1 /* 2 * Copyright 2006 Dave Airlie <airlied@linux.ie> 3 * Copyright © 2006-2009 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Eric Anholt <eric@anholt.net> 26 * Jesse Barnes <jesse.barnes@intel.com> 27 */ 28 29 #include <linux/delay.h> 30 #include <linux/hdmi.h> 31 #include <linux/i2c.h> 32 #include <linux/slab.h> 33 34 #include <drm/drm_atomic_helper.h> 35 #include <drm/drm_crtc.h> 36 #include <drm/drm_edid.h> 37 #include <drm/drm_hdcp.h> 38 #include <drm/drm_scdc_helper.h> 39 #include <drm/intel_lpe_audio.h> 40 41 #include "i915_debugfs.h" 42 #include "i915_drv.h" 43 #include "intel_atomic.h" 44 #include "intel_audio.h" 45 #include "intel_connector.h" 46 #include "intel_ddi.h" 47 #include "intel_display_types.h" 48 #include "intel_dp.h" 49 #include "intel_dpio_phy.h" 50 #include "intel_fifo_underrun.h" 51 #include "intel_gmbus.h" 52 #include "intel_hdcp.h" 53 #include "intel_hdmi.h" 54 #include "intel_hotplug.h" 55 #include "intel_lspcon.h" 56 #include "intel_panel.h" 57 #include "intel_sdvo.h" 58 #include "intel_sideband.h" 59 60 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi) 61 { 62 return hdmi_to_dig_port(intel_hdmi)->base.base.dev; 63 } 64 65 static void 66 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi) 67 { 68 struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi); 69 struct drm_i915_private *dev_priv = to_i915(dev); 70 u32 enabled_bits; 71 72 enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE; 73 74 drm_WARN(dev, 75 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits, 76 "HDMI port enabled, expecting disabled\n"); 77 } 78 79 static void 80 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv, 81 enum transcoder cpu_transcoder) 82 { 83 drm_WARN(&dev_priv->drm, 84 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) & 85 TRANS_DDI_FUNC_ENABLE, 86 "HDMI transcoder function enabled, expecting disabled\n"); 87 } 88 89 struct intel_hdmi *enc_to_intel_hdmi(struct intel_encoder *encoder) 90 { 91 struct intel_digital_port *intel_dig_port = 92 container_of(&encoder->base, struct intel_digital_port, 93 base.base); 94 return &intel_dig_port->hdmi; 95 } 96 97 static struct intel_hdmi *intel_attached_hdmi(struct intel_connector *connector) 98 { 99 return enc_to_intel_hdmi(intel_attached_encoder(connector)); 100 } 101 102 static u32 g4x_infoframe_index(unsigned int type) 103 { 104 switch (type) { 105 case HDMI_PACKET_TYPE_GAMUT_METADATA: 106 return VIDEO_DIP_SELECT_GAMUT; 107 case HDMI_INFOFRAME_TYPE_AVI: 108 return VIDEO_DIP_SELECT_AVI; 109 case HDMI_INFOFRAME_TYPE_SPD: 110 return VIDEO_DIP_SELECT_SPD; 111 case HDMI_INFOFRAME_TYPE_VENDOR: 112 return VIDEO_DIP_SELECT_VENDOR; 113 default: 114 MISSING_CASE(type); 115 return 0; 116 } 117 } 118 119 static u32 g4x_infoframe_enable(unsigned int type) 120 { 121 switch (type) { 122 case HDMI_PACKET_TYPE_GENERAL_CONTROL: 123 return VIDEO_DIP_ENABLE_GCP; 124 case HDMI_PACKET_TYPE_GAMUT_METADATA: 125 return VIDEO_DIP_ENABLE_GAMUT; 126 case DP_SDP_VSC: 127 return 0; 128 case HDMI_INFOFRAME_TYPE_AVI: 129 return VIDEO_DIP_ENABLE_AVI; 130 case HDMI_INFOFRAME_TYPE_SPD: 131 return VIDEO_DIP_ENABLE_SPD; 132 case HDMI_INFOFRAME_TYPE_VENDOR: 133 return VIDEO_DIP_ENABLE_VENDOR; 134 case HDMI_INFOFRAME_TYPE_DRM: 135 return 0; 136 default: 137 MISSING_CASE(type); 138 return 0; 139 } 140 } 141 142 static u32 hsw_infoframe_enable(unsigned int type) 143 { 144 switch (type) { 145 case HDMI_PACKET_TYPE_GENERAL_CONTROL: 146 return VIDEO_DIP_ENABLE_GCP_HSW; 147 case HDMI_PACKET_TYPE_GAMUT_METADATA: 148 return VIDEO_DIP_ENABLE_GMP_HSW; 149 case DP_SDP_VSC: 150 return VIDEO_DIP_ENABLE_VSC_HSW; 151 case DP_SDP_PPS: 152 return VDIP_ENABLE_PPS; 153 case HDMI_INFOFRAME_TYPE_AVI: 154 return VIDEO_DIP_ENABLE_AVI_HSW; 155 case HDMI_INFOFRAME_TYPE_SPD: 156 return VIDEO_DIP_ENABLE_SPD_HSW; 157 case HDMI_INFOFRAME_TYPE_VENDOR: 158 return VIDEO_DIP_ENABLE_VS_HSW; 159 case HDMI_INFOFRAME_TYPE_DRM: 160 return VIDEO_DIP_ENABLE_DRM_GLK; 161 default: 162 MISSING_CASE(type); 163 return 0; 164 } 165 } 166 167 static i915_reg_t 168 hsw_dip_data_reg(struct drm_i915_private *dev_priv, 169 enum transcoder cpu_transcoder, 170 unsigned int type, 171 int i) 172 { 173 switch (type) { 174 case HDMI_PACKET_TYPE_GAMUT_METADATA: 175 return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i); 176 case DP_SDP_VSC: 177 return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i); 178 case DP_SDP_PPS: 179 return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i); 180 case HDMI_INFOFRAME_TYPE_AVI: 181 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i); 182 case HDMI_INFOFRAME_TYPE_SPD: 183 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i); 184 case HDMI_INFOFRAME_TYPE_VENDOR: 185 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i); 186 case HDMI_INFOFRAME_TYPE_DRM: 187 return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i); 188 default: 189 MISSING_CASE(type); 190 return INVALID_MMIO_REG; 191 } 192 } 193 194 static int hsw_dip_data_size(struct drm_i915_private *dev_priv, 195 unsigned int type) 196 { 197 switch (type) { 198 case DP_SDP_VSC: 199 return VIDEO_DIP_VSC_DATA_SIZE; 200 case DP_SDP_PPS: 201 return VIDEO_DIP_PPS_DATA_SIZE; 202 case HDMI_PACKET_TYPE_GAMUT_METADATA: 203 if (INTEL_GEN(dev_priv) >= 11) 204 return VIDEO_DIP_GMP_DATA_SIZE; 205 else 206 return VIDEO_DIP_DATA_SIZE; 207 default: 208 return VIDEO_DIP_DATA_SIZE; 209 } 210 } 211 212 static void g4x_write_infoframe(struct intel_encoder *encoder, 213 const struct intel_crtc_state *crtc_state, 214 unsigned int type, 215 const void *frame, ssize_t len) 216 { 217 const u32 *data = frame; 218 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 219 u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL); 220 int i; 221 222 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 223 "Writing DIP with CTL reg disabled\n"); 224 225 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 226 val |= g4x_infoframe_index(type); 227 228 val &= ~g4x_infoframe_enable(type); 229 230 intel_de_write(dev_priv, VIDEO_DIP_CTL, val); 231 232 for (i = 0; i < len; i += 4) { 233 intel_de_write(dev_priv, VIDEO_DIP_DATA, *data); 234 data++; 235 } 236 /* Write every possible data byte to force correct ECC calculation. */ 237 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 238 intel_de_write(dev_priv, VIDEO_DIP_DATA, 0); 239 240 val |= g4x_infoframe_enable(type); 241 val &= ~VIDEO_DIP_FREQ_MASK; 242 val |= VIDEO_DIP_FREQ_VSYNC; 243 244 intel_de_write(dev_priv, VIDEO_DIP_CTL, val); 245 intel_de_posting_read(dev_priv, VIDEO_DIP_CTL); 246 } 247 248 static void g4x_read_infoframe(struct intel_encoder *encoder, 249 const struct intel_crtc_state *crtc_state, 250 unsigned int type, 251 void *frame, ssize_t len) 252 { 253 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 254 u32 val, *data = frame; 255 int i; 256 257 val = intel_de_read(dev_priv, VIDEO_DIP_CTL); 258 259 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 260 val |= g4x_infoframe_index(type); 261 262 intel_de_write(dev_priv, VIDEO_DIP_CTL, val); 263 264 for (i = 0; i < len; i += 4) 265 *data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA); 266 } 267 268 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder, 269 const struct intel_crtc_state *pipe_config) 270 { 271 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 272 u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL); 273 274 if ((val & VIDEO_DIP_ENABLE) == 0) 275 return 0; 276 277 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) 278 return 0; 279 280 return val & (VIDEO_DIP_ENABLE_AVI | 281 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); 282 } 283 284 static void ibx_write_infoframe(struct intel_encoder *encoder, 285 const struct intel_crtc_state *crtc_state, 286 unsigned int type, 287 const void *frame, ssize_t len) 288 { 289 const u32 *data = frame; 290 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 291 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 292 i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe); 293 u32 val = intel_de_read(dev_priv, reg); 294 int i; 295 296 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 297 "Writing DIP with CTL reg disabled\n"); 298 299 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 300 val |= g4x_infoframe_index(type); 301 302 val &= ~g4x_infoframe_enable(type); 303 304 intel_de_write(dev_priv, reg, val); 305 306 for (i = 0; i < len; i += 4) { 307 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 308 *data); 309 data++; 310 } 311 /* Write every possible data byte to force correct ECC calculation. */ 312 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 313 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0); 314 315 val |= g4x_infoframe_enable(type); 316 val &= ~VIDEO_DIP_FREQ_MASK; 317 val |= VIDEO_DIP_FREQ_VSYNC; 318 319 intel_de_write(dev_priv, reg, val); 320 intel_de_posting_read(dev_priv, reg); 321 } 322 323 static void ibx_read_infoframe(struct intel_encoder *encoder, 324 const struct intel_crtc_state *crtc_state, 325 unsigned int type, 326 void *frame, ssize_t len) 327 { 328 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 329 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 330 u32 val, *data = frame; 331 int i; 332 333 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe)); 334 335 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 336 val |= g4x_infoframe_index(type); 337 338 intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val); 339 340 for (i = 0; i < len; i += 4) 341 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe)); 342 } 343 344 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder, 345 const struct intel_crtc_state *pipe_config) 346 { 347 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 348 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; 349 i915_reg_t reg = TVIDEO_DIP_CTL(pipe); 350 u32 val = intel_de_read(dev_priv, reg); 351 352 if ((val & VIDEO_DIP_ENABLE) == 0) 353 return 0; 354 355 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) 356 return 0; 357 358 return val & (VIDEO_DIP_ENABLE_AVI | 359 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 360 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 361 } 362 363 static void cpt_write_infoframe(struct intel_encoder *encoder, 364 const struct intel_crtc_state *crtc_state, 365 unsigned int type, 366 const void *frame, ssize_t len) 367 { 368 const u32 *data = frame; 369 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 370 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 371 i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe); 372 u32 val = intel_de_read(dev_priv, reg); 373 int i; 374 375 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 376 "Writing DIP with CTL reg disabled\n"); 377 378 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 379 val |= g4x_infoframe_index(type); 380 381 /* The DIP control register spec says that we need to update the AVI 382 * infoframe without clearing its enable bit */ 383 if (type != HDMI_INFOFRAME_TYPE_AVI) 384 val &= ~g4x_infoframe_enable(type); 385 386 intel_de_write(dev_priv, reg, val); 387 388 for (i = 0; i < len; i += 4) { 389 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 390 *data); 391 data++; 392 } 393 /* Write every possible data byte to force correct ECC calculation. */ 394 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 395 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0); 396 397 val |= g4x_infoframe_enable(type); 398 val &= ~VIDEO_DIP_FREQ_MASK; 399 val |= VIDEO_DIP_FREQ_VSYNC; 400 401 intel_de_write(dev_priv, reg, val); 402 intel_de_posting_read(dev_priv, reg); 403 } 404 405 static void cpt_read_infoframe(struct intel_encoder *encoder, 406 const struct intel_crtc_state *crtc_state, 407 unsigned int type, 408 void *frame, ssize_t len) 409 { 410 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 411 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 412 u32 val, *data = frame; 413 int i; 414 415 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe)); 416 417 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 418 val |= g4x_infoframe_index(type); 419 420 intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val); 421 422 for (i = 0; i < len; i += 4) 423 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe)); 424 } 425 426 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder, 427 const struct intel_crtc_state *pipe_config) 428 { 429 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 430 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; 431 u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe)); 432 433 if ((val & VIDEO_DIP_ENABLE) == 0) 434 return 0; 435 436 return val & (VIDEO_DIP_ENABLE_AVI | 437 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 438 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 439 } 440 441 static void vlv_write_infoframe(struct intel_encoder *encoder, 442 const struct intel_crtc_state *crtc_state, 443 unsigned int type, 444 const void *frame, ssize_t len) 445 { 446 const u32 *data = frame; 447 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 448 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 449 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe); 450 u32 val = intel_de_read(dev_priv, reg); 451 int i; 452 453 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 454 "Writing DIP with CTL reg disabled\n"); 455 456 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 457 val |= g4x_infoframe_index(type); 458 459 val &= ~g4x_infoframe_enable(type); 460 461 intel_de_write(dev_priv, reg, val); 462 463 for (i = 0; i < len; i += 4) { 