xref: /linux/drivers/gpu/drm/i915/display/intel_hdmi.c (revision 9dbbc3b9d09d6deba9f3b9e1d5b355032ed46a75)
1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_hdcp.h>
38 #include <drm/drm_scdc_helper.h>
39 #include <drm/intel_lpe_audio.h>
40 
41 #include "i915_debugfs.h"
42 #include "i915_drv.h"
43 #include "intel_atomic.h"
44 #include "intel_connector.h"
45 #include "intel_ddi.h"
46 #include "intel_de.h"
47 #include "intel_display_types.h"
48 #include "intel_dp.h"
49 #include "intel_gmbus.h"
50 #include "intel_hdcp.h"
51 #include "intel_hdmi.h"
52 #include "intel_lspcon.h"
53 #include "intel_panel.h"
54 
55 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
56 {
57 	return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
58 }
59 
60 static void
61 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
62 {
63 	struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
64 	struct drm_i915_private *dev_priv = to_i915(dev);
65 	u32 enabled_bits;
66 
67 	enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
68 
69 	drm_WARN(dev,
70 		 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
71 		 "HDMI port enabled, expecting disabled\n");
72 }
73 
74 static void
75 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
76 				     enum transcoder cpu_transcoder)
77 {
78 	drm_WARN(&dev_priv->drm,
79 		 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
80 		 TRANS_DDI_FUNC_ENABLE,
81 		 "HDMI transcoder function enabled, expecting disabled\n");
82 }
83 
84 static u32 g4x_infoframe_index(unsigned int type)
85 {
86 	switch (type) {
87 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
88 		return VIDEO_DIP_SELECT_GAMUT;
89 	case HDMI_INFOFRAME_TYPE_AVI:
90 		return VIDEO_DIP_SELECT_AVI;
91 	case HDMI_INFOFRAME_TYPE_SPD:
92 		return VIDEO_DIP_SELECT_SPD;
93 	case HDMI_INFOFRAME_TYPE_VENDOR:
94 		return VIDEO_DIP_SELECT_VENDOR;
95 	default:
96 		MISSING_CASE(type);
97 		return 0;
98 	}
99 }
100 
101 static u32 g4x_infoframe_enable(unsigned int type)
102 {
103 	switch (type) {
104 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
105 		return VIDEO_DIP_ENABLE_GCP;
106 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
107 		return VIDEO_DIP_ENABLE_GAMUT;
108 	case DP_SDP_VSC:
109 		return 0;
110 	case HDMI_INFOFRAME_TYPE_AVI:
111 		return VIDEO_DIP_ENABLE_AVI;
112 	case HDMI_INFOFRAME_TYPE_SPD:
113 		return VIDEO_DIP_ENABLE_SPD;
114 	case HDMI_INFOFRAME_TYPE_VENDOR:
115 		return VIDEO_DIP_ENABLE_VENDOR;
116 	case HDMI_INFOFRAME_TYPE_DRM:
117 		return 0;
118 	default:
119 		MISSING_CASE(type);
120 		return 0;
121 	}
122 }
123 
124 static u32 hsw_infoframe_enable(unsigned int type)
125 {
126 	switch (type) {
127 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
128 		return VIDEO_DIP_ENABLE_GCP_HSW;
129 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
130 		return VIDEO_DIP_ENABLE_GMP_HSW;
131 	case DP_SDP_VSC:
132 		return VIDEO_DIP_ENABLE_VSC_HSW;
133 	case DP_SDP_PPS:
134 		return VDIP_ENABLE_PPS;
135 	case HDMI_INFOFRAME_TYPE_AVI:
136 		return VIDEO_DIP_ENABLE_AVI_HSW;
137 	case HDMI_INFOFRAME_TYPE_SPD:
138 		return VIDEO_DIP_ENABLE_SPD_HSW;
139 	case HDMI_INFOFRAME_TYPE_VENDOR:
140 		return VIDEO_DIP_ENABLE_VS_HSW;
141 	case HDMI_INFOFRAME_TYPE_DRM:
142 		return VIDEO_DIP_ENABLE_DRM_GLK;
143 	default:
144 		MISSING_CASE(type);
145 		return 0;
146 	}
147 }
148 
149 static i915_reg_t
150 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
151 		 enum transcoder cpu_transcoder,
152 		 unsigned int type,
153 		 int i)
154 {
155 	switch (type) {
156 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
157 		return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
158 	case DP_SDP_VSC:
159 		return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
160 	case DP_SDP_PPS:
161 		return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
162 	case HDMI_INFOFRAME_TYPE_AVI:
163 		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
164 	case HDMI_INFOFRAME_TYPE_SPD:
165 		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
166 	case HDMI_INFOFRAME_TYPE_VENDOR:
167 		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
168 	case HDMI_INFOFRAME_TYPE_DRM:
169 		return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
170 	default:
171 		MISSING_CASE(type);
172 		return INVALID_MMIO_REG;
173 	}
174 }
175 
176 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
177 			     unsigned int type)
178 {
179 	switch (type) {
180 	case DP_SDP_VSC:
181 		return VIDEO_DIP_VSC_DATA_SIZE;
182 	case DP_SDP_PPS:
183 		return VIDEO_DIP_PPS_DATA_SIZE;
184 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
185 		if (DISPLAY_VER(dev_priv) >= 11)
186 			return VIDEO_DIP_GMP_DATA_SIZE;
187 		else
188 			return VIDEO_DIP_DATA_SIZE;
189 	default:
190 		return VIDEO_DIP_DATA_SIZE;
191 	}
192 }
193 
194 static void g4x_write_infoframe(struct intel_encoder *encoder,
195 				const struct intel_crtc_state *crtc_state,
196 				unsigned int type,
197 				const void *frame, ssize_t len)
198 {
199 	const u32 *data = frame;
200 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
201 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
202 	int i;
203 
204 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
205 		 "Writing DIP with CTL reg disabled\n");
206 
207 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
208 	val |= g4x_infoframe_index(type);
209 
210 	val &= ~g4x_infoframe_enable(type);
211 
212 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
213 
214 	for (i = 0; i < len; i += 4) {
215 		intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
216 		data++;
217 	}
218 	/* Write every possible data byte to force correct ECC calculation. */
219 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
220 		intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
221 
222 	val |= g4x_infoframe_enable(type);
223 	val &= ~VIDEO_DIP_FREQ_MASK;
224 	val |= VIDEO_DIP_FREQ_VSYNC;
225 
226 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
227 	intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
228 }
229 
230 static void g4x_read_infoframe(struct intel_encoder *encoder,
231 			       const struct intel_crtc_state *crtc_state,
232 			       unsigned int type,
233 			       void *frame, ssize_t len)
234 {
235 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
236 	u32 val, *data = frame;
237 	int i;
238 
239 	val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
240 
241 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
242 	val |= g4x_infoframe_index(type);
243 
244 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
245 
246 	for (i = 0; i < len; i += 4)
247 		*data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
248 }
249 
250 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
251 				  const struct intel_crtc_state *pipe_config)
252 {
253 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
254 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
255 
256 	if ((val & VIDEO_DIP_ENABLE) == 0)
257 		return 0;
258 
259 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
260 		return 0;
261 
262 	return val & (VIDEO_DIP_ENABLE_AVI |
263 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
264 }
265 
266 static void ibx_write_infoframe(struct intel_encoder *encoder,
267 				const struct intel_crtc_state *crtc_state,
268 				unsigned int type,
269 				const void *frame, ssize_t len)
270 {
271 	const u32 *data = frame;
272 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
273 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
274 	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
275 	u32 val = intel_de_read(dev_priv, reg);
276 	int i;
277 
278 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
279 		 "Writing DIP with CTL reg disabled\n");
280 
281 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
282 	val |= g4x_infoframe_index(type);
283 
284 	val &= ~g4x_infoframe_enable(type);
285 
286 	intel_de_write(dev_priv, reg, val);
287 
288 	for (i = 0; i < len; i += 4) {
289 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe),
290 			       *data);
291 		data++;
292 	}
293 	/* Write every possible data byte to force correct ECC calculation. */
294 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
295 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
296 
297 	val |= g4x_infoframe_enable(type);
298 	val &= ~VIDEO_DIP_FREQ_MASK;
299 	val |= VIDEO_DIP_FREQ_VSYNC;
300 
301 	intel_de_write(dev_priv, reg, val);
302 	intel_de_posting_read(dev_priv, reg);
303 }
304 
305 static void ibx_read_infoframe(struct intel_encoder *encoder,
306 			       const struct intel_crtc_state *crtc_state,
307 			       unsigned int type,
308 			       void *frame, ssize_t len)
309 {
310 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
311 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
312 	u32 val, *data = frame;
313 	int i;
314 
315 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
316 
317 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
318 	val |= g4x_infoframe_index(type);
319 
320 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
321 
322 	for (i = 0; i < len; i += 4)
323 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
324 }
325 
326 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
327 				  const struct intel_crtc_state *pipe_config)
328 {
329 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
330 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
331 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
332 	u32 val = intel_de_read(dev_priv, reg);
333 
334 	if ((val & VIDEO_DIP_ENABLE) == 0)
335 		return 0;
336 
337 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
338 		return 0;
339 
340 	return val & (VIDEO_DIP_ENABLE_AVI |
341 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
342 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
343 }
344 
345 static void cpt_write_infoframe(struct intel_encoder *encoder,
346 				const struct intel_crtc_state *crtc_state,
347 				unsigned int type,
348 				const void *frame, ssize_t len)
349 {
350 	const u32 *data = frame;
351 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
352 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
353 	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
354 	u32 val = intel_de_read(dev_priv, reg);
355 	int i;
356 
357 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
358 		 "Writing DIP with CTL reg disabled\n");
359 
360 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
361 	val |= g4x_infoframe_index(type);
362 
363 	/* The DIP control register spec says that we need to update the AVI
364 	 * infoframe without clearing its enable bit */
365 	if (type != HDMI_INFOFRAME_TYPE_AVI)
366 		val &= ~g4x_infoframe_enable(type);
367 
368 	intel_de_write(dev_priv, reg, val);
369 
370 	for (i = 0; i < len; i += 4) {
371 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe),
372 			       *data);
373 		data++;
374 	}
375 	/* Write every possible data byte to force correct ECC calculation. */
376 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
377 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
378 
379 	val |= g4x_infoframe_enable(type);
380 	val &= ~VIDEO_DIP_FREQ_MASK;
381 	val |= VIDEO_DIP_FREQ_VSYNC;
382 
383 	intel_de_write(dev_priv, reg, val);
384 	intel_de_posting_read(dev_priv, reg);
385 }
386 
387 static void cpt_read_infoframe(struct intel_encoder *encoder,
388 			       const struct intel_crtc_state *crtc_state,
389 			       unsigned int type,
390 			       void *frame, ssize_t len)
391 {
