	default:
156 		MISSING_CASE(type);
157 		return 0;
158 	}
159 }
160 
161 static i915_reg_t
162 hsw_dip_data_reg(struct intel_display *display,
163 		 enum transcoder cpu_transcoder,
164 		 unsigned int type,
165 		 int i)
166 {
167 	switch (type) {
168 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
169 		return HSW_TVIDEO_DIP_GMP_DATA(display, cpu_transcoder, i);
170 	case DP_SDP_VSC:
171 		return HSW_TVIDEO_DIP_VSC_DATA(display, cpu_transcoder, i);
172 	case DP_SDP_ADAPTIVE_SYNC:
173 		return ADL_TVIDEO_DIP_AS_SDP_DATA(display, cpu_transcoder, i);
174 	case DP_SDP_PPS:
175 		return ICL_VIDEO_DIP_PPS_DATA(display, cpu_transcoder, i);
176 	case HDMI_INFOFRAME_TYPE_AVI:
177 		return HSW_TVIDEO_DIP_AVI_DATA(display, cpu_transcoder, i);
178 	case HDMI_INFOFRAME_TYPE_SPD:
179 		return HSW_TVIDEO_DIP_SPD_DATA(display, cpu_transcoder, i);
180 	case HDMI_INFOFRAME_TYPE_VENDOR:
181 		return HSW_TVIDEO_DIP_VS_DATA(display, cpu_transcoder, i);
182 	case HDMI_INFOFRAME_TYPE_DRM:
183 		return GLK_TVIDEO_DIP_DRM_DATA(display, cpu_transcoder, i);
184 	default:
185 		MISSING_CASE(type);
186 		return INVALID_MMIO_REG;
187 	}
188 }
189 
190 static int hsw_dip_data_size(struct intel_display *display,
191 			     unsigned int type)
192 {
193 	switch (type) {
194 	case DP_SDP_VSC:
195 		return VIDEO_DIP_VSC_DATA_SIZE;
196 	case DP_SDP_ADAPTIVE_SYNC:
197 		return VIDEO_DIP_ASYNC_DATA_SIZE;
198 	case DP_SDP_PPS:
199 		return VIDEO_DIP_PPS_DATA_SIZE;
200 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
201 		if (DISPLAY_VER(display) >= 11)
202 			return VIDEO_DIP_GMP_DATA_SIZE;
203 		else
204 			return VIDEO_DIP_DATA_SIZE;
205 	default:
206 		return VIDEO_DIP_DATA_SIZE;
207 	}
208 }
209 
210 static void g4x_write_infoframe(struct intel_encoder *encoder,
211 				const struct intel_crtc_state *crtc_state,
212 				unsigned int type,
213 				const void *frame, ssize_t len)
214 {
215 	struct intel_display *display = to_intel_display(encoder);
216 	const u32 *data = frame;
217 	u32 val = intel_de_read(display, VIDEO_DIP_CTL);
218 	int i;
219 
220 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
221 		 "Writing DIP with CTL reg disabled\n");
222 
223 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
224 	val |= g4x_infoframe_index(type);
225 
226 	val &= ~g4x_infoframe_enable(type);
227 
228 	intel_de_write(display, VIDEO_DIP_CTL, val);
229 
230 	for (i = 0; i < len; i += 4) {
231 		intel_de_write(display, VIDEO_DIP_DATA, *data);
232 		data++;
233 	}
234 	/* Write every possible data byte to force correct ECC calculation. */
235 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
236 		intel_de_write(display, VIDEO_DIP_DATA, 0);
237 
238 	val |= g4x_infoframe_enable(type);
239 	val &= ~VIDEO_DIP_FREQ_MASK;
240 	val |= VIDEO_DIP_FREQ_VSYNC;
241 
242 	intel_de_write(display, VIDEO_DIP_CTL, val);
243 	intel_de_posting_read(display, VIDEO_DIP_CTL);
244 }
245 
246 static void g4x_read_infoframe(struct intel_encoder *encoder,
247 			       const struct intel_crtc_state *crtc_state,
248 			       unsigned int type,
249 			       void *frame, ssize_t len)
250 {
251 	struct intel_display *display = to_intel_display(encoder);
252 	u32 *data = frame;
253 	int i;
254 
255 	intel_de_rmw(display, VIDEO_DIP_CTL,
256 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
257 
258 	for (i = 0; i < len; i += 4)
259 		*data++ = intel_de_read(display, VIDEO_DIP_DATA);
260 }
261 
262 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
263 				  const struct intel_crtc_state *pipe_config)
264 {
265 	struct intel_display *display = to_intel_display(encoder);
266 	u32 val = intel_de_read(display, VIDEO_DIP_CTL);
267 
268 	if ((val & VIDEO_DIP_ENABLE) == 0)
269 		return 0;
270 
271 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
272 		return 0;
273 
274 	return val & (VIDEO_DIP_ENABLE_AVI |
275 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
276 }
277 
278 static void ibx_write_infoframe(struct intel_encoder *encoder,
279 				const struct intel_crtc_state *crtc_state,
280 				unsigned int type,
281 				const void *frame, ssize_t len)
282 {
283 	struct intel_display *display = to_intel_display(encoder);
284 	const u32 *data = frame;
285 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
286 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
287 	u32 val = intel_de_read(display, reg);
288 	int i;
289 
290 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
291 		 "Writing DIP with CTL reg disabled\n");
292 
293 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
294 	val |= g4x_infoframe_index(type);
295 
296 	val &= ~g4x_infoframe_enable(type);
297 
298 	intel_de_write(display, reg, val);
299 
300 	for (i = 0; i < len; i += 4) {
301 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
302 			       *data);
303 		data++;
304 	}
305 	/* Write every possible data byte to force correct ECC calculation. */
306 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
307 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
308 
309 	val |= g4x_infoframe_enable(type);
310 	val &= ~VIDEO_DIP_FREQ_MASK;
311 	val |= VIDEO_DIP_FREQ_VSYNC;
312 
313 	intel_de_write(display, reg, val);
314 	intel_de_posting_read(display, reg);
315 }
316 
317 static void ibx_read_infoframe(struct intel_encoder *encoder,
318 			       const struct intel_crtc_state *crtc_state,
319 			       unsigned int type,
320 			       void *frame, ssize_t len)
321 {
322 	struct intel_display *display = to_intel_display(encoder);
323 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
324 	u32 *data = frame;
325 	int i;
326 
327 	intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
328 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
329 
330 	for (i = 0; i < len; i += 4)
331 		*data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
332 }
333 
334 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
335 				  const struct intel_crtc_state *pipe_config)
336 {
337 	struct intel_display *display = to_intel_display(encoder);
338 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
339 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
340 	u32 val = intel_de_read(display, reg);
341 
342 	if ((val & VIDEO_DIP_ENABLE) == 0)
343 		return 0;
344 
345 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
346 		return 0;
347 
348 	return val & (VIDEO_DIP_ENABLE_AVI |
349 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
350 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
351 }
352 
353 static void cpt_write_infoframe(struct intel_encoder *encoder,
354 				const struct intel_crtc_state *crtc_state,
355 				unsigned int type,
356 				const void *frame, ssize_t len)
357 {
358 	struct intel_display *display = to_intel_display(encoder);
359 	const u32 *data = frame;
360 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
361 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
362 	u32 val = intel_de_read(display, reg);
363 	int i;
364 
365 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
366 		 "Writing DIP with CTL reg disabled\n");
367 
368 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
369 	val |= g4x_infoframe_index(type);
370 
371 	/* The DIP control register spec says that we need to update the AVI
372 	 * infoframe without clearing its enable bit */
373 	if (type != HDMI_INFOFRAME_TYPE_AVI)
374 		val &= ~g4x_infoframe_enable(type);
375 
376 	intel_de_write(display, reg, val);
377 
378 	for (i = 0; i < len; i += 4) {
379 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
380 			       *data);
381 		data++;
382 	}
383 	/* Write every possible data byte to force correct ECC calculation. */
384 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
385 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
386 
387 	val |= g4x_infoframe_enable(type);
388 	val &= ~VIDEO_DIP_FREQ_MASK;
389 	val |= VIDEO_DIP_FREQ_VSYNC;
390 
391 	intel_de_write(display, reg, val);
392 	intel_de_posting_read(display, reg);
393 }
394 
395 static void cpt_read_infoframe(struct intel_encoder *encoder,
396 			       const struct intel_crtc_state *crtc_state,
397 			       unsigned int type,
398 			       void *frame, ssize_t len)
399 {
400 	struct intel_display *display = to_intel_display(encoder);
401 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
402 	u32 *data = frame;
403 	int i;
404 
405 	intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
406 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
407 
408 	for (i = 0; i < len; i += 4)
409 		*data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
410 }
411 
412 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
413 				  const struct intel_crtc_state *pipe_config)
414 {
415 	struct intel_display *display = to_intel_display(encoder);
416 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
417 	u32 val = intel_de_read(display, TVIDEO_DIP_CTL(pipe));
418 
419 	if ((val & VIDEO_DIP_ENABLE) == 0)
420 		return 0;
421 
422 	return val & (VIDEO_DIP_ENABLE_AVI |
423 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
424 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
425 }
426 
427 static void vlv_write_infoframe(struct intel_encoder *encoder,
428 				const struct intel_crtc_state *crtc_state,
429 				unsigned int type,
430 				const void *frame, ssize_t len)
431 {
432 	struct intel_display *display = to_intel_display(encoder);
433 	const u32 *data = frame;
434 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
435 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
436 	u32 val = intel_de_read(display, reg);
437 	int i;
438 
439 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
440 		 "Writing DIP with CTL reg disabled\n");
441 
442 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
443 	val |= g4x_infoframe_index(type);
444 
445 	val &= ~g4x_infoframe_enable(type);
446 
447 	intel_de_write(display, reg, val);
448 
449 	for (i = 0; i < len; i += 4) {
450 		intel_de_write(display,
451 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
452 		data++;
453 	}
454 	/* Write every possible data byte to force correct ECC calculation. */
455 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
456 		intel_de_write(display,
457 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
458 
459 	val |= g4x_infoframe_enable(type);
460 	val &= ~VIDEO_DIP_FREQ_MASK;
461 	val |= VIDEO_DIP_FREQ_VSYNC;
462 
463 	intel_de_write(display, reg, val);
464 	intel_de_posting_read(display, reg);
465 }
466 
467 static void vlv_read_infoframe(struct intel_encoder *encoder,
468 			       const struct intel_crtc_state *crtc_state,
469 			       unsigned int type,
470 			       void *frame, ssize_t len)
471 {
472 	struct intel_display *display = to_intel_display(encoder);
473 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
474 	u32 *data = frame;
475 	int i;
476 
477 	intel_de_rmw(display, VLV_TVIDEO_DIP_CTL(crtc->pipe),
478 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
479 
480 	for (i = 0; i < len; i += 4)
481 		*data++ = intel_de_read(display,
482 				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
483 }
484 
485 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
486 				  const struct intel_crtc_state *pipe_config)
487 {
488 	struct intel_display *display = to_intel_display(encoder);
489 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
490 	u32 val = intel_de_read(display, VLV_TVIDEO_DIP_CTL(pipe));
491 
492 	if ((val & VIDEO_DIP_ENABLE) == 0)
493 		return 0;
494 
495 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
496 		return 0;
497 
498 	return val & (VIDEO_DIP_ENABLE_AVI |
499 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
500 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
501 }
502 
503 void hsw_write_infoframe(struct intel_encoder *encoder,
504 			 const struct intel_crtc_state *crtc_state,
505 			 unsigned int type,
506 			 const void *frame, ssize_t len)
507 {
508 	struct intel_display *display = to_intel_display(encoder);
509 	const u32 *data = frame;
510 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
511 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(display, cpu_transcoder);
512 	int data_size;
513 	int i;
514 	u32 val = intel_de_read(display, ctl_reg);
515 
516 	data_size = hsw_dip_data_size(display, type);
517 
518 	drm_WARN_ON(display->drm, len > data_size);
519 
520 	val &= ~hsw_infoframe_enable(type);
521 	intel_de_write(display, ctl_reg, val);
522 
523 	for (i = 0; i < len; i += 4) {
524 		intel_de_write(display,
525 			       hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
526 			       *data);
527 		data++;
528 	}
529 	/* Write every possible data byte to force correct ECC calculation. */
530 	for (; i < data_size; i += 4)
531 		intel_de_write(display,
532 			       hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
533 			       0);
534 
535 	/* Wa_14013475917 */
536 	if (!(IS_DISPLAY_VER(display, 13, 14) && crtc_state->has_psr &&
537 	      !crtc_state->has_panel_replay && type == DP_SDP_VSC))
538 		val |= hsw_infoframe_enable(type);
539 
540 	if (type == DP_SDP_VSC)
541 		val |= VSC_DIP_HW_DATA_SW_HEA;
542 
543 	intel_de_write(display, ctl_reg, val);
544 	intel_de_posting_read(display, ctl_reg);
545 }
546 
547 void hsw_read_infoframe(struct intel_encoder *encoder,
548 			const struct intel_crtc_state *crtc_state,
549 			unsigned int type, void *frame, ssize_t len)
550 {
551 	struct intel_display *display = to_intel_display(encoder);
552 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
553 	u32 *data = frame;
554 	int i;
555 
556 	for (i = 0; i < len; i += 4)
557 		*data++ = intel_de_read(display,
558 					hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2));
559 }
560 
561 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
562 				  const struct intel_crtc_state *pipe_config)
563 {
564 	struct intel_display *display = to_intel_display(encoder);
565 	u32 val = intel_de_read(display,
566 				HSW_TVIDEO_DIP_CTL(display, pipe_config->cpu_transcoder));
567 	u32 mask;
568 
569 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
570 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
571 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
572 
573 	if (DISPLAY_VER(display) >= 10)
574 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
575 
576 	if (HAS_AS_SDP(display))
577 		mask |= VIDEO_DIP_ENABLE_AS_ADL;
578 
579 	return val & mask;
580 }
581 
582 static const u8 infoframe_type_to_idx[] = {
583 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
584 	HDMI_PACKET_TYPE_GAMUT_METADATA,
585 	DP_SDP_VSC,
586 	DP_SDP_ADAPTIVE_SYNC,
587 	HDMI_INFOFRAME_TYPE_AVI,
588 	HDMI_INFOFRAME_TYPE_SPD,
589 	HDMI_INFOFRAME_TYPE_VENDOR,
590 	HDMI_INFOFRAME_TYPE_DRM,
591 };
592 
593 u32 intel_hdmi_infoframe_enable(unsigned int type)
594 {
595 	int i;
596 
597 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
598 		if (infoframe_type_to_idx[i] == type)
599 			return BIT(i);
600 	}
601 
602 	return 0;
603 }
604 
605 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
606 				  const struct intel_crtc_state *crtc_state)
607 {
608 	struct intel_display *display = to_intel_display(encoder);
609 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
610 	u32 val, ret = 0;
611 	int i;
612 
613 	val = dig_port->infoframes_enabled(encoder, crtc_state);
614 
615 	/* map from hardware bits to dip idx */
616 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
617 		unsigned int type = infoframe_type_to_idx[i];
618 
619 		if (HAS_DDI(display)) {
620 			if (val & hsw_infoframe_enable(type))
621 				ret |= BIT(i);
622 		} else {
623 			if (val & g4x_infoframe_enable(type))
624 				ret |= BIT(i);
625 		}
626 	}
627 
628 	return ret;
629 }
630 
631 /*
632  * The data we write to the DIP data buffer registers is 1 byte bigger than the
633  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
634  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
635  * used for both technologies.