464 intel_de_write(dev_priv, 465 VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data); 466 data++; 467 } 468 /* Write every possible data byte to force correct ECC calculation. */ 469 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 470 intel_de_write(dev_priv, 471 VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0); 472 473 val |= g4x_infoframe_enable(type); 474 val &= ~VIDEO_DIP_FREQ_MASK; 475 val |= VIDEO_DIP_FREQ_VSYNC; 476 477 intel_de_write(dev_priv, reg, val); 478 intel_de_posting_read(dev_priv, reg); 479 } 480 481 static void vlv_read_infoframe(struct intel_encoder *encoder, 482 const struct intel_crtc_state *crtc_state, 483 unsigned int type, 484 void *frame, ssize_t len) 485 { 486 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 487 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 488 u32 val, *data = frame; 489 int i; 490 491 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe)); 492 493 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 494 val |= g4x_infoframe_index(type); 495 496 intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val); 497 498 for (i = 0; i < len; i += 4) 499 *data++ = intel_de_read(dev_priv, 500 VLV_TVIDEO_DIP_DATA(crtc->pipe)); 501 } 502 503 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder, 504 const struct intel_crtc_state *pipe_config) 505 { 506 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 507 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; 508 u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe)); 509 510 if ((val & VIDEO_DIP_ENABLE) == 0) 511 return 0; 512 513 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) 514 return 0; 515 516 return val & (VIDEO_DIP_ENABLE_AVI | 517 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 518 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 519 } 520 521 static void hsw_write_infoframe(struct intel_encoder *encoder, 522 const struct intel_crtc_state *crtc_state, 523 unsigned int type, 524 const void *frame, ssize_t len) 525 { 526 const u32 *data = frame; 527 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 528 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 529 i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder); 530 int data_size; 531 int i; 532 u32 val = intel_de_read(dev_priv, ctl_reg); 533 534 data_size = hsw_dip_data_size(dev_priv, type); 535 536 drm_WARN_ON(&dev_priv->drm, len > data_size); 537 538 val &= ~hsw_infoframe_enable(type); 539 intel_de_write(dev_priv, ctl_reg, val); 540 541 for (i = 0; i < len; i += 4) { 542 intel_de_write(dev_priv, 543 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2), 544 *data); 545 data++; 546 } 547 /* Write every possible data byte to force correct ECC calculation. */ 548 for (; i < data_size; i += 4) 549 intel_de_write(dev_priv, 550 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2), 551 0); 552 553 val |= hsw_infoframe_enable(type); 554 intel_de_write(dev_priv, ctl_reg, val); 555 intel_de_posting_read(dev_priv, ctl_reg); 556 } 557 558 static void hsw_read_infoframe(struct intel_encoder *encoder, 559 const struct intel_crtc_state *crtc_state, 560 unsigned int type, 561 void *frame, ssize_t len) 562 { 563 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 564 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 565 u32 val, *data = frame; 566 int i; 567 568 val = intel_de_read(dev_priv, HSW_TVIDEO_DIP_CTL(cpu_transcoder)); 569 570 for (i = 0; i < len; i += 4) 571 *data++ = intel_de_read(dev_priv, 572 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2)); 573 } 574 575 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder, 576 const struct intel_crtc_state *pipe_config) 577 { 578 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 579 u32 val = intel_de_read(dev_priv, 580 HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder)); 581 u32 mask; 582 583 mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW | 584 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | 585 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW); 586 587 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 588 mask |= VIDEO_DIP_ENABLE_DRM_GLK; 589 590 return val & mask; 591 } 592 593 static const u8 infoframe_type_to_idx[] = { 594 HDMI_PACKET_TYPE_GENERAL_CONTROL, 595 HDMI_PACKET_TYPE_GAMUT_METADATA, 596 DP_SDP_VSC, 597 HDMI_INFOFRAME_TYPE_AVI, 598 HDMI_INFOFRAME_TYPE_SPD, 599 HDMI_INFOFRAME_TYPE_VENDOR, 600 HDMI_INFOFRAME_TYPE_DRM, 601 }; 602 603 u32 intel_hdmi_infoframe_enable(unsigned int type) 604 { 605 int i; 606 607 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) { 608 if (infoframe_type_to_idx[i] == type) 609 return BIT(i); 610 } 611 612 return 0; 613 } 614 615 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder, 616 const struct intel_crtc_state *crtc_state) 617 { 618 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 619 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 620 u32 val, ret = 0; 621 int i; 622 623 val = dig_port->infoframes_enabled(encoder, crtc_state); 624 625 /* map from hardware bits to dip idx */ 626 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) { 627 unsigned int type = infoframe_type_to_idx[i]; 628 629 if (HAS_DDI(dev_priv)) { 630 if (val & hsw_infoframe_enable(type)) 631 ret |= BIT(i); 632 } else { 633 if (val & g4x_infoframe_enable(type)) 634 ret |= BIT(i); 635 } 636 } 637 638 return ret; 639 } 640 641 /* 642 * The data we write to the DIP data buffer registers is 1 byte bigger than the 643 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting 644 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be 645 * used for both technologies. 646 * 647 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0 648 * DW1: DB3 | DB2 | DB1 | DB0 649 * DW2: DB7 | DB6 | DB5 | DB4 650 * DW3: ... 651 * 652 * (HB is Header Byte, DB is Data Byte) 653 * 654 * The hdmi pack() functions don't know about that hardware specific hole so we 655 * trick them by giving an offset into the buffer and moving back the header 656 * bytes by one. 657 */ 658 static void intel_write_infoframe(struct intel_encoder *encoder, 659 const struct intel_crtc_state *crtc_state, 660 enum hdmi_infoframe_type type, 661 const union hdmi_infoframe *frame) 662 { 663 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 664 u8 buffer[VIDEO_DIP_DATA_SIZE]; 665 ssize_t len; 666 667 if ((crtc_state->infoframes.enable & 668 intel_hdmi_infoframe_enable(type)) == 0) 669 return; 670 671 if (drm_WARN_ON(encoder->base.dev, frame->any.type != type)) 672 return; 673 674 /* see comment above for the reason for this offset */ 675 len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1); 676 if (drm_WARN_ON(encoder->base.dev, len < 0)) 677 return; 678 679 /* Insert the 'hole' (see big comment above) at position 3 */ 680 memmove(&buffer[0], &buffer[1], 3); 681 buffer[3] = 0; 682 len++; 683 684 intel_dig_port->write_infoframe(encoder, crtc_state, type, buffer, len); 685 } 686 687 void intel_read_infoframe(struct intel_encoder *encoder, 688 const struct intel_crtc_state *crtc_state, 689 enum hdmi_infoframe_type type, 690 union hdmi_infoframe *frame) 691 { 692 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 693 u8 buffer[VIDEO_DIP_DATA_SIZE]; 694 int ret; 695 696 if ((crtc_state->infoframes.enable & 697 intel_hdmi_infoframe_enable(type)) == 0) 698 return; 699 700 intel_dig_port->read_infoframe(encoder, crtc_state, 701 type, buffer, sizeof(buffer)); 702 703 /* Fill the 'hole' (see big comment above) at position 3 */ 704 memmove(&buffer[1], &buffer[0], 3); 705 706 /* see comment above for the reason for this offset */ 707 ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1); 708 if (ret) { 709 drm_dbg_kms(encoder->base.dev, 710 "Failed to unpack infoframe type 0x%02x\n", type); 711 return; 712 } 713 714 if (frame->any.type != type) 715 drm_dbg_kms(encoder->base.dev, 716 "Found the wrong infoframe type 0x%x (expected 0x%02x)\n", 717 frame->any.type, type); 718 } 719 720 static bool 721 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder, 722 struct intel_crtc_state *crtc_state, 723 struct drm_connector_state *conn_state) 724 { 725 struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi; 726 const struct drm_display_mode *adjusted_mode = 727 &crtc_state->hw.adjusted_mode; 728 struct drm_connector *connector = conn_state->connector; 729 int ret; 730 731 if (!crtc_state->has_infoframe) 732 return true; 733 734 crtc_state->infoframes.enable |= 735 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI); 736 737 ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector, 738 adjusted_mode); 739 if (ret) 740 return false; 741 742 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 743 frame->colorspace = HDMI_COLORSPACE_YUV420; 744 else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 745 frame->colorspace = HDMI_COLORSPACE_YUV444; 746 else 747 frame->colorspace = HDMI_COLORSPACE_RGB; 748 749 drm_hdmi_avi_infoframe_colorspace(frame, conn_state); 750 751 /* nonsense combination */ 752 drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range && 753 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 754 755 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) { 756 drm_hdmi_avi_infoframe_quant_range(frame, connector, 757 adjusted_mode, 758 crtc_state->limited_color_range ? 759 HDMI_QUANTIZATION_RANGE_LIMITED : 760 HDMI_QUANTIZATION_RANGE_FULL); 761 } else { 762 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT; 763 frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED; 764 } 765 766 drm_hdmi_avi_infoframe_content_type(frame, conn_state); 767 768 /* TODO: handle pixel repetition for YCBCR420 outputs */ 769 770 ret = hdmi_avi_infoframe_check(frame); 771 if (drm_WARN_ON(encoder->base.dev, ret)) 772 return false; 773 774 return true; 775 } 776 777 static bool 778 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder, 779 struct intel_crtc_state *crtc_state, 780 struct drm_connector_state *conn_state) 781 { 782 struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd; 783 int ret; 784 785 if (!crtc_state->has_infoframe) 786 return true; 787 788 crtc_state->infoframes.enable |= 789 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD); 790 791 ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx"); 792 if (drm_WARN_ON(encoder->base.dev, ret)) 793 return false; 794 795 frame->sdi = HDMI_SPD_SDI_PC; 796 797 ret = hdmi_spd_infoframe_check(frame); 798 if (drm_WARN_ON(encoder->base.dev, ret)) 799 return false; 800 801 return true; 802 } 803 804 static bool 805 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder, 806 struct intel_crtc_state *crtc_state, 807 struct drm_connector_state *conn_state) 808 { 809 struct hdmi_vendor_infoframe *frame = 810 &crtc_state->infoframes.hdmi.vendor.hdmi; 811 const struct drm_display_info *info = 812 &conn_state->connector->display_info; 813 int ret; 814 815 if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe) 816 return true; 817 818 crtc_state->infoframes.enable |= 819 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR); 820 821 ret = drm_hdmi_vendor_infoframe_from_display_mode(frame, 822 conn_state->connector, 823 &crtc_state->hw.adjusted_mode); 824 if (drm_WARN_ON(encoder->base.dev, ret)) 825 return false; 826 827 ret = hdmi_vendor_infoframe_check(frame); 828 if (drm_WARN_ON(encoder->base.dev, ret)) 829 return false; 830 831 return true; 832 } 833 834 static bool 835 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder, 836 struct intel_crtc_state *crtc_state, 837 struct drm_connector_state *conn_state) 838 { 839 struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm; 840 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 841 int ret; 842 843 if (!(INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))) 844 return true; 845 846 if (!crtc_state->has_infoframe) 847 return true; 848 849 if (!conn_state->hdr_output_metadata) 850 return true; 851 852 crtc_state->infoframes.enable |= 853 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM); 854 855 ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state); 856 if (ret < 0) { 857 drm_dbg_kms(&dev_priv->drm, 858 "couldn't set HDR metadata in infoframe\n"); 859 return false; 860 } 861 862 ret = hdmi_drm_infoframe_check(frame); 863 if (drm_WARN_ON(&dev_priv->drm, ret)) 864 return false; 865 866 return true; 867 } 868 869 static void g4x_set_infoframes(struct intel_encoder *encoder, 870 bool enable, 871 const struct intel_crtc_state *crtc_state, 872 const struct drm_connector_state *conn_state) 873 { 874 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 875 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 876 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi; 877 i915_reg_t reg = VIDEO_DIP_CTL; 878 u32 val = intel_de_read(dev_priv, reg); 879 u32 port = VIDEO_DIP_PORT(encoder->port); 880 881 assert_hdmi_port_disabled(intel_hdmi); 882 883 /* If the registers were not initialized yet, they might be zeroes, 884 * which means we're selecting the AVI DIP and we're setting its 885 * frequency to once. This seems to really confuse the HW and make 886 * things stop working (the register spec says the AVI always needs to 887 * be sent every VSync). So here we avoid writing to the register more 888 * than we need and also explicitly select the AVI DIP and explicitly 889 * set its frequency to every VSync. Avoiding to write it twice seems to 890 * be enough to solve the problem, but being defensive shouldn't hurt us 891 * either. */ 892 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 893 894 if (!enable) { 895 if (!