392 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
393 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
394 	u32 val, *data = frame;
395 	int i;
396 
397 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
398 
399 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
400 	val |= g4x_infoframe_index(type);
401 
402 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
403 
404 	for (i = 0; i < len; i += 4)
405 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
406 }
407 
408 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
409 				  const struct intel_crtc_state *pipe_config)
410 {
411 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
412 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
413 	u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
414 
415 	if ((val & VIDEO_DIP_ENABLE) == 0)
416 		return 0;
417 
418 	return val & (VIDEO_DIP_ENABLE_AVI |
419 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
420 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
421 }
422 
423 static void vlv_write_infoframe(struct intel_encoder *encoder,
424 				const struct intel_crtc_state *crtc_state,
425 				unsigned int type,
426 				const void *frame, ssize_t len)
427 {
428 	const u32 *data = frame;
429 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
430 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
431 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
432 	u32 val = intel_de_read(dev_priv, reg);
433 	int i;
434 
435 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
436 		 "Writing DIP with CTL reg disabled\n");
437 
438 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
439 	val |= g4x_infoframe_index(type);
440 
441 	val &= ~g4x_infoframe_enable(type);
442 
443 	intel_de_write(dev_priv, reg, val);
444 
445 	for (i = 0; i < len; i += 4) {
446 		intel_de_write(dev_priv,
447 			       VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
448 		data++;
449 	}
450 	/* Write every possible data byte to force correct ECC calculation. */
451 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
452 		intel_de_write(dev_priv,
453 			       VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
454 
455 	val |= g4x_infoframe_enable(type);
456 	val &= ~VIDEO_DIP_FREQ_MASK;
457 	val |= VIDEO_DIP_FREQ_VSYNC;
458 
459 	intel_de_write(dev_priv, reg, val);
460 	intel_de_posting_read(dev_priv, reg);
461 }
462 
463 static void vlv_read_infoframe(struct intel_encoder *encoder,
464 			       const struct intel_crtc_state *crtc_state,
465 			       unsigned int type,
466 			       void *frame, ssize_t len)
467 {
468 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
469 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
470 	u32 val, *data = frame;
471 	int i;
472 
473 	val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
474 
475 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
476 	val |= g4x_infoframe_index(type);
477 
478 	intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
479 
480 	for (i = 0; i < len; i += 4)
481 		*data++ = intel_de_read(dev_priv,
482 				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
483 }
484 
485 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
486 				  const struct intel_crtc_state *pipe_config)
487 {
488 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
489 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
490 	u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
491 
492 	if ((val & VIDEO_DIP_ENABLE) == 0)
493 		return 0;
494 
495 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
496 		return 0;
497 
498 	return val & (VIDEO_DIP_ENABLE_AVI |
499 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
500 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
501 }
502 
503 void hsw_write_infoframe(struct intel_encoder *encoder,
504 			 const struct intel_crtc_state *crtc_state,
505 			 unsigned int type,
506 			 const void *frame, ssize_t len)
507 {
508 	const u32 *data = frame;
509 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
510 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
511 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
512 	int data_size;
513 	int i;
514 	u32 val = intel_de_read(dev_priv, ctl_reg);
515 
516 	data_size = hsw_dip_data_size(dev_priv, type);
517 
518 	drm_WARN_ON(&dev_priv->drm, len > data_size);
519 
520 	val &= ~hsw_infoframe_enable(type);
521 	intel_de_write(dev_priv, ctl_reg, val);
522 
523 	for (i = 0; i < len; i += 4) {
524 		intel_de_write(dev_priv,
525 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
526 			       *data);
527 		data++;
528 	}
529 	/* Write every possible data byte to force correct ECC calculation. */
530 	for (; i < data_size; i += 4)
531 		intel_de_write(dev_priv,
532 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
533 			       0);
534 
535 	/* Wa_14013475917 */
536 	if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr &&
537 	    type == DP_SDP_VSC)
538 		return;
539 
540 	val |= hsw_infoframe_enable(type);
541 	intel_de_write(dev_priv, ctl_reg, val);
542 	intel_de_posting_read(dev_priv, ctl_reg);
543 }
544 
545 void hsw_read_infoframe(struct intel_encoder *encoder,
546 			const struct intel_crtc_state *crtc_state,
547 			unsigned int type, void *frame, ssize_t len)
548 {
549 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
550 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
551 	u32 *data = frame;
552 	int i;
553 
554 	for (i = 0; i < len; i += 4)
555 		*data++ = intel_de_read(dev_priv,
556 				        hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
557 }
558 
559 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
560 				  const struct intel_crtc_state *pipe_config)
561 {
562 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
563 	u32 val = intel_de_read(dev_priv,
564 				HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
565 	u32 mask;
566 
567 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
568 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
569 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
570 
571 	if (DISPLAY_VER(dev_priv) >= 10)
572 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
573 
574 	return val & mask;
575 }
576 
577 static const u8 infoframe_type_to_idx[] = {
578 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
579 	HDMI_PACKET_TYPE_GAMUT_METADATA,
580 	DP_SDP_VSC,
581 	HDMI_INFOFRAME_TYPE_AVI,
582 	HDMI_INFOFRAME_TYPE_SPD,
583 	HDMI_INFOFRAME_TYPE_VENDOR,
584 	HDMI_INFOFRAME_TYPE_DRM,
585 };
586 
587 u32 intel_hdmi_infoframe_enable(unsigned int type)
588 {
589 	int i;
590 
591 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
592 		if (infoframe_type_to_idx[i] == type)
593 			return BIT(i);
594 	}
595 
596 	return 0;
597 }
598 
599 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
600 				  const struct intel_crtc_state *crtc_state)
601 {
602 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
603 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
604 	u32 val, ret = 0;
605 	int i;
606 
607 	val = dig_port->infoframes_enabled(encoder, crtc_state);
608 
609 	/* map from hardware bits to dip idx */
610 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
611 		unsigned int type = infoframe_type_to_idx[i];
612 
613 		if (HAS_DDI(dev_priv)) {
614 			if (val & hsw_infoframe_enable(type))
615 				ret |= BIT(i);
616 		} else {
617 			if (val & g4x_infoframe_enable(type))
618 				ret |= BIT(i);
619 		}
620 	}
621 
622 	return ret;
623 }
624 
625 /*
626  * The data we write to the DIP data buffer registers is 1 byte bigger than the
627  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
628  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
629  * used for both technologies.
630  *
631  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
632  * DW1:       DB3       | DB2 | DB1 | DB0
633  * DW2:       DB7       | DB6 | DB5 | DB4
634  * DW3: ...
635  *
636  * (HB is Header Byte, DB is Data Byte)
637  *
638  * The hdmi pack() functions don't know about that hardware specific hole so we
639  * trick them by giving an offset into the buffer and moving back the header
640  * bytes by one.
641  */
642 static void intel_write_infoframe(struct intel_encoder *encoder,
643 				  const struct intel_crtc_state *crtc_state,
644 				  enum hdmi_infoframe_type type,
645 				  const union hdmi_infoframe *frame)
646 {
647 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
648 	u8 buffer[VIDEO_DIP_DATA_SIZE];
649 	ssize_t len;
650 
651 	if ((crtc_state->infoframes.enable &
652 	     intel_hdmi_infoframe_enable(type)) == 0)
653 		return;
654 
655 	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
656 		return;
657 
658 	/* see comment above for the reason for this offset */
659 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
660 	if (drm_WARN_ON(encoder->base.dev, len < 0))
661 		return;
662 
663 	/* Insert the 'hole' (see big comment above) at position 3 */
664 	memmove(&buffer[0], &buffer[1], 3);
665 	buffer[3] = 0;
666 	len++;
667 
668 	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
669 }
670 
671 void intel_read_infoframe(struct intel_encoder *encoder,
672 			  const struct intel_crtc_state *crtc_state,
673 			  enum hdmi_infoframe_type type,
674 			  union hdmi_infoframe *frame)
675 {
676 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
677 	u8 buffer[VIDEO_DIP_DATA_SIZE];
678 	int ret;
679 
680 	if ((crtc_state->infoframes.enable &
681 	     intel_hdmi_infoframe_enable(type)) == 0)
682 		return;
683 
684 	dig_port->read_infoframe(encoder, crtc_state,
685 				       type, buffer, sizeof(buffer));
686 
687 	/* Fill the 'hole' (see big comment above) at position 3 */
688 	memmove(&buffer[1], &buffer[0], 3);
689 
690 	/* see comment above for the reason for this offset */
691 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
692 	if (ret) {
693 		drm_dbg_kms(encoder->base.dev,
694 			    "Failed to unpack infoframe type 0x%02x\n", type);
695 		return;
696 	}
697 
698 	if (frame->any.type != type)
699 		drm_dbg_kms(encoder->base.dev,
700 			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
701 			    frame->any.type, type);
702 }
703 
704 static bool
705 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
706 				 struct intel_crtc_state *crtc_state,
707 				 struct drm_connector_state *conn_state)
708 {
709 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
710 	const struct drm_display_mode *adjusted_mode =
711 		&crtc_state->hw.adjusted_mode;
712 	struct drm_connector *connector = conn_state->connector;
713 	int ret;
714 
715 	if (!crtc_state->has_infoframe)
716 		return true;
717 
718 	crtc_state->infoframes.enable |=
719 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
720 
721 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
722 						       adjusted_mode);
723 	if (ret)
724 		return false;
725 
726 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
727 		frame->colorspace = HDMI_COLORSPACE_YUV420;
728 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
729 		frame->colorspace = HDMI_COLORSPACE_YUV444;
730 	else
731 		frame->colorspace = HDMI_COLORSPACE_RGB;
732 
733 	drm_hdmi_avi_infoframe_colorspace(frame, conn_state);
734 
735 	/* nonsense combination */
736 	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
737 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
738 
739 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
740 		drm_hdmi_avi_infoframe_quant_range(frame, connector,
741 						   adjusted_mode,
742 						   crtc_state->limited_color_range ?
