xref: /linux/drivers/gpu/drm/i915/display/intel_hdmi.c (revision 815e260a18a3af4dab59025ee99a7156c0e8b5e0)
1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/iopoll.h>
33 #include <linux/slab.h>
34 #include <linux/string_helpers.h>
35 
36 #include <drm/display/drm_hdcp_helper.h>
37 #include <drm/display/drm_hdmi_helper.h>
38 #include <drm/display/drm_scdc_helper.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_crtc.h>
41 #include <drm/drm_edid.h>
42 #include <drm/drm_print.h>
43 #include <drm/drm_probe_helper.h>
44 #include <drm/intel/intel_lpe_audio.h>
45 #include <media/cec-notifier.h>
46 
47 #include "g4x_hdmi.h"
48 #include "intel_atomic.h"
49 #include "intel_audio.h"
50 #include "intel_connector.h"
51 #include "intel_cx0_phy.h"
52 #include "intel_ddi.h"
53 #include "intel_de.h"
54 #include "intel_display_driver.h"
55 #include "intel_display_regs.h"
56 #include "intel_display_types.h"
57 #include "intel_display_utils.h"
58 #include "intel_dp.h"
59 #include "intel_gmbus.h"
60 #include "intel_hdcp.h"
61 #include "intel_hdcp_regs.h"
62 #include "intel_hdcp_shim.h"
63 #include "intel_hdmi.h"
64 #include "intel_link_bw.h"
65 #include "intel_lspcon.h"
66 #include "intel_panel.h"
67 #include "intel_pfit.h"
68 #include "intel_snps_phy.h"
69 #include "intel_vrr.h"
70 
71 bool intel_hdmi_is_frl(u32 clock)
72 {
73 	switch (clock) {
74 	case 300000: /* 3 Gbps */
75 	case 600000: /* 6 Gbps */
76 	case 800000: /* 8 Gbps */
77 	case 1000000: /* 10 Gbps */
78 	case 1200000: /* 12 Gbps */
79 		return true;
80 	default:
81 		return false;
82 	}
83 }
84 
85 static void
86 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
87 {
88 	struct intel_display *display = to_intel_display(intel_hdmi);
89 	u32 enabled_bits;
90 
91 	enabled_bits = HAS_DDI(display) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
92 
93 	drm_WARN(display->drm,
94 		 intel_de_read(display, intel_hdmi->hdmi_reg) & enabled_bits,
95 		 "HDMI port enabled, expecting disabled\n");
96 }
97 
98 static void
99 assert_hdmi_transcoder_func_disabled(struct intel_display *display,
100 				     enum transcoder cpu_transcoder)
101 {
102 	drm_WARN(display->drm,
103 		 intel_de_read(display, TRANS_DDI_FUNC_CTL(display, cpu_transcoder)) &
104 		 TRANS_DDI_FUNC_ENABLE,
105 		 "HDMI transcoder function enabled, expecting disabled\n");
106 }
107 
108 static u32 g4x_infoframe_index(unsigned int type)
109 {
110 	switch (type) {
111 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
112 		return VIDEO_DIP_SELECT_GAMUT;
113 	case HDMI_INFOFRAME_TYPE_AVI:
114 		return VIDEO_DIP_SELECT_AVI;
115 	case HDMI_INFOFRAME_TYPE_SPD:
116 		return VIDEO_DIP_SELECT_SPD;
117 	case HDMI_INFOFRAME_TYPE_VENDOR:
118 		return VIDEO_DIP_SELECT_VENDOR;
119 	default:
120 		MISSING_CASE(type);
121 		return 0;
122 	}
123 }
124 
125 static u32 g4x_infoframe_enable(unsigned int type)
126 {
127 	switch (type) {
128 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
129 		return VIDEO_DIP_ENABLE_GCP;
130 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
131 		return VIDEO_DIP_ENABLE_GAMUT;
132 	case DP_SDP_VSC:
133 		return 0;
134 	case DP_SDP_ADAPTIVE_SYNC:
135 		return 0;
136 	case HDMI_INFOFRAME_TYPE_AVI:
137 		return VIDEO_DIP_ENABLE_AVI;
138 	case HDMI_INFOFRAME_TYPE_SPD:
139 		return VIDEO_DIP_ENABLE_SPD;
140 	case HDMI_INFOFRAME_TYPE_VENDOR:
141 		return VIDEO_DIP_ENABLE_VENDOR;
142 	case HDMI_INFOFRAME_TYPE_DRM:
143 		return 0;
144 	default:
145 		MISSING_CASE(type);
146 		return 0;
147 	}
148 }
149 
150 static u32 hsw_infoframe_enable(unsigned int type)
151 {
152 	switch (type) {
153 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