(val & VIDEO_DIP_ENABLE)) 896 return; 897 if (port != (val & VIDEO_DIP_PORT_MASK)) { 898 drm_dbg_kms(&dev_priv->drm, 899 "video DIP still enabled on port %c\n", 900 (val & VIDEO_DIP_PORT_MASK) >> 29); 901 return; 902 } 903 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 904 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); 905 intel_de_write(dev_priv, reg, val); 906 intel_de_posting_read(dev_priv, reg); 907 return; 908 } 909 910 if (port != (val & VIDEO_DIP_PORT_MASK)) { 911 if (val & VIDEO_DIP_ENABLE) { 912 drm_dbg_kms(&dev_priv->drm, 913 "video DIP already enabled on port %c\n", 914 (val & VIDEO_DIP_PORT_MASK) >> 29); 915 return; 916 } 917 val &= ~VIDEO_DIP_PORT_MASK; 918 val |= port; 919 } 920 921 val |= VIDEO_DIP_ENABLE; 922 val &= ~(VIDEO_DIP_ENABLE_AVI | 923 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); 924 925 intel_de_write(dev_priv, reg, val); 926 intel_de_posting_read(dev_priv, reg); 927 928 intel_write_infoframe(encoder, crtc_state, 929 HDMI_INFOFRAME_TYPE_AVI, 930 &crtc_state->infoframes.avi); 931 intel_write_infoframe(encoder, crtc_state, 932 HDMI_INFOFRAME_TYPE_SPD, 933 &crtc_state->infoframes.spd); 934 intel_write_infoframe(encoder, crtc_state, 935 HDMI_INFOFRAME_TYPE_VENDOR, 936 &crtc_state->infoframes.hdmi); 937 } 938 939 /* 940 * Determine if default_phase=1 can be indicated in the GCP infoframe. 941 * 942 * From HDMI specification 1.4a: 943 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0 944 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0 945 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase 946 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing 947 * phase of 0 948 */ 949 static bool gcp_default_phase_possible(int pipe_bpp, 950 const struct drm_display_mode *mode) 951 { 952 unsigned int pixels_per_group; 953 954 switch (pipe_bpp) { 955 case 30: 956 /* 4 pixels in 5 clocks */ 957 pixels_per_group = 4; 958 break; 959 case 36: 960 /* 2 pixels in 3 clocks */ 961 pixels_per_group = 2; 962 break; 963 case 48: 964 /* 1 pixel in 2 clocks */ 965 pixels_per_group = 1; 966 break; 967 default: 968 /* phase information not relevant for 8bpc */ 969 return false; 970 } 971 972 return mode->crtc_hdisplay % pixels_per_group == 0 && 973 mode->crtc_htotal % pixels_per_group == 0 && 974 mode->crtc_hblank_start % pixels_per_group == 0 && 975 mode->crtc_hblank_end % pixels_per_group == 0 && 976 mode->crtc_hsync_start % pixels_per_group == 0 && 977 mode->crtc_hsync_end % pixels_per_group == 0 && 978 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 || 979 mode->crtc_htotal/2 % pixels_per_group == 0); 980 } 981 982 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder, 983 const struct intel_crtc_state *crtc_state, 984 const struct drm_connector_state *conn_state) 985 { 986 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 987 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 988 i915_reg_t reg; 989 990 if ((crtc_state->infoframes.enable & 991 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0) 992 return false; 993 994 if (HAS_DDI(dev_priv)) 995 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder); 996 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 997 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe); 998 else if (HAS_PCH_SPLIT(dev_priv)) 999 reg = TVIDEO_DIP_GCP(crtc->pipe); 1000 else 1001 return false; 1002 1003 intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp); 1004 1005 return true; 1006 } 1007 1008 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder, 1009 struct intel_crtc_state *crtc_state) 1010 { 1011 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1012 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1013 i915_reg_t reg; 1014 1015 if ((crtc_state->infoframes.enable & 1016 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0) 1017 return; 1018 1019 if (HAS_DDI(dev_priv)) 1020 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder); 1021 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1022 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe); 1023 else if (HAS_PCH_SPLIT(dev_priv)) 1024 reg = TVIDEO_DIP_GCP(crtc->pipe); 1025 else 1026 return; 1027 1028 crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg); 1029 } 1030 1031 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder, 1032 struct intel_crtc_state *crtc_state, 1033 struct drm_connector_state *conn_state) 1034 { 1035 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1036 1037 if (IS_G4X(dev_priv) || !crtc_state->has_infoframe) 1038 return; 1039 1040 crtc_state->infoframes.enable |= 1041 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL); 1042 1043 /* Indicate color indication for deep color mode */ 1044 if (crtc_state->pipe_bpp > 24) 1045 crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION; 1046 1047 /* Enable default_phase whenever the display mode is suitably aligned */ 1048 if (gcp_default_phase_possible(crtc_state->pipe_bpp, 1049 &crtc_state->hw.adjusted_mode)) 1050 crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE; 1051 } 1052 1053 static void ibx_set_infoframes(struct intel_encoder *encoder, 1054 bool enable, 1055 const struct intel_crtc_state *crtc_state, 1056 const struct drm_connector_state *conn_state) 1057 { 1058 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1059 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 1060 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); 1061 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi; 1062 i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe); 1063 u32 val = intel_de_read(dev_priv, reg); 1064 u32 port = VIDEO_DIP_PORT(encoder->port); 1065 1066 assert_hdmi_port_disabled(intel_hdmi); 1067 1068 /* See the big comment in g4x_set_infoframes() */ 1069 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 1070 1071 if (!enable) { 1072 if (!(val & VIDEO_DIP_ENABLE)) 1073 return; 1074 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 1075 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1076 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1077 intel_de_write(dev_priv, reg, val); 1078 intel_de_posting_read(dev_priv, reg); 1079 return; 1080 } 1081 1082 if (port != (val & VIDEO_DIP_PORT_MASK)) { 1083 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE, 1084 "DIP already enabled on port %c\n", 1085 (val & VIDEO_DIP_PORT_MASK) >> 29); 1086 val &= ~VIDEO_DIP_PORT_MASK; 1087 val |= port; 1088 } 1089 1090 val |= VIDEO_DIP_ENABLE; 1091 val &= ~(VIDEO_DIP_ENABLE_AVI | 1092 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1093 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1094 1095 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1096 val |= VIDEO_DIP_ENABLE_GCP; 1097 1098 intel_de_write(dev_priv, reg, val); 1099 intel_de_posting_read(dev_priv, reg); 1100 1101 intel_write_infoframe(encoder, crtc_state, 1102 HDMI_INFOFRAME_TYPE_AVI, 1103 &crtc_state->infoframes.avi); 1104 intel_write_infoframe(encoder, crtc_state, 1105 HDMI_INFOFRAME_TYPE_SPD, 1106 &crtc_state->infoframes.spd); 1107 intel_write_infoframe(encoder, crtc_state, 1108 HDMI_INFOFRAME_TYPE_VENDOR, 1109 &crtc_state->infoframes.hdmi); 1110 } 1111 1112 static void cpt_set_infoframes(struct intel_encoder *encoder, 1113 bool enable, 1114 const struct intel_crtc_state *crtc_state, 1115 const struct drm_connector_state *conn_state) 1116 { 1117 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 1119 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1120 i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe); 1121 u32 val = intel_de_read(dev_priv, reg); 1122 1123 assert_hdmi_port_disabled(intel_hdmi); 1124 1125 /* See the big comment in g4x_set_infoframes() */ 1126 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 1127 1128 if (!enable) { 1129 if (!(val & VIDEO_DIP_ENABLE)) 1130 return; 1131 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 1132 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1133 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1134 intel_de_write(dev_priv, reg, val); 1135 intel_de_posting_read(dev_priv, reg); 1136 return; 1137 } 1138 1139 /* Set both together, unset both together: see the spec. */ 1140 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI; 1141 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1142 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1143 1144 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1145 val |= VIDEO_DIP_ENABLE_GCP; 1146 1147 intel_de_write(dev_priv, reg, val); 1148 intel_de_posting_read(dev_priv, reg); 1149 1150 intel_write_infoframe(encoder, crtc_state, 1151 HDMI_INFOFRAME_TYPE_AVI, 1152 &crtc_state->infoframes.avi); 1153 intel_write_infoframe(encoder, crtc_state, 1154 HDMI_INFOFRAME_TYPE_SPD, 1155 &crtc_state->infoframes.spd); 1156 intel_write_infoframe(encoder, crtc_state, 1157 HDMI_INFOFRAME_TYPE_VENDOR, 1158 &crtc_state->infoframes.hdmi); 1159 } 1160 1161 static void vlv_set_infoframes(struct intel_encoder *encoder, 1162 bool enable, 1163 const struct intel_crtc_state *crtc_state, 1164 const struct drm_connector_state *conn_state) 1165 { 1166 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1167 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 1168 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1169 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe); 1170 u32 val = intel_de_read(dev_priv, reg); 1171 u32 port = VIDEO_DIP_PORT(encoder->port); 1172 1173 assert_hdmi_port_disabled(intel_hdmi); 1174 1175 /* See the big comment in g4x_set_infoframes() */ 1176 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 1177 1178 if (!enable) { 1179 if (!(val & VIDEO_DIP_ENABLE)) 1180 return; 1181 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 1182 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1183 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1184 intel_de_write(dev_priv, reg, val); 1185 intel_de_posting_read(dev_priv, reg); 1186 return; 1187 } 1188 1189 if (port != (val & VIDEO_DIP_PORT_MASK)) { 1190 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE, 1191 "DIP already enabled on port %c\n", 1192 (val & VIDEO_DIP_PORT_MASK) >> 29); 1193 val &= ~VIDEO_DIP_PORT_MASK; 1194 val |= port; 1195 } 1196 1197 val |= VIDEO_DIP_ENABLE; 1198 val &= ~(VIDEO_DIP_ENABLE_AVI | 1199 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1200 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1201 1202 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1203 val |= VIDEO_DIP_ENABLE_GCP; 1204 1205 intel_de_write(dev_priv, reg, val); 1206 intel_de_posting_read(dev_priv, reg); 1207 1208 intel_write_infoframe(encoder, crtc_state, 1209 HDMI_INFOFRAME_TYPE_AVI, 1210 &crtc_state->infoframes.avi); 1211 intel_write_infoframe(encoder, crtc_state, 1212 HDMI_INFOFRAME_TYPE_SPD, 1213 &crtc_state->infoframes.spd); 1214 intel_write_infoframe(encoder, crtc_state, 1215 HDMI_INFOFRAME_TYPE_VENDOR, 1216 &crtc_state->infoframes.hdmi); 1217 } 1218 1219 static void hsw_set_infoframes(struct intel_encoder *encoder, 1220 bool enable, 1221 const struct intel_crtc_state *crtc_state, 1222 const struct drm_connector_state *conn_state) 1223 { 1224 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1225 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder); 1226 u32 val = intel_de_read(dev_priv, reg); 1227 1228 assert_hdmi_transcoder_func_disabled(dev_priv, 1229 crtc_state->cpu_transcoder); 1230 1231 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW | 1232 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | 1233 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW | 1234 VIDEO_DIP_ENABLE_DRM_GLK); 1235 1236 if (!enable) { 1237 intel_de_write(dev_priv, reg, val); 1238 intel_de_posting_read(dev_priv, reg); 1239 return; 1240 } 1241 1242 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1243 val |= VIDEO_DIP_ENABLE_GCP_HSW; 1244 1245 intel_de_write(dev_priv, reg, val); 1246 intel_de_posting_read(dev_priv, reg); 1247 1248 intel_write_infoframe(encoder, crtc_state, 1249 HDMI_INFOFRAME_TYPE_AVI, 1250 &crtc_state->infoframes.avi); 1251 intel_write_infoframe(encoder, crtc_state, 1252 HDMI_INFOFRAME_TYPE_SPD, 1253 &crtc_state->infoframes.spd); 1254 intel_write_infoframe(encoder, crtc_state, 1255 HDMI_INFOFRAME_TYPE_VENDOR, 1256 &crtc_state->infoframes.hdmi); 1257 intel_write_infoframe(encoder, crtc_state, 1258 HDMI_INFOFRAME_TYPE_DRM, 1259 &crtc_state->infoframes.drm); 1260 } 1261 1262 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable) 1263 { 1264 struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi)); 1265 struct i2c_adapter *adapter = 1266 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); 1267 1268 if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI) 1269 return; 1270 1271 drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n", 1272 enable ? "Enabling" : "Disabling"); 1273 1274 drm_dp_dual_mode_set_tmds_output(hdmi->dp_dual_mode.type, 1275 adapter, enable); 1276 } 1277 1278 static int intel_hdmi_hdcp_read(struct intel_digital_port *intel_dig_port, 1279 unsigned int offset, void *buffer, size_t size) 1280 { 1281 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 1282 struct intel_hdmi *hdmi = &intel_dig_port->hdmi; 1283 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915, 1284 hdmi->ddc_bus); 1285 int ret; 1286 u8 start = offset & 0xff; 1287 struct i2c_msg msgs[] = { 1288 { 1289 .addr = DRM_HDCP_DDC_ADDR, 1290 .flags = 0, 1291 .len = 1, 1292 .buf = &start, 1293 }, 1294 { 1295 .addr = DRM_HDCP_DDC_ADDR, 1296 .flags = I2C_M_RD, 1297 .len = size, 1298 .buf = buffer 1299 } 1300 }; 1301 ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs)); 1302 if (ret == ARRAY_SIZE(msgs)) 1303 return 0; 1304 return ret >= 0 ? -EIO : ret; 