743 						   HDMI_QUANTIZATION_RANGE_LIMITED :
744 						   HDMI_QUANTIZATION_RANGE_FULL);
745 	} else {
746 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
747 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
748 	}
749 
750 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
751 
752 	/* TODO: handle pixel repetition for YCBCR420 outputs */
753 
754 	ret = hdmi_avi_infoframe_check(frame);
755 	if (drm_WARN_ON(encoder->base.dev, ret))
756 		return false;
757 
758 	return true;
759 }
760 
761 static bool
762 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
763 				 struct intel_crtc_state *crtc_state,
764 				 struct drm_connector_state *conn_state)
765 {
766 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
767 	int ret;
768 
769 	if (!crtc_state->has_infoframe)
770 		return true;
771 
772 	crtc_state->infoframes.enable |=
773 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
774 
775 	ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
776 	if (drm_WARN_ON(encoder->base.dev, ret))
777 		return false;
778 
779 	frame->sdi = HDMI_SPD_SDI_PC;
780 
781 	ret = hdmi_spd_infoframe_check(frame);
782 	if (drm_WARN_ON(encoder->base.dev, ret))
783 		return false;
784 
785 	return true;
786 }
787 
788 static bool
789 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
790 				  struct intel_crtc_state *crtc_state,
791 				  struct drm_connector_state *conn_state)
792 {
793 	struct hdmi_vendor_infoframe *frame =
794 		&crtc_state->infoframes.hdmi.vendor.hdmi;
795 	const struct drm_display_info *info =
796 		&conn_state->connector->display_info;
797 	int ret;
798 
799 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
800 		return true;
801 
802 	crtc_state->infoframes.enable |=
803 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
804 
805 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
806 							  conn_state->connector,
807 							  &crtc_state->hw.adjusted_mode);
808 	if (drm_WARN_ON(encoder->base.dev, ret))
809 		return false;
810 
811 	ret = hdmi_vendor_infoframe_check(frame);
812 	if (drm_WARN_ON(encoder->base.dev, ret))
813 		return false;
814 
815 	return true;
816 }
817 
818 static bool
819 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
820 				 struct intel_crtc_state *crtc_state,
821 				 struct drm_connector_state *conn_state)
822 {
823 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
824 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
825 	int ret;
826 
827 	if (DISPLAY_VER(dev_priv) < 10)
828 		return true;
829 
830 	if (!crtc_state->has_infoframe)
831 		return true;
832 
833 	if (!conn_state->hdr_output_metadata)
834 		return true;
835 
836 	crtc_state->infoframes.enable |=
837 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
838 
839 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
840 	if (ret < 0) {
841 		drm_dbg_kms(&dev_priv->drm,
842 			    "couldn't set HDR metadata in infoframe\n");
843 		return false;
844 	}
845 
846 	ret = hdmi_drm_infoframe_check(frame);
847 	if (drm_WARN_ON(&dev_priv->drm, ret))
848 		return false;
849 
850 	return true;
851 }
852 
853 static void g4x_set_infoframes(struct intel_encoder *encoder,
854 			       bool enable,
855 			       const struct intel_crtc_state *crtc_state,
856 			       const struct drm_connector_state *conn_state)
857 {
858 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
859 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
860 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
861 	i915_reg_t reg = VIDEO_DIP_CTL;
862 	u32 val = intel_de_read(dev_priv, reg);
863 	u32 port = VIDEO_DIP_PORT(encoder->port);
864 
865 	assert_hdmi_port_disabled(intel_hdmi);
866 
867 	/* If the registers were not initialized yet, they might be zeroes,
868 	 * which means we're selecting the AVI DIP and we're setting its
869 	 * frequency to once. This seems to really confuse the HW and make
870 	 * things stop working (the register spec says the AVI always needs to
871 	 * be sent every VSync). So here we avoid writing to the register more
872 	 * than we need and also explicitly select the AVI DIP and explicitly
873 	 * set its frequency to every VSync. Avoiding to write it twice seems to
874 	 * be enough to solve the problem, but being defensive shouldn't hurt us
875 	 * either. */
876 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
877 
878 	if (!enable) {
879 		if (!(val & VIDEO_DIP_ENABLE))
880 			return;
881 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
882 			drm_dbg_kms(&dev_priv->drm,
883 				    "video DIP still enabled on port %c\n",
884 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
885 			return;
886 		}
887 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
888 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
889 		intel_de_write(dev_priv, reg, val);
890 		intel_de_posting_read(dev_priv, reg);
891 		return;
892 	}
893 
894 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
895 		if (val & VIDEO_DIP_ENABLE) {
896 			drm_dbg_kms(&dev_priv->drm,
897 				    "video DIP already enabled on port %c\n",
898 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
899 			return;
900 		}
901 		val &= ~VIDEO_DIP_PORT_MASK;
902 		val |= port;
903 	}
904 
905 	val |= VIDEO_DIP_ENABLE;
906 	val &= ~(VIDEO_DIP_ENABLE_AVI |
907 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
908 
909 	intel_de_write(dev_priv, reg, val);
910 	intel_de_posting_read(dev_priv, reg);
911 
912 	intel_write_infoframe(encoder, crtc_state,
913 			      HDMI_INFOFRAME_TYPE_AVI,
914 			      &crtc_state->infoframes.avi);
915 	intel_write_infoframe(encoder, crtc_state,
916 			      HDMI_INFOFRAME_TYPE_SPD,
917 			      &crtc_state->infoframes.spd);
918 	intel_write_infoframe(encoder, crtc_state,
919 			      HDMI_INFOFRAME_TYPE_VENDOR,
920 			      &crtc_state->infoframes.hdmi);
921 }
922 
923 /*
924  * Determine if default_phase=1 can be indicated in the GCP infoframe.
925  *
926  * From HDMI specification 1.4a:
927  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
928  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
929  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
930  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
931  *   phase of 0
932  */
933 static bool gcp_default_phase_possible(int pipe_bpp,
934 				       const struct drm_display_mode *mode)
935 {
936 	unsigned int pixels_per_group;
937 
938 	switch (pipe_bpp) {
939 	case 30:
940 		/* 4 pixels in 5 clocks */
941 		pixels_per_group = 4;
942 		break;
943 	case 36:
944 		/* 2 pixels in 3 clocks */
945 		pixels_per_group = 2;
946 		break;
947 	case 48:
948 		/* 1 pixel in 2 clocks */
949 		pixels_per_group = 1;
950 		break;
951 	default:
952 		/* phase information not relevant for 8bpc */
953 		return false;
954 	}
955 
956 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
957 		mode->crtc_htotal % pixels_per_group == 0 &&
958 		mode->crtc_hblank_start % pixels_per_group == 0 &&
959 		mode->crtc_hblank_end % pixels_per_group == 0 &&
960 		mode->crtc_hsync_start % pixels_per_group == 0 &&
961 		mode->crtc_hsync_end % pixels_per_group == 0 &&
962 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
963 		 mode->crtc_htotal/2 % pixels_per_group == 0);
964 }
965 
966 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
967 					 const struct intel_crtc_state *crtc_state,
968 					 const struct drm_connector_state *conn_state)
969 {
970 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
971 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
972 	i915_reg_t reg;
973 
974 	if ((crtc_state->infoframes.enable &
975 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
976 		return false;
977 
978 	if (HAS_DDI(dev_priv))
979 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
980 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
981 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
982 	else if (HAS_PCH_SPLIT(dev_priv))
983 		reg = TVIDEO_DIP_GCP(crtc->pipe);
984 	else
985 		return false;
986 
987 	intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
988 
989 	return true;
990 }
991 
992 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
993 				   struct intel_crtc_state *crtc_state)
994 {
995 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
996 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
997 	i915_reg_t reg;
998 
999 	if ((crtc_state->infoframes.enable &
1000 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1001 		return;
1002 
1003 	if (HAS_DDI(dev_priv))
1004 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1005 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1006 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1007 	else if (HAS_PCH_SPLIT(dev_priv))
1008 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1009 	else
1010 		return;
1011 
1012 	crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1013 }
1014 
1015 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1016 					     struct intel_crtc_state *crtc_state,
1017 					     struct drm_connector_state *conn_state)
1018 {
1019 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1020 
1021 	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1022 		return;
1023 
1024 	crtc_state->infoframes.enable |=
1025 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1026 
1027 	/* Indicate color indication for deep color mode */
1028 	if (crtc_state->pipe_bpp > 24)
1029 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1030 
1031 	/* Enable default_phase whenever the display mode is suitably aligned */
1032 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1033 				       &crtc_state->hw.adjusted_mode))
1034 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1035 }
1036 
1037 static void ibx_set_infoframes(struct intel_encoder *encoder,
1038 			       bool enable,
1039 			       const struct intel_crtc_state *crtc_state,
1040 			       const struct drm_connector_state *conn_state)
1041 {
1042 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1043 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1044 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1045 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1046 	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1047 	u32 val = intel_de_read(dev_priv, reg);
1048 	u32 port = VIDEO_DIP_PORT(encoder->port);
1049 
1050 	assert_hdmi_port_disabled(intel_hdmi);
1051 
1052 	/* See the big comment in g4x_set_infoframes() */
1053 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1054 
1055 	if (!enable) {
1056 		if (!(val & VIDEO_DIP_ENABLE))
1057 			return;
1058 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1059 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1060 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1061 		intel_de_write(dev_priv, reg, val);
1062 		intel_de_posting_read(dev_priv, reg);
1063 		return;
1064 	}
1065 
1066 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1067 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1068 			 "DIP already enabled on port %c\n",
1069 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1070 		val &= ~VIDEO_DIP_PORT_MASK;
1071 		val |= port;
1072 	}
1073 
1074 	val |= VIDEO_DIP_ENABLE;
1075 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1076 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1077 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1078 
1079 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1080 		val |= VIDEO_DIP_ENABLE_GCP;
1081 
1082 	intel_de_write(dev_priv, reg, val);
1083 	intel_de_posting_read(dev_priv, reg);
1084 
1085 	intel_write_infoframe(encoder, crtc_state,
1086 			      HDMI_INFOFRAME_TYPE_AVI,
1087 			      &crtc_state->infoframes.avi);
1088 	intel_write_infoframe(encoder, crtc_state,
1089 			      HDMI_INFOFRAME_TYPE_SPD,
1090 			      &crtc_state->infoframes.spd);
1091 	intel_write_infoframe(encoder, crtc_state,
1092 			      HDMI_INFOFRAME_TYPE_VENDOR,
1093 			      &crtc_state->infoframes.hdmi);
1094 }
1095 
1096 static void cpt_set_infoframes(struct intel_encoder *encoder,
1097 			       bool enable,
1098 			       const struct intel_crtc_state *crtc_state,
1099 			       const struct drm_connector_state *conn_state)
1100 {
1101 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1102 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1103 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1104 	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1105 	u32 val = intel_de_read(dev_priv, reg);
1106 
1107 	assert_hdmi_port_disabled(intel_hdmi);
1108 
1109 	/* See the big comment in g4x_set_infoframes() */
1110 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1111 
1112 	if (!enable) {
1113 		if (!(val & VIDEO_DIP_ENABLE))
1114 			return;
1115 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1116 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1117 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1118 		intel_de_write(dev_priv, reg, val);
1119 		intel_de_posting_read(dev_priv, reg);
1120 		return;
1121 	}
1122 
1123 	/* Set both together, unset both together: see the spec. */
1124 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1125 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1126 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1127 
1128 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1129 		val |= VIDEO_DIP_ENABLE_GCP;
1130 
1131 	intel_de_write(dev_priv, reg, val);
1132 	intel_de_posting_read(dev_priv, reg);
1133 
1134 	intel_write_infoframe(encoder, crtc_state,
1135 			      HDMI_INFOFRAME_TYPE_AVI,
1136 			      &crtc_state->infoframes.avi);
1137 	intel_write_infoframe(encoder, crtc_state,
1138 			      HDMI_INFOFRAME_TYPE_SPD,
1139 			      &crtc_state->infoframes.spd);
1140 	intel_write_infoframe(encoder, crtc_state,
1141 			      HDMI_INFOFRAME_TYPE_VENDOR,
1142 			      &crtc_state->infoframes.hdmi);
1143 }
1144 
1145 static void vlv_set_infoframes(struct intel_encoder *encoder,
1146 			       bool enable,
1147 			       const struct intel_crtc_state *crtc_state,
1148 			       const struct drm_connector_state *conn_state)
1149 {
1150 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1151 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1152 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1153 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
1154 	u32 val = intel_de_read(dev_priv, reg);
1155 	u32 port = VIDEO_DIP_PORT(encoder->port);
1156 
1157 	assert_hdmi_port_disabled(intel_hdmi);
1158 
1159 	/* See the big comment in g4x_set_infoframes() */
1160 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1161 
1162 	if (!enable) {
1163 		if (!(val & VIDEO_DIP_ENABLE))
1164 			return;
1165 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1166 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1167 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1168 		intel_de_write(dev_priv, reg, val);
1169 		intel_de_posting_read(dev_priv, reg);
1170 		return;
1171 	}
1172 
1173 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1174 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1175 			 "DIP already enabled on port %c\n",
1176 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1177 		val &= ~VIDEO_DIP_PORT_MASK;
1178 		val |= port;
1179 	}
1180 
1181 	val |= VIDEO_DIP_ENABLE;
1182 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1183 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1184 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1185 