636  *
637  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
638  * DW1:       DB3       | DB2 | DB1 | DB0
639  * DW2:       DB7       | DB6 | DB5 | DB4
640  * DW3: ...
641  *
642  * (HB is Header Byte, DB is Data Byte)
643  *
644  * The hdmi pack() functions don't know about that hardware specific hole so we
645  * trick them by giving an offset into the buffer and moving back the header
646  * bytes by one.
647  */
648 static void intel_write_infoframe(struct intel_encoder *encoder,
649 				  const struct intel_crtc_state *crtc_state,
650 				  enum hdmi_infoframe_type type,
651 				  const union hdmi_infoframe *frame)
652 {
653 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
654 	u8 buffer[VIDEO_DIP_DATA_SIZE];
655 	ssize_t len;
656 
657 	if ((crtc_state->infoframes.enable &
658 	     intel_hdmi_infoframe_enable(type)) == 0)
659 		return;
660 
661 	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
662 		return;
663 
664 	/* see comment above for the reason for this offset */
665 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
666 	if (drm_WARN_ON(encoder->base.dev, len < 0))
667 		return;
668 
669 	/* Insert the 'hole' (see big comment above) at position 3 */
670 	memmove(&buffer[0], &buffer[1], 3);
671 	buffer[3] = 0;
672 	len++;
673 
674 	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
675 }
676 
677 void intel_read_infoframe(struct intel_encoder *encoder,
678 			  const struct intel_crtc_state *crtc_state,
679 			  enum hdmi_infoframe_type type,
680 			  union hdmi_infoframe *frame)
681 {
682 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
683 	u8 buffer[VIDEO_DIP_DATA_SIZE];
684 	int ret;
685 
686 	if ((crtc_state->infoframes.enable &
687 	     intel_hdmi_infoframe_enable(type)) == 0)
688 		return;
689 
690 	dig_port->read_infoframe(encoder, crtc_state,
691 				       type, buffer, sizeof(buffer));
692 
693 	/* Fill the 'hole' (see big comment above) at position 3 */
694 	memmove(&buffer[1], &buffer[0], 3);
695 
696 	/* see comment above for the reason for this offset */
697 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
698 	if (ret) {
699 		drm_dbg_kms(encoder->base.dev,
700 			    "Failed to unpack infoframe type 0x%02x\n", type);
701 		return;
702 	}
703 
704 	if (frame->any.type != type)
705 		drm_dbg_kms(encoder->base.dev,
706 			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
707 			    frame->any.type, type);
708 }
709 
710 static bool
711 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
712 				 struct intel_crtc_state *crtc_state,
713 				 struct drm_connector_state *conn_state)
714 {
715 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
716 	const struct drm_display_mode *adjusted_mode =
717 		&crtc_state->hw.adjusted_mode;
718 	struct drm_connector *connector = conn_state->connector;
719 	int ret;
720 
721 	if (!crtc_state->has_infoframe)
722 		return true;
723 
724 	crtc_state->infoframes.enable |=
725 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
726 
727 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
728 						       adjusted_mode);
729 	if (ret)
730 		return false;
731 
732 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
733 		frame->colorspace = HDMI_COLORSPACE_YUV420;
734 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
735 		frame->colorspace = HDMI_COLORSPACE_YUV444;
736 	else
737 		frame->colorspace = HDMI_COLORSPACE_RGB;
738 
739 	drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
740 
741 	/* nonsense combination */
742 	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
743 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
744 
745 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
746 		drm_hdmi_avi_infoframe_quant_range(frame, connector,
747 						   adjusted_mode,
748 						   crtc_state->limited_color_range ?
749 						   HDMI_QUANTIZATION_RANGE_LIMITED :
750 						   HDMI_QUANTIZATION_RANGE_FULL);
751 	} else {
752 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
753 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
754 	}
755 
756 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
757 
758 	/* TODO: handle pixel repetition for YCBCR420 outputs */
759 
760 	ret = hdmi_avi_infoframe_check(frame);
761 	if (drm_WARN_ON(encoder->base.dev, ret))
762 		return false;
763 
764 	return true;
765 }
766 
767 static bool
768 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
769 				 struct intel_crtc_state *crtc_state,
770 				 struct drm_connector_state *conn_state)
771 {
772 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
773 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
774 	int ret;
775 
776 	if (!crtc_state->has_infoframe)
777 		return true;
778 
779 	crtc_state->infoframes.enable |=
780 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
781 
782 	if (IS_DGFX(i915))
783 		ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx");
784 	else
785 		ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
786 
787 	if (drm_WARN_ON(encoder->base.dev, ret))
788 		return false;
789 
790 	frame->sdi = HDMI_SPD_SDI_PC;
791 
792 	ret = hdmi_spd_infoframe_check(frame);
793 	if (drm_WARN_ON(encoder->base.dev, ret))
794 		return false;
795 
796 	return true;
797 }
798 
799 static bool
800 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
801 				  struct intel_crtc_state *crtc_state,
802 				  struct drm_connector_state *conn_state)
803 {
804 	struct hdmi_vendor_infoframe *frame =
805 		&crtc_state->infoframes.hdmi.vendor.hdmi;
806 	const struct drm_display_info *info =
807 		&conn_state->connector->display_info;
808 	int ret;
809 
810 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
811 		return true;
812 
813 	crtc_state->infoframes.enable |=
814 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
815 
816 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
817 							  conn_state->connector,
818 							  &crtc_state->hw.adjusted_mode);
819 	if (drm_WARN_ON(encoder->base.dev, ret))
820 		return false;
821 
822 	ret = hdmi_vendor_infoframe_check(frame);
823 	if (drm_WARN_ON(encoder->base.dev, ret))
824 		return false;
825 
826 	return true;
827 }
828 
829 static bool
830 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
831 				 struct intel_crtc_state *crtc_state,
832 				 struct drm_connector_state *conn_state)
833 {
834 	struct intel_display *display = to_intel_display(encoder);
835 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
836 	int ret;
837 
838 	if (DISPLAY_VER(display) < 10)
839 		return true;
840 
841 	if (!crtc_state->has_infoframe)
842 		return true;
843 
844 	if (!conn_state->hdr_output_metadata)
845 		return true;
846 
847 	crtc_state->infoframes.enable |=
848 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
849 
850 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
851 	if (ret < 0) {
852 		drm_dbg_kms(display->drm,
853 			    "couldn't set HDR metadata in infoframe\n");
854 		return false;
855 	}
856 
857 	ret = hdmi_drm_infoframe_check(frame);
858 	if (drm_WARN_ON(display->drm, ret))
859 		return false;
860 
861 	return true;
862 }
863 
864 static void g4x_set_infoframes(struct intel_encoder *encoder,
865 			       bool enable,
866 			       const struct intel_crtc_state *crtc_state,
867 			       const struct drm_connector_state *conn_state)
868 {
869 	struct intel_display *display = to_intel_display(encoder);
870 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
871 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
872 	i915_reg_t reg = VIDEO_DIP_CTL;
873 	u32 val = intel_de_read(display, reg);
874 	u32 port = VIDEO_DIP_PORT(encoder->port);
875 
876 	assert_hdmi_port_disabled(intel_hdmi);
877 
878 	/* If the registers were not initialized yet, they might be zeroes,
879 	 * which means we're selecting the AVI DIP and we're setting its
880 	 * frequency to once. This seems to really confuse the HW and make
881 	 * things stop working (the register spec says the AVI always needs to
882 	 * be sent every VSync). So here we avoid writing to the register more
883 	 * than we need and also explicitly select the AVI DIP and explicitly
884 	 * set its frequency to every VSync. Avoiding to write it twice seems to
885 	 * be enough to solve the problem, but being defensive shouldn't hurt us
886 	 * either. */
887 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
888 
889 	if (!enable) {
890 		if (!(val & VIDEO_DIP_ENABLE))
891 			return;
892 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
893 			drm_dbg_kms(display->drm,
894 				    "video DIP still enabled on port %c\n",
895 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
896 			return;
897 		}
898 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
899 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
900 		intel_de_write(display, reg, val);
901 		intel_de_posting_read(display, reg);
902 		return;
903 	}
904 
905 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
906 		if (val & VIDEO_DIP_ENABLE) {
907 			drm_dbg_kms(display->drm,
908 				    "video DIP already enabled on port %c\n",
909 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
910 			return;
911 		}
912 		val &= ~VIDEO_DIP_PORT_MASK;
913 		val |= port;
914 	}
915 
916 	val |= VIDEO_DIP_ENABLE;
917 	val &= ~(VIDEO_DIP_ENABLE_AVI |
918 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
919 
920 	intel_de_write(display, reg, val);
921 	intel_de_posting_read(display, reg);
922 
923 	intel_write_infoframe(encoder, crtc_state,
924 			      HDMI_INFOFRAME_TYPE_AVI,
925 			      &crtc_state->infoframes.avi);
926 	intel_write_infoframe(encoder, crtc_state,
927 			      HDMI_INFOFRAME_TYPE_SPD,
928 			      &crtc_state->infoframes.spd);
929 	intel_write_infoframe(encoder, crtc_state,
930 			      HDMI_INFOFRAME_TYPE_VENDOR,
931 			      &crtc_state->infoframes.hdmi);
932 }
933 
934 /*
935  * Determine if default_phase=1 can be indicated in the GCP infoframe.