1305 } 1306 1307 static int intel_hdmi_hdcp_write(struct intel_digital_port *intel_dig_port, 1308 unsigned int offset, void *buffer, size_t size) 1309 { 1310 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 1311 struct intel_hdmi *hdmi = &intel_dig_port->hdmi; 1312 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915, 1313 hdmi->ddc_bus); 1314 int ret; 1315 u8 *write_buf; 1316 struct i2c_msg msg; 1317 1318 write_buf = kzalloc(size + 1, GFP_KERNEL); 1319 if (!write_buf) 1320 return -ENOMEM; 1321 1322 write_buf[0] = offset & 0xff; 1323 memcpy(&write_buf[1], buffer, size); 1324 1325 msg.addr = DRM_HDCP_DDC_ADDR; 1326 msg.flags = 0, 1327 msg.len = size + 1, 1328 msg.buf = write_buf; 1329 1330 ret = i2c_transfer(adapter, &msg, 1); 1331 if (ret == 1) 1332 ret = 0; 1333 else if (ret >= 0) 1334 ret = -EIO; 1335 1336 kfree(write_buf); 1337 return ret; 1338 } 1339 1340 static 1341 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port, 1342 u8 *an) 1343 { 1344 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 1345 struct intel_hdmi *hdmi = &intel_dig_port->hdmi; 1346 struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915, 1347 hdmi->ddc_bus); 1348 int ret; 1349 1350 ret = intel_hdmi_hdcp_write(intel_dig_port, DRM_HDCP_DDC_AN, an, 1351 DRM_HDCP_AN_LEN); 1352 if (ret) { 1353 drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n", 1354 ret); 1355 return ret; 1356 } 1357 1358 ret = intel_gmbus_output_aksv(adapter); 1359 if (ret < 0) { 1360 drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret); 1361 return ret; 1362 } 1363 return 0; 1364 } 1365 1366 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *intel_dig_port, 1367 u8 *bksv) 1368 { 1369 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 1370 1371 int ret; 1372 ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BKSV, bksv, 1373 DRM_HDCP_KSV_LEN); 1374 if (ret) 1375 drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n", 1376 ret); 1377 return ret; 1378 } 1379 1380 static 1381 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port, 1382 u8 *bstatus) 1383 { 1384 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 1385 1386 int ret; 1387 ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BSTATUS, 1388 bstatus, DRM_HDCP_BSTATUS_LEN); 1389 if (ret) 1390 drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n", 1391 ret); 1392 return ret; 1393 } 1394 1395 static 1396 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *intel_dig_port, 1397 bool *repeater_present) 1398 { 1399 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 1400 int ret; 1401 u8 val; 1402 1403 ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BCAPS, &val, 1); 1404 if (ret) { 1405 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n", 1406 ret); 1407 return ret; 1408 } 1409 *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT; 1410 return 0; 1411 } 1412 1413 static 1414 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port, 1415 u8 *ri_prime) 1416 { 1417 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 1418 1419 int ret; 1420 ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_RI_PRIME, 1421 ri_prime, DRM_HDCP_RI_LEN); 1422 if (ret) 1423 drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n", 1424 ret); 1425 return ret; 1426 } 1427 1428 static 1429 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port, 1430 bool *ksv_ready) 1431 { 1432 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 1433 int ret; 1434 u8 val; 1435 1436 ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BCAPS, &val, 1); 1437 if (ret) { 1438 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n", 1439 ret); 1440 return ret; 1441 } 1442 *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY; 1443 return 0; 1444 } 1445 1446 static 1447 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port, 1448 int num_downstream, u8 *ksv_fifo) 1449 { 1450 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 1451 int ret; 1452 ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_KSV_FIFO, 1453 ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN); 1454 if (ret) { 1455 drm_dbg_kms(&i915->drm, 1456 "Read ksv fifo over DDC failed (%d)\n", ret); 1457 return ret; 1458 } 1459 return 0; 1460 } 1461 1462 static 1463 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port, 1464 int i, u32 *part) 1465 { 1466 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 1467 int ret; 1468 1469 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 1470 return -EINVAL; 1471 1472 ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_V_PRIME(i), 1473 part, DRM_HDCP_V_PRIME_PART_LEN); 1474 if (ret) 1475 drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n", 1476 i, ret); 1477 return ret; 1478 } 1479 1480 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector) 1481 { 1482 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1483 struct intel_digital_port *intel_dig_port = intel_attached_dig_port(connector); 1484 struct drm_crtc *crtc = connector->base.state->crtc; 1485 struct intel_crtc *intel_crtc = container_of(crtc, 1486 struct intel_crtc, base); 1487 u32 scanline; 1488 int ret; 1489 1490 for (;;) { 1491 scanline = intel_de_read(dev_priv, PIPEDSL(intel_crtc->pipe)); 1492 if (scanline > 100 && scanline < 200) 1493 break; 1494 usleep_range(25, 50); 1495 } 1496 1497 ret = intel_ddi_toggle_hdcp_signalling(&intel_dig_port->base, false); 1498 if (ret) { 1499 drm_err(&dev_priv->drm, 1500 "Disable HDCP signalling failed (%d)\n", ret); 1501 return ret; 1502 } 1503 ret = intel_ddi_toggle_hdcp_signalling(&intel_dig_port->base, true); 1504 if (ret) { 1505 drm_err(&dev_priv->drm, 1506 "Enable HDCP signalling failed (%d)\n", ret); 1507 return ret; 1508 } 1509 1510 return 0; 1511 } 1512 1513 static 1514 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port, 1515 bool enable) 1516 { 1517 struct intel_hdmi *hdmi = &intel_dig_port->hdmi; 1518 struct intel_connector *connector = hdmi->attached_connector; 1519 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1520 int ret; 1521 1522 if (!enable) 1523 usleep_range(6, 60); /* Bspec says >= 6us */ 1524 1525 ret = intel_ddi_toggle_hdcp_signalling(&intel_dig_port->base, enable); 1526 if (ret) { 1527 drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n", 1528 enable ? "Enable" : "Disable", ret); 1529 return ret; 1530 } 1531 1532 /* 1533 * WA: To fix incorrect positioning of the window of 1534 * opportunity and enc_en signalling in KABYLAKE. 1535 */ 1536 if (IS_KABYLAKE(dev_priv) && enable) 1537 return kbl_repositioning_enc_en_signal(connector); 1538 1539 return 0; 1540 } 1541 1542 static 1543 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *intel_dig_port) 1544 { 1545 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 1546 struct intel_connector *connector = 1547 intel_dig_port->hdmi.attached_connector; 1548 enum port port = intel_dig_port->base.port; 1549 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder; 1550 int ret; 1551 union { 1552 u32 reg; 1553 u8 shim[DRM_HDCP_RI_LEN]; 1554 } ri; 1555 1556 ret = intel_hdmi_hdcp_read_ri_prime(intel_dig_port, ri.shim); 1557 if (ret) 1558 return false; 1559 1560 intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg); 1561 1562 /* Wait for Ri prime match */ 1563 if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) & 1564 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) == 1565 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) { 1566 drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n", 1567 intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, 1568 port))); 1569 return false; 1570 } 1571 return true; 1572 } 1573 1574 static 1575 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *intel_dig_port) 1576 { 1577 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 1578 int retry; 1579 1580 for (retry = 0; retry < 3; retry++) 1581 if (intel_hdmi_hdcp_check_link_once(intel_dig_port)) 1582 return true; 1583 1584 drm_err(&i915->drm, "Link check failed\n"); 1585 return false; 1586 } 1587 1588 struct hdcp2_hdmi_msg_timeout { 1589 u8 msg_id; 1590 u16 timeout; 1591 }; 1592 1593 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = { 1594 { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, }, 1595 { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, }, 1596 { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, }, 1597 { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, }, 1598 { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, }, 1599 }; 1600 1601 static 1602 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port, 1603 u8 *rx_status) 1604 { 1605 return intel_hdmi_hdcp_read(intel_dig_port, 1606 HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET, 1607 rx_status, 1608 HDCP_2_2_HDMI_RXSTATUS_LEN); 1609 } 1610 1611 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired) 1612 { 1613 int i; 1614 1615 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) { 1616 if (is_paired) 1617 return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS; 1618 else 1619 return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS; 1620 } 1621 1622 for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) { 1623 if (hdcp2_msg_timeout[i].msg_id == msg_id) 1624 return hdcp2_msg_timeout[i].timeout; 1625 } 1626 1627 return -EINVAL; 1628 } 1629 1630 static int 1631 hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port, 1632 u8 msg_id, bool *msg_ready, 1633 ssize_t *msg_sz) 1634 { 1635 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 1636 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN]; 1637 int ret; 1638 1639 ret = intel_hdmi_hdcp2_read_rx_status(intel_dig_port, rx_status); 1640 if (ret < 0) { 1641 drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n", 1642 ret); 1643 return ret; 1644 } 1645 1646 *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) | 1647 rx_status[0]); 1648 1649 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) 1650 *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) && 1651 *msg_sz); 1652 else 1653 *msg_ready = *msg_sz; 1654 1655 return 0; 1656 } 1657 1658 static ssize_t 1659 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port, 1660 u8 msg_id, bool paired) 1661 { 1662 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 1663 bool msg_ready = false; 1664 int timeout, ret; 1665 ssize_t msg_sz = 0; 1666 1667 timeout = get_hdcp2_msg_timeout(msg_id, paired); 1668 if (timeout < 0) 1669 return timeout; 1670 1671 ret = __wait_for(ret = hdcp2_detect_msg_availability(intel_dig_port, 1672 msg_id, &msg_ready, 1673 &msg_sz), 1674 !ret && msg_ready && msg_sz, timeout * 1000, 1675 1000, 5 * 1000); 1676 if (ret) 1677 drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n", 1678 msg_id, ret, timeout); 1679 1680 return ret ? ret : msg_sz; 1681 } 1682 1683 static 1684 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *intel_dig_port, 1685 void *buf, size_t size) 1686 { 1687 unsigned int offset; 1688 1689 offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET; 1690 return intel_hdmi_hdcp_write(intel_dig_port, offset, buf, size); 1691 } 1692 1693 static 1694 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *intel_dig_port, 1695 u8 msg_id, void *buf, size_t size) 1696 { 1697 struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); 1698 struct intel_hdmi *hdmi = &intel_dig_port->hdmi; 1699 struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp; 1700 unsigned int offset; 1701 ssize_t ret; 1702 1703 ret = intel_hdmi_hdcp2_wait_for_msg(intel_dig_port, msg_id, 1704 hdcp->is_paired); 1705 if (ret < 0) 1706 return ret; 1707 1708 /* 1709 * Available msg size should be equal to or lesser than the 1710 * available buffer. 1711 */ 1712 if (ret > size) { 1713 drm_dbg_kms(&i915->drm, 1714 "msg_sz(%zd) is more than exp size(%zu)\n", 1715 ret, size); 1716 return -1; 1717 } 1718 1719 offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET; 1720 ret = intel_hdmi_hdcp_read(intel_dig_port, offset, buf, ret); 1721 if (ret) 1722 drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n", 1723 msg_id, ret); 1724 1725 return ret; 1726 } 1727 1728 static 1729 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *intel_dig_port) 1730 { 1731 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN]; 1732 int ret; 1733 1734 ret = intel_hdmi_hdcp2_read_rx_status(intel_dig_port, rx_status); 1735 if (ret) 1736 return ret; 1737 1738 /* 1739 * Re-auth request and Link Integrity Failures are represented by 1740 * same bit. i.e reauth_req. 1741 */ 1742 if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1])) 1743 ret = HDCP_REAUTH_REQUEST; 1744 else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1])) 1745 ret = HDCP_TOPOLOGY_CHANGE; 1746 1747 return ret; 1748 } 1749 1750 static 1751 int intel_hdmi_hdcp2_capable(struct intel_digital_port *intel_dig_port, 1752 bool *capable) 1753 { 1754 u8 hdcp2_version; 1755 int ret; 1756 1757 *capable = false; 1758 ret = intel_hdmi_hdcp_read(intel_dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET, 1759 &hdcp2_version, sizeof(hdcp2_version)); 1760 if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK) 1761 *capable = true; 1762 1763 return ret; 1764 } 1765 1766 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = { 1767 .write_an_aksv = intel_hdmi_hdcp_write_an_aksv, 1768 .read_bksv = intel_hdmi_hdcp_read_bksv, 1769 .read_bstatus = intel_hdmi_hdcp_read_bstatus, 1770 .repeater_present = intel_hdmi_hdcp_repeater_present, 1771 .read_ri_prime = intel_hdmi_hdcp_read_ri_prime, 1772 .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready, 1773 .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo, 1774 .