1186 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1187 		val |= VIDEO_DIP_ENABLE_GCP;
1188 
1189 	intel_de_write(dev_priv, reg, val);
1190 	intel_de_posting_read(dev_priv, reg);
1191 
1192 	intel_write_infoframe(encoder, crtc_state,
1193 			      HDMI_INFOFRAME_TYPE_AVI,
1194 			      &crtc_state->infoframes.avi);
1195 	intel_write_infoframe(encoder, crtc_state,
1196 			      HDMI_INFOFRAME_TYPE_SPD,
1197 			      &crtc_state->infoframes.spd);
1198 	intel_write_infoframe(encoder, crtc_state,
1199 			      HDMI_INFOFRAME_TYPE_VENDOR,
1200 			      &crtc_state->infoframes.hdmi);
1201 }
1202 
1203 static void hsw_set_infoframes(struct intel_encoder *encoder,
1204 			       bool enable,
1205 			       const struct intel_crtc_state *crtc_state,
1206 			       const struct drm_connector_state *conn_state)
1207 {
1208 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1209 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1210 	u32 val = intel_de_read(dev_priv, reg);
1211 
1212 	assert_hdmi_transcoder_func_disabled(dev_priv,
1213 					     crtc_state->cpu_transcoder);
1214 
1215 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1216 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1217 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1218 		 VIDEO_DIP_ENABLE_DRM_GLK);
1219 
1220 	if (!enable) {
1221 		intel_de_write(dev_priv, reg, val);
1222 		intel_de_posting_read(dev_priv, reg);
1223 		return;
1224 	}
1225 
1226 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1227 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1228 
1229 	intel_de_write(dev_priv, reg, val);
1230 	intel_de_posting_read(dev_priv, reg);
1231 
1232 	intel_write_infoframe(encoder, crtc_state,
1233 			      HDMI_INFOFRAME_TYPE_AVI,
1234 			      &crtc_state->infoframes.avi);
1235 	intel_write_infoframe(encoder, crtc_state,
1236 			      HDMI_INFOFRAME_TYPE_SPD,
1237 			      &crtc_state->infoframes.spd);
1238 	intel_write_infoframe(encoder, crtc_state,
1239 			      HDMI_INFOFRAME_TYPE_VENDOR,
1240 			      &crtc_state->infoframes.hdmi);
1241 	intel_write_infoframe(encoder, crtc_state,
1242 			      HDMI_INFOFRAME_TYPE_DRM,
1243 			      &crtc_state->infoframes.drm);
1244 }
1245 
1246 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1247 {
1248 	struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
1249 	struct i2c_adapter *adapter =
1250 		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1251 
1252 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1253 		return;
1254 
1255 	drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1256 		    enable ? "Enabling" : "Disabling");
1257 
1258 	drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
1259 }
1260 
1261 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1262 				unsigned int offset, void *buffer, size_t size)
1263 {
1264 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1265 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1266 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1267 							      hdmi->ddc_bus);
1268 	int ret;
1269 	u8 start = offset & 0xff;
1270 	struct i2c_msg msgs[] = {
1271 		{
1272 			.addr = DRM_HDCP_DDC_ADDR,
1273 			.flags = 0,
1274 			.len = 1,
1275 			.buf = &start,
1276 		},
1277 		{
1278 			.addr = DRM_HDCP_DDC_ADDR,
1279 			.flags = I2C_M_RD,
1280 			.len = size,
1281 			.buf = buffer
1282 		}
1283 	};
1284 	ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1285 	if (ret == ARRAY_SIZE(msgs))
1286 		return 0;
1287 	return ret >= 0 ? -EIO : ret;
1288 }
1289 
1290 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1291 				 unsigned int offset, void *buffer, size_t size)
1292 {
1293 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1294 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1295 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1296 							      hdmi->ddc_bus);
1297 	int ret;
1298 	u8 *write_buf;
1299 	struct i2c_msg msg;
1300 
1301 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1302 	if (!write_buf)
1303 		return -ENOMEM;
1304 
1305 	write_buf[0] = offset & 0xff;
1306 	memcpy(&write_buf[1], buffer, size);
1307 
1308 	msg.addr = DRM_HDCP_DDC_ADDR;
1309 	msg.flags = 0,
1310 	msg.len = size + 1,
1311 	msg.buf = write_buf;
1312 
1313 	ret = i2c_transfer(adapter, &msg, 1);
1314 	if (ret == 1)
1315 		ret = 0;
1316 	else if (ret >= 0)
1317 		ret = -EIO;
1318 
1319 	kfree(write_buf);
1320 	return ret;
1321 }
1322 
1323 static
1324 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1325 				  u8 *an)
1326 {
1327 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1328 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1329 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1330 							      hdmi->ddc_bus);
1331 	int ret;
1332 
1333 	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1334 				    DRM_HDCP_AN_LEN);
1335 	if (ret) {
1336 		drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1337 			    ret);
1338 		return ret;
1339 	}
1340 
1341 	ret = intel_gmbus_output_aksv(adapter);
1342 	if (ret < 0) {
1343 		drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1344 		return ret;
1345 	}
1346 	return 0;
1347 }
1348 
1349 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1350 				     u8 *bksv)
1351 {
1352 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1353 
1354 	int ret;
1355 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1356 				   DRM_HDCP_KSV_LEN);
1357 	if (ret)
1358 		drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1359 			    ret);
1360 	return ret;
1361 }
1362 
1363 static
1364 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1365 				 u8 *bstatus)
1366 {
1367 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1368 
1369 	int ret;
1370 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1371 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1372 	if (ret)
1373 		drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1374 			    ret);
1375 	return ret;
1376 }
1377 
1378 static
1379 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1380 				     bool *repeater_present)
1381 {
1382 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1383 	int ret;
1384 	u8 val;
1385 
1386 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1387 	if (ret) {
1388 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1389 			    ret);
1390 		return ret;
1391 	}
1392 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1393 	return 0;
1394 }
1395 
1396 static
1397 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1398 				  u8 *ri_prime)
1399 {
1400 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1401 
1402 	int ret;
1403 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1404 				   ri_prime, DRM_HDCP_RI_LEN);
1405 	if (ret)
1406 		drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1407 			    ret);
1408 	return ret;
1409 }
1410 
1411 static
1412 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1413 				   bool *ksv_ready)
1414 {
1415 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1416 	int ret;
1417 	u8 val;
1418 
1419 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1420 	if (ret) {
1421 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1422 			    ret);
1423 		return ret;
1424 	}
1425 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1426 	return 0;
1427 }
1428 
1429 static
1430 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1431 				  int num_downstream, u8 *ksv_fifo)
1432 {
1433 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1434 	int ret;
1435 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1436 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1437 	if (ret) {
1438 		drm_dbg_kms(&i915->drm,
1439 			    "Read ksv fifo over DDC failed (%d)\n", ret);
1440 		return ret;
1441 	}
1442 	return 0;
1443 }
1444 
1445 static
1446 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1447 				      int i, u32 *part)
1448 {
1449 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1450 	int ret;
1451 
1452 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1453 		return -EINVAL;
1454 
1455 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1456 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1457 	if (ret)
1458 		drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1459 			    i, ret);
1460 	return ret;
1461 }
1462 
1463 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1464 					   enum transcoder cpu_transcoder)
1465 {
1466 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1467 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1468 	struct drm_crtc *crtc = connector->base.state->crtc;
1469 	struct intel_crtc *intel_crtc = container_of(crtc,
1470 						     struct intel_crtc, base);
1471 	u32 scanline;
1472 	int ret;
1473 
1474 	for (;;) {
1475 		scanline = intel_de_read(dev_priv, PIPEDSL(intel_crtc->pipe));
1476 		if (scanline > 100 && scanline < 200)
1477 			break;
1478 		usleep_range(25, 50);
1479 	}
1480 
1481 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1482 					 false, TRANS_DDI_HDCP_SIGNALLING);
1483 	if (ret) {
1484 		drm_err(&dev_priv->drm,
1485 			"Disable HDCP signalling failed (%d)\n", ret);
1486 		return ret;
1487 	}
1488 
1489 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1490 					 true, TRANS_DDI_HDCP_SIGNALLING);
1491 	if (ret) {
1492 		drm_err(&dev_priv->drm,
1493 			"Enable HDCP signalling failed (%d)\n", ret);
1494 		return ret;
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static
1501 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1502 				      enum transcoder cpu_transcoder,
1503 				      bool enable)
1504 {
1505 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1506 	struct intel_connector *connector = hdmi->attached_connector;
1507 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1508 	int ret;
1509 
1510 	if (!enable)
1511 		usleep_range(6, 60); /* Bspec says >= 6us */
1512 
1513 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1514 					 cpu_transcoder, enable,
1515 					 TRANS_DDI_HDCP_SIGNALLING);
1516 	if (ret) {
1517 		drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1518 			enable ? "Enable" : "Disable", ret);
1519 		return ret;
1520 	}
1521 
1522 	/*
1523 	 * WA: To fix incorrect positioning of the window of
1524 	 * opportunity and enc_en signalling in KABYLAKE.
1525 	 */
1526 	if (IS_KABYLAKE(dev_priv) && enable)
1527 		return kbl_repositioning_enc_en_signal(connector,
1528 						       cpu_transcoder);
1529 
1530 	return 0;
1531 }
1532 
1533 static
1534 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1535 				     struct intel_connector *connector)
1536 {
1537 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1538 	enum port port = dig_port->base.port;
1539 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1540 	int ret;
1541 	union {
1542 		u32 reg;
1543 		u8 shim[DRM_HDCP_RI_LEN];
1544 	} ri;
1545 
1546 	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1547 	if (ret)
1548 		return false;
1549 
1550 	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1551 
1552 	/* Wait for Ri prime match */
1553 	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1554 		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1555 		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1556 		drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1557 			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1558 							port)));
1559 		return false;
1560 	}
1561 	return true;
1562 }
1563 
1564 static
1565 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1566 				struct intel_connector *connector)
1567 {
1568 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1569 	int retry;
1570 
1571 	for (retry = 0; retry < 3; retry++)
1572 		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1573 			return true;
1574 
1575 	drm_err(&i915->drm, "Link check failed\n");
1576 	return false;
1577 }
1578 
1579 struct hdcp2_hdmi_msg_timeout {
1580 	u8 msg_id;
1581 	u16 timeout;
1582 };
1583 
1584 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1585 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1586 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1587 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1588 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1589 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1590 };
1591 
1592 static
1593 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1594 				    u8 *rx_status)
1595 {
1596 	return intel_hdmi_hdcp_read(dig_port,
1597 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1598 				    rx_status,
1599 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1600 }
1601 
1602 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1603 {
1604 	int i;
1605 
1606 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1607 		if (is_paired)
1608 			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1609 		else
1610 			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1611 	}
1612 
1613 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1614 		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1615 			return hdcp2_msg_timeout[i].timeout;
1616 	}
1617 
1618 	return -EINVAL;
1619 }
1620 
1621 static int
1622 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1623 			      u8 msg_id, bool *msg_ready,
1624 			      ssize_t *msg_sz)
1625 {
1626 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1627 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1628 	int ret;
1629 
1630 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1631 	if (ret < 0) {
1632 		drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1633 			    ret);
1634 		return ret;
1635 	}
1636 
1637 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1638 		  rx_status[0]);
1639 
1640 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1641 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1642 			     *msg_sz);
1643 	else
1644 		*msg_ready = *msg_sz;
1645 
1646 	return 0;
1647 }
1648 
1649 static ssize_t
1650 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1651 			      u8 msg_id, bool paired)
1652 {
1653 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1654 	bool msg_ready = false;
1655 	int timeout, ret;
1656 	ssize_t msg_sz = 0;
1657 
1658 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1659 	if (timeout < 0)
1660 		return timeout;
1661 
1662 	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1663 							     msg_id, &msg_ready,
1664 							     &msg_sz),
1665 			 !ret && msg_ready && msg_sz, timeout * 1000,
1666 			 1000, 5 * 1000);
1667 	if (ret)
1668 		drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1669 			    msg_id, ret, timeout);
1670 
1671 	return ret ? ret : msg_sz;
1672 }
1673 
1674 static
1675 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1676 			       void *buf, size_t size)
1677 {
1678 	unsigned int offset;
1679 
1680 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1681 	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1682 }
1683 
1684 static
1685 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1686 			      u8 msg_id, void *buf, size_t size)
1687 {
1688 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1689 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1690 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1691 	unsigned int offset;
1692 	ssize_t ret;
1693 
1694 	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1695 					    hdcp->is_paired);
1696 	if (ret < 0)
1697 		return ret;
1698 
1699 	/*
1700 	 * Available msg size should be equal to or lesser than the
1701 	 * available buffer.