936  *
937  * From HDMI specification 1.4a:
938  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
939  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
940  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
941  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
942  *   phase of 0
943  */
944 static bool gcp_default_phase_possible(int pipe_bpp,
945 				       const struct drm_display_mode *mode)
946 {
947 	unsigned int pixels_per_group;
948 
949 	switch (pipe_bpp) {
950 	case 30:
951 		/* 4 pixels in 5 clocks */
952 		pixels_per_group = 4;
953 		break;
954 	case 36:
955 		/* 2 pixels in 3 clocks */
956 		pixels_per_group = 2;
957 		break;
958 	case 48:
959 		/* 1 pixel in 2 clocks */
960 		pixels_per_group = 1;
961 		break;
962 	default:
963 		/* phase information not relevant for 8bpc */
964 		return false;
965 	}
966 
967 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
968 		mode->crtc_htotal % pixels_per_group == 0 &&
969 		mode->crtc_hblank_start % pixels_per_group == 0 &&
970 		mode->crtc_hblank_end % pixels_per_group == 0 &&
971 		mode->crtc_hsync_start % pixels_per_group == 0 &&
972 		mode->crtc_hsync_end % pixels_per_group == 0 &&
973 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
974 		 mode->crtc_htotal/2 % pixels_per_group == 0);
975 }
976 
977 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
978 					 const struct intel_crtc_state *crtc_state,
979 					 const struct drm_connector_state *conn_state)
980 {
981 	struct intel_display *display = to_intel_display(encoder);
982 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
983 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
984 	i915_reg_t reg;
985 
986 	if ((crtc_state->infoframes.enable &
987 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
988 		return false;
989 
990 	if (HAS_DDI(display))
991 		reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
992 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
993 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
994 	else if (HAS_PCH_SPLIT(dev_priv))
995 		reg = TVIDEO_DIP_GCP(crtc->pipe);
996 	else
997 		return false;
998 
999 	intel_de_write(display, reg, crtc_state->infoframes.gcp);
1000 
1001 	return true;
1002 }
1003 
1004 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
1005 				   struct intel_crtc_state *crtc_state)
1006 {
1007 	struct intel_display *display = to_intel_display(encoder);
1008 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1009 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1010 	i915_reg_t reg;
1011 
1012 	if ((crtc_state->infoframes.enable &
1013 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1014 		return;
1015 
1016 	if (HAS_DDI(display))
1017 		reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
1018 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1019 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1020 	else if (HAS_PCH_SPLIT(dev_priv))
1021 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1022 	else
1023 		return;
1024 
1025 	crtc_state->infoframes.gcp = intel_de_read(display, reg);
1026 }
1027 
1028 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1029 					     struct intel_crtc_state *crtc_state,
1030 					     struct drm_connector_state *conn_state)
1031 {
1032 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1033 
1034 	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1035 		return;
1036 
1037 	crtc_state->infoframes.enable |=
1038 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1039 
1040 	/* Indicate color indication for deep color mode */
1041 	if (crtc_state->pipe_bpp > 24)
1042 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1043 
1044 	/* Enable default_phase whenever the display mode is suitably aligned */
1045 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1046 				       &crtc_state->hw.adjusted_mode))
1047 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1048 }
1049 
1050 static void ibx_set_infoframes(struct intel_encoder *encoder,
1051 			       bool enable,
1052 			       const struct intel_crtc_state *crtc_state,
1053 			       const struct drm_connector_state *conn_state)
1054 {
1055 	struct intel_display *display = to_intel_display(encoder);
1056 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1057 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1058 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1059 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1060 	u32 val = intel_de_read(display, reg);
1061 	u32 port = VIDEO_DIP_PORT(encoder->port);
1062 
1063 	assert_hdmi_port_disabled(intel_hdmi);
1064 
1065 	/* See the big comment in g4x_set_infoframes() */
1066 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1067 
1068 	if (!enable) {
1069 		if (!(val & VIDEO_DIP_ENABLE))
1070 			return;
1071 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1072 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1073 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1074 		intel_de_write(display, reg, val);
1075 		intel_de_posting_read(display, reg);
1076 		return;
1077 	}
1078 
1079 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1080 		drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1081 			 "DIP already enabled on port %c\n",
1082 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1083 		val &= ~VIDEO_DIP_PORT_MASK;
1084 		val |= port;
1085 	}
1086 
1087 	val |= VIDEO_DIP_ENABLE;
1088 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1089 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1090 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1091 
1092 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1093 		val |= VIDEO_DIP_ENABLE_GCP;
1094 
1095 	intel_de_write(display, reg, val);
1096 	intel_de_posting_read(display, reg);
1097 
1098 	intel_write_infoframe(encoder, crtc_state,
1099 			      HDMI_INFOFRAME_TYPE_AVI,
1100 			      &crtc_state->infoframes.avi);
1101 	intel_write_infoframe(encoder, crtc_state,
1102 			      HDMI_INFOFRAME_TYPE_SPD,
1103 			      &crtc_state->infoframes.spd);
1104 	intel_write_infoframe(encoder, crtc_state,
1105 			      HDMI_INFOFRAME_TYPE_VENDOR,
1106 			      &crtc_state->infoframes.hdmi);
1107 }
1108 
1109 static void cpt_set_infoframes(struct intel_encoder *encoder,
1110 			       bool enable,
1111 			       const struct intel_crtc_state *crtc_state,
1112 			       const struct drm_connector_state *conn_state)
1113 {
1114 	struct intel_display *display = to_intel_display(encoder);
1115 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1116 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1117 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1118 	u32 val = intel_de_read(display, reg);
1119 
1120 	assert_hdmi_port_disabled(intel_hdmi);
1121 
1122 	/* See the big comment in g4x_set_infoframes() */
1123 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1124 
1125 	if (!enable) {
1126 		if (!(val & VIDEO_DIP_ENABLE))
1127 			return;
1128 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1129 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1130 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1131 		intel_de_write(display, reg, val);
1132 		intel_de_posting_read(display, reg);
1133 		return;
1134 	}
1135 
1136 	/* Set both together, unset both together: see the spec. */
1137 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1138 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1139 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1140 
1141 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1142 		val |= VIDEO_DIP_ENABLE_GCP;
1143 
1144 	intel_de_write(display, reg, val);
1145 	intel_de_posting_read(display, reg);
1146 
1147 	intel_write_infoframe(encoder, crtc_state,
1148 			      HDMI_INFOFRAME_TYPE_AVI,
1149 			      &crtc_state->infoframes.avi);
1150 	intel_write_infoframe(encoder, crtc_state,
1151 			      HDMI_INFOFRAME_TYPE_SPD,
1152 			      &crtc_state->infoframes.spd);
1153 	intel_write_infoframe(encoder, crtc_state,
1154 			      HDMI_INFOFRAME_TYPE_VENDOR,
1155 			      &crtc_state->infoframes.hdmi);
1156 }
1157 
1158 static void vlv_set_infoframes(struct intel_encoder *encoder,
1159 			       bool enable,
1160 			       const struct intel_crtc_state *crtc_state,
1161 			       const struct drm_connector_state *conn_state)
1162 {
1163 	struct intel_display *display = to_intel_display(encoder);
1164 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1165 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1166 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1167 	u32 val = intel_de_read(display, reg);
1168 	u32 port = VIDEO_DIP_PORT(encoder->port);
1169 
1170 	assert_hdmi_port_disabled(intel_hdmi);
1171 
1172 	/* See the big comment in g4x_set_infoframes() */
1173 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1174 
1175 	if (!enable) {
1176 		if (!(val & VIDEO_DIP_ENABLE))
1177 			return;
1178 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1179 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1180 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1181 		intel_de_write(display, reg, val);
1182 		intel_de_posting_read(display, reg);
1183 		return;
1184 	}
1185 
1186 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1187 		drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1188 			 "DIP already enabled on port %c\n",
1189 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1190 		val &= ~VIDEO_DIP_PORT_MASK;
1191 		val |= port;
1192 	}
1193 
1194 	val |= VIDEO_DIP_ENABLE;
1195 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1196 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1197 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1198 
1199 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1200 		val |= VIDEO_DIP_ENABLE_GCP;
1201 
1202 	intel_de_write(display, reg, val);
1203 	intel_de_posting_read(display, reg);
1204 
1205 	intel_write_infoframe(encoder, crtc_state,
1206 			      HDMI_INFOFRAME_TYPE_AVI,
1207 			      &crtc_state->infoframes.avi);
1208 	intel_write_infoframe(encoder, crtc_state,
1209 			      HDMI_INFOFRAME_TYPE_SPD,
1210 			      &crtc_state->infoframes.spd);
1211 	intel_write_infoframe(encoder, crtc_state,
1212 			      HDMI_INFOFRAME_TYPE_VENDOR,
1213 			      &crtc_state->infoframes.hdmi);
1214 }
1215 
1216 void intel_hdmi_fastset_infoframes(struct intel_encoder *encoder,
1217 				   const struct intel_crtc_state *crtc_state,
1218 				   const struct drm_connector_state *conn_state)
1219 {
1220 	struct intel_display *display = to_intel_display(encoder);
1221 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display,
1222 					    crtc_state->cpu_transcoder);
1223 	u32 val = intel_de_read(display, reg);
1224 
1225 	if ((crtc_state->infoframes.enable &
1226 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) == 0 &&
1227 			(val & VIDEO_DIP_ENABLE_DRM_GLK) == 0)
1228 		return;
1229 
1230 	val &= ~(VIDEO_DIP_ENABLE_DRM_GLK);
1231 
1232 	intel_de_write(display, reg, val);
1233 	intel_de_posting_read(display, reg);
1234 
1235 	intel_write_infoframe(encoder, crtc_state,
1236 			      HDMI_INFOFRAME_TYPE_DRM,
1237 			      &crtc_state->infoframes.drm);
1238 }
1239 
1240 static void hsw_set_infoframes(struct intel_encoder *encoder,
1241 			       bool enable,
1242 			       const struct intel_crtc_state *crtc_state,
1243 			       const struct drm_connector_state *conn_state)
1244 {
1245 	struct intel_display *display = to_intel_display(encoder);
1246 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display,
1247 					    crtc_state->cpu_transcoder);
1248 	u32 val = intel_de_read(display, reg);
1249 
1250 	assert_hdmi_transcoder_func_disabled(display,
1251 					     crtc_state->cpu_transcoder);
1252 
1253 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1254 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1255 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1256 		 VIDEO_DIP_ENABLE_DRM_GLK | VIDEO_DIP_ENABLE_AS_ADL);
1257 
1258 	if (!enable) {
1259 		intel_de_write(display, reg, val);
1260 		intel_de_posting_read(display, reg);
1261 		return;
1262 	}
1263 
1264 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1265 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1266 
1267 	intel_de_write(display, reg, val);
1268 	intel_de_posting_read(display, reg);
1269 
1270 	intel_write_infoframe(encoder, crtc_state,
1271 			      HDMI_INFOFRAME_TYPE_AVI,
1272 			      &crtc_state->infoframes.avi);
1273 	intel_write_infoframe(encoder, crtc_state,
1274 			      HDMI_INFOFRAME_TYPE_SPD,
1275 			      &crtc_state->infoframes.spd);
1276 	intel_write_infoframe(encoder, crtc_state,
1277 			      HDMI_INFOFRAME_TYPE_VENDOR,
1278 			      &crtc_state->infoframes.hdmi);
1279 	intel_write_infoframe(encoder, crtc_state,
1280 			      HDMI_INFOFRAME_TYPE_DRM,
1281 			      &crtc_state->infoframes.drm);
1282 }
1283 
1284 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1285 {
1286 	struct intel_display *display = to_intel_display(hdmi);
1287 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1288 
1289 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1290 		return;
1291 
1292 	drm_dbg_kms(display->drm, "%s DP dual mode adaptor TMDS output\n",
1293 		    enable ? "Enabling" : "Disabling");
1294 
1295 	drm_dp_dual_mode_set_tmds_output(display->drm,
1296 					 hdmi->dp_dual_mode.type, ddc, enable);
1297 }
1298 
1299 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1300 				unsigned int offset, void *buffer, size_t size)
1301 {