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part, 1775 .toggle_signalling = intel_hdmi_hdcp_toggle_signalling, 1776 .check_link = intel_hdmi_hdcp_check_link, 1777 .write_2_2_msg = intel_hdmi_hdcp2_write_msg, 1778 .read_2_2_msg = intel_hdmi_hdcp2_read_msg, 1779 .check_2_2_link = intel_hdmi_hdcp2_check_link, 1780 .hdcp_2_2_capable = intel_hdmi_hdcp2_capable, 1781 .protocol = HDCP_PROTOCOL_HDMI, 1782 }; 1783 1784 static void intel_hdmi_prepare(struct intel_encoder *encoder, 1785 const struct intel_crtc_state *crtc_state) 1786 { 1787 struct drm_device *dev = encoder->base.dev; 1788 struct drm_i915_private *dev_priv = to_i915(dev); 1789 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1790 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1791 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 1792 u32 hdmi_val; 1793 1794 intel_dp_dual_mode_set_tmds_output(intel_hdmi, true); 1795 1796 hdmi_val = SDVO_ENCODING_HDMI; 1797 if (!HAS_PCH_SPLIT(dev_priv) && crtc_state->limited_color_range) 1798 hdmi_val |= HDMI_COLOR_RANGE_16_235; 1799 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 1800 hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH; 1801 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 1802 hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH; 1803 1804 if (crtc_state->pipe_bpp > 24) 1805 hdmi_val |= HDMI_COLOR_FORMAT_12bpc; 1806 else 1807 hdmi_val |= SDVO_COLOR_FORMAT_8bpc; 1808 1809 if (crtc_state->has_hdmi_sink) 1810 hdmi_val |= HDMI_MODE_SELECT_HDMI; 1811 1812 if (HAS_PCH_CPT(dev_priv)) 1813 hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe); 1814 else if (IS_CHERRYVIEW(dev_priv)) 1815 hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe); 1816 else 1817 hdmi_val |= SDVO_PIPE_SEL(crtc->pipe); 1818 1819 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, hdmi_val); 1820 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 1821 } 1822 1823 static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder, 1824 enum pipe *pipe) 1825 { 1826 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1827 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1828 intel_wakeref_t wakeref; 1829 bool ret; 1830 1831 wakeref = intel_display_power_get_if_enabled(dev_priv, 1832 encoder->power_domain); 1833 if (!wakeref) 1834 return false; 1835 1836 ret = intel_sdvo_port_enabled(dev_priv, intel_hdmi->hdmi_reg, pipe); 1837 1838 intel_display_power_put(dev_priv, encoder->power_domain, wakeref); 1839 1840 return ret; 1841 } 1842 1843 static void intel_hdmi_get_config(struct intel_encoder *encoder, 1844 struct intel_crtc_state *pipe_config) 1845 { 1846 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1847 struct drm_device *dev = encoder->base.dev; 1848 struct drm_i915_private *dev_priv = to_i915(dev); 1849 u32 tmp, flags = 0; 1850 int dotclock; 1851 1852 pipe_config->output_types |= BIT(INTEL_OUTPUT_HDMI); 1853 1854 tmp = intel_de_read(dev_priv, intel_hdmi->hdmi_reg); 1855 1856 if (tmp & SDVO_HSYNC_ACTIVE_HIGH) 1857 flags |= DRM_MODE_FLAG_PHSYNC; 1858 else 1859 flags |= DRM_MODE_FLAG_NHSYNC; 1860 1861 if (tmp & SDVO_VSYNC_ACTIVE_HIGH) 1862 flags |= DRM_MODE_FLAG_PVSYNC; 1863 else 1864 flags |= DRM_MODE_FLAG_NVSYNC; 1865 1866 if (tmp & HDMI_MODE_SELECT_HDMI) 1867 pipe_config->has_hdmi_sink = true; 1868 1869 pipe_config->infoframes.enable |= 1870 intel_hdmi_infoframes_enabled(encoder, pipe_config); 1871 1872 if (pipe_config->infoframes.enable) 1873 pipe_config->has_infoframe = true; 1874 1875 if (tmp & HDMI_AUDIO_ENABLE) 1876 pipe_config->has_audio = true; 1877 1878 if (!HAS_PCH_SPLIT(dev_priv) && 1879 tmp & HDMI_COLOR_RANGE_16_235) 1880 pipe_config->limited_color_range = true; 1881 1882 pipe_config->hw.adjusted_mode.flags |= flags; 1883 1884 if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc) 1885 dotclock = pipe_config->port_clock * 2 / 3; 1886 else 1887 dotclock = pipe_config->port_clock; 1888 1889 if (pipe_config->pixel_multiplier) 1890 dotclock /= pipe_config->pixel_multiplier; 1891 1892 pipe_config->hw.adjusted_mode.crtc_clock = dotclock; 1893 1894 pipe_config->lane_count = 4; 1895 1896 intel_hdmi_read_gcp_infoframe(encoder, pipe_config); 1897 1898 intel_read_infoframe(encoder, pipe_config, 1899 HDMI_INFOFRAME_TYPE_AVI, 1900 &pipe_config->infoframes.avi); 1901 intel_read_infoframe(encoder, pipe_config, 1902 HDMI_INFOFRAME_TYPE_SPD, 1903 &pipe_config->infoframes.spd); 1904 intel_read_infoframe(encoder, pipe_config, 1905 HDMI_INFOFRAME_TYPE_VENDOR, 1906 &pipe_config->infoframes.hdmi); 1907 } 1908 1909 static void intel_enable_hdmi_audio(struct intel_encoder *encoder, 1910 const struct intel_crtc_state *pipe_config, 1911 const struct drm_connector_state *conn_state) 1912 { 1913 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 1914 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 1915 1916 drm_WARN_ON(&i915->drm, !pipe_config->has_hdmi_sink); 1917 drm_dbg_kms(&i915->drm, "Enabling HDMI audio on pipe %c\n", 1918 pipe_name(crtc->pipe)); 1919 intel_audio_codec_enable(encoder, pipe_config, conn_state); 1920 } 1921 1922 static void g4x_enable_hdmi(struct intel_atomic_state *state, 1923 struct intel_encoder *encoder, 1924 const struct intel_crtc_state *pipe_config, 1925 const struct drm_connector_state *conn_state) 1926 { 1927 struct drm_device *dev = encoder->base.dev; 1928 struct drm_i915_private *dev_priv = to_i915(dev); 1929 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1930 u32 temp; 1931 1932 temp = intel_de_read(dev_priv, intel_hdmi->hdmi_reg); 1933 1934 temp |= SDVO_ENABLE; 1935 if (pipe_config->has_audio) 1936 temp |= HDMI_AUDIO_ENABLE; 1937 1938 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 1939 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 1940 1941 if (pipe_config->has_audio) 1942 intel_enable_hdmi_audio(encoder, pipe_config, conn_state); 1943 } 1944 1945 static void ibx_enable_hdmi(struct intel_atomic_state *state, 1946 struct intel_encoder *encoder, 1947 const struct intel_crtc_state *pipe_config, 1948 const struct drm_connector_state *conn_state) 1949 { 1950 struct drm_device *dev = encoder->base.dev; 1951 struct drm_i915_private *dev_priv = to_i915(dev); 1952 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1953 u32 temp; 1954 1955 temp = intel_de_read(dev_priv, intel_hdmi->hdmi_reg); 1956 1957 temp |= SDVO_ENABLE; 1958 if (pipe_config->has_audio) 1959 temp |= HDMI_AUDIO_ENABLE; 1960 1961 /* 1962 * HW workaround, need to write this twice for issue 1963 * that may result in first write getting masked. 1964 */ 1965 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 1966 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 1967 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 1968 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 1969 1970 /* 1971 * HW workaround, need to toggle enable bit off and on 1972 * for 12bpc with pixel repeat. 1973 * 1974 * FIXME: BSpec says this should be done at the end of 1975 * of the modeset sequence, so not sure if this isn't too soon. 1976 */ 1977 if (pipe_config->pipe_bpp > 24 && 1978 pipe_config->pixel_multiplier > 1) { 1979 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, 1980 temp & ~SDVO_ENABLE); 1981 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 1982 1983 /* 1984 * HW workaround, need to write this twice for issue 1985 * that may result in first write getting masked. 1986 */ 1987 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 1988 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 1989 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 1990 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 1991 } 1992 1993 if (pipe_config->has_audio) 1994 intel_enable_hdmi_audio(encoder, pipe_config, conn_state); 1995 } 1996 1997 static void cpt_enable_hdmi(struct intel_atomic_state *state, 1998 struct intel_encoder *encoder, 1999 const struct intel_crtc_state *pipe_config, 2000 const struct drm_connector_state *conn_state) 2001 { 2002 struct drm_device *dev = encoder->base.dev; 2003 struct drm_i915_private *dev_priv = to_i915(dev); 2004 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 2005 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2006 enum pipe pipe = crtc->pipe; 2007 u32 temp; 2008 2009 temp = intel_de_read(dev_priv, intel_hdmi->hdmi_reg); 2010 2011 temp |= SDVO_ENABLE; 2012 if (pipe_config->has_audio) 2013 temp |= HDMI_AUDIO_ENABLE; 2014 2015 /* 2016 * WaEnableHDMI8bpcBefore12bpc:snb,ivb 2017 * 2018 * The procedure for 12bpc is as follows: 2019 * 1. disable HDMI clock gating 2020 * 2. enable HDMI with 8bpc 2021 * 3. enable HDMI with 12bpc 2022 * 4. enable HDMI clock gating 2023 */ 2024 2025 if (pipe_config->pipe_bpp > 24) { 2026 intel_de_write(dev_priv, TRANS_CHICKEN1(pipe), 2027 intel_de_read(dev_priv, TRANS_CHICKEN1(pipe)) | TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE); 2028 2029 temp &= ~SDVO_COLOR_FORMAT_MASK; 2030 temp |= SDVO_COLOR_FORMAT_8bpc; 2031 } 2032 2033 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 2034 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 2035 2036 if (pipe_config->pipe_bpp > 24) { 2037 temp &= ~SDVO_COLOR_FORMAT_MASK; 2038 temp |= HDMI_COLOR_FORMAT_12bpc; 2039 2040 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 2041 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 2042 2043 intel_de_write(dev_priv, TRANS_CHICKEN1(pipe), 2044 intel_de_read(dev_priv, TRANS_CHICKEN1(pipe)) & ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE); 2045 } 2046 2047 if (pipe_config->has_audio) 2048 intel_enable_hdmi_audio(encoder, pipe_config, conn_state); 2049 } 2050 2051 static void vlv_enable_hdmi(struct intel_atomic_state *state, 2052 struct intel_encoder *encoder, 2053 const struct intel_crtc_state *pipe_config, 2054 const struct drm_connector_state *conn_state) 2055 { 2056 } 2057 2058 static void intel_disable_hdmi(struct intel_atomic_state *state, 2059 struct intel_encoder *encoder, 2060 const struct intel_crtc_state *old_crtc_state, 2061 const struct drm_connector_state *old_conn_state) 2062 { 2063 struct drm_device *dev = encoder->base.dev; 2064 struct drm_i915_private *dev_priv = to_i915(dev); 2065 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2066 struct intel_digital_port *intel_dig_port = 2067 hdmi_to_dig_port(intel_hdmi); 2068 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 2069 u32 temp; 2070 2071 temp = intel_de_read(dev_priv, intel_hdmi->hdmi_reg); 2072 2073 temp &= ~(SDVO_ENABLE | HDMI_AUDIO_ENABLE); 2074 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 2075 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 2076 2077 /* 2078 * HW workaround for IBX, we need to move the port 2079 * to transcoder A after disabling it to allow the 2080 * matching DP port to be enabled on transcoder A. 2081 */ 2082 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B) { 2083 /* 2084 * We get CPU/PCH FIFO underruns on the other pipe when 2085 * doing the workaround. Sweep them under the rug. 2086 */ 2087 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); 2088 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); 2089 2090 temp &= ~SDVO_PIPE_SEL_MASK; 2091 temp |= SDVO_ENABLE | SDVO_PIPE_SEL(PIPE_A); 2092 /* 2093 * HW workaround, need to write this twice for issue 2094 * that may result in first write getting masked. 2095 */ 2096 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 2097 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 2098 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 2099 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 2100 2101 temp &= ~SDVO_ENABLE; 2102 intel_de_write(dev_priv, intel_hdmi->hdmi_reg, temp); 2103 intel_de_posting_read(dev_priv, intel_hdmi->hdmi_reg); 2104 2105 intel_wait_for_vblank_if_active(dev_priv, PIPE_A); 2106 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); 2107 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); 2108 } 2109 2110 intel_dig_port->set_infoframes(encoder, 2111 false, 2112 old_crtc_state, old_conn_state); 2113 2114 intel_dp_dual_mode_set_tmds_output(intel_hdmi, false); 2115 } 2116 2117 static void g4x_disable_hdmi(struct intel_atomic_state *state, 2118 struct intel_encoder *encoder, 2119 const struct intel_crtc_state *old_crtc_state, 2120 const struct drm_connector_state *old_conn_state) 2121 { 2122 if (old_crtc_state->has_audio) 2123 intel_audio_codec_disable(encoder, 2124 old_crtc_state, old_conn_state); 2125 2126 intel_disable_hdmi(state, encoder, old_crtc_state, old_conn_state); 2127 } 2128 2129 static void pch_disable_hdmi(struct intel_atomic_state *state, 2130 struct intel_encoder *encoder, 2131 const struct intel_crtc_state *old_crtc_state, 2132 const struct drm_connector_state *old_conn_state) 2133 { 2134 if (old_crtc_state->has_audio) 2135 intel_audio_codec_disable(encoder, 2136 old_crtc_state, old_conn_state); 2137 } 2138 2139 static void pch_post_disable_hdmi(struct intel_atomic_state *state, 2140 struct intel_encoder *encoder, 2141 const struct intel_crtc_state *old_crtc_state, 2142 const struct drm_connector_state *old_conn_state) 2143 { 2144 intel_disable_hdmi(state, encoder, old_crtc_state, old_conn_state); 2145 } 2146 2147 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder) 2148 { 2149 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2150 int max_tmds_clock, vbt_max_tmds_clock; 2151 2152 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 2153 max_tmds_clock = 594000; 2154 else if (INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv)) 2155 max_tmds_clock = 300000; 2156 else if (INTEL_GEN(dev_priv) >= 5) 2157 max_tmds_clock = 225000; 2158 else 2159 max_tmds_clock = 165000; 2160 2161 vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder); 2162 if (vbt_max_tmds_clock) 2163 max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock); 2164 2165 return max_tmds_clock; 2166 } 2167 2168 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi, 2169 const struct drm_connector_state *conn_state) 2170 { 2171 return hdmi->has_hdmi_sink && 2172 READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI; 2173 } 2174 2175 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, 2176 bool respect_downstream_limits, 2177 bool has_hdmi_sink) 2178 { 2179 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base; 2180 int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder); 2181 2182 if (respect_downstream_limits) { 2183 struct intel_connector *connector = hdmi->attached_connector; 2184 const struct drm_display_info *info = &connector->base.display_info; 2185 2186 if (hdmi->dp_dual_mode.max_tmds_clock) 2187 max_tmds_clock = min(max_tmds_clock, 2188 hdmi->dp_dual_mode.max_tmds_clock); 2189 2190 if (info->max_tmds_clock) 2191 max_tmds_clock = min(max_tmds_clock, 2192 info->max_tmds_clock); 2193 else if (!has_hdmi_sink) 2194 max_tmds_clock = min(max_tmds_clock, 165000); 2195 } 2196 2197 return max_tmds_clock; 2198 } 2199 2200 static enum drm_mode_status 2201 hdmi_port_clock_valid(struct intel_hdmi *hdmi, 2202 int clock, bool respect_downstream_limits, 2203 bool has_hdmi_sink) 2204 { 2205 struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi)); 2206 2207 if (clock < 25000) 2208 return MODE_CLOCK_LOW; 2209 if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits, 2210 has_hdmi_sink)) 2211 return MODE_CLOCK_HIGH; 2212 2213 /* BXT DPLL can't generate 223-240 MHz */ 2214 if (IS_GEN9_LP(dev_priv) && clock > 223333 && clock < 240000) 2215 return MODE_CLOCK_RANGE; 2216 2217 /* CHV DPLL can't generate 216-240 MHz */ 2218 if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000) 2219 return MODE_CLOCK_RANGE; 2220 2221 return MODE_OK; 2222 } 2223 2224 static enum drm_mode_status 2225 intel_hdmi_mode_valid(struct drm_connector *connector, 2226 struct drm_display_mode *mode) 2227 { 2228 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2229 struct drm_device *dev = intel_hdmi_to_dev(hdmi); 2230 struct drm_i915_private *dev_priv = to_i915(dev); 2231 enum drm_mode_status status; 2232 int clock = mode->clock; 2233 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq; 2234 bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state); 2235 2236 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 2237 return MODE_NO_DBLESCAN; 2238 2239 if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING) 2240 clock *= 2; 2241 2242 if (clock > max_dotclk) 2243 return MODE_CLOCK_HIGH; 2244 2245 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 2246 clock *= 2; 2247 2248 if (drm_mode_is_420_only(&connector->display_info, mode)) 2249 clock /= 2; 2250 2251 /* check if we can do 8bpc */ 2252 status = hdmi_port_clock_valid(hdmi, clock, true, has_hdmi_sink); 2253 2254 if (has_hdmi_sink) { 2255 /* if we can't do 8bpc we may still be able to do 12bpc */ 2256 if (status != MODE_OK && !HAS_GMCH(dev_priv)) 2257 status = hdmi_port_clock_valid(hdmi, clock * 3 / 2, 2258 true, has_hdmi_sink); 2259 2260 /* if we can't do 8,12bpc we may still be able to do 10bpc */ 2261 if (status != MODE_OK && INTEL_GEN(dev_priv) >= 11) 2262 status = hdmi_port_clock_valid(hdmi, clock * 5 / 4, 2263 true, has_hdmi_sink); 2264 } 2265 if (status != MODE_OK) 2266 return status; 2267 2268 return intel_mode_valid_max_plane_size(dev_priv, mode); 2269 } 2270 2271 static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state, 2272 int bpc) 2273 { 2274 struct drm_i915_private *dev_priv = 2275 to_i915(crtc_state->uapi.crtc->dev); 2276 struct drm_atomic_state *state = crtc_state->uapi.state; 2277 struct drm_connector_state *connector_state; 2278 struct drm_connector *connector; 2279 const struct drm_display_mode *adjusted_mode = 2280 &crtc_state->hw.adjusted_mode; 2281 int i; 2282 2283 if (HAS_GMCH(dev_priv)) 2284 return false; 2285 2286 if (bpc == 10 && INTEL_GEN(dev_priv) < 11) 2287 return false; 2288 2289 if (crtc_state->pipe_bpp < bpc * 3) 2290 return false; 2291 2292 if (!crtc_state->has_hdmi_sink) 2293 return false; 2294 2295 /* 2296 * HDMI deep color affects the clocks, so it's only possible 2297 * when not cloning with other encoder types. 2298 */ 2299 if (crtc_state->output_types != 1 << INTEL_OUTPUT_HDMI) 2300 return false; 2301 2302 for_each_new_connector_in_state(state, connector, connector_state, i) { 2303 const struct drm_display_info *info = &connector->display_info; 2304 2305 if (connector_state->crtc != crtc_state->uapi.crtc) 2306 continue; 2307 2308 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) { 2309 const struct drm_hdmi_info *hdmi = &info->hdmi; 2310 2311 if (bpc == 12 && !(hdmi->y420_dc_modes & 2312 DRM_EDID_YCBCR420_DC_36)) 2313 return false; 2314 else if (bpc == 10 && !(hdmi->y420_dc_modes & 2315 DRM_EDID_YCBCR420_DC_30)) 2316 return false; 2317 } else { 2318 if (bpc == 12 && !(info->edid_hdmi_dc_modes & 2319 DRM_EDID_HDMI_DC_36)) 2320 return false; 2321 else if (bpc == 10 && !(info->edid_hdmi_dc_modes & 2322 DRM_EDID_HDMI_DC_30)) 2323 return false; 2324 } 2325 } 2326 2327 /* Display Wa_1405510057:icl,ehl */ 2328 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 && 2329 bpc == 10 && IS_GEN(dev_priv, 11) && 2330 (adjusted_mode->crtc_hblank_end - 2331 adjusted_mode->crtc_hblank_start) % 8 == 2) 2332 return false; 2333 2334 return true; 2335 } 2336 2337 static int 2338 intel_hdmi_ycbcr420_config(struct intel_crtc_state *crtc_state, 2339 const struct drm_connector_state *conn_state) 2340 { 2341 struct drm_connector *connector = conn_state->connector; 2342 struct drm_i915_private *i915 = to_i915(connector->dev); 2343 const struct drm_display_mode *adjusted_mode = 2344 &crtc_state->hw.adjusted_mode; 2345 2346 if (!drm_mode_is_420_only(&connector->display_info, adjusted_mode)) 2347 return 0; 2348 2349 if (!connector->ycbcr_420_allowed) { 2350 drm_err(&i915->drm, 2351 "Platform doesn't support YCBCR420 output\n"); 2352 return -EINVAL; 2353 } 2354 2355 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2356 2357 return intel_pch_panel_fitting(crtc_state, conn_state); 2358 } 2359 2360 static int intel_hdmi_port_clock(int clock, int bpc) 2361 { 2362 /* 2363 * Need to adjust the port link by: 2364 * 1.5x for 12bpc 2365 * 1.25x for 10bpc 2366 */ 2367 return clock * bpc / 8; 2368 } 2369 2370 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder, 2371 struct intel_crtc_state *crtc_state, 2372 int clock) 2373 { 2374 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2375 int bpc; 2376 2377 for (bpc = 12; bpc >= 10; bpc -= 2) { 2378 if (hdmi_deep_color_possible(crtc_state, bpc) && 2379 hdmi_port_clock_valid(intel_hdmi, 2380 intel_hdmi_port_clock(clock, bpc), 2381 true, crtc_state->has_hdmi_sink) == MODE_OK) 2382 return bpc; 2383 } 2384 2385 return 8; 2386 } 2387 2388 static int intel_hdmi_compute_clock(struct intel_encoder *encoder, 2389 struct intel_crtc_state *crtc_state) 2390 { 2391 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2392 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2393 const struct drm_display_mode *adjusted_mode = 2394 &crtc_state->hw.adjusted_mode; 2395 int bpc, clock = adjusted_mode->crtc_clock; 2396 2397 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2398 clock *= 2; 2399 2400 /* YCBCR420 TMDS rate requirement is half the pixel clock */ 2401 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 2402 clock /= 2; 2403 2404 bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock); 2405 2406 crtc_state->port_clock = intel_hdmi_port_clock(clock, bpc); 2407 2408 /* 2409 * pipe_bpp could already be below 8bpc due to 2410 * FDI bandwidth constraints. We shouldn't bump it 2411 * back up to 8bpc in that case. 2412 */ 2413 if (crtc_state->pipe_bpp > bpc * 3) 2414 crtc_state->pipe_bpp = bpc * 3; 2415 2416 drm_dbg_kms(&i915->drm, 2417 "picking %d bpc for HDMI output (pipe bpp: %d)\n", 2418 bpc, crtc_state->pipe_bpp); 2419 2420 if (hdmi_port_clock_valid(intel_hdmi, crtc_state->port_clock, 2421 false, crtc_state->has_hdmi_sink) != MODE_OK) { 2422 drm_dbg_kms(&i915->drm, 2423 "unsupported HDMI clock (%d kHz), rejecting mode\n", 2424 crtc_state->port_clock); 2425 return -EINVAL; 2426 } 2427 2428 return 0; 2429 } 2430 2431 static bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state, 2432 const struct drm_connector_state *conn_state) 2433 { 2434 const struct intel_digital_connector_state *intel_conn_state = 2435 to_intel_digital_connector_state(conn_state); 2436 const struct drm_display_mode *adjusted_mode = 2437 &crtc_state->hw.adjusted_mode; 2438 2439 /* 2440 * Our YCbCr output is always limited range. 2441 * crtc_state->limited_color_range only applies to RGB, 2442 * and it must never be set for YCbCr or we risk setting 2443 * some conflicting bits in PIPECONF which will mess up 2444 * the colors on the monitor. 2445 */ 2446 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2447 return false; 2448 2449 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2450 /* See CEA-861-E - 5.1 Default Encoding Parameters */ 2451 return crtc_state->has_hdmi_sink && 2452 drm_default_rgb_quant_range(adjusted_mode) == 2453 HDMI_QUANTIZATION_RANGE_LIMITED; 2454 } else { 2455 return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED; 2456 } 2457 } 2458 2459 int intel_hdmi_compute_config(struct intel_encoder *encoder, 2460 struct intel_crtc_state *pipe_config, 2461 struct drm_connector_state *conn_state) 2462 { 2463 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2464 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2465 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2466 struct drm_connector *connector = conn_state->connector; 2467 struct drm_scdc *scdc = &connector->display_info.hdmi.scdc; 2468 struct intel_digital_connector_state *intel_conn_state = 2469 to_intel_digital_connector_state(conn_state); 2470 int ret; 2471 2472 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2473 return -EINVAL; 2474 2475 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2476 pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi, 2477 conn_state); 2478 2479 if (pipe_config->has_hdmi_sink) 2480 pipe_config->has_infoframe = true; 2481 2482 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2483 pipe_config->pixel_multiplier = 2; 2484 2485 ret = intel_hdmi_ycbcr420_config(pipe_config, conn_state); 2486 if (ret) 2487 return ret; 2488 2489 pipe_config->limited_color_range = 2490 intel_hdmi_limited_color_range(pipe_config, conn_state); 2491 2492 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv)) 2493 pipe_config->has_pch_encoder = true; 2494 2495 if (pipe_config->has_hdmi_sink) { 2496 if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2497 pipe_config->has_audio = intel_hdmi->has_audio; 2498 else 2499 pipe_config->has_audio = 2500 intel_conn_state->force_audio == HDMI_AUDIO_ON; 2501 } 2502 2503 ret = intel_hdmi_compute_clock(encoder, pipe_config); 2504 if (ret) 2505 return ret; 2506 2507 if (conn_state->picture_aspect_ratio) 2508 adjusted_mode->picture_aspect_ratio = 2509 conn_state->picture_aspect_ratio; 2510 2511 pipe_config->lane_count = 4; 2512 2513 if (scdc->scrambling.supported && (INTEL_GEN(dev_priv) >= 10 || 2514 IS_GEMINILAKE(dev_priv))) { 2515 if (scdc->scrambling.low_rates) 2516 pipe_config->hdmi_scrambling = true; 2517 2518 if (pipe_config->port_clock > 340000) { 2519 pipe_config->hdmi_scrambling = true; 2520 pipe_config->hdmi_high_tmds_clock_ratio = true; 2521 } 2522 } 2523 2524 intel_hdmi_compute_gcp_infoframe(encoder, pipe_config, 2525 conn_state); 2526 2527 if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) { 2528 drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n"); 2529 return -EINVAL; 2530 } 2531 2532 if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) { 2533 drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n"); 2534 return -EINVAL; 2535 } 2536 2537 if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) { 2538 drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n"); 2539 return -EINVAL; 2540 } 2541 2542 if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) { 2543 drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n"); 2544 return -EINVAL; 2545 } 2546 2547 return 0; 2548 } 2549 2550 static void 2551 intel_hdmi_unset_edid(struct drm_connector *connector) 2552 { 2553 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2554 2555 intel_hdmi->has_hdmi_sink = false; 2556 intel_hdmi->has_audio = false; 2557 2558 intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE; 2559 intel_hdmi->dp_dual_mode.max_tmds_clock = 0; 2560 2561 kfree(to_intel_connector(connector)->detect_edid); 2562 to_intel_connector(connector)->detect_edid = NULL; 2563 } 2564 2565 static void 2566 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid) 2567 { 2568 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2569 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2570 enum port port = hdmi_to_dig_port(hdmi)->base.port; 2571 struct i2c_adapter *adapter = 2572 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); 2573 enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(adapter); 2574 2575 /* 2576 * Type 1 DVI adaptors are not required to implement any 2577 * registers, so we can't always detect their presence. 2578 * Ideally we should be able to check the state of the 2579 * CONFIG1 pin, but no such luck on our hardware. 