1702 	 */
1703 	if (ret > size) {
1704 		drm_dbg_kms(&i915->drm,
1705 			    "msg_sz(%zd) is more than exp size(%zu)\n",
1706 			    ret, size);
1707 		return -1;
1708 	}
1709 
1710 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1711 	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1712 	if (ret)
1713 		drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1714 			    msg_id, ret);
1715 
1716 	return ret;
1717 }
1718 
1719 static
1720 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1721 				struct intel_connector *connector)
1722 {
1723 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1724 	int ret;
1725 
1726 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1727 	if (ret)
1728 		return ret;
1729 
1730 	/*
1731 	 * Re-auth request and Link Integrity Failures are represented by
1732 	 * same bit. i.e reauth_req.
1733 	 */
1734 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1735 		ret = HDCP_REAUTH_REQUEST;
1736 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1737 		ret = HDCP_TOPOLOGY_CHANGE;
1738 
1739 	return ret;
1740 }
1741 
1742 static
1743 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1744 			     bool *capable)
1745 {
1746 	u8 hdcp2_version;
1747 	int ret;
1748 
1749 	*capable = false;
1750 	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1751 				   &hdcp2_version, sizeof(hdcp2_version));
1752 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1753 		*capable = true;
1754 
1755 	return ret;
1756 }
1757 
1758 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1759 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1760 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1761 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1762 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1763 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1764 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1765 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1766 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1767 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1768 	.check_link = intel_hdmi_hdcp_check_link,
1769 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1770 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1771 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1772 	.hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1773 	.protocol = HDCP_PROTOCOL_HDMI,
1774 };
1775 
1776 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1777 {
1778 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1779 	int max_tmds_clock, vbt_max_tmds_clock;
1780 
1781 	if (DISPLAY_VER(dev_priv) >= 10)
1782 		max_tmds_clock = 594000;
1783 	else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1784 		max_tmds_clock = 300000;
1785 	else if (DISPLAY_VER(dev_priv) >= 5)
1786 		max_tmds_clock = 225000;
1787 	else
1788 		max_tmds_clock = 165000;
1789 
1790 	vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
1791 	if (vbt_max_tmds_clock)
1792 		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1793 
1794 	return max_tmds_clock;
1795 }
1796 
1797 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1798 				const struct drm_connector_state *conn_state)
1799 {
1800 	return hdmi->has_hdmi_sink &&
1801 		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1802 }
1803 
1804 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1805 				 bool respect_downstream_limits,
1806 				 bool has_hdmi_sink)
1807 {
1808 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1809 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1810 
1811 	if (respect_downstream_limits) {
1812 		struct intel_connector *connector = hdmi->attached_connector;
1813 		const struct drm_display_info *info = &connector->base.display_info;
1814 
1815 		if (hdmi->dp_dual_mode.max_tmds_clock)
1816 			max_tmds_clock = min(max_tmds_clock,
1817 					     hdmi->dp_dual_mode.max_tmds_clock);
1818 
1819 		if (info->max_tmds_clock)
1820 			max_tmds_clock = min(max_tmds_clock,
1821 					     info->max_tmds_clock);
1822 		else if (!has_hdmi_sink)
1823 			max_tmds_clock = min(max_tmds_clock, 165000);
1824 	}
1825 
1826 	return max_tmds_clock;
1827 }
1828 
1829 static enum drm_mode_status
1830 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1831 		      int clock, bool respect_downstream_limits,
1832 		      bool has_hdmi_sink)
1833 {
1834 	struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
1835 
1836 	if (clock < 25000)
1837 		return MODE_CLOCK_LOW;
1838 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1839 					  has_hdmi_sink))
1840 		return MODE_CLOCK_HIGH;
1841 
1842 	/* GLK DPLL can't generate 446-480 MHz */
1843 	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1844 		return MODE_CLOCK_RANGE;
1845 
1846 	/* BXT/GLK DPLL can't generate 223-240 MHz */
1847 	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1848 	    clock > 223333 && clock < 240000)
1849 		return MODE_CLOCK_RANGE;
1850 
1851 	/* CHV DPLL can't generate 216-240 MHz */
1852 	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1853 		return MODE_CLOCK_RANGE;
1854 
1855 	return MODE_OK;
1856 }
1857 
1858 static int intel_hdmi_port_clock(int clock, int bpc)
1859 {
1860 	/*
1861 	 * Need to adjust the port link by:
1862 	 *  1.5x for 12bpc
1863 	 *  1.25x for 10bpc
1864 	 */
1865 	return clock * bpc / 8;
1866 }
1867 
1868 static bool intel_hdmi_bpc_possible(struct drm_connector *connector,
1869 				    int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1870 {
1871 	struct drm_i915_private *i915 = to_i915(connector->dev);
1872 	const struct drm_display_info *info = &connector->display_info;
1873 	const struct drm_hdmi_info *hdmi = &info->hdmi;
1874 
1875 	switch (bpc) {
1876 	case 12:
1877 		if (HAS_GMCH(i915))
1878 			return false;
1879 
1880 		if (!has_hdmi_sink)
1881 			return false;
1882 
1883 		if (ycbcr420_output)
1884 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1885 		else
1886 			return info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_36;
1887 	case 10:
1888 		if (DISPLAY_VER(i915) < 11)
1889 			return false;
1890 
1891 		if (!has_hdmi_sink)
1892 			return false;
1893 
1894 		if (ycbcr420_output)
1895 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1896 		else
1897 			return info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_30;
1898 	case 8:
1899 		return true;
1900 	default:
1901 		MISSING_CASE(bpc);
1902 		return false;
1903 	}
1904 }
1905 
1906 static enum drm_mode_status
1907 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1908 			    bool has_hdmi_sink, bool ycbcr420_output)
1909 {
1910 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1911 	enum drm_mode_status status;
1912 
1913 	if (ycbcr420_output)
1914 		clock /= 2;
1915 
1916 	/* check if we can do 8bpc */
1917 	status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 8),
1918 				       true, has_hdmi_sink);
1919 
1920 	/* if we can't do 8bpc we may still be able to do 12bpc */
1921 	if (status != MODE_OK &&
1922 	    intel_hdmi_bpc_possible(connector, 12, has_hdmi_sink, ycbcr420_output))
1923 		status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 12),
1924 					       true, has_hdmi_sink);
1925 
1926 	/* if we can't do 8,12bpc we may still be able to do 10bpc */
1927 	if (status != MODE_OK &&
1928 	    intel_hdmi_bpc_possible(connector, 10, has_hdmi_sink, ycbcr420_output))
1929 		status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 10),
1930 					       true, has_hdmi_sink);
1931 
1932 	return status;
1933 }
1934 
1935 static enum drm_mode_status
1936 intel_hdmi_mode_valid(struct drm_connector *connector,
1937 		      struct drm_display_mode *mode)
1938 {
1939 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1940 	struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1941 	struct drm_i915_private *dev_priv = to_i915(dev);
1942 	enum drm_mode_status status;
1943 	int clock = mode->clock;
1944 	int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1945 	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1946 	bool ycbcr_420_only;
1947 
1948 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1949 		return MODE_NO_DBLESCAN;
1950 
1951 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1952 		clock *= 2;
1953 
1954 	if (clock > max_dotclk)
1955 		return MODE_CLOCK_HIGH;
1956 
1957 	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1958 		if (!has_hdmi_sink)
1959 			return MODE_CLOCK_LOW;
1960 		clock *= 2;
1961 	}
1962 
1963 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
1964 
1965 	status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, ycbcr_420_only);
1966 	if (status != MODE_OK) {
1967 		if (ycbcr_420_only ||
1968 		    !connector->ycbcr_420_allowed ||
1969 		    !drm_mode_is_420_also(&connector->display_info, mode))
1970 			return status;
1971 
1972 		status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, true);
1973 		if (status != MODE_OK)
1974 			return status;
1975 	}
1976 
1977 	return intel_mode_valid_max_plane_size(dev_priv, mode, false);
1978 }
1979 
1980 bool intel_hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
1981 				    int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1982 {
1983 	struct drm_atomic_state *state = crtc_state->uapi.state;
1984 	struct drm_connector_state *connector_state;
1985 	struct drm_connector *connector;
1986 	int i;
1987 
1988 	if (crtc_state->pipe_bpp < bpc * 3)
1989 		return false;
1990 
1991 	for_each_new_connector_in_state(state, connector, connector_state, i) {
1992 		if (connector_state->crtc != crtc_state->uapi.crtc)
1993 			continue;
1994 
1995 		if (!intel_hdmi_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
1996 			return false;
1997 	}
1998 
1999 	return true;
2000 }
2001 
2002 static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
2003 				     int bpc)
2004 {
2005 	struct drm_i915_private *dev_priv =
2006 		to_i915(crtc_state->uapi.crtc->dev);
2007 	const struct drm_display_mode *adjusted_mode =
2008 		&crtc_state->hw.adjusted_mode;
2009 
2010 	/*
2011 	 * HDMI deep color affects the clocks, so it's only possible
2012 	 * when not cloning with other encoder types.