1302 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1303 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1304 	int ret;
1305 	u8 start = offset & 0xff;
1306 	struct i2c_msg msgs[] = {
1307 		{
1308 			.addr = DRM_HDCP_DDC_ADDR,
1309 			.flags = 0,
1310 			.len = 1,
1311 			.buf = &start,
1312 		},
1313 		{
1314 			.addr = DRM_HDCP_DDC_ADDR,
1315 			.flags = I2C_M_RD,
1316 			.len = size,
1317 			.buf = buffer
1318 		}
1319 	};
1320 	ret = i2c_transfer(ddc, msgs, ARRAY_SIZE(msgs));
1321 	if (ret == ARRAY_SIZE(msgs))
1322 		return 0;
1323 	return ret >= 0 ? -EIO : ret;
1324 }
1325 
1326 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1327 				 unsigned int offset, void *buffer, size_t size)
1328 {
1329 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1330 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1331 	int ret;
1332 	u8 *write_buf;
1333 	struct i2c_msg msg;
1334 
1335 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1336 	if (!write_buf)
1337 		return -ENOMEM;
1338 
1339 	write_buf[0] = offset & 0xff;
1340 	memcpy(&write_buf[1], buffer, size);
1341 
1342 	msg.addr = DRM_HDCP_DDC_ADDR;
1343 	msg.flags = 0;
1344 	msg.len = size + 1;
1345 	msg.buf = write_buf;
1346 
1347 	ret = i2c_transfer(ddc, &msg, 1);
1348 	if (ret == 1)
1349 		ret = 0;
1350 	else if (ret >= 0)
1351 		ret = -EIO;
1352 
1353 	kfree(write_buf);
1354 	return ret;
1355 }
1356 
1357 static
1358 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1359 				  u8 *an)
1360 {
1361 	struct intel_display *display = to_intel_display(dig_port);
1362 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1363 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1364 	int ret;
1365 
1366 	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1367 				    DRM_HDCP_AN_LEN);
1368 	if (ret) {
1369 		drm_dbg_kms(display->drm, "Write An over DDC failed (%d)\n",
1370 			    ret);
1371 		return ret;
1372 	}
1373 
1374 	ret = intel_gmbus_output_aksv(ddc);
1375 	if (ret < 0) {
1376 		drm_dbg_kms(display->drm, "Failed to output aksv (%d)\n", ret);
1377 		return ret;
1378 	}
1379 	return 0;
1380 }
1381 
1382 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1383 				     u8 *bksv)
1384 {
1385 	struct intel_display *display = to_intel_display(dig_port);
1386 
1387 	int ret;
1388 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1389 				   DRM_HDCP_KSV_LEN);
1390 	if (ret)
1391 		drm_dbg_kms(display->drm, "Read Bksv over DDC failed (%d)\n",
1392 			    ret);
1393 	return ret;
1394 }
1395 
1396 static
1397 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1398 				 u8 *bstatus)
1399 {
1400 	struct intel_display *display = to_intel_display(dig_port);
1401 
1402 	int ret;
1403 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1404 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1405 	if (ret)
1406 		drm_dbg_kms(display->drm,
1407 			    "Read bstatus over DDC failed (%d)\n",
1408 			    ret);
1409 	return ret;
1410 }
1411 
1412 static
1413 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1414 				     bool *repeater_present)
1415 {
1416 	struct intel_display *display = to_intel_display(dig_port);
1417 	int ret;
1418 	u8 val;
1419 
1420 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1421 	if (ret) {
1422 		drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1423 			    ret);
1424 		return ret;
1425 	}
1426 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1427 	return 0;
1428 }
1429 
1430 static
1431 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1432 				  u8 *ri_prime)
1433 {
1434 	struct intel_display *display = to_intel_display(dig_port);
1435 
1436 	int ret;
1437 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1438 				   ri_prime, DRM_HDCP_RI_LEN);
1439 	if (ret)
1440 		drm_dbg_kms(display->drm, "Read Ri' over DDC failed (%d)\n",
1441 			    ret);
1442 	return ret;
1443 }
1444 
1445 static
1446 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1447 				   bool *ksv_ready)
1448 {
1449 	struct intel_display *display = to_intel_display(dig_port);
1450 	int ret;
1451 	u8 val;
1452 
1453 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1454 	if (ret) {
1455 		drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1456 			    ret);
1457 		return ret;
1458 	}
1459 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1460 	return 0;
1461 }
1462 
1463 static
1464 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1465 				  int num_downstream, u8 *ksv_fifo)
1466 {
1467 	struct intel_display *display = to_intel_display(dig_port);
1468 	int ret;
1469 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1470 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1471 	if (ret) {
1472 		drm_dbg_kms(display->drm,
1473 			    "Read ksv fifo over DDC failed (%d)\n", ret);
1474 		return ret;
1475 	}
1476 	return 0;
1477 }
1478 
1479 static
1480 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1481 				      int i, u32 *part)
1482 {
1483 	struct intel_display *display = to_intel_display(dig_port);
1484 	int ret;
1485 
1486 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1487 		return -EINVAL;
1488 
1489 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1490 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1491 	if (ret)
1492 		drm_dbg_kms(display->drm,
1493 			    "Read V'[%d] over DDC failed (%d)\n",
1494 			    i, ret);
1495 	return ret;
1496 }
1497 
1498 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1499 					   enum transcoder cpu_transcoder)
1500 {
1501 	struct intel_display *display = to_intel_display(connector);
1502 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1503 	struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1504 	u32 scanline;
1505 	int ret;
1506 
1507 	for (;;) {
1508 		scanline = intel_de_read(display,
1509 					 PIPEDSL(display, crtc->pipe));
1510 		if (scanline > 100 && scanline < 200)
1511 			break;
1512 		usleep_range(25, 50);
1513 	}
1514 
1515 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1516 					 false, TRANS_DDI_HDCP_SIGNALLING);
1517 	if (ret) {
1518 		drm_err(display->drm,
1519 			"Disable HDCP signalling failed (%d)\n", ret);
1520 		return ret;
1521 	}
1522 
1523 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1524 					 true, TRANS_DDI_HDCP_SIGNALLING);
1525 	if (ret) {
1526 		drm_err(display->drm,
1527 			"Enable HDCP signalling failed (%d)\n", ret);
1528 		return ret;
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 static
1535 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1536 				      enum transcoder cpu_transcoder,
1537 				      bool enable)
1538 {
1539 	struct intel_display *display = to_intel_display(dig_port);
1540 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1541 	struct intel_connector *connector = hdmi->attached_connector;
1542 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1543 	int ret;
1544 
1545 	if (!enable)
1546 		usleep_range(6, 60); /* Bspec says >= 6us */
1547 
1548 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1549 					 cpu_transcoder, enable,
1550 					 TRANS_DDI_HDCP_SIGNALLING);
1551 	if (ret) {
1552 		drm_err(display->drm, "%s HDCP signalling failed (%d)\n",
1553 			enable ? "Enable" : "Disable", ret);
1554 		return ret;
1555 	}
1556 
1557 	/*
1558 	 * WA: To fix incorrect positioning of the window of
1559 	 * opportunity and enc_en signalling in KABYLAKE.
1560 	 */
1561 	if (IS_KABYLAKE(dev_priv) && enable)
1562 		return kbl_repositioning_enc_en_signal(connector,
1563 						       cpu_transcoder);
1564 
1565 	return 0;
1566 }
1567 
1568 static
1569 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1570 				     struct intel_connector *connector)
1571 {
1572 	struct intel_display *display = to_intel_display(dig_port);
1573 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1574 	enum port port = dig_port->base.port;
1575 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1576 	int ret;
1577 	union {
1578 		u32 reg;
1579 		u8 shim[DRM_HDCP_RI_LEN];
1580 	} ri;
1581 
1582 	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1583 	if (ret)
1584 		return false;
1585 
1586 	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1587 
1588 	/* Wait for Ri prime match */
1589 	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1590 		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1591 		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1592 		drm_dbg_kms(display->drm, "Ri' mismatch detected (%x)\n",
1593 			    intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1594 							    port)));
1595 		return false;
1596 	}
1597 	return true;
1598 }
1599 
1600 static
1601 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1602 				struct intel_connector *connector)
1603 {
1604 	int retry;
1605 
1606 	for (retry = 0; retry < 3; retry++)
1607 		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1608 			return true;
1609 
1610 	return false;
1611 }
1612 
1613 struct hdcp2_hdmi_msg_timeout {
1614 	u8 msg_id;
1615 	u16 timeout;
1616 };
1617 
1618 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1619 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1620 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1621 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1622 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1623 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1624 };
1625 
1626 static
1627 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1628 				    u8 *rx_status)
1629 {
1630 	return intel_hdmi_hdcp_read(dig_port,
1631 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1632 				    rx_status,
1633 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1634 }
1635 
1636 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1637 {
1638 	int i;
1639 
1640 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1641 		if (is_paired)
1642 			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1643 		else
1644 			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1645 	}
1646 
1647 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1648 		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1649 			return hdcp2_msg_timeout[i].timeout;
1650 	}
1651 
1652 	return -EINVAL;
1653 }
1654 
1655 static int
1656 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1657 			      u8 msg_id, bool *msg_ready,
1658 			      ssize_t *msg_sz)
1659 {
1660 	struct intel_display *display = to_intel_display(dig_port);
1661 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1662 	int ret;
1663 
1664 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1665 	if (ret < 0) {
1666 		drm_dbg_kms(display->drm, "rx_status read failed. Err %d\n",
1667 			    ret);
1668 		return ret;
1669 	}
1670 
1671 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1672 		  rx_status[0]);
1673 
1674 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1675 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1676 			     *msg_sz);
1677 	else
1678 		*msg_ready = *msg_sz;
1679 
1680 	return 0;
1681 }
1682 
1683 static ssize_t
1684 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1685 			      u8 msg_id, bool paired)
1686 {
1687 	struct intel_display *display = to_intel_display(dig_port);
1688 	bool msg_ready = false;
1689 	int timeout, ret;
1690 	ssize_t msg_sz = 0;
1691 
1692 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1693 	if (timeout < 0)
1694 		return timeout;
1695 
1696 	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1697 							     msg_id, &msg_ready,
1698 							     &msg_sz),
1699 			 !ret && msg_ready && msg_sz, timeout * 1000,
1700 			 1000, 5 * 1000);
1701 	if (ret)
1702 		drm_dbg_kms(display->drm,
1703 			    "msg_id: %d, ret: %d, timeout: %d\n",
1704 			    msg_id, ret, timeout);
1705 
1706 	return ret ? ret : msg_sz;
1707 }
1708 
1709 static
1710 int intel_hdmi_hdcp2_write_msg(struct intel_connector *connector,
1711 			       void *buf, size_t size)
1712 {
1713 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1714 	unsigned int offset;
1715 
1716 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1717 	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1718 }
1719 
1720 static
1721 int intel_hdmi_hdcp2_read_msg(struct intel_connector *connector,
1722 			      u8 msg_id, void *buf, size_t size)
1723 {
1724 	struct intel_display *display = to_intel_display(connector);
1725 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1726 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1727 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1728 	unsigned int offset;
1729 	ssize_t ret;
1730 
1731 	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1732 					    hdcp->is_paired);
1733 	if (ret < 0)
1734 		return ret;
1735 
1736 	/*
1737 	 * Available msg size should be equal to or lesser than the
1738 	 * available buffer.
1739 	 */
1740 	if (ret > size) {
1741 		drm_dbg_kms(display->drm,
1742 			    "msg_sz(%zd) is more than exp size(%zu)\n",
1743 			    ret, size);
1744 		return -EINVAL;
1745 	}
1746 
1747 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1748 	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1749 	if (ret)
1750 		drm_dbg_kms(display->drm, "Failed to read msg_id: %d(%zd)\n",
1751 			    msg_id, ret);
1752 
1753 	return ret;
1754 }
1755 
1756 static
1757 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1758 				struct intel_connector *connector)
1759 {
1760 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1761 	int ret;
1762 
1763 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1764 	if (ret)
1765 		return ret;
1766 
1767 	/*
1768 	 * Re-auth request and Link Integrity Failures are represented by
1769 	 * same bit. i.e reauth_req.