2580 * 2581 * The only method left to us is to check the VBT to see 2582 * if the port is a dual mode capable DP port. But let's 2583 * only do that when we sucesfully read the EDID, to avoid 2584 * confusing log messages about DP dual mode adaptors when 2585 * there's nothing connected to the port. 2586 */ 2587 if (type == DRM_DP_DUAL_MODE_UNKNOWN) { 2588 /* An overridden EDID imply that we want this port for testing. 2589 * Make sure not to set limits for that port. 2590 */ 2591 if (has_edid && !connector->override_edid && 2592 intel_bios_is_port_dp_dual_mode(dev_priv, port)) { 2593 drm_dbg_kms(&dev_priv->drm, 2594 "Assuming DP dual mode adaptor presence based on VBT\n"); 2595 type = DRM_DP_DUAL_MODE_TYPE1_DVI; 2596 } else { 2597 type = DRM_DP_DUAL_MODE_NONE; 2598 } 2599 } 2600 2601 if (type == DRM_DP_DUAL_MODE_NONE) 2602 return; 2603 2604 hdmi->dp_dual_mode.type = type; 2605 hdmi->dp_dual_mode.max_tmds_clock = 2606 drm_dp_dual_mode_max_tmds_clock(type, adapter); 2607 2608 drm_dbg_kms(&dev_priv->drm, 2609 "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n", 2610 drm_dp_get_dual_mode_type_name(type), 2611 hdmi->dp_dual_mode.max_tmds_clock); 2612 } 2613 2614 static bool 2615 intel_hdmi_set_edid(struct drm_connector *connector) 2616 { 2617 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2618 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2619 intel_wakeref_t wakeref; 2620 struct edid *edid; 2621 bool connected = false; 2622 struct i2c_adapter *i2c; 2623 2624 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); 2625 2626 i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); 2627 2628 edid = drm_get_edid(connector, i2c); 2629 2630 if (!edid && !intel_gmbus_is_forced_bit(i2c)) { 2631 drm_dbg_kms(&dev_priv->drm, 2632 "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n"); 2633 intel_gmbus_force_bit(i2c, true); 2634 edid = drm_get_edid(connector, i2c); 2635 intel_gmbus_force_bit(i2c, false); 2636 } 2637 2638 intel_hdmi_dp_dual_mode_detect(connector, edid != NULL); 2639 2640 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); 2641 2642 to_intel_connector(connector)->detect_edid = edid; 2643 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) { 2644 intel_hdmi->has_audio = drm_detect_monitor_audio(edid); 2645 intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid); 2646 2647 connected = true; 2648 } 2649 2650 cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid); 2651 2652 return connected; 2653 } 2654 2655 static enum drm_connector_status 2656 intel_hdmi_detect(struct drm_connector *connector, bool force) 2657 { 2658 enum drm_connector_status status = connector_status_disconnected; 2659 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2660 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2661 struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base; 2662 intel_wakeref_t wakeref; 2663 2664 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", 2665 connector->base.id, connector->name); 2666 2667 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); 2668 2669 if (INTEL_GEN(dev_priv) >= 11 && 2670 !intel_digital_port_connected(encoder)) 2671 goto out; 2672 2673 intel_hdmi_unset_edid(connector); 2674 2675 if (intel_hdmi_set_edid(connector)) 2676 status = connector_status_connected; 2677 2678 out: 2679 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); 2680 2681 if (status != connector_status_connected) 2682 cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier); 2683 2684 /* 2685 * Make sure the refs for power wells enabled during detect are 2686 * dropped to avoid a new detect cycle triggered by HPD polling. 2687 */ 2688 intel_display_power_flush_work(dev_priv); 2689 2690 return status; 2691 } 2692 2693 static void 2694 intel_hdmi_force(struct drm_connector *connector) 2695 { 2696 struct drm_i915_private *i915 = to_i915(connector->dev); 2697 2698 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 2699 connector->base.id, connector->name); 2700 2701 intel_hdmi_unset_edid(connector); 2702 2703 if (connector->status != connector_status_connected) 2704 return; 2705 2706 intel_hdmi_set_edid(connector); 2707 } 2708 2709 static int intel_hdmi_get_modes(struct drm_connector *connector) 2710 { 2711 struct edid *edid; 2712 2713 edid = to_intel_connector(connector)->detect_edid; 2714 if (edid == NULL) 2715 return 0; 2716 2717 return intel_connector_update_modes(connector, edid); 2718 } 2719 2720 static void intel_hdmi_pre_enable(struct intel_atomic_state *state, 2721 struct intel_encoder *encoder, 2722 const struct intel_crtc_state *pipe_config, 2723 const struct drm_connector_state *conn_state) 2724 { 2725 struct intel_digital_port *intel_dig_port = 2726 enc_to_dig_port(encoder); 2727 2728 intel_hdmi_prepare(encoder, pipe_config); 2729 2730 intel_dig_port->set_infoframes(encoder, 2731 pipe_config->has_infoframe, 2732 pipe_config, conn_state); 2733 } 2734 2735 static void vlv_hdmi_pre_enable(struct intel_atomic_state *state, 2736 struct intel_encoder *encoder, 2737 const struct intel_crtc_state *pipe_config, 2738 const struct drm_connector_state *conn_state) 2739 { 2740 struct intel_digital_port *dport = enc_to_dig_port(encoder); 2741 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2742 2743 vlv_phy_pre_encoder_enable(encoder, pipe_config); 2744 2745 /* HDMI 1.0V-2dB */ 2746 vlv_set_phy_signal_level(encoder, 0x2b245f5f, 0x00002000, 0x5578b83a, 2747 0x2b247878); 2748 2749 dport->set_infoframes(encoder, 2750 pipe_config->has_infoframe, 2751 pipe_config, conn_state); 2752 2753 g4x_enable_hdmi(state, encoder, pipe_config, conn_state); 2754 2755 vlv_wait_port_ready(dev_priv, dport, 0x0); 2756 } 2757 2758 static void vlv_hdmi_pre_pll_enable(struct intel_atomic_state *state, 2759 struct intel_encoder *encoder, 2760 const struct intel_crtc_state *pipe_config, 2761 const struct drm_connector_state *conn_state) 2762 { 2763 intel_hdmi_prepare(encoder, pipe_config); 2764 2765 vlv_phy_pre_pll_enable(encoder, pipe_config); 2766 } 2767 2768 static void chv_hdmi_pre_pll_enable(struct intel_atomic_state *state, 2769 struct intel_encoder *encoder, 2770 const struct intel_crtc_state *pipe_config, 2771 const struct drm_connector_state *conn_state) 2772 { 2773 intel_hdmi_prepare(encoder, pipe_config); 2774 2775 chv_phy_pre_pll_enable(encoder, pipe_config); 2776 } 2777 2778 static void chv_hdmi_post_pll_disable(struct intel_atomic_state *state, 2779 struct intel_encoder *encoder, 2780 const struct intel_crtc_state *old_crtc_state, 2781 const struct drm_connector_state *old_conn_state) 2782 { 2783 chv_phy_post_pll_disable(encoder, old_crtc_state); 2784 } 2785 2786 static void vlv_hdmi_post_disable(struct intel_atomic_state *state, 2787 struct intel_encoder *encoder, 2788 const struct intel_crtc_state *old_crtc_state, 2789 const struct drm_connector_state *old_conn_state) 2790 { 2791 /* Reset lanes to avoid HDMI flicker (VLV w/a) */ 2792 vlv_phy_reset_lanes(encoder, old_crtc_state); 2793 } 2794 2795 static void chv_hdmi_post_disable(struct intel_atomic_state *state, 2796 struct intel_encoder *encoder, 2797 const struct intel_crtc_state *old_crtc_state, 2798 const struct drm_connector_state *old_conn_state) 2799 { 2800 struct drm_device *dev = encoder->base.dev; 2801 struct drm_i915_private *dev_priv = to_i915(dev); 2802 2803 vlv_dpio_get(dev_priv); 2804 2805 /* Assert data lane reset */ 2806 chv_data_lane_soft_reset(encoder, old_crtc_state, true); 2807 2808 vlv_dpio_put(dev_priv); 2809 } 2810 2811 static void chv_hdmi_pre_enable(struct intel_atomic_state *state, 2812 struct intel_encoder *encoder, 2813 const struct intel_crtc_state *pipe_config, 2814 const struct drm_connector_state *conn_state) 2815 { 2816 struct intel_digital_port *dport = enc_to_dig_port(encoder); 2817 struct drm_device *dev = encoder->base.dev; 2818 struct drm_i915_private *dev_priv = to_i915(dev); 2819 2820 chv_phy_pre_encoder_enable(encoder, pipe_config); 2821 2822 /* FIXME: Program the support xxx V-dB */ 2823 /* Use 800mV-0dB */ 2824 chv_set_phy_signal_level(encoder, 128, 102, false); 2825 2826 dport->set_infoframes(encoder, 2827 pipe_config->has_infoframe, 2828 pipe_config, conn_state); 2829 2830 g4x_enable_hdmi(state, encoder, pipe_config, conn_state); 2831 2832 vlv_wait_port_ready(dev_priv, dport, 0x0); 2833 2834 /* Second common lane will stay alive on its own now */ 2835 chv_phy_release_cl2_override(encoder); 2836 } 2837 2838 static struct i2c_adapter * 2839 intel_hdmi_get_i2c_adapter(struct drm_connector *connector) 2840 { 2841 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2842 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2843 2844 return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); 2845 } 2846 2847 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector) 2848 { 2849 struct drm_i915_private *i915 = to_i915(connector->dev); 2850 struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector); 2851 struct kobject *i2c_kobj = &adapter->dev.kobj; 2852 struct kobject *connector_kobj = &connector->kdev->kobj; 2853 int ret; 2854 2855 ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name); 2856 if (ret) 2857 drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret); 2858 } 2859 2860 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector) 2861 { 2862 struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector); 2863 struct kobject *i2c_kobj = &adapter->dev.kobj; 2864 struct kobject *connector_kobj = &connector->kdev->kobj; 2865 2866 sysfs_remove_link(connector_kobj, i2c_kobj->name); 2867 } 2868 2869 static int 2870 intel_hdmi_connector_register(struct drm_connector *connector) 2871 { 2872 int ret; 2873 2874 ret = intel_connector_register(connector); 2875 if (ret) 2876 return ret; 2877 2878 intel_hdmi_create_i2c_symlink(connector); 2879 2880 return ret; 2881 } 2882 2883 static void intel_hdmi_connector_unregister(struct drm_connector *connector) 2884 { 2885 struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier; 2886 2887 cec_notifier_conn_unregister(n); 2888 2889 intel_hdmi_remove_i2c_symlink(connector); 2890 intel_connector_unregister(connector); 2891 } 2892 2893 static const struct drm_connector_funcs intel_hdmi_connector_funcs = { 2894 .detect = intel_hdmi_detect, 2895 .force = intel_hdmi_force, 2896 .fill_modes = drm_helper_probe_single_connector_modes, 2897 .atomic_get_property = intel_digital_connector_atomic_get_property, 2898 .atomic_set_property = intel_digital_connector_atomic_set_property, 2899 .late_register = intel_hdmi_connector_register, 2900 .early_unregister = intel_hdmi_connector_unregister, 2901 .destroy = intel_connector_destroy, 2902 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 2903 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 2904 }; 2905 2906 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = { 2907 .get_modes = intel_hdmi_get_modes, 2908 .mode_valid = intel_hdmi_mode_valid, 2909 .atomic_check = intel_digital_connector_atomic_check, 2910 }; 2911 2912 static const struct drm_encoder_funcs intel_hdmi_enc_funcs = { 2913 .destroy = intel_encoder_destroy, 2914 }; 2915 2916 static void 2917 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector) 2918 { 2919 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2920 struct intel_digital_port *intel_dig_port = 2921 hdmi_to_dig_port(intel_hdmi); 2922 2923 intel_attach_force_audio_property(connector); 2924 intel_attach_broadcast_rgb_property(connector); 2925 intel_attach_aspect_ratio_property(connector); 2926 2927 /* 2928 * Attach Colorspace property for Non LSPCON based device 2929 * ToDo: This needs to be extended for LSPCON implementation 2930 * as well. Will be implemented separately. 2931 */ 2932 if (!intel_dig_port->lspcon.active) 2933 intel_attach_colorspace_property(connector); 2934 2935 drm_connector_attach_content_type_property(connector); 2936 2937 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 2938 drm_object_attach_property(&connector->base, 2939 connector->dev->mode_config.hdr_output_metadata_property, 0); 2940 2941 if (!HAS_GMCH(dev_priv)) 2942 drm_connector_attach_max_bpc_property(connector, 8, 12); 2943 } 2944 2945 /* 2946 * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup 2947 * @encoder: intel_encoder 2948 * @connector: drm_connector 2949 * @high_tmds_clock_ratio = bool to indicate if the function needs to set 2950 * or reset the high tmds clock ratio for scrambling 2951 * @scrambling: bool to Indicate if the function needs to set or reset 2952 * sink scrambling 2953 * 2954 * This function handles scrambling on HDMI 2.0 capable sinks. 2955 * If required clock rate is > 340 Mhz && scrambling is supported by sink 2956 * it enables scrambling. This should be called before enabling the HDMI 2957 * 2.0 port, as the sink can choose to disable the scrambling if it doesn't 2958 * detect a scrambled clock within 100 ms. 2959 * 2960 * Returns: 2961 * True on success, false on failure. 2962 */ 2963 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder, 2964 struct drm_connector *connector, 2965 bool high_tmds_clock_ratio, 2966 bool scrambling) 2967 { 2968 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2969 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2970 struct drm_scrambling *sink_scrambling = 2971 &connector->display_info.hdmi.scdc.scrambling; 2972 struct i2c_adapter *adapter = 2973 intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); 2974 2975 if (!sink_scrambling->supported) 2976 return true; 2977 2978 drm_dbg_kms(&dev_priv->drm, 2979 "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n", 2980 connector->base.id, connector->name, 2981 yesno(scrambling), high_tmds_clock_ratio ? 