154 		return VIDEO_DIP_ENABLE_GCP_HSW;
155 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
156 		return VIDEO_DIP_ENABLE_GMP_HSW;
157 	case DP_SDP_VSC:
158 		return VIDEO_DIP_ENABLE_VSC_HSW;
159 	case DP_SDP_ADAPTIVE_SYNC:
160 		return VIDEO_DIP_ENABLE_AS_ADL;
161 	case DP_SDP_PPS:
162 		return VDIP_ENABLE_PPS;
163 	case HDMI_INFOFRAME_TYPE_AVI:
164 		return VIDEO_DIP_ENABLE_AVI_HSW;
165 	case HDMI_INFOFRAME_TYPE_SPD:
166 		return VIDEO_DIP_ENABLE_SPD_HSW;
167 	case HDMI_INFOFRAME_TYPE_VENDOR:
168 		return VIDEO_DIP_ENABLE_VS_HSW;
169 	case HDMI_INFOFRAME_TYPE_DRM:
170 		return VIDEO_DIP_ENABLE_DRM_GLK;
171 	default:
172 		MISSING_CASE(type);
173 		return 0;
174 	}
175 }
176 
177 static i915_reg_t
178 hsw_dip_data_reg(struct intel_display *display,
179 		 enum transcoder cpu_transcoder,
180 		 unsigned int type,
181 		 int i)
182 {
183 	switch (type) {
184 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
185 		return HSW_TVIDEO_DIP_GMP_DATA(display, cpu_transcoder, i);
186 	case DP_SDP_VSC:
187 		return HSW_TVIDEO_DIP_VSC_DATA(display, cpu_transcoder, i);
188 	case DP_SDP_ADAPTIVE_SYNC:
189 		return ADL_TVIDEO_DIP_AS_SDP_DATA(display, cpu_transcoder, i);
190 	case DP_SDP_PPS:
191 		return ICL_VIDEO_DIP_PPS_DATA(display, cpu_transcoder, i);
192 	case HDMI_INFOFRAME_TYPE_AVI:
193 		return HSW_TVIDEO_DIP_AVI_DATA(display, cpu_transcoder, i);
194 	case HDMI_INFOFRAME_TYPE_SPD:
195 		return HSW_TVIDEO_DIP_SPD_DATA(display, cpu_transcoder, i);
196 	case HDMI_INFOFRAME_TYPE_VENDOR:
197 		return HSW_TVIDEO_DIP_VS_DATA(display, cpu_transcoder, i);
198 	case HDMI_INFOFRAME_TYPE_DRM:
199 		return GLK_TVIDEO_DIP_DRM_DATA(display, cpu_transcoder, i);
200 	default:
201 		MISSING_CASE(type);
202 		return INVALID_MMIO_REG;
203 	}
204 }
205 
206 static int hsw_dip_data_size(struct intel_display *display,
207 			     unsigned int type)
208 {
209 	switch (type) {
210 	case DP_SDP_VSC:
211 		return VIDEO_DIP_VSC_DATA_SIZE;
212 	case DP_SDP_ADAPTIVE_SYNC:
213 		return VIDEO_DIP_ASYNC_DATA_SIZE;
214 	case DP_SDP_PPS:
215 		return VIDEO_DIP_PPS_DATA_SIZE;
216 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
217 		if (DISPLAY_VER(display) >= 11)
218 			return VIDEO_DIP_GMP_DATA_SIZE;
219 		else
220 			return VIDEO_DIP_DATA_SIZE;
221 	default:
222 		return VIDEO_DIP_DATA_SIZE;
223 	}
224 }
225 
226 static void g4x_write_infoframe(struct intel_encoder *encoder,
227 				const struct intel_crtc_state *crtc_state,
228 				unsigned int type,
229 				const void *frame, ssize_t len)
230 {
231 	struct intel_display *display = to_intel_display(encoder);
232 	const u32 *data = frame;
233 	u32 val = intel_de_read(display, VIDEO_DIP_CTL);
234 	int i;
235 
236 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
237 		 "Writing DIP with CTL reg disabled\n");
238 
239 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
240 	val |= g4x_infoframe_index(type);
241 
242 	val &= ~g4x_infoframe_enable(type);
243 
244 	intel_de_write(display, VIDEO_DIP_CTL, val);
245 
246 	for (i = 0; i < len; i += 4) {
247 		intel_de_write(display, VIDEO_DIP_DATA, *data);
248 		data++;
249 	}
250 	/* Write every possible data byte to force correct ECC calculation. */
251 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
252 		intel_de_write(display, VIDEO_DIP_DATA, 0);
253 
254 	val |= g4x_infoframe_enable(type);
255 	val &= ~VIDEO_DIP_FREQ_MASK;
256 	val |= VIDEO_DIP_FREQ_VSYNC;
257 
258 	intel_de_write(display, VIDEO_DIP_CTL, val);
259 	intel_de_posting_read(display, VIDEO_DIP_CTL);
260 }
261 
262 static void g4x_read_infoframe(struct intel_encoder *encoder,
263 			       const struct intel_crtc_state *crtc_state,