1770 	 */
1771 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1772 		ret = HDCP_REAUTH_REQUEST;
1773 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1774 		ret = HDCP_TOPOLOGY_CHANGE;
1775 
1776 	return ret;
1777 }
1778 
1779 static
1780 int intel_hdmi_hdcp2_get_capability(struct intel_connector *connector,
1781 				    bool *capable)
1782 {
1783 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1784 	u8 hdcp2_version;
1785 	int ret;
1786 
1787 	*capable = false;
1788 	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1789 				   &hdcp2_version, sizeof(hdcp2_version));
1790 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1791 		*capable = true;
1792 
1793 	return ret;
1794 }
1795 
1796 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1797 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1798 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1799 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1800 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1801 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1802 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1803 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1804 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1805 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1806 	.check_link = intel_hdmi_hdcp_check_link,
1807 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1808 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1809 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1810 	.hdcp_2_2_get_capability = intel_hdmi_hdcp2_get_capability,
1811 	.protocol = HDCP_PROTOCOL_HDMI,
1812 };
1813 
1814 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1815 {
1816 	struct intel_display *display = to_intel_display(encoder);
1817 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1818 	int max_tmds_clock, vbt_max_tmds_clock;
1819 
1820 	if (DISPLAY_VER(display) >= 13 || IS_ALDERLAKE_S(dev_priv))
1821 		max_tmds_clock = 600000;
1822 	else if (DISPLAY_VER(display) >= 10)
1823 		max_tmds_clock = 594000;
1824 	else if (DISPLAY_VER(display) >= 8 || IS_HASWELL(dev_priv))
1825 		max_tmds_clock = 300000;
1826 	else if (DISPLAY_VER(display) >= 5)
1827 		max_tmds_clock = 225000;
1828 	else
1829 		max_tmds_clock = 165000;
1830 
1831 	vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata);
1832 	if (vbt_max_tmds_clock)
1833 		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1834 
1835 	return max_tmds_clock;
1836 }
1837 
1838 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1839 				const struct drm_connector_state *conn_state)
1840 {
1841 	struct intel_connector *connector = hdmi->attached_connector;
1842 
1843 	return connector->base.display_info.is_hdmi &&
1844 		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1845 }
1846 
1847 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1848 {
1849 	return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1850 }
1851 
1852 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1853 				 bool respect_downstream_limits,
1854 				 bool has_hdmi_sink)
1855 {
1856 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1857 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1858 
1859 	if (respect_downstream_limits) {
1860 		struct intel_connector *connector = hdmi->attached_connector;
1861 		const struct drm_display_info *info = &connector->base.display_info;
1862 
1863 		if (hdmi->dp_dual_mode.max_tmds_clock)
1864 			max_tmds_clock = min(max_tmds_clock,
1865 					     hdmi->dp_dual_mode.max_tmds_clock);
1866 
1867 		if (info->max_tmds_clock)
1868 			max_tmds_clock = min(max_tmds_clock,
1869 					     info->max_tmds_clock);
1870 		else if (!has_hdmi_sink)
1871 			max_tmds_clock = min(max_tmds_clock, 165000);
1872 	}
1873 
1874 	return max_tmds_clock;
1875 }
1876 
1877 static enum drm_mode_status
1878 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1879 		      int clock, bool respect_downstream_limits,
1880 		      bool has_hdmi_sink)
1881 {
1882 	struct intel_display *display = to_intel_display(hdmi);
1883 	struct drm_i915_private *dev_priv = to_i915(display->drm);
1884 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1885 
1886 	if (clock < 25000)
1887 		return MODE_CLOCK_LOW;
1888 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1889 					  has_hdmi_sink))
1890 		return MODE_CLOCK_HIGH;
1891 
1892 	/* GLK DPLL can't generate 446-480 MHz */
1893 	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1894 		return MODE_CLOCK_RANGE;
1895 
1896 	/* BXT/GLK DPLL can't generate 223-240 MHz */
1897 	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1898 	    clock > 223333 && clock < 240000)
1899 		return MODE_CLOCK_RANGE;
1900 
1901 	/* CHV DPLL can't generate 216-240 MHz */
1902 	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1903 		return MODE_CLOCK_RANGE;
1904 
1905 	/* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1906 	if (intel_encoder_is_combo(encoder) && clock > 500000 && clock < 533200)
1907 		return MODE_CLOCK_RANGE;
1908 
1909 	/* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1910 	if (intel_encoder_is_tc(encoder) && clock > 500000 && clock < 532800)
1911 		return MODE_CLOCK_RANGE;
1912 
1913 	return MODE_OK;
1914 }
1915 
1916 int intel_hdmi_tmds_clock(int clock, int bpc,
1917 			  enum intel_output_format sink_format)
1918 {
1919 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
1920 	if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1921 		clock /= 2;
1922 
1923 	/*
1924 	 * Need to adjust the port link by:
1925 	 *  1.5x for 12bpc
1926 	 *  1.25x for 10bpc
1927 	 */
1928 	return DIV_ROUND_CLOSEST(clock * bpc, 8);
1929 }
1930 
1931 static bool intel_hdmi_source_bpc_possible(struct intel_display *display, int bpc)
1932 {
1933 	switch (bpc) {
1934 	case 12:
1935 		return !HAS_GMCH(display);
1936 	case 10:
1937 		return DISPLAY_VER(display) >= 11;
1938 	case 8:
1939 		return true;
1940 	default:
1941 		MISSING_CASE(bpc);
1942 		return false;
1943 	}
1944 }
1945 
1946 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1947 					 int bpc, bool has_hdmi_sink,
1948 					 enum intel_output_format sink_format)
1949 {
1950 	const struct drm_display_info *info = &connector->display_info;
1951 	const struct drm_hdmi_info *hdmi = &info->hdmi;
1952 
1953 	switch (bpc) {
1954 	case 12:
1955 		if (!has_hdmi_sink)
1956 			return false;
1957 
1958 		if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1959 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1960 		else
1961 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1962 	case 10:
1963 		if (!has_hdmi_sink)
1964 			return false;
1965 
1966 		if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1967 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1968 		else
1969 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1970 	case 8:
1971 		return true;
1972 	default:
1973 		MISSING_CASE(bpc);
1974 		return false;
1975 	}
1976 }
1977 
1978 static enum drm_mode_status
1979 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1980 			    bool has_hdmi_sink,
1981 			    enum intel_output_format sink_format)
1982 {
1983 	struct intel_display *display = to_intel_display(connector->dev);
1984 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1985 	enum drm_mode_status status = MODE_OK;
1986 	int bpc;
1987 
1988 	/*
1989 	 * Try all color depths since valid port clock range
1990 	 * can have holes. Any mode that can be used with at
1991 	 * least one color depth is accepted.
1992 	 */
1993 	for (bpc = 12; bpc >= 8; bpc -= 2) {
1994 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format);
1995 
1996 		if (!intel_hdmi_source_bpc_possible(display, bpc))
1997 			continue;
1998 
1999 		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, sink_format))
2000 			continue;
2001 
2002 		status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
2003 		if (status == MODE_OK)
2004 			return MODE_OK;
2005 	}
2006 
2007 	/* can never happen */
2008 	drm_WARN_ON(display->drm, status == MODE_OK);
2009 
2010 	return status;
2011 }
2012 
2013 static enum drm_mode_status
2014 intel_hdmi_mode_valid(struct drm_connector *connector,
2015 		      const struct drm_display_mode *mode)
2016 {
2017 	struct intel_display *display = to_intel_display(connector->dev);
2018 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2019 	enum drm_mode_status status;
2020 	int clock = mode->clock;
2021 	int max_dotclk = to_i915(connector->dev)->display.cdclk.max_dotclk_freq;
2022 	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
2023 	bool ycbcr_420_only;
2024 	enum intel_output_format sink_format;
2025 
2026 	status = intel_cpu_transcoder_mode_valid(display, mode);
2027 	if (status != MODE_OK)
2028 		return status;
2029 
2030 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
2031 		clock *= 2;
2032 
2033 	if (clock > max_dotclk)
2034 		return MODE_CLOCK_HIGH;
2035 
2036 	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
2037 		if (!has_hdmi_sink)
2038 			return MODE_CLOCK_LOW;
2039 		clock *= 2;
2040 	}
2041 
2042 	/*
2043 	 * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
2044 	 * enumerated only if FRL is supported. Current platforms do not support
2045 	 * FRL so prune the higher resolution modes that require doctclock more
2046 	 * than 600MHz.
2047 	 */
2048 	if (clock > 600000)
2049 		return MODE_CLOCK_HIGH;
2050 
2051 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
2052 
2053 	if (ycbcr_420_only)
2054 		sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2055 	else
2056 		sink_format = INTEL_OUTPUT_FORMAT_RGB;
2057 
2058 	status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2059 	if (status != MODE_OK) {
2060 		if (ycbcr_420_only ||
2061 		    !connector->ycbcr_420_allowed ||
2062 		    !drm_mode_is_420_also(&connector->display_info, mode))
2063 			return status;
2064 
2065 		sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2066 		status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2067 		if (status != MODE_OK)
2068 			return status;
2069 	}
2070 
2071 	return intel_mode_valid_max_plane_size(display, mode, 1);
2072 }
2073 
2074 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2075 			     int bpc, bool has_hdmi_sink)
2076 {
2077 	struct drm_atomic_state *state = crtc_state->uapi.state;
2078 	struct drm_connector_state *connector_state;
2079 	struct drm_connector *connector;
2080 	int i;
2081 
2082 	for_each_new_connector_in_state(state, connector, connector_state, i) {
2083 		if (connector_state->crtc != crtc_state->uapi.crtc)
2084 			continue;
2085 
2086 		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink,
2087 						  crtc_state->sink_format))
2088 			return false;
2089 	}
2090 
2091 	return true;
2092 }
2093 
2094 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
2095 {
2096 	struct intel_display *display = to_intel_display(crtc_state);
2097 	const struct drm_display_mode *adjusted_mode =
2098 		&crtc_state->hw.adjusted_mode;
2099 
2100 	if (!intel_hdmi_source_bpc_possible(display, bpc))
2101 		return false;
2102 
2103 	/* Display Wa_1405510057:icl,ehl */
2104 	if (intel_hdmi_is_ycbcr420(crtc_state) &&
2105 	    bpc == 10 && DISPLAY_VER(display) == 11 &&
2106 	    (adjusted_mode->crtc_hblank_end -
2107 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2108 		return false;
2109 
2110 	return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink);
2111 }
2112 
2113 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2114 				  struct intel_crtc_state *crtc_state,
2115 				  int clock, bool respect_downstream_limits)
2116 {
2117 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2118 	int bpc;
2119 
2120 	/*
2121 	 * pipe_bpp could already be below 8bpc due to FDI
2122 	 * bandwidth constraints. HDMI minimum is 8bpc however.
2123 	 */
2124 	bpc = max(crtc_state->pipe_bpp / 3, 8);
2125 
2126 	/*
2127 	 * We will never exceed downstream TMDS clock limits while
2128 	 * attempting deep color. If the user insists on forcing an
2129 	 * out of spec mode they will have to be satisfied with 8bpc.
2130 	 */
2131 	if (!respect_downstream_limits)
2132 		bpc = 8;
2133 
2134 	for (; bpc >= 8; bpc -= 2) {
2135 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc,
2136 						       crtc_state->sink_format);
2137 
2138 		if (hdmi_bpc_possible(crtc_state, bpc) &&
2139 		    hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2140 					  respect_downstream_limits,
2141 					  crtc_state->has_hdmi_sink) == MODE_OK)
2142 			return bpc;
2143 	}
2144 
2145 	return -EINVAL;
2146 }
2147 
2148 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2149 				    struct intel_crtc_state *crtc_state,
2150 				    bool respect_downstream_limits)
2151 {
2152 	struct intel_display *display = to_intel_display(encoder);
2153 	const struct drm_display_mode *adjusted_mode =
2154 		&crtc_state->hw.adjusted_mode;
2155 	int bpc, clock = adjusted_mode->crtc_clock;
2156 
2157 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2158 		clock *= 2;
2159 
2160 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2161 				     respect_downstream_limits);
2162 	if (bpc < 0)
2163 		return bpc;
2164 
2165 	crtc_state->port_clock =
2166 		intel_hdmi_tmds_clock(clock, bpc, crtc_state->sink_format);
2167 
2168 	/*
2169 	 * pipe_bpp could already be below 8bpc due to
2170 	 * FDI bandwidth constraints. We shouldn't bump it
2171 	 * back up to the HDMI minimum 8bpc in that case.
2172 	 */
2173 	crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
2174 
2175 	drm_dbg_kms(display->drm,
2176 		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2177 		    bpc, crtc_state->pipe_bpp);
2178 
2179 	return 0;
2180 }
2181 
2182 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2183 				    const struct drm_connector_state *conn_state)
2184 {
2185 	const struct intel_digital_connector_state *intel_conn_state =
2186 		to_intel_digital_connector_state(conn_state);
2187 	const struct drm_display_mode *adjusted_mode =
2188 		&crtc_state->hw.adjusted_mode;
2189 
2190 	/*
2191 	 * Our YCbCr output is always limited range.
2192 	 * crtc_state->limited_color_range only applies to RGB,
2193 	 * and it must never be set for YCbCr or we risk setting
2194 	 * some conflicting bits in TRANSCONF which will mess up
2195 	 * the colors on the monitor.