40 : 10); 2982 2983 /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */ 2984 return drm_scdc_set_high_tmds_clock_ratio(adapter, 2985 high_tmds_clock_ratio) && 2986 drm_scdc_set_scrambling(adapter, scrambling); 2987 } 2988 2989 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2990 { 2991 u8 ddc_pin; 2992 2993 switch (port) { 2994 case PORT_B: 2995 ddc_pin = GMBUS_PIN_DPB; 2996 break; 2997 case PORT_C: 2998 ddc_pin = GMBUS_PIN_DPC; 2999 break; 3000 case PORT_D: 3001 ddc_pin = GMBUS_PIN_DPD_CHV; 3002 break; 3003 default: 3004 MISSING_CASE(port); 3005 ddc_pin = GMBUS_PIN_DPB; 3006 break; 3007 } 3008 return ddc_pin; 3009 } 3010 3011 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 3012 { 3013 u8 ddc_pin; 3014 3015 switch (port) { 3016 case PORT_B: 3017 ddc_pin = GMBUS_PIN_1_BXT; 3018 break; 3019 case PORT_C: 3020 ddc_pin = GMBUS_PIN_2_BXT; 3021 break; 3022 default: 3023 MISSING_CASE(port); 3024 ddc_pin = GMBUS_PIN_1_BXT; 3025 break; 3026 } 3027 return ddc_pin; 3028 } 3029 3030 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv, 3031 enum port port) 3032 { 3033 u8 ddc_pin; 3034 3035 switch (port) { 3036 case PORT_B: 3037 ddc_pin = GMBUS_PIN_1_BXT; 3038 break; 3039 case PORT_C: 3040 ddc_pin = GMBUS_PIN_2_BXT; 3041 break; 3042 case PORT_D: 3043 ddc_pin = GMBUS_PIN_4_CNP; 3044 break; 3045 case PORT_F: 3046 ddc_pin = GMBUS_PIN_3_BXT; 3047 break; 3048 default: 3049 MISSING_CASE(port); 3050 ddc_pin = GMBUS_PIN_1_BXT; 3051 break; 3052 } 3053 return ddc_pin; 3054 } 3055 3056 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 3057 { 3058 enum phy phy = intel_port_to_phy(dev_priv, port); 3059 3060 if (intel_phy_is_combo(dev_priv, phy)) 3061 return GMBUS_PIN_1_BXT + port; 3062 else if (intel_phy_is_tc(dev_priv, phy)) 3063 return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port); 3064 3065 drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port)); 3066 return GMBUS_PIN_2_BXT; 3067 } 3068 3069 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 3070 { 3071 enum phy phy = intel_port_to_phy(dev_priv, port); 3072 u8 ddc_pin; 3073 3074 switch (phy) { 3075 case PHY_A: 3076 ddc_pin = GMBUS_PIN_1_BXT; 3077 break; 3078 case PHY_B: 3079 ddc_pin = GMBUS_PIN_2_BXT; 3080 break; 3081 case PHY_C: 3082 ddc_pin = GMBUS_PIN_9_TC1_ICP; 3083 break; 3084 default: 3085 MISSING_CASE(phy); 3086 ddc_pin = GMBUS_PIN_1_BXT; 3087 break; 3088 } 3089 return ddc_pin; 3090 } 3091 3092 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 3093 { 3094 enum phy phy = intel_port_to_phy(dev_priv, port); 3095 3096 WARN_ON(port == PORT_C); 3097 3098 /* 3099 * Pin mapping for RKL depends on which PCH is present. With TGP, the 3100 * final two outputs use type-c pins, even though they're actually 3101 * combo outputs. With CMP, the traditional DDI A-D pins are used for 3102 * all outputs. 3103 */ 3104 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C) 3105 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C; 3106 3107 return GMBUS_PIN_1_BXT + phy; 3108 } 3109 3110 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv, 3111 enum port port) 3112 { 3113 u8 ddc_pin; 3114 3115 switch (port) { 3116 case PORT_B: 3117 ddc_pin = GMBUS_PIN_DPB; 3118 break; 3119 case PORT_C: 3120 ddc_pin = GMBUS_PIN_DPC; 3121 break; 3122 case PORT_D: 3123 ddc_pin = GMBUS_PIN_DPD; 3124 break; 3125 default: 3126 MISSING_CASE(port); 3127 ddc_pin = GMBUS_PIN_DPB; 3128 break; 3129 } 3130 return ddc_pin; 3131 } 3132 3133 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder) 3134 { 3135 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3136 enum port port = encoder->port; 3137 u8 ddc_pin; 3138 3139 ddc_pin = intel_bios_alternate_ddc_pin(encoder); 3140 if (ddc_pin) { 3141 drm_dbg_kms(&dev_priv->drm, 3142 "Using DDC pin 0x%x for port %c (VBT)\n", 3143 ddc_pin, port_name(port)); 3144 return ddc_pin; 3145 } 3146 3147 if (IS_ROCKETLAKE(dev_priv)) 3148 ddc_pin = rkl_port_to_ddc_pin(dev_priv, port); 3149 else if (HAS_PCH_MCC(dev_priv)) 3150 ddc_pin = mcc_port_to_ddc_pin(dev_priv, port); 3151 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3152 ddc_pin = icl_port_to_ddc_pin(dev_priv, port); 3153 else if (HAS_PCH_CNP(dev_priv)) 3154 ddc_pin = cnp_port_to_ddc_pin(dev_priv, port); 3155 else if (IS_GEN9_LP(dev_priv)) 3156 ddc_pin = bxt_port_to_ddc_pin(dev_priv, port); 3157 else if (IS_CHERRYVIEW(dev_priv)) 3158 ddc_pin = chv_port_to_ddc_pin(dev_priv, port); 3159 else 3160 ddc_pin = g4x_port_to_ddc_pin(dev_priv, port); 3161 3162 drm_dbg_kms(&dev_priv->drm, 3163 "Using DDC pin 0x%x for port %c (platform default)\n", 3164 ddc_pin, port_name(port)); 3165 3166 return ddc_pin; 3167 } 3168 3169 void intel_infoframe_init(struct intel_digital_port *intel_dig_port) 3170 { 3171 struct drm_i915_private *dev_priv = 3172 to_i915(intel_dig_port->base.base.dev); 3173 3174 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3175 intel_dig_port->write_infoframe = vlv_write_infoframe; 3176 intel_dig_port->read_infoframe = vlv_read_infoframe; 3177 intel_dig_port->set_infoframes = vlv_set_infoframes; 3178 intel_dig_port->infoframes_enabled = vlv_infoframes_enabled; 3179 } else if (IS_G4X(dev_priv)) { 3180 intel_dig_port->write_infoframe = g4x_write_infoframe; 3181 intel_dig_port->read_infoframe = g4x_read_infoframe; 3182 intel_dig_port->set_infoframes = g4x_set_infoframes; 3183 intel_dig_port->infoframes_enabled = g4x_infoframes_enabled; 3184 } else if (HAS_DDI(dev_priv)) { 3185 if (intel_dig_port->lspcon.active) { 3186 intel_dig_port->write_infoframe = lspcon_write_infoframe; 3187 intel_dig_port->read_infoframe = lspcon_read_infoframe; 3188 intel_dig_port->set_infoframes = lspcon_set_infoframes; 3189 intel_dig_port->infoframes_enabled = lspcon_infoframes_enabled; 3190 } else { 3191 intel_dig_port->write_infoframe = hsw_write_infoframe; 3192 intel_dig_port->read_infoframe = hsw_read_infoframe; 3193 intel_dig_port->set_infoframes = hsw_set_infoframes; 3194 intel_dig_port->infoframes_enabled = hsw_infoframes_enabled; 3195 } 3196 } else if (HAS_PCH_IBX(dev_priv)) { 3197 intel_dig_port->write_infoframe = ibx_write_infoframe; 3198 intel_dig_port->read_infoframe = ibx_read_infoframe; 3199 intel_dig_port->set_infoframes = ibx_set_infoframes; 3200 intel_dig_port->infoframes_enabled = ibx_infoframes_enabled; 3201 } else { 3202 intel_dig_port->write_infoframe = cpt_write_infoframe; 3203 intel_dig_port->read_infoframe = cpt_read_infoframe; 3204 intel_dig_port->set_infoframes = cpt_set_infoframes; 3205 intel_dig_port->infoframes_enabled = cpt_infoframes_enabled; 3206 } 3207 } 3208 3209 void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port, 3210 struct intel_connector *intel_connector) 3211 { 3212 struct drm_connector *connector = &intel_connector->base; 3213 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi; 3214 struct intel_encoder *intel_encoder = &intel_dig_port->base; 3215 struct drm_device *dev = intel_encoder->base.dev; 3216 struct drm_i915_private *dev_priv = to_i915(dev); 3217 struct i2c_adapter *ddc; 3218 enum port port = intel_encoder->port; 3219 struct cec_connector_info conn_info; 3220 3221 drm_dbg_kms(&dev_priv->drm, 3222 "Adding HDMI connector on [ENCODER:%d:%s]\n", 3223 intel_encoder->base.base.id, intel_encoder->base.name); 3224 3225 if (INTEL_GEN(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A)) 3226 return; 3227 3228 if (drm_WARN(dev, intel_dig_port->max_lanes < 4, 3229 "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n", 3230 intel_dig_port->max_lanes, intel_encoder->base.base.id, 3231 intel_encoder->base.name)) 3232 return; 3233 3234 intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder); 3235 ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); 3236 3237 drm_connector_init_with_ddc(dev, connector, 3238 &intel_hdmi_connector_funcs, 3239 DRM_MODE_CONNECTOR_HDMIA, 3240 ddc); 3241 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs); 3242 3243 connector->interlace_allowed = 1; 3244 connector->doublescan_allowed = 0; 3245 connector->stereo_allowed = 1; 3246 3247 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 3248 connector->ycbcr_420_allowed = true; 3249 3250 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); 3251 intel_connector->polled = DRM_CONNECTOR_POLL_HPD; 3252 3253 if (HAS_DDI(dev_priv)) 3254 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 3255 else 3256 intel_connector->get_hw_state = intel_connector_get_hw_state; 3257 3258 intel_hdmi_add_properties(intel_hdmi, connector); 3259 3260 intel_connector_attach_encoder(intel_connector, intel_encoder); 3261 intel_hdmi->attached_connector = intel_connector; 3262 3263 if (is_hdcp_supported(dev_priv, port)) { 3264 int ret = intel_hdcp_init(intel_connector, 3265 &intel_hdmi_hdcp_shim); 3266 if (ret) 3267 drm_dbg_kms(&dev_priv->drm, 3268 "HDCP init failed, skipping.\n"); 3269 } 3270 3271 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 3272 * 0xd. Failure to do so will result in spurious interrupts being 3273 * generated on the port when a cable is not attached. 3274 */ 3275 if (IS_G45(dev_priv)) { 3276 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA); 3277 intel_de_write(dev_priv, PEG_BAND_GAP_DATA, 3278 (temp & ~0xf) | 0xd); 3279 } 3280 3281 cec_fill_conn_info_from_drm(&conn_info, connector); 3282 3283 intel_hdmi->cec_notifier = 3284 cec_notifier_conn_register(dev->dev, port_identifier(port), 3285 &conn_info); 3286 if (!intel_hdmi->cec_notifier) 3287 drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n"); 3288 } 3289 3290 static enum intel_hotplug_state 3291 intel_hdmi_hotplug(struct intel_encoder *encoder, 3292 struct intel_connector *connector) 3293 { 3294 enum intel_hotplug_state state; 3295 3296 state = intel_encoder_hotplug(encoder, connector); 3297 3298 /* 3299 * On many platforms the HDMI live state signal is known to be 3300 * unreliable, so we can't use it to detect if a sink is connected or 3301 * not. Instead we detect if it's connected based on whether we can 3302 * read the EDID or not. That in turn has a problem during disconnect, 3303 * since the HPD interrupt may be raised before the DDC lines get 3304 * disconnected (due to how the required length of DDC vs. HPD 3305 * connector pins are specified) and so we'll still be able to get a 3306 * valid EDID. To solve this schedule another detection cycle if this 3307 * time around we didn't detect any change in the sink's connection 3308 * status. 3309 */ 3310 if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries) 3311 state = INTEL_HOTPLUG_RETRY; 3312 3313 return state; 3314 } 3315 3316 void intel_hdmi_init(struct drm_i915_private *dev_priv, 3317 i915_reg_t hdmi_reg, enum port port) 3318 { 3319 struct intel_digital_port *intel_dig_port; 3320 struct intel_encoder *intel_encoder; 3321 struct intel_connector *intel_connector; 3322 3323 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); 3324 if (!intel_dig_port) 3325 return; 3326 3327 intel_connector = intel_connector_alloc(); 3328 if (!intel_connector) { 3329 kfree(intel_dig_port); 3330 return; 3331 } 3332 3333 intel_encoder = &intel_dig_port->base; 3334 3335 drm_encoder_init(&dev_priv->drm, &intel_encoder->base, 3336 &intel_hdmi_enc_funcs, DRM_MODE_ENCODER_TMDS, 3337 "HDMI %c", port_name(port)); 3338 3339 intel_encoder->hotplug = intel_hdmi_hotplug; 3340 intel_encoder->compute_config = intel_hdmi_compute_config; 3341 if (HAS_PCH_SPLIT(dev_priv)) { 3342 intel_encoder->disable = pch_disable_hdmi; 3343 intel_encoder->post_disable = pch_post_disable_hdmi; 3344 } else { 3345 intel_encoder->disable = g4x_disable_hdmi; 3346 } 3347 intel_encoder->get_hw_state = intel_hdmi_get_hw_state; 3348 intel_encoder->get_config = intel_hdmi_get_config; 3349 if (IS_CHERRYVIEW(dev_priv)) { 3350 intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable; 3351 intel_encoder->pre_enable = chv_hdmi_pre_enable; 3352 intel_encoder->enable = vlv_enable_hdmi; 3353 intel_encoder->post_disable = chv_hdmi_post_disable; 3354 intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable; 3355 } else if (IS_VALLEYVIEW(dev_priv)) { 3356 intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable; 3357 intel_encoder->pre_enable = vlv_hdmi_pre_enable; 3358 intel_encoder->enable = vlv_enable_hdmi; 3359 intel_encoder->post_disable = vlv_hdmi_post_disable; 3360 } else { 3361 intel_encoder->pre_enable = intel_hdmi_pre_enable; 3362 if (HAS_PCH_CPT(dev_priv)) 3363 intel_encoder->enable = cpt_enable_hdmi; 3364 else if (HAS_PCH_IBX(dev_priv)) 3365 intel_encoder->enable = ibx_enable_hdmi; 3366 else 3367 intel_encoder->enable = g4x_enable_hdmi; 3368 } 3369 3370 intel_encoder->type = INTEL_OUTPUT_HDMI; 3371 intel_encoder->power_domain = intel_port_to_power_domain(port); 3372 intel_encoder->port = port; 3373 if (IS_CHERRYVIEW(dev_priv)) { 3374 if (port == PORT_D) 3375 intel_encoder->pipe_mask = BIT(PIPE_C); 3376 else 3377 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B); 3378 } else { 3379 intel_encoder->pipe_mask = ~0; 3380 } 3381 intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG; 3382 /* 3383 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems 3384 * to work on real hardware. And since g4x can send infoframes to 3385 * only one port anyway, nothing is lost by allowing it. 3386 */ 3387 if (IS_G4X(dev_priv)) 3388 intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI; 3389 3390 intel_dig_port->hdmi.hdmi_reg = hdmi_reg; 3391 intel_dig_port->dp.output_reg = INVALID_MMIO_REG; 3392 intel_dig_port->max_lanes = 4; 3393 3394 intel_infoframe_init(intel_dig_port); 3395 3396 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); 3397 intel_hdmi_init_connector(intel_dig_port, intel_connector); 3398 } 3399