2013 	 */
2014 	if (crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI))
2015 		return false;
2016 
2017 	/* Display Wa_1405510057:icl,ehl */
2018 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
2019 	    bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2020 	    (adjusted_mode->crtc_hblank_end -
2021 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2022 		return false;
2023 
2024 	return intel_hdmi_deep_color_possible(crtc_state, bpc,
2025 					      crtc_state->has_hdmi_sink,
2026 					      crtc_state->output_format ==
2027 					      INTEL_OUTPUT_FORMAT_YCBCR420);
2028 }
2029 
2030 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2031 				  struct intel_crtc_state *crtc_state,
2032 				  int clock)
2033 {
2034 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2035 	int bpc;
2036 
2037 	for (bpc = 12; bpc >= 10; bpc -= 2) {
2038 		if (hdmi_deep_color_possible(crtc_state, bpc) &&
2039 		    hdmi_port_clock_valid(intel_hdmi,
2040 					  intel_hdmi_port_clock(clock, bpc),
2041 					  true, crtc_state->has_hdmi_sink) == MODE_OK)
2042 			return bpc;
2043 	}
2044 
2045 	return 8;
2046 }
2047 
2048 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2049 				    struct intel_crtc_state *crtc_state)
2050 {
2051 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2052 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2053 	const struct drm_display_mode *adjusted_mode =
2054 		&crtc_state->hw.adjusted_mode;
2055 	int bpc, clock = adjusted_mode->crtc_clock;
2056 
2057 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2058 		clock *= 2;
2059 
2060 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
2061 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2062 		clock /= 2;
2063 
2064 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock);
2065 
2066 	crtc_state->port_clock = intel_hdmi_port_clock(clock, bpc);
2067 
2068 	/*
2069 	 * pipe_bpp could already be below 8bpc due to
2070 	 * FDI bandwidth constraints. We shouldn't bump it
2071 	 * back up to 8bpc in that case.
2072 	 */
2073 	if (crtc_state->pipe_bpp > bpc * 3)
2074 		crtc_state->pipe_bpp = bpc * 3;
2075 
2076 	drm_dbg_kms(&i915->drm,
2077 		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2078 		    bpc, crtc_state->pipe_bpp);
2079 
2080 	if (hdmi_port_clock_valid(intel_hdmi, crtc_state->port_clock,
2081 				  false, crtc_state->has_hdmi_sink) != MODE_OK) {
2082 		drm_dbg_kms(&i915->drm,
2083 			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2084 			    crtc_state->port_clock);
2085 		return -EINVAL;
2086 	}
2087 
2088 	return 0;
2089 }
2090 
2091 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2092 				    const struct drm_connector_state *conn_state)
2093 {
2094 	const struct intel_digital_connector_state *intel_conn_state =
2095 		to_intel_digital_connector_state(conn_state);
2096 	const struct drm_display_mode *adjusted_mode =
2097 		&crtc_state->hw.adjusted_mode;
2098 
2099 	/*
2100 	 * Our YCbCr output is always limited range.
2101 	 * crtc_state->limited_color_range only applies to RGB,
2102 	 * and it must never be set for YCbCr or we risk setting
2103 	 * some conflicting bits in PIPECONF which will mess up
2104 	 * the colors on the monitor.
2105 	 */
2106 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2107 		return false;
2108 
2109 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2110 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2111 		return crtc_state->has_hdmi_sink &&
2112 			drm_default_rgb_quant_range(adjusted_mode) ==
2113 			HDMI_QUANTIZATION_RANGE_LIMITED;
2114 	} else {
2115 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2116 	}
2117 }
2118 
2119 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2120 				 const struct intel_crtc_state *crtc_state,
2121 				 const struct drm_connector_state *conn_state)
2122 {
2123 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2124 	const struct intel_digital_connector_state *intel_conn_state =
2125 		to_intel_digital_connector_state(conn_state);
2126 
2127 	if (!crtc_state->has_hdmi_sink)
2128 		return false;
2129 
2130 	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2131 		return intel_hdmi->has_audio;
2132 	else
2133 		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2134 }
2135 
2136 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2137 					    struct intel_crtc_state *crtc_state,
2138 					    const struct drm_connector_state *conn_state)
2139 {
2140 	struct drm_connector *connector = conn_state->connector;
2141 	struct drm_i915_private *i915 = to_i915(connector->dev);
2142 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2143 	int ret;
2144 	bool ycbcr_420_only;
2145 
2146 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, adjusted_mode);
2147 	if (connector->ycbcr_420_allowed && ycbcr_420_only) {
2148 		crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2149 	} else {
2150 		if (!connector->ycbcr_420_allowed && ycbcr_420_only)
2151 			drm_dbg_kms(&i915->drm,
2152 				    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2153 		crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB;
2154 	}
2155 
2156 	ret = intel_hdmi_compute_clock(encoder, crtc_state);
2157 	if (ret) {
2158 		if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420 &&
2159 		    connector->ycbcr_420_allowed &&
2160 		    drm_mode_is_420_also(&connector->display_info, adjusted_mode)) {
2161 			crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2162 			ret = intel_hdmi_compute_clock(encoder, crtc_state);
2163 		}
2164 	}
2165 
2166 	return ret;
2167 }
2168 
2169 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2170 			      struct intel_crtc_state *pipe_config,
2171 			      struct drm_connector_state *conn_state)
2172 {
2173 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2174 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2175 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2176 	struct drm_connector *connector = conn_state->connector;
2177 	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2178 	int ret;
2179 
2180 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2181 		return -EINVAL;
2182 
2183 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2184 	pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi,
2185 							 conn_state);
2186 
2187 	if (pipe_config->has_hdmi_sink)
2188 		pipe_config->has_infoframe = true;
2189 
2190 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2191 		pipe_config->pixel_multiplier = 2;
2192 
2193 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
2194 		pipe_config->has_pch_encoder = true;
2195 
2196 	pipe_config->has_audio =
2197 		intel_hdmi_has_audio(encoder, pipe_config, conn_state);
2198 
2199 	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state);
2200 	if (ret)
2201 		return ret;
2202 
2203 	if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
2204 		ret = intel_pch_panel_fitting(pipe_config, conn_state);
2205 		if (ret)
2206 			return ret;
2207 	}
2208 
2209 	pipe_config->limited_color_range =
2210 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2211 
2212 	if (conn_state->picture_aspect_ratio)
2213 		adjusted_mode->picture_aspect_ratio =
2214 			conn_state->picture_aspect_ratio;
2215 
2216 	pipe_config->lane_count = 4;
2217 
2218 	if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
2219 		if (scdc->scrambling.low_rates)
2220 			pipe_config->hdmi_scrambling = true;
2221 
2222 		if (pipe_config->port_clock > 340000) {
2223 			pipe_config->hdmi_scrambling = true;
2224 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2225 		}
2226 	}
2227 
2228 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2229 					 conn_state);
2230 
2231 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2232 		drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2233 		return -EINVAL;
2234 	}
2235 
2236 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2237 		drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2238 		return -EINVAL;
2239 	}
2240 
2241 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2242 		drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2243 		return -EINVAL;
2244 	}
2245 
2246 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2247 		drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2248 		return -EINVAL;
2249 	}
2250 
2251 	return 0;
2252 }
2253 
2254 static void
2255 intel_hdmi_unset_edid(struct drm_connector *connector)
2256 {
2257 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2258 
2259 	intel_hdmi->has_hdmi_sink = false;
2260 	intel_hdmi->has_audio = false;
2261 
2262 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2263 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2264 
2265 	kfree(to_intel_connector(connector)->detect_edid);
2266 	to_intel_connector(connector)->detect_edid = NULL;
2267 }
2268 
2269 static void
2270 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
2271 {
2272 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2273 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2274 	enum port port = hdmi_to_dig_port(hdmi)->base.port;
2275 	struct i2c_adapter *adapter =
2276 		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2277 	enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
2278 
2279 	/*
2280 	 * Type 1 DVI adaptors are not required to implement any
2281 	 * registers, so we can't always detect their presence.
2282 	 * Ideally we should be able to check the state of the
2283 	 * CONFIG1 pin, but no such luck on our hardware.
2284 	 *
2285 	 * The only method left to us is to check the VBT to see
2286 	 * if the port is a dual mode capable DP port. But let's
2287 	 * only do that when we sucesfully read the EDID, to avoid
2288 	 * confusing log messages about DP dual mode adaptors when
2289 	 * there's nothing connected to the port.
2290 	 */
2291 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2292 		/* An overridden EDID imply that we want this port for testing.
2293 		 * Make sure not to set limits for that port.
2294 		 */
2295 		if (has_edid && !connector->override_edid &&
2296 		    intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2297 			drm_dbg_kms(&dev_priv->drm,
2298 				    "Assuming DP dual mode adaptor presence based on VBT\n");
2299 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2300 		} else {
2301 			type = DRM_DP_DUAL_MODE_NONE;
2302 		}
2303 	}
2304 
2305 	if (type == DRM_DP_DUAL_MODE_NONE)
2306 		return;
2307 
2308 	hdmi->dp_dual_mode.type = type;
2309 	hdmi->dp_dual_mode.max_tmds_clock =
2310 		drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2311 
2312 	drm_dbg_kms(&dev_priv->drm,
2313 		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2314 		    drm_dp_get_dual_mode_type_name(type),
2315 		    hdmi->dp_dual_mode.max_tmds_clock);
2316 }
2317 
2318 static bool
2319 intel_hdmi_set_edid(struct drm_connector *connector)
2320 {
2321 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2322 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2323 	intel_wakeref_t wakeref;
2324 	struct edid *edid;
2325 	bool connected = false;
2326 	struct i2c_adapter *i2c;
2327 
2328 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2329 
2330 	i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2331 
2332 	edid = drm_get_edid(connector, i2c);
2333 
2334 	if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2335 		drm_dbg_kms(&dev_priv->drm,
2336 			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2337 		intel_gmbus_force_bit(i2c, true);
2338 		edid = drm_get_edid(connector, i2c);
2339 		intel_gmbus_force_bit(i2c, false);
2340 	}
2341 
2342 	intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
2343 
2344 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2345 
2346 	to_intel_connector(connector)->detect_edid = edid;
2347 	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2348 		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2349 		intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2350 
2351 		connected = true;
2352 	}
2353 
2354 	cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2355 
2356 	return connected;
2357 }
2358 
2359 static enum drm_connector_status
2360 intel_hdmi_detect(struct drm_connector *connector, bool force)
2361 {
2362 	enum drm_connector_status status = connector_status_disconnected;
2363 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2364 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2365 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2366 	intel_wakeref_t wakeref;
2367 
2368 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2369 		    connector->base.id, connector->name);
2370 
2371 	if (!INTEL_DISPLAY_ENABLED(dev_priv))
2372 		return connector_status_disconnected;
2373 
2374 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2375 
2376 	if (DISPLAY_VER(dev_priv) >= 11 &&
2377 	    !intel_digital_port_connected(encoder))
2378 		goto out;
2379 
2380 	intel_hdmi_unset_edid(connector);
2381 
2382 	if (intel_hdmi_set_edid(connector))
2383 		status = connector_status_connected;
2384 
2385 out:
2386 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2387 
2388 	if (status != connector_status_connected)
2389 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2390 
2391 	/*
2392 	 * Make sure the refs for power wells enabled during detect are
2393 	 * dropped to avoid a new detect cycle triggered by HPD polling.