264 			       unsigned int type,
265 			       void *frame, ssize_t len)
266 {
267 	struct intel_display *display = to_intel_display(encoder);
268 	u32 *data = frame;
269 	int i;
270 
271 	intel_de_rmw(display, VIDEO_DIP_CTL,
272 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
273 
274 	for (i = 0; i < len; i += 4)
275 		*data++ = intel_de_read(display, VIDEO_DIP_DATA);
276 }
277 
278 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
279 				  const struct intel_crtc_state *pipe_config)
280 {
281 	struct intel_display *display = to_intel_display(encoder);
282 	u32 val = intel_de_read(display, VIDEO_DIP_CTL);
283 
284 	if ((val & VIDEO_DIP_ENABLE) == 0)
285 		return 0;
286 
287 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
288 		return 0;
289 
290 	return val & (VIDEO_DIP_ENABLE_AVI |
291 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
292 }
293 
294 static void ibx_write_infoframe(struct intel_encoder *encoder,
295 				const struct intel_crtc_state *crtc_state,
296 				unsigned int type,
297 				const void *frame, ssize_t len)
298 {
299 	struct intel_display *display = to_intel_display(encoder);
300 	const u32 *data = frame;
301 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
302 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
303 	u32 val = intel_de_read(display, reg);
304 	int i;
305 
306 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
307 		 "Writing DIP with CTL reg disabled\n");
308 
309 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
310 	val |= g4x_infoframe_index(type);
311 
312 	val &= ~g4x_infoframe_enable(type);
313 
314 	intel_de_write(display, reg, val);
315 
316 	for (i = 0; i < len; i += 4) {
317 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
318 			       *data);
319 		data++;
320 	}
321 	/* Write every possible data byte to force correct ECC calculation. */
322 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
323 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
324 
325 	val |= g4x_infoframe_enable(type);
326 	val &= ~VIDEO_DIP_FREQ_MASK;
327 	val |= VIDEO_DIP_FREQ_VSYNC;
328 
329 	intel_de_write(display, reg, val);
330 	intel_de_posting_read(display, reg);
331 }
332 
333 static void ibx_read_infoframe(struct intel_encoder *encoder,
334 			       const struct intel_crtc_state *crtc_state,
335 			       unsigned int type,
336 			       void *frame, ssize_t len)
337 {
338 	struct intel_display *display = to_intel_display(encoder);
339 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
340 	u32 *data = frame;
341 	int i;
342 
343 	intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
344 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
345 
346 	for (i = 0; i < len; i += 4)
347 		*data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
348 }
349 
350 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
351 				  const struct intel_crtc_state *pipe_config)
352 {
353 	struct intel_display *display = to_intel_display(encoder);
354 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
355 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
356 	u32 val = intel_de_read(display, reg);
357 
358 	if ((val & VIDEO_DIP_ENABLE) == 0)
359 		return 0;
360 
361 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
362 		return 0;
363 
364 	return val & (VIDEO_DIP_ENABLE_AVI |
365 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
366 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
367 }
368 
369 static void cpt_write_infoframe(struct intel_encoder *encoder,
370 				const struct intel_crtc_state *crtc_state,
371 				unsigned int type,
372 				const void *frame, ssize_t len)
373 {