2196 	 */
2197 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2198 		return false;
2199 
2200 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2201 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2202 		return crtc_state->has_hdmi_sink &&
2203 			drm_default_rgb_quant_range(adjusted_mode) ==
2204 			HDMI_QUANTIZATION_RANGE_LIMITED;
2205 	} else {
2206 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2207 	}
2208 }
2209 
2210 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2211 				 const struct intel_crtc_state *crtc_state,
2212 				 const struct drm_connector_state *conn_state)
2213 {
2214 	struct drm_connector *connector = conn_state->connector;
2215 	const struct intel_digital_connector_state *intel_conn_state =
2216 		to_intel_digital_connector_state(conn_state);
2217 
2218 	if (!crtc_state->has_hdmi_sink)
2219 		return false;
2220 
2221 	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2222 		return connector->display_info.has_audio;
2223 	else
2224 		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2225 }
2226 
2227 static enum intel_output_format
2228 intel_hdmi_sink_format(const struct intel_crtc_state *crtc_state,
2229 		       struct intel_connector *connector,
2230 		       bool ycbcr_420_output)
2231 {
2232 	if (!crtc_state->has_hdmi_sink)
2233 		return INTEL_OUTPUT_FORMAT_RGB;
2234 
2235 	if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2236 		return INTEL_OUTPUT_FORMAT_YCBCR420;
2237 	else
2238 		return INTEL_OUTPUT_FORMAT_RGB;
2239 }
2240 
2241 static enum intel_output_format
2242 intel_hdmi_output_format(const struct intel_crtc_state *crtc_state)
2243 {
2244 	return crtc_state->sink_format;
2245 }
2246 
2247 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2248 					    struct intel_crtc_state *crtc_state,
2249 					    const struct drm_connector_state *conn_state,
2250 					    bool respect_downstream_limits)
2251 {
2252 	struct intel_display *display = to_intel_display(encoder);
2253 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
2254 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2255 	const struct drm_display_info *info = &connector->base.display_info;
2256 	bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2257 	int ret;
2258 
2259 	crtc_state->sink_format =
2260 		intel_hdmi_sink_format(crtc_state, connector, ycbcr_420_only);
2261 
2262 	if (ycbcr_420_only && crtc_state->sink_format != INTEL_OUTPUT_FORMAT_YCBCR420) {
2263 		drm_dbg_kms(display->drm,
2264 			    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2265 		crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB;
2266 	}
2267 
2268 	crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2269 	ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2270 	if (ret) {
2271 		if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
2272 		    !crtc_state->has_hdmi_sink ||
2273 		    !connector->base.ycbcr_420_allowed ||
2274 		    !drm_mode_is_420_also(info, adjusted_mode))
2275 			return ret;
2276 
2277 		crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2278 		crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2279 		ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2280 	}
2281 
2282 	return ret;
2283 }
2284 
2285 static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state)
2286 {
2287 	return crtc_state->uapi.encoder_mask &&
2288 		!is_power_of_2(crtc_state->uapi.encoder_mask);
2289 }
2290 
2291 static bool source_supports_scrambling(struct intel_encoder *encoder)
2292 {
2293 	/*
2294 	 * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and
2295 	 * scrambling is supported.
2296 	 * But there seem to be cases where certain platforms that support
2297 	 * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is
2298 	 * capped by VBT to less than 340MHz.
2299 	 *
2300 	 * In such cases when an HDMI2.0 sink is connected, it creates a
2301 	 * problem : the platform and the sink both support scrambling but the
2302 	 * HDMI 1.4 retimer chip doesn't.
2303 	 *
2304 	 * So go for scrambling, based on the max tmds clock taking into account,
2305 	 * restrictions coming from VBT.
2306 	 */
2307 	return intel_hdmi_source_max_tmds_clock(encoder) > 340000;
2308 }
2309 
2310 bool intel_hdmi_compute_has_hdmi_sink(struct intel_encoder *encoder,
2311 				      const struct intel_crtc_state *crtc_state,
2312 				      const struct drm_connector_state *conn_state)
2313 {
2314 	struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder);
2315 
2316 	return intel_has_hdmi_sink(hdmi, conn_state) &&
2317 		!intel_hdmi_is_cloned(crtc_state);
2318 }
2319 
2320 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2321 			      struct intel_crtc_state *pipe_config,
2322 			      struct drm_connector_state *conn_state)
2323 {
2324 	struct intel_display *display = to_intel_display(encoder);
2325 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2326 	struct drm_connector *connector = conn_state->connector;
2327 	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2328 	int ret;
2329 
2330 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2331 		return -EINVAL;
2332 
2333 	if (!connector->interlace_allowed &&
2334 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2335 		return -EINVAL;
2336 
2337 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2338 
2339 	if (pipe_config->has_hdmi_sink)
2340 		pipe_config->has_infoframe = true;
2341 
2342 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2343 		pipe_config->pixel_multiplier = 2;
2344 
2345 	pipe_config->has_audio =
2346 		intel_hdmi_has_audio(encoder, pipe_config, conn_state) &&
2347 		intel_audio_compute_config(encoder, pipe_config, conn_state);
2348 
2349 	/*
2350 	 * Try to respect downstream TMDS clock limits first, if
2351 	 * that fails assume the user might know something we don't.
2352 	 */
2353 	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2354 	if (ret)
2355 		ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2356 	if (ret) {
2357 		drm_dbg_kms(display->drm,
2358 			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2359 			    pipe_config->hw.adjusted_mode.crtc_clock);
2360 		return ret;
2361 	}
2362 
2363 	if (intel_hdmi_is_ycbcr420(pipe_config)) {
2364 		ret = intel_pfit_compute_config(pipe_config, conn_state);
2365 		if (ret)
2366 			return ret;
2367 	}
2368 
2369 	pipe_config->limited_color_range =
2370 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2371 
2372 	if (conn_state->picture_aspect_ratio)
2373 		adjusted_mode->picture_aspect_ratio =
2374 			conn_state->picture_aspect_ratio;
2375 
2376 	pipe_config->lane_count = 4;
2377 
2378 	if (scdc->scrambling.supported && source_supports_scrambling(encoder)) {
2379 		if (scdc->scrambling.low_rates)
2380 			pipe_config->hdmi_scrambling = true;
2381 
2382 		if (pipe_config->port_clock > 340000) {
2383 			pipe_config->hdmi_scrambling = true;
2384 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2385 		}
2386 	}
2387 
2388 	intel_vrr_compute_config(pipe_config, conn_state);
2389 
2390 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2391 					 conn_state);
2392 
2393 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2394 		drm_dbg_kms(display->drm, "bad AVI infoframe\n");
2395 		return -EINVAL;
2396 	}
2397 
2398 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2399 		drm_dbg_kms(display->drm, "bad SPD infoframe\n");
2400 		return -EINVAL;
2401 	}
2402 
2403 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2404 		drm_dbg_kms(display->drm, "bad HDMI infoframe\n");
2405 		return -EINVAL;
2406 	}
2407 
2408 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2409 		drm_dbg_kms(display->drm, "bad DRM infoframe\n");
2410 		return -EINVAL;
2411 	}
2412 
2413 	return 0;
2414 }
2415 
2416 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2417 {
2418 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2419 
2420 	/*
2421 	 * Give a hand to buggy BIOSen which forget to turn
2422 	 * the TMDS output buffers back on after a reboot.
2423 	 */
2424 	intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2425 }
2426 
2427 static void
2428 intel_hdmi_unset_edid(struct drm_connector *connector)
2429 {
2430 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2431 
2432 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2433 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2434 
2435 	drm_edid_free(to_intel_connector(connector)->detect_edid);
2436 	to_intel_connector(connector)->detect_edid = NULL;
2437 }
2438 
2439 static void
2440 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector)
2441 {
2442 	struct intel_display *display = to_intel_display(connector->dev);
2443 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2444 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2445 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
2446 	struct i2c_adapter *ddc = connector->ddc;
2447 	enum drm_dp_dual_mode_type type;
2448 
2449 	type = drm_dp_dual_mode_detect(display->drm, ddc);
2450 
2451 	/*
2452 	 * Type 1 DVI adaptors are not required to implement any
2453 	 * registers, so we can't always detect their presence.
2454 	 * Ideally we should be able to check the state of the
2455 	 * CONFIG1 pin, but no such luck on our hardware.
2456 	 *
2457 	 * The only method left to us is to check the VBT to see
2458 	 * if the port is a dual mode capable DP port.
2459 	 */
2460 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2461 		if (!connector->force &&
2462 		    intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2463 			drm_dbg_kms(display->drm,
2464 				    "Assuming DP dual mode adaptor presence based on VBT\n");
2465 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2466 		} else {
2467 			type = DRM_DP_DUAL_MODE_NONE;
2468 		}
2469 	}
2470 
2471 	if (type == DRM_DP_DUAL_MODE_NONE)
2472 		return;
2473 
2474 	hdmi->dp_dual_mode.type = type;
2475 	hdmi->dp_dual_mode.max_tmds_clock =
2476 		drm_dp_dual_mode_max_tmds_clock(display->drm, type, ddc);
2477 
2478 	drm_dbg_kms(display->drm,
2479 		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2480 		    drm_dp_get_dual_mode_type_name(type),
2481 		    hdmi->dp_dual_mode.max_tmds_clock);
2482 
2483 	/* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2484 	if ((DISPLAY_VER(display) >= 8 || IS_HASWELL(dev_priv)) &&
2485 	    !intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2486 		drm_dbg_kms(display->drm,
2487 			    "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2488 		hdmi->dp_dual_mode.max_tmds_clock = 0;
2489 	}
2490 }
2491 
2492 static bool
2493 intel_hdmi_set_edid(struct drm_connector *connector)
2494 {
2495 	struct intel_display *display = to_intel_display(connector->dev);
2496 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2497 	struct i2c_adapter *ddc = connector->ddc;
2498 	intel_wakeref_t wakeref;
2499 	const struct drm_edid *drm_edid;
2500 	bool connected = false;
2501 
2502 	wakeref = intel_display_power_get(display, POWER_DOMAIN_GMBUS);
2503 
2504 	drm_edid = drm_edid_read_ddc(connector, ddc);
2505 
2506 	if (!drm_edid && !intel_gmbus_is_forced_bit(ddc)) {
2507 		drm_dbg_kms(display->drm,
2508 			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2509 		intel_gmbus_force_bit(ddc, true);
2510 		drm_edid = drm_edid_read_ddc(connector, ddc);
2511 		intel_gmbus_force_bit(ddc, false);
2512 	}
2513 
2514 	/* Below we depend on display info having been updated */
2515 	drm_edid_connector_update(connector, drm_edid);
2516 
2517 	to_intel_connector(connector)->detect_edid = drm_edid;
2518 
2519 	if (drm_edid_is_digital(drm_edid)) {
2520 		intel_hdmi_dp_dual_mode_detect(connector);
2521 
2522 		connected = true;
2523 	}
2524 
2525 	intel_display_power_put(display, POWER_DOMAIN_GMBUS, wakeref);
2526 
2527 	cec_notifier_set_phys_addr(intel_hdmi->cec_notifier,
2528 				   connector->display_info.source_physical_address);
2529 
2530 	return connected;
2531 }
2532 
2533 static enum drm_connector_status
2534 intel_hdmi_detect(struct drm_connector *connector, bool force)
2535 {
2536 	struct intel_display *display = to_intel_display(connector->dev);
2537 	enum drm_connector_status status = connector_status_disconnected;
2538 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2539 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2540 	intel_wakeref_t wakeref;
2541 
2542 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2543 		    connector->base.id, connector->name);
2544 
2545 	if (!intel_display_device_enabled(display))
2546 		return connector_status_disconnected;
2547 
2548 	if (!intel_display_driver_check_access(display))
2549 		return connector->status;
2550 
2551 	wakeref = intel_display_power_get(display, POWER_DOMAIN_GMBUS);
2552 
2553 	if (DISPLAY_VER(display) >= 11 &&
2554 	    !intel_digital_port_connected(encoder))
2555 		goto out;
2556 
2557 	intel_hdmi_unset_edid(connector);
2558 
2559 	if (intel_hdmi_set_edid(connector))
2560 		status = connector_status_connected;
2561 
2562 out:
2563 	intel_display_power_put(display, POWER_DOMAIN_GMBUS, wakeref);
2564 
2565 	if (status != connector_status_connected)
2566 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2567 
2568 	return status;
2569 }
2570 
2571 static void
2572 intel_hdmi_force(struct drm_connector *connector)
2573 {
2574 	struct intel_display *display = to_intel_display(connector->dev);
2575 
2576 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2577 		    connector->base.id, connector->name);
2578 
2579 	if (!intel_display_driver_check_access(display))
2580 		return;
2581 
2582 	intel_hdmi_unset_edid(connector);
2583 
2584 	if (connector->status != connector_status_connected)
2585 		return;
2586 
2587 	intel_hdmi_set_edid(connector);
2588 }
2589 
2590 static int intel_hdmi_get_modes(struct drm_connector *connector)
2591 {
2592 	/* drm_edid_connector_update() done in ->detect() or ->force() */
2593 	return drm_edid_connector_add_modes(connector);
2594 }
2595 
2596 static int
2597 intel_hdmi_connector_register(struct drm_connector *connector)
2598 {
2599 	int ret;
2600 
2601 	ret = intel_connector_register(connector);
2602 	if (ret)
2603 		return ret;
2604 
2605 	return ret;
2606 }
2607 
2608 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2609 {
2610 	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2611 
2612 	cec_notifier_conn_unregister(n);
2613 
2614 	intel_connector_unregister(connector);
2615 }
2616 
2617 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2618 	.detect = intel_hdmi_detect,
2619 	.force = intel_hdmi_force,
2620 	.fill_modes = drm_helper_probe_single_connector_modes,
2621 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2622 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2623 	.late_register = intel_hdmi_connector_register,
2624 	.early_unregister = intel_hdmi_connector_unregister,
2625 	.destroy = intel_connector_destroy,
2626 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2627 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2628 };
2629 
2630 static int intel_hdmi_connector_atomic_check(struct drm_connector *connector,
2631 					     struct drm_atomic_state *state)
2632 {
2633 	struct intel_display *display = to_intel_display(connector->dev);
2634 
2635 	if (HAS_DDI(display))
2636 		return intel_digital_connector_atomic_check(connector, state);
2637 	else
2638 		return g4x_hdmi_connector_atomic_check(connector, state);
2639 }
2640 
2641 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2642 	.get_modes = intel_hdmi_get_modes,
2643 	.mode_valid = intel_hdmi_mode_valid,
2644 	.atomic_check = intel_hdmi_connector_atomic_check,
2645 };
2646 
2647 static void
2648 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2649 {
2650 	struct intel_display *display = to_intel_display(intel_hdmi);
2651 
2652 	intel_attach_force_audio_property(connector);
2653 	intel_attach_broadcast_rgb_property(connector);
2654 	intel_attach_aspect_ratio_property(connector);
2655 
2656 	intel_attach_hdmi_colorspace_property(connector);
2657 	drm_connector_attach_content_type_property(connector);
2658 
2659 	if (DISPLAY_VER(display) >= 10)
2660 		drm_connector_attach_hdr_output_metadata_property(connector);
2661 
2662 	if (!HAS_GMCH(display))
2663 		drm_connector_attach_max_bpc_property(connector, 8, 12);
2664 }
2665 
2666 /*
2667  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2668  * @encoder: intel_encoder
2669  * @connector: drm_connector
2670  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2671  *  or reset the high tmds clock ratio for scrambling
2672  * @scrambling: bool to Indicate if the function needs to set or reset
2673  *  sink scrambling
2674  *
2675  * This function handles scrambling on HDMI 2.0 capable sinks.