2394 	 */
2395 	intel_display_power_flush_work(dev_priv);
2396 
2397 	return status;
2398 }
2399 
2400 static void
2401 intel_hdmi_force(struct drm_connector *connector)
2402 {
2403 	struct drm_i915_private *i915 = to_i915(connector->dev);
2404 
2405 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2406 		    connector->base.id, connector->name);
2407 
2408 	intel_hdmi_unset_edid(connector);
2409 
2410 	if (connector->status != connector_status_connected)
2411 		return;
2412 
2413 	intel_hdmi_set_edid(connector);
2414 }
2415 
2416 static int intel_hdmi_get_modes(struct drm_connector *connector)
2417 {
2418 	struct edid *edid;
2419 
2420 	edid = to_intel_connector(connector)->detect_edid;
2421 	if (edid == NULL)
2422 		return 0;
2423 
2424 	return intel_connector_update_modes(connector, edid);
2425 }
2426 
2427 static struct i2c_adapter *
2428 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2429 {
2430 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2431 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2432 
2433 	return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2434 }
2435 
2436 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2437 {
2438 	struct drm_i915_private *i915 = to_i915(connector->dev);
2439 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2440 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2441 	struct kobject *connector_kobj = &connector->kdev->kobj;
2442 	int ret;
2443 
2444 	ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2445 	if (ret)
2446 		drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2447 }
2448 
2449 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2450 {
2451 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2452 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2453 	struct kobject *connector_kobj = &connector->kdev->kobj;
2454 
2455 	sysfs_remove_link(connector_kobj, i2c_kobj->name);
2456 }
2457 
2458 static int
2459 intel_hdmi_connector_register(struct drm_connector *connector)
2460 {
2461 	int ret;
2462 
2463 	ret = intel_connector_register(connector);
2464 	if (ret)
2465 		return ret;
2466 
2467 	intel_hdmi_create_i2c_symlink(connector);
2468 
2469 	return ret;
2470 }
2471 
2472 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2473 {
2474 	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2475 
2476 	cec_notifier_conn_unregister(n);
2477 
2478 	intel_hdmi_remove_i2c_symlink(connector);
2479 	intel_connector_unregister(connector);
2480 }
2481 
2482 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2483 	.detect = intel_hdmi_detect,
2484 	.force = intel_hdmi_force,
2485 	.fill_modes = drm_helper_probe_single_connector_modes,
2486 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2487 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2488 	.late_register = intel_hdmi_connector_register,
2489 	.early_unregister = intel_hdmi_connector_unregister,
2490 	.destroy = intel_connector_destroy,
2491 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2492 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2493 };
2494 
2495 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2496 	.get_modes = intel_hdmi_get_modes,
2497 	.mode_valid = intel_hdmi_mode_valid,
2498 	.atomic_check = intel_digital_connector_atomic_check,
2499 };
2500 
2501 static void
2502 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2503 {
2504 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2505 
2506 	intel_attach_force_audio_property(connector);
2507 	intel_attach_broadcast_rgb_property(connector);
2508 	intel_attach_aspect_ratio_property(connector);
2509 
2510 	intel_attach_hdmi_colorspace_property(connector);
2511 	drm_connector_attach_content_type_property(connector);
2512 
2513 	if (DISPLAY_VER(dev_priv) >= 10)
2514 		drm_connector_attach_hdr_output_metadata_property(connector);
2515 
2516 	if (!HAS_GMCH(dev_priv))
2517 		drm_connector_attach_max_bpc_property(connector, 8, 12);
2518 }
2519 
2520 /*
2521  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2522  * @encoder: intel_encoder
2523  * @connector: drm_connector
2524  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2525  *  or reset the high tmds clock ratio for scrambling
2526  * @scrambling: bool to Indicate if the function needs to set or reset
2527  *  sink scrambling
2528  *
2529  * This function handles scrambling on HDMI 2.0 capable sinks.
2530  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2531  * it enables scrambling. This should be called before enabling the HDMI
2532  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2533  * detect a scrambled clock within 100 ms.
2534  *
2535  * Returns:
2536  * True on success, false on failure.
2537  */
2538 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2539 				       struct drm_connector *connector,
2540 				       bool high_tmds_clock_ratio,
2541 				       bool scrambling)
2542 {
2543 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2544 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2545 	struct drm_scrambling *sink_scrambling =
2546 		&connector->display_info.hdmi.scdc.scrambling;
2547 	struct i2c_adapter *adapter =
2548 		intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2549 
2550 	if (!sink_scrambling->supported)
2551 		return true;
2552 
2553 	drm_dbg_kms(&dev_priv->drm,
2554 		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2555 		    connector->base.id, connector->name,
2556 		    yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
2557 
2558 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2559 	return drm_scdc_set_high_tmds_clock_ratio(adapter,
2560 						  high_tmds_clock_ratio) &&
2561 		drm_scdc_set_scrambling(adapter, scrambling);
2562 }
2563 
2564 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2565 {
2566 	u8 ddc_pin;
2567 
2568 	switch (port) {
2569 	case PORT_B:
2570 		ddc_pin = GMBUS_PIN_DPB;
2571 		break;
2572 	case PORT_C:
2573 		ddc_pin = GMBUS_PIN_DPC;
2574 		break;
2575 	case PORT_D:
2576 		ddc_pin = GMBUS_PIN_DPD_CHV;
2577 		break;
2578 	default:
2579 		MISSING_CASE(port);
2580 		ddc_pin = GMBUS_PIN_DPB;
2581 		break;
2582 	}
2583 	return ddc_pin;
2584 }
2585 
2586 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2587 {
2588 	u8 ddc_pin;
2589 
2590 	switch (port) {
2591 	case PORT_B:
2592 		ddc_pin = GMBUS_PIN_1_BXT;
2593 		break;
2594 	case PORT_C:
2595 		ddc_pin = GMBUS_PIN_2_BXT;
2596 		break;
2597 	default:
2598 		MISSING_CASE(port);
2599 		ddc_pin = GMBUS_PIN_1_BXT;
2600 		break;
2601 	}
2602 	return ddc_pin;
2603 }
2604 
2605 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2606 			      enum port port)
2607 {
2608 	u8 ddc_pin;
2609 
2610 	switch (port) {
2611 	case PORT_B:
2612 		ddc_pin = GMBUS_PIN_1_BXT;
2613 		break;
2614 	case PORT_C:
2615 		ddc_pin = GMBUS_PIN_2_BXT;
2616 		break;
2617 	case PORT_D:
2618 		ddc_pin = GMBUS_PIN_4_CNP;
2619 		break;
2620 	case PORT_F:
2621 		ddc_pin = GMBUS_PIN_3_BXT;
2622 		break;
2623 	default:
2624 		MISSING_CASE(port);
2625 		ddc_pin = GMBUS_PIN_1_BXT;
2626 		break;
2627 	}
2628 	return ddc_pin;
2629 }
2630 
2631 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2632 {
2633 	enum phy phy = intel_port_to_phy(dev_priv, port);
2634 
2635 	if (intel_phy_is_combo(dev_priv, phy))
2636 		return GMBUS_PIN_1_BXT + port;
2637 	else if (intel_phy_is_tc(dev_priv, phy))
2638 		return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2639 
2640 	drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2641 	return GMBUS_PIN_2_BXT;
2642 }
2643 
2644 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2645 {
2646 	enum phy phy = intel_port_to_phy(dev_priv, port);
2647 	u8 ddc_pin;
2648 
2649 	switch (phy) {
2650 	case PHY_A:
2651 		ddc_pin = GMBUS_PIN_1_BXT;
2652 		break;
2653 	case PHY_B:
2654 		ddc_pin = GMBUS_PIN_2_BXT;
2655 		break;
2656 	case PHY_C:
2657 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2658 		break;
2659 	default:
2660 		MISSING_CASE(phy);
2661 		ddc_pin = GMBUS_PIN_1_BXT;
2662 		break;
2663 	}
2664 	return ddc_pin;
2665 }
2666 
2667 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2668 {
2669 	enum phy phy = intel_port_to_phy(dev_priv, port);
2670 
2671 	WARN_ON(port == PORT_C);
2672 
2673 	/*
2674 	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2675 	 * final two outputs use type-c pins, even though they're actually
2676 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2677 	 * all outputs.
2678 	 */
2679 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2680 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2681 
2682 	return GMBUS_PIN_1_BXT + phy;
2683 }
2684 
2685 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2686 {
2687 	enum phy phy = intel_port_to_phy(i915, port);
2688 
2689 	drm_WARN_ON(&i915->drm, port == PORT_A);
2690 
2691 	/*
2692 	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2693 	 * final two outputs use type-c pins, even though they're actually
2694 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2695 	 * all outputs.
2696 	 */
2697 	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2698 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2699 
2700 	return GMBUS_PIN_1_BXT + phy;
2701 }
2702 
2703 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2704 {
2705 	return intel_port_to_phy(dev_priv, port) + 1;
2706 }
2707 
2708 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2709 {
2710 	enum phy phy = intel_port_to_phy(dev_priv, port);
2711 
2712 	WARN_ON(port == PORT_B || port == PORT_C);
2713 
2714 	/*
2715 	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2716 	 * except first combo output.