374 	struct intel_display *display = to_intel_display(encoder);
375 	const u32 *data = frame;
376 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
377 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
378 	u32 val = intel_de_read(display, reg);
379 	int i;
380 
381 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
382 		 "Writing DIP with CTL reg disabled\n");
383 
384 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
385 	val |= g4x_infoframe_index(type);
386 
387 	/* The DIP control register spec says that we need to update the AVI
388 	 * infoframe without clearing its enable bit */
389 	if (type != HDMI_INFOFRAME_TYPE_AVI)
390 		val &= ~g4x_infoframe_enable(type);
391 
392 	intel_de_write(display, reg, val);
393 
394 	for (i = 0; i < len; i += 4) {
395 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
396 			       *data);
397 		data++;
398 	}
399 	/* Write every possible data byte to force correct ECC calculation. */
400 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
401 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
402 
403 	val |= g4x_infoframe_enable(type);
404 	val &= ~VIDEO_DIP_FREQ_MASK;
405 	val |= VIDEO_DIP_FREQ_VSYNC;
406 
407 	intel_de_write(display, reg, val);
408 	intel_de_posting_read(display, reg);
409 }
410 
411 static void cpt_read_infoframe(struct intel_encoder *encoder,
412 			       const struct intel_crtc_state *crtc_state,
413 			       unsigned int type,
414 			       void *frame, ssize_t len)
415 {
416 	struct intel_display *display = to_intel_display(encoder);
417 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
418 	u32 *data = frame;
419 	int i;
420 
421 	intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
422 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
423 
424 	for (i = 0; i < len; i += 4)
425 		*data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
426 }
427 
428 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
429 				  const struct intel_crtc_state *pipe_config)
430 {
431 	struct intel_display *display = to_intel_display(encoder);
432 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
433 	u32 val = intel_de_read(display, TVIDEO_DIP_CTL(pipe));
434 
435 	if ((val & VIDEO_DIP_ENABLE) == 0)
436 		return 0;
437 
438 	return val & (VIDEO_DIP_ENABLE_AVI |
439 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
440 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
441 }
442 
443 static void vlv_write_infoframe(struct intel_encoder *encoder,
444 				const struct intel_crtc_state *crtc_state,
445 				unsigned int type,
446 				const void *frame, ssize_t len)
447 {
448 	struct intel_display *display = to_intel_display(encoder);
449 	const u32 *data = frame;
450 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
451 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
452 	u32 val = intel_de_read(display, reg);
453 	int i;
454 
455 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
456 		 "Writing DIP with CTL reg disabled\n");
457 
458 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
459 	val |= g4x_infoframe_index(type);
460 
461 	val &= ~g4x_infoframe_enable(type);
462 
463 	intel_de_write(display, reg, val);
464 
465 	for (i = 0; i < len; i += 4) {
466 		intel_de_write(display,
467 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
468 		data++;
469 	}
470 	/* Write every possible data byte to force correct ECC calculation. */
471 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
472 		intel_de_write(display,
473 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
474 
475 	val |= g4x_infoframe_enable(type);
476 	val &= ~VIDEO_DIP_FREQ_MASK;