2676  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2677  * it enables scrambling. This should be called before enabling the HDMI
2678  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2679  * detect a scrambled clock within 100 ms.
2680  *
2681  * Returns:
2682  * True on success, false on failure.
2683  */
2684 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2685 				       struct drm_connector *connector,
2686 				       bool high_tmds_clock_ratio,
2687 				       bool scrambling)
2688 {
2689 	struct intel_display *display = to_intel_display(encoder);
2690 	struct drm_scrambling *sink_scrambling =
2691 		&connector->display_info.hdmi.scdc.scrambling;
2692 
2693 	if (!sink_scrambling->supported)
2694 		return true;
2695 
2696 	drm_dbg_kms(display->drm,
2697 		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2698 		    connector->base.id, connector->name,
2699 		    str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2700 
2701 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2702 	return drm_scdc_set_high_tmds_clock_ratio(connector, high_tmds_clock_ratio) &&
2703 		drm_scdc_set_scrambling(connector, scrambling);
2704 }
2705 
2706 static u8 chv_encoder_to_ddc_pin(struct intel_encoder *encoder)
2707 {
2708 	enum port port = encoder->port;
2709 	u8 ddc_pin;
2710 
2711 	switch (port) {
2712 	case PORT_B:
2713 		ddc_pin = GMBUS_PIN_DPB;
2714 		break;
2715 	case PORT_C:
2716 		ddc_pin = GMBUS_PIN_DPC;
2717 		break;
2718 	case PORT_D:
2719 		ddc_pin = GMBUS_PIN_DPD_CHV;
2720 		break;
2721 	default:
2722 		MISSING_CASE(port);
2723 		ddc_pin = GMBUS_PIN_DPB;
2724 		break;
2725 	}
2726 	return ddc_pin;
2727 }
2728 
2729 static u8 bxt_encoder_to_ddc_pin(struct intel_encoder *encoder)
2730 {
2731 	enum port port = encoder->port;
2732 	u8 ddc_pin;
2733 
2734 	switch (port) {
2735 	case PORT_B:
2736 		ddc_pin = GMBUS_PIN_1_BXT;
2737 		break;
2738 	case PORT_C:
2739 		ddc_pin = GMBUS_PIN_2_BXT;
2740 		break;
2741 	default:
2742 		MISSING_CASE(port);
2743 		ddc_pin = GMBUS_PIN_1_BXT;
2744 		break;
2745 	}
2746 	return ddc_pin;
2747 }
2748 
2749 static u8 cnp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2750 {
2751 	enum port port = encoder->port;
2752 	u8 ddc_pin;
2753 
2754 	switch (port) {
2755 	case PORT_B:
2756 		ddc_pin = GMBUS_PIN_1_BXT;
2757 		break;
2758 	case PORT_C:
2759 		ddc_pin = GMBUS_PIN_2_BXT;
2760 		break;
2761 	case PORT_D:
2762 		ddc_pin = GMBUS_PIN_4_CNP;
2763 		break;
2764 	case PORT_F:
2765 		ddc_pin = GMBUS_PIN_3_BXT;
2766 		break;
2767 	default:
2768 		MISSING_CASE(port);
2769 		ddc_pin = GMBUS_PIN_1_BXT;
2770 		break;
2771 	}
2772 	return ddc_pin;
2773 }
2774 
2775 static u8 icl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2776 {
2777 	struct intel_display *display = to_intel_display(encoder);
2778 	enum port port = encoder->port;
2779 
2780 	if (intel_encoder_is_combo(encoder))
2781 		return GMBUS_PIN_1_BXT + port;
2782 	else if (intel_encoder_is_tc(encoder))
2783 		return GMBUS_PIN_9_TC1_ICP + intel_encoder_to_tc(encoder);
2784 
2785 	drm_WARN(display->drm, 1, "Unknown port:%c\n", port_name(port));
2786 	return GMBUS_PIN_2_BXT;
2787 }
2788 
2789 static u8 mcc_encoder_to_ddc_pin(struct intel_encoder *encoder)
2790 {
2791 	enum phy phy = intel_encoder_to_phy(encoder);
2792 	u8 ddc_pin;
2793 
2794 	switch (phy) {
2795 	case PHY_A:
2796 		ddc_pin = GMBUS_PIN_1_BXT;
2797 		break;
2798 	case PHY_B:
2799 		ddc_pin = GMBUS_PIN_2_BXT;
2800 		break;
2801 	case PHY_C:
2802 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2803 		break;
2804 	default:
2805 		MISSING_CASE(phy);
2806 		ddc_pin = GMBUS_PIN_1_BXT;
2807 		break;
2808 	}
2809 	return ddc_pin;
2810 }
2811 
2812 static u8 rkl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2813 {
2814 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2815 	enum phy phy = intel_encoder_to_phy(encoder);
2816 
2817 	WARN_ON(encoder->port == PORT_C);
2818 
2819 	/*
2820 	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2821 	 * final two outputs use type-c pins, even though they're actually
2822 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2823 	 * all outputs.
2824 	 */
2825 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2826 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2827 
2828 	return GMBUS_PIN_1_BXT + phy;
2829 }
2830 
2831 static u8 gen9bc_tgp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2832 {
2833 	struct intel_display *display = to_intel_display(encoder);
2834 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2835 	enum phy phy = intel_encoder_to_phy(encoder);
2836 
2837 	drm_WARN_ON(display->drm, encoder->port == PORT_A);
2838 
2839 	/*
2840 	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2841 	 * final two outputs use type-c pins, even though they're actually
2842 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2843 	 * all outputs.
2844 	 */
2845 	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2846 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2847 
2848 	return GMBUS_PIN_1_BXT + phy;
2849 }
2850 
2851 static u8 dg1_encoder_to_ddc_pin(struct intel_encoder *encoder)
2852 {
2853 	return intel_encoder_to_phy(encoder) + 1;
2854 }
2855 
2856 static u8 adls_encoder_to_ddc_pin(struct intel_encoder *encoder)
2857 {
2858 	enum phy phy = intel_encoder_to_phy(encoder);
2859 
2860 	WARN_ON(encoder->port == PORT_B || encoder->port == PORT_C);
2861 
2862 	/*
2863 	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2864 	 * except first combo output.
2865 	 */
2866 	if (phy == PHY_A)
2867 		return GMBUS_PIN_1_BXT;
2868 
2869 	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2870 }
2871 
2872 static u8 g4x_encoder_to_ddc_pin(struct intel_encoder *encoder)
2873 {
2874 	enum port port = encoder->port;
2875 	u8 ddc_pin;
2876 
2877 	switch (port) {
2878 	case PORT_B:
2879 		ddc_pin = GMBUS_PIN_DPB;
2880 		break;
2881 	case PORT_C:
2882 		ddc_pin = GMBUS_PIN_DPC;
2883 		break;
2884 	case PORT_D:
2885 		ddc_pin = GMBUS_PIN_DPD;
2886 		break;
2887 	default:
2888 		MISSING_CASE(port);
2889 		ddc_pin = GMBUS_PIN_DPB;
2890 		break;
2891 	}
2892 	return ddc_pin;
2893 }
2894 
2895 static u8 intel_hdmi_default_ddc_pin(struct intel_encoder *encoder)
2896 {
2897 	struct intel_display *display = to_intel_display(encoder);
2898 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2899 	u8 ddc_pin;
2900 
2901 	if (IS_ALDERLAKE_S(dev_priv))
2902 		ddc_pin = adls_encoder_to_ddc_pin(encoder);
2903 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2904 		ddc_pin = dg1_encoder_to_ddc_pin(encoder);
2905 	else if (IS_ROCKETLAKE(dev_priv))
2906 		ddc_pin = rkl_encoder_to_ddc_pin(encoder);
2907 	else if (DISPLAY_VER(display) == 9 && HAS_PCH_TGP(dev_priv))
2908 		ddc_pin = gen9bc_tgp_encoder_to_ddc_pin(encoder);
2909 	else if ((IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) &&
2910 		 HAS_PCH_TGP(dev_priv))
2911 		ddc_pin = mcc_encoder_to_ddc_pin(encoder);
2912 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2913 		ddc_pin = icl_encoder_to_ddc_pin(encoder);
2914 	else if (HAS_PCH_CNP(dev_priv))
2915 		ddc_pin = cnp_encoder_to_ddc_pin(encoder);
2916 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2917 		ddc_pin = bxt_encoder_to_ddc_pin(encoder);
2918 	else if (IS_CHERRYVIEW(dev_priv))
2919 		ddc_pin = chv_encoder_to_ddc_pin(encoder);
2920 	else
2921 		ddc_pin = g4x_encoder_to_ddc_pin(encoder);
2922 
2923 	return ddc_pin;
2924 }
2925 
2926 static struct intel_encoder *
2927 get_encoder_by_ddc_pin(struct intel_encoder *encoder, u8 ddc_pin)
2928 {
2929 	struct intel_display *display = to_intel_display(encoder);
2930 	struct intel_encoder *other;
2931 
2932 	for_each_intel_encoder(display->drm, other) {
2933 		struct intel_connector *connector;
2934 
2935 		if (other == encoder)
2936 			continue;
2937 
2938 		if (!intel_encoder_is_dig_port(other))
2939 			continue;
2940 
2941 		connector = enc_to_dig_port(other)->hdmi.attached_connector;
2942 
2943 		if (connector && connector->base.ddc == intel_gmbus_get_adapter(display, ddc_pin))
2944 			return other;
2945 	}
2946 
2947 	return NULL;
2948 }
2949 
2950 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2951 {
2952 	struct intel_display *display = to_intel_display(encoder);
2953 	struct intel_encoder *other;
2954 	const char *source;
2955 	u8 ddc_pin;
2956 
2957 	ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata);
2958 	source = "VBT";
2959 
2960 	if (!ddc_pin) {
2961 		ddc_pin = intel_hdmi_default_ddc_pin(encoder);
2962 		source = "platform default";
2963 	}
2964 
2965 	if (!intel_gmbus_is_valid_pin(display, ddc_pin)) {
2966 		drm_dbg_kms(display->drm,
2967 			    "[ENCODER:%d:%s] Invalid DDC pin %d\n",
2968 			    encoder->base.base.id, encoder->base.name, ddc_pin);
2969 		return 0;
2970 	}
2971 
2972 	other = get_encoder_by_ddc_pin(encoder, ddc_pin);
2973 	if (other) {
2974 		drm_dbg_kms(display->drm,
2975 			    "[ENCODER:%d:%s] DDC pin %d already claimed by [ENCODER:%d:%s]\n",
2976 			    encoder->base.base.id, encoder->base.name, ddc_pin,
2977 			    other->base.base.id, other->base.name);
2978 		return 0;
2979 	}
2980 
2981 	drm_dbg_kms(display->drm,
2982 		    "[ENCODER:%d:%s] Using DDC pin 0x%x (%s)\n",
2983 		    encoder->base.base.id, encoder->base.name,
2984 		    ddc_pin, source);
2985 
2986 	return ddc_pin;
2987 }
2988 
2989 void intel_infoframe_init(struct intel_digital_port *dig_port)
2990 {
2991 	struct intel_display *display = to_intel_display(dig_port);
2992 	struct drm_i915_private *dev_priv =
2993 		to_i915(dig_port->base.base.dev);
2994 
2995 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2996 		dig_port->write_infoframe = vlv_write_infoframe;
2997 		dig_port->read_infoframe = vlv_read_infoframe;
2998 		dig_port->set_infoframes = vlv_set_infoframes;
2999 		dig_port->infoframes_enabled = vlv_infoframes_enabled;
3000 	} else if (IS_G4X(dev_priv)) {
3001 		dig_port->write_infoframe = g4x_write_infoframe;
3002 		dig_port->read_infoframe = g4x_read_infoframe;
3003 		dig_port->set_infoframes = g4x_set_infoframes;
3004 		dig_port->infoframes_enabled = g4x_infoframes_enabled;
3005 	} else if (HAS_DDI(display)) {
3006 		if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) {
3007 			dig_port->write_infoframe = lspcon_write_infoframe;
3008 			dig_port->read_infoframe = lspcon_read_infoframe;
3009 			dig_port->set_infoframes = lspcon_set_infoframes;
3010 			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
3011 		} else {
3012 			dig_port->write_infoframe = hsw_write_infoframe;
3013 			dig_port->read_infoframe = hsw_read_infoframe;
3014 			dig_port->set_infoframes = hsw_set_infoframes;
3015 			dig_port->infoframes_enabled = hsw_infoframes_enabled;
3016 		}
3017 	} else if (HAS_PCH_IBX(dev_priv)) {
3018 		dig_port->write_infoframe = ibx_write_infoframe;
3019 		dig_port->read_infoframe = ibx_read_infoframe;
3020 		dig_port->set_infoframes = ibx_set_infoframes;
3021 		dig_port->infoframes_enabled = ibx_infoframes_enabled;
3022 	} else {
3023 		dig_port->write_infoframe = cpt_write_infoframe;
3024 		dig_port->read_infoframe = cpt_read_infoframe;
3025 		dig_port->set_infoframes = cpt_set_infoframes;