2717 	 */
2718 	if (phy == PHY_A)
2719 		return GMBUS_PIN_1_BXT;
2720 
2721 	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2722 }
2723 
2724 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2725 			      enum port port)
2726 {
2727 	u8 ddc_pin;
2728 
2729 	switch (port) {
2730 	case PORT_B:
2731 		ddc_pin = GMBUS_PIN_DPB;
2732 		break;
2733 	case PORT_C:
2734 		ddc_pin = GMBUS_PIN_DPC;
2735 		break;
2736 	case PORT_D:
2737 		ddc_pin = GMBUS_PIN_DPD;
2738 		break;
2739 	default:
2740 		MISSING_CASE(port);
2741 		ddc_pin = GMBUS_PIN_DPB;
2742 		break;
2743 	}
2744 	return ddc_pin;
2745 }
2746 
2747 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2748 {
2749 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2750 	enum port port = encoder->port;
2751 	u8 ddc_pin;
2752 
2753 	ddc_pin = intel_bios_alternate_ddc_pin(encoder);
2754 	if (ddc_pin) {
2755 		drm_dbg_kms(&dev_priv->drm,
2756 			    "Using DDC pin 0x%x for port %c (VBT)\n",
2757 			    ddc_pin, port_name(port));
2758 		return ddc_pin;
2759 	}
2760 
2761 	if (IS_ALDERLAKE_S(dev_priv))
2762 		ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2763 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2764 		ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2765 	else if (IS_ROCKETLAKE(dev_priv))
2766 		ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2767 	else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2768 		ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2769 	else if (HAS_PCH_MCC(dev_priv))
2770 		ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2771 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2772 		ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2773 	else if (HAS_PCH_CNP(dev_priv))
2774 		ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2775 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2776 		ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2777 	else if (IS_CHERRYVIEW(dev_priv))
2778 		ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2779 	else
2780 		ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2781 
2782 	drm_dbg_kms(&dev_priv->drm,
2783 		    "Using DDC pin 0x%x for port %c (platform default)\n",
2784 		    ddc_pin, port_name(port));
2785 
2786 	return ddc_pin;
2787 }
2788 
2789 void intel_infoframe_init(struct intel_digital_port *dig_port)
2790 {
2791 	struct drm_i915_private *dev_priv =
2792 		to_i915(dig_port->base.base.dev);
2793 
2794 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2795 		dig_port->write_infoframe = vlv_write_infoframe;
2796 		dig_port->read_infoframe = vlv_read_infoframe;
2797 		dig_port->set_infoframes = vlv_set_infoframes;
2798 		dig_port->infoframes_enabled = vlv_infoframes_enabled;
2799 	} else if (IS_G4X(dev_priv)) {
2800 		dig_port->write_infoframe = g4x_write_infoframe;
2801 		dig_port->read_infoframe = g4x_read_infoframe;
2802 		dig_port->set_infoframes = g4x_set_infoframes;
2803 		dig_port->infoframes_enabled = g4x_infoframes_enabled;
2804 	} else if (HAS_DDI(dev_priv)) {
2805 		if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
2806 			dig_port->write_infoframe = lspcon_write_infoframe;
2807 			dig_port->read_infoframe = lspcon_read_infoframe;
2808 			dig_port->set_infoframes = lspcon_set_infoframes;
2809 			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2810 		} else {
2811 			dig_port->write_infoframe = hsw_write_infoframe;
2812 			dig_port->read_infoframe = hsw_read_infoframe;
2813 			dig_port->set_infoframes = hsw_set_infoframes;
2814 			dig_port->infoframes_enabled = hsw_infoframes_enabled;
2815 		}
2816 	} else if (HAS_PCH_IBX(dev_priv)) {
2817 		dig_port->write_infoframe = ibx_write_infoframe;
2818 		dig_port->read_infoframe = ibx_read_infoframe;
2819 		dig_port->set_infoframes = ibx_set_infoframes;
2820 		dig_port->infoframes_enabled = ibx_infoframes_enabled;
2821 	} else {
2822 		dig_port->write_infoframe = cpt_write_infoframe;
2823 		dig_port->read_infoframe = cpt_read_infoframe;
2824 		dig_port->set_infoframes = cpt_set_infoframes;
2825 		dig_port->infoframes_enabled = cpt_infoframes_enabled;
2826 	}
2827 }
2828 
2829 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2830 			       struct intel_connector *intel_connector)
2831 {
2832 	struct drm_connector *connector = &intel_connector->base;
2833 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2834 	struct intel_encoder *intel_encoder = &dig_port->base;
2835 	struct drm_device *dev = intel_encoder->base.dev;
2836 	struct drm_i915_private *dev_priv = to_i915(dev);
2837 	struct i2c_adapter *ddc;
2838 	enum port port = intel_encoder->port;
2839 	struct cec_connector_info conn_info;
2840 
2841 	drm_dbg_kms(&dev_priv->drm,
2842 		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
2843 		    intel_encoder->base.base.id, intel_encoder->base.name);
2844 
2845 	if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2846 		return;
2847 
2848 	if (drm_WARN(dev, dig_port->max_lanes < 4,
2849 		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2850 		     dig_port->max_lanes, intel_encoder->base.base.id,
2851 		     intel_encoder->base.name))
2852 		return;
2853 
2854 	intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2855 	ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2856 
2857 	drm_connector_init_with_ddc(dev, connector,
2858 				    &intel_hdmi_connector_funcs,
2859 				    DRM_MODE_CONNECTOR_HDMIA,
2860 				    ddc);
2861 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2862 
2863 	connector->interlace_allowed = 1;
2864 	connector->doublescan_allowed = 0;
2865 	connector->stereo_allowed = 1;
2866 
2867 	if (DISPLAY_VER(dev_priv) >= 10)
2868 		connector->ycbcr_420_allowed = true;
2869 
2870 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
2871 
2872 	if (HAS_DDI(dev_priv))
2873 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2874 	else
2875 		intel_connector->get_hw_state = intel_connector_get_hw_state;
2876 
2877 	intel_hdmi_add_properties(intel_hdmi, connector);
2878 
2879 	intel_connector_attach_encoder(intel_connector, intel_encoder);
2880 	intel_hdmi->attached_connector = intel_connector;
2881 
2882 	if (is_hdcp_supported(dev_priv, port)) {
2883 		int ret = intel_hdcp_init(intel_connector, dig_port,
2884 					  &intel_hdmi_hdcp_shim);
2885 		if (ret)
2886 			drm_dbg_kms(&dev_priv->drm,
2887 				    "HDCP init failed, skipping.\n");
2888 	}
2889 
2890 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2891 	 * 0xd.  Failure to do so will result in spurious interrupts being
2892 	 * generated on the port when a cable is not attached.
2893 	 */
2894 	if (IS_G45(dev_priv)) {
2895 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
2896 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
2897 		               (temp & ~0xf) | 0xd);
2898 	}
2899 
2900 	cec_fill_conn_info_from_drm(&conn_info, connector);
2901 
2902 	intel_hdmi->cec_notifier =
2903 		cec_notifier_conn_register(dev->dev, port_identifier(port),
2904 					   &conn_info);
2905 	if (!intel_hdmi->cec_notifier)
2906 		drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
2907 }
2908 
2909 /*
2910  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
2911  * @vactive: Vactive of a display mode
2912  *
2913  * @return: appropriate dsc slice height for a given mode.
2914  */
2915 int intel_hdmi_dsc_get_slice_height(int vactive)
2916 {
2917 	int slice_height;
2918 
2919 	/*
2920 	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
2921 	 * Select smallest slice height >=96, that results in a valid PPS and
2922 	 * requires minimum padding lines required for final slice.
2923 	 *
2924 	 * Assumption : Vactive is even.
2925 	 */
2926 	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
2927 		if (vactive % slice_height == 0)
2928 			return slice_height;
2929 
2930 	return 0;
2931 }
2932 
2933 /*
2934  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
2935  * and dsc decoder capabilities
2936  *
2937  * @crtc_state: intel crtc_state
2938  * @src_max_slices: maximum slices supported by the DSC encoder
2939  * @src_max_slice_width: maximum slice width supported by DSC encoder
2940  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
2941  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
2942  *
2943  * @return: num of dsc slices that can be supported by the dsc encoder
2944  * and decoder.
2945  */
2946 int
2947 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
2948 			      int src_max_slices, int src_max_slice_width,
2949 			      int hdmi_max_slices, int hdmi_throughput)
2950 {
2951 /* Pixel rates in KPixels/sec */
2952 #define HDMI_DSC_PEAK_PIXEL_RATE		2720000
2953 /*
2954  * Rates at which the source and sink are required to process pixels in each
2955  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
2956  */
2957 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
2958 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
2959 
2960 /* Spec limits the slice width to 2720 pixels */
2961 #define MAX_HDMI_SLICE_WIDTH			2720
2962 	int kslice_adjust;
2963 	int adjusted_clk_khz;
2964 	int min_slices;
2965 	int target_slices;
2966 	int max_throughput; /* max clock freq. in khz per slice */
2967 	int max_slice_width;
2968 	int slice_width;
2969 	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
2970 
2971 	if (!hdmi_throughput)
2972 		return 0;
2973 
2974 	/*
2975 	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
2976 	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
2977 	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
2978 	 * dividing adjusted clock value by 10.
2979 	 */
2980 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
2981 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2982 		kslice_adjust = 10;
2983 	else
2984 		kslice_adjust = 5;
2985 
2986 	/*
2987 	 * As per spec, the rate at which the source and the sink process
2988 	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
2989 	 * This depends upon the pixel clock rate and output formats
2990 	 * (kslice adjust).
2991 	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
2992 	 * at max 340MHz, otherwise they can be processed at max 400MHz.
2993 	 */
2994 
2995 	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
2996 
2997 	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
2998 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
2999 	else
3000 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3001 
3002 	/*
3003 	 * Taking into account the sink's capability for maximum
3004 	 * clock per slice (in MHz) as read from HF-VSDB.
3005 	 */
3006 	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3007 
3008 	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3009 	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3010 
3011 	/*
3012 	 * Keep on increasing the num of slices/line, starting from min_slices
3013 	 * per line till we get such a number, for which the slice_width is
3014 	 * just less than max_slice_width. The slices/line selected should be
3015 	 * less than or equal to the max horizontal slices that the combination
3016 	 * of PCON encoder and HDMI decoder can support.
3017 	 */
3018 	slice_width = max_slice_width;
3019 
3020 	do {
3021 		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3022 			target_slices = 1;
3023 		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3024 			target_slices = 2;
3025 		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3026 			target_slices = 4;
3027 		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3028 			target_slices = 8;
3029 		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3030 			target_slices = 12;
3031 		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3032 			target_slices = 16;
3033 		else
3034 			return 0;
3035 
3036 		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3037 		if (slice_width >= max_slice_width)
3038 			min_slices = target_slices + 1;
3039 	} while (slice_width >= max_slice_width);
3040 
3041 	return target_slices;
3042 }
3043 
3044 /*
3045  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3046  * source and sink capabilities.
3047  *
3048  * @src_fraction_bpp: fractional bpp supported by the source
3049  * @slice_width: dsc slice width supported by the source and sink
3050  * @num_slices: num of slices supported by the source and sink
3051  * @output_format: video output format
3052  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3053  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3054  *
3055  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3056  */
3057 int
3058 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3059 		       int output_format, bool hdmi_all_bpp,
3060 		       int hdmi_max_chunk_bytes)
3061 {
3062 	int max_dsc_bpp, min_dsc_bpp;
3063 	int target_bytes;
3064 	bool bpp_found = false;
3065 	int bpp_decrement_x16;
3066 	int bpp_target;
3067 	int bpp_target_x16;
3068 
3069 	/*
3070 	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3071 	 * Start with the max bpp and keep on decrementing with
3072 	 * fractional bpp, if supported by PCON DSC encoder
3073 	 *
3074 	 * for each bpp we check if no of bytes can be supported by HDMI sink
3075 	 */
3076 
3077 	/* Assuming: bpc as 8*/
3078 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3079 		min_dsc_bpp = 6;
3080 		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3081 	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3082 		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3083 		min_dsc_bpp = 8;
3084 		max_dsc_bpp = 3 * 8; /* 3*bpc */
3085 	} else {
3086 		/* Assuming 4:2:2 encoding */
3087 		min_dsc_bpp = 7;
3088 		max_dsc_bpp = 2 * 8; /* 2*bpc */
3089 	}
3090 
3091 	/*
3092 	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3093 	 * Section 7.7.34 : Source shall not enable compressed Video
3094 	 * Transport with bpp_target settings above 12 bpp unless
3095 	 * DSC_all_bpp is set to 1.
3096 	 */
3097 	if (!hdmi_all_bpp)
3098 		max_dsc_bpp = min(max_dsc_bpp, 12);
3099 
3100 	/*
3101 	 * The Sink has a limit of compressed data in bytes for a scanline,
3102 	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3103 	 * The no. of bytes depend on the target bits per pixel that the
3104 	 * source configures. So we start with the max_bpp and calculate
3105 	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3106 	 * till we get the target_chunk_bytes just less than what the sink's
3107 	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3108 	 *
3109 	 * The decrement is according to the fractional support from PCON DSC
3110 	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3111 	 *
3112 	 * bpp_target_x16 = bpp_target * 16
3113 	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3114 	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3115 	 */
3116 
3117 	bpp_target = max_dsc_bpp;
3118 
3119 	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3120 	if (!src_fractional_bpp)
3121 		src_fractional_bpp = 1;
3122 	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3123 	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3124 
3125 	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3126 		int bpp;
3127 
3128 		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3129 		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3130 		if (target_bytes <= hdmi_max_chunk_bytes) {
3131 			bpp_found = true;
3132 			break;
3133 		}
3134 		bpp_target_x16 -= bpp_decrement_x16;
3135 	}
3136 	if (bpp_found)
3137 		return bpp_target_x16;
3138 
3139 	return 0;
3140 }
3141