477 	val |= VIDEO_DIP_FREQ_VSYNC;
478 
479 	intel_de_write(display, reg, val);
480 	intel_de_posting_read(display, reg);
481 }
482 
483 static void vlv_read_infoframe(struct intel_encoder *encoder,
484 			       const struct intel_crtc_state *crtc_state,
485 			       unsigned int type,
486 			       void *frame, ssize_t len)
487 {
488 	struct intel_display *display = to_intel_display(encoder);
489 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
490 	u32 *data = frame;
491 	int i;
492 
493 	intel_de_rmw(display, VLV_TVIDEO_DIP_CTL(crtc->pipe),
494 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
495 
496 	for (i = 0; i < len; i += 4)
497 		*data++ = intel_de_read(display,
498 				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
499 }
500 
501 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
502 				  const struct intel_crtc_state *pipe_config)
503 {
504 	struct intel_display *display = to_intel_display(encoder);
505 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
506 	u32 val = intel_de_read(display, VLV_TVIDEO_DIP_CTL(pipe));
507 
508 	if ((val & VIDEO_DIP_ENABLE) == 0)
509 		return 0;
510 
511 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
512 		return 0;
513 
514 	return val & (VIDEO_DIP_ENABLE_AVI |
515 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
516 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
517 }
518 
519 void hsw_write_infoframe(struct intel_encoder *encoder,
520 			 const struct intel_crtc_state *crtc_state,
521 			 unsigned int type,
522 			 const void *frame, ssize_t len)
523 {
524 	struct intel_display *display = to_intel_display(encoder);
525 	const u32 *data = frame;
526 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
527 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(display, cpu_transcoder);
528 	int data_size;
529 	int i;
530 	u32 val = intel_de_read(display, ctl_reg);
531 
532 	data_size = hsw_dip_data_size(display, type);
533 
534 	drm_WARN_ON(display->drm, len > data_size);
535 
536 	val &= ~hsw_infoframe_enable(type);
537 	intel_de_write(display, ctl_reg, val);
538 
539 	for (i = 0; i < len; i += 4) {
540 		intel_de_write(display,
541 			       hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
542 			       *data);
543 		data++;
544 	}
545 	/* Write every possible data byte to force correct ECC calculation. */
546 	for (; i < data_size; i += 4)
547 		intel_de_write(display,
548 			       hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
549 			       0);
550 
551 	/* Wa_14013475917 */
552 	if (!(IS_DISPLAY_VER(display, 13, 14) && crtc_state->has_psr &&
553 	      !crtc_state->has_panel_replay && type == DP_SDP_VSC))
554 		val |= hsw_infoframe_enable(type);
555 
556 	if (type == DP_SDP_VSC)
557 		val |= VSC_DIP_HW_DATA_SW_HEA;
558 
559 	intel_de_write(display, ctl_reg, val);
560 	intel_de_posting_read(display, ctl_reg);
561 }
562 
563 void hsw_read_infoframe(struct intel_encoder *encoder,
564 			const struct intel_crtc_state *crtc_state,
565 			unsigned int type, void *frame, ssize_t len)
566 {
567 	struct intel_display *display = to_intel_display(encoder);
568 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
569 	u32 *data = frame;
570 	int i;
571 
572 	for (i = 0; i < len; i += 4)
573 		*data++ = intel_de_read(display,
574 					hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2));
575 }
576 
577 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
578 				  const struct intel_crtc_state *pipe_config)
579 {
580 	struct intel_display *display = to_intel_display(encoder);
581 	u32 val = intel_de_read(display,
582 				HSW_TVIDEO_DIP_CTL(display, pipe_config->cpu_transcoder));