3026 		dig_port->infoframes_enabled = cpt_infoframes_enabled;
3027 	}
3028 }
3029 
3030 bool intel_hdmi_init_connector(struct intel_digital_port *dig_port,
3031 			       struct intel_connector *intel_connector)
3032 {
3033 	struct intel_display *display = to_intel_display(dig_port);
3034 	struct drm_connector *connector = &intel_connector->base;
3035 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
3036 	struct intel_encoder *intel_encoder = &dig_port->base;
3037 	struct drm_device *dev = intel_encoder->base.dev;
3038 	enum port port = intel_encoder->port;
3039 	struct cec_connector_info conn_info;
3040 	u8 ddc_pin;
3041 
3042 	drm_dbg_kms(display->drm,
3043 		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
3044 		    intel_encoder->base.base.id, intel_encoder->base.name);
3045 
3046 	if (DISPLAY_VER(display) < 12 && drm_WARN_ON(dev, port == PORT_A))
3047 		return false;
3048 
3049 	if (drm_WARN(dev, dig_port->max_lanes < 4,
3050 		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
3051 		     dig_port->max_lanes, intel_encoder->base.base.id,
3052 		     intel_encoder->base.name))
3053 		return false;
3054 
3055 	ddc_pin = intel_hdmi_ddc_pin(intel_encoder);
3056 	if (!ddc_pin)
3057 		return false;
3058 
3059 	drm_connector_init_with_ddc(dev, connector,
3060 				    &intel_hdmi_connector_funcs,
3061 				    DRM_MODE_CONNECTOR_HDMIA,
3062 				    intel_gmbus_get_adapter(display, ddc_pin));
3063 
3064 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
3065 
3066 	if (DISPLAY_VER(display) < 12)
3067 		connector->interlace_allowed = true;
3068 
3069 	connector->stereo_allowed = true;
3070 
3071 	if (DISPLAY_VER(display) >= 10)
3072 		connector->ycbcr_420_allowed = true;
3073 
3074 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
3075 	intel_connector->base.polled = intel_connector->polled;
3076 
3077 	if (HAS_DDI(display))
3078 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3079 	else
3080 		intel_connector->get_hw_state = intel_connector_get_hw_state;
3081 
3082 	intel_hdmi_add_properties(intel_hdmi, connector);
3083 
3084 	intel_connector_attach_encoder(intel_connector, intel_encoder);
3085 	intel_hdmi->attached_connector = intel_connector;
3086 
3087 	if (is_hdcp_supported(display, port)) {
3088 		int ret = intel_hdcp_init(intel_connector, dig_port,
3089 					  &intel_hdmi_hdcp_shim);
3090 		if (ret)
3091 			drm_dbg_kms(display->drm,
3092 				    "HDCP init failed, skipping.\n");
3093 	}
3094 
3095 	cec_fill_conn_info_from_drm(&conn_info, connector);
3096 
3097 	intel_hdmi->cec_notifier =
3098 		cec_notifier_conn_register(dev->dev, port_identifier(port),
3099 					   &conn_info);
3100 	if (!intel_hdmi->cec_notifier)
3101 		drm_dbg_kms(display->drm, "CEC notifier get failed\n");
3102 
3103 	return true;
3104 }
3105 
3106 /*
3107  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
3108  * @vactive: Vactive of a display mode
3109  *
3110  * @return: appropriate dsc slice height for a given mode.
3111  */
3112 int intel_hdmi_dsc_get_slice_height(int vactive)
3113 {
3114 	int slice_height;
3115 
3116 	/*
3117 	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
3118 	 * Select smallest slice height >=96, that results in a valid PPS and
3119 	 * requires minimum padding lines required for final slice.
3120 	 *
3121 	 * Assumption : Vactive is even.
3122 	 */
3123 	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3124 		if (vactive % slice_height == 0)
3125 			return slice_height;
3126 
3127 	return 0;
3128 }
3129 
3130 /*
3131  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3132  * and dsc decoder capabilities
3133  *
3134  * @crtc_state: intel crtc_state
3135  * @src_max_slices: maximum slices supported by the DSC encoder
3136  * @src_max_slice_width: maximum slice width supported by DSC encoder
3137  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3138  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3139  *
3140  * @return: num of dsc slices that can be supported by the dsc encoder
3141  * and decoder.
3142  */
3143 int
3144 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3145 			      int src_max_slices, int src_max_slice_width,
3146 			      int hdmi_max_slices, int hdmi_throughput)
3147 {
3148 /* Pixel rates in KPixels/sec */
3149 #define HDMI_DSC_PEAK_PIXEL_RATE		2720000
3150 /*
3151  * Rates at which the source and sink are required to process pixels in each
3152  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3153  */
3154 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
3155 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
3156 
3157 /* Spec limits the slice width to 2720 pixels */
3158 #define MAX_HDMI_SLICE_WIDTH			2720
3159 	int kslice_adjust;
3160 	int adjusted_clk_khz;
3161 	int min_slices;
3162 	int target_slices;
3163 	int max_throughput; /* max clock freq. in khz per slice */
3164 	int max_slice_width;
3165 	int slice_width;
3166 	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3167 
3168 	if (!hdmi_throughput)
3169 		return 0;
3170 
3171 	/*
3172 	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3173 	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3174 	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3175 	 * dividing adjusted clock value by 10.
3176 	 */
3177 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3178 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3179 		kslice_adjust = 10;
3180 	else
3181 		kslice_adjust = 5;
3182 
3183 	/*
3184 	 * As per spec, the rate at which the source and the sink process
3185 	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3186 	 * This depends upon the pixel clock rate and output formats
3187 	 * (kslice adjust).
3188 	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3189 	 * at max 340MHz, otherwise they can be processed at max 400MHz.
3190 	 */
3191 
3192 	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3193 
3194 	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3195 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3196 	else
3197 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3198 
3199 	/*
3200 	 * Taking into account the sink's capability for maximum
3201 	 * clock per slice (in MHz) as read from HF-VSDB.
3202 	 */
3203 	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3204 
3205 	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3206 	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3207 
3208 	/*
3209 	 * Keep on increasing the num of slices/line, starting from min_slices
3210 	 * per line till we get such a number, for which the slice_width is
3211 	 * just less than max_slice_width. The slices/line selected should be
3212 	 * less than or equal to the max horizontal slices that the combination
3213 	 * of PCON encoder and HDMI decoder can support.
3214 	 */
3215 	slice_width = max_slice_width;
3216 
3217 	do {
3218 		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3219 			target_slices = 1;
3220 		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3221 			target_slices = 2;
3222 		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3223 			target_slices = 4;
3224 		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3225 			target_slices = 8;
3226 		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3227 			target_slices = 12;
3228 		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3229 			target_slices = 16;
3230 		else
3231 			return 0;
3232 
3233 		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3234 		if (slice_width >= max_slice_width)
3235 			min_slices = target_slices + 1;
3236 	} while (slice_width >= max_slice_width);
3237 
3238 	return target_slices;
3239 }
3240 
3241 /*
3242  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3243  * source and sink capabilities.
3244  *
3245  * @src_fraction_bpp: fractional bpp supported by the source
3246  * @slice_width: dsc slice width supported by the source and sink
3247  * @num_slices: num of slices supported by the source and sink
3248  * @output_format: video output format
3249  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3250  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3251  *
3252  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3253  */
3254 int
3255 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3256 		       int output_format, bool hdmi_all_bpp,
3257 		       int hdmi_max_chunk_bytes)
3258 {
3259 	int max_dsc_bpp, min_dsc_bpp;
3260 	int target_bytes;
3261 	bool bpp_found = false;
3262 	int bpp_decrement_x16;
3263 	int bpp_target;
3264 	int bpp_target_x16;
3265 
3266 	/*
3267 	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3268 	 * Start with the max bpp and keep on decrementing with
3269 	 * fractional bpp, if supported by PCON DSC encoder
3270 	 *
3271 	 * for each bpp we check if no of bytes can be supported by HDMI sink
3272 	 */
3273 
3274 	/* Assuming: bpc as 8*/
3275 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3276 		min_dsc_bpp = 6;
3277 		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3278 	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3279 		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3280 		min_dsc_bpp = 8;
3281 		max_dsc_bpp = 3 * 8; /* 3*bpc */
3282 	} else {
3283 		/* Assuming 4:2:2 encoding */
3284 		min_dsc_bpp = 7;
3285 		max_dsc_bpp = 2 * 8; /* 2*bpc */
3286 	}
3287 
3288 	/*
3289 	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3290 	 * Section 7.7.34 : Source shall not enable compressed Video
3291 	 * Transport with bpp_target settings above 12 bpp unless
3292 	 * DSC_all_bpp is set to 1.
3293 	 */
3294 	if (!hdmi_all_bpp)
3295 		max_dsc_bpp = min(max_dsc_bpp, 12);
3296 
3297 	/*
3298 	 * The Sink has a limit of compressed data in bytes for a scanline,
3299 	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3300 	 * The no. of bytes depend on the target bits per pixel that the
3301 	 * source configures. So we start with the max_bpp and calculate
3302 	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3303 	 * till we get the target_chunk_bytes just less than what the sink's
3304 	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3305 	 *
3306 	 * The decrement is according to the fractional support from PCON DSC
3307 	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3308 	 *
3309 	 * bpp_target_x16 = bpp_target * 16
3310 	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3311 	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3312 	 */
3313 
3314 	bpp_target = max_dsc_bpp;
3315 
3316 	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3317 	if (!src_fractional_bpp)
3318 		src_fractional_bpp = 1;
3319 	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3320 	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3321 
3322 	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3323 		int bpp;
3324 
3325 		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3326 		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3327 		if (target_bytes <= hdmi_max_chunk_bytes) {
3328 			bpp_found = true;
3329 			break;
3330 		}
3331 		bpp_target_x16 -= bpp_decrement_x16;
3332 	}
3333 	if (bpp_found)
3334 		return bpp_target_x16;
3335 
3336 	return 0;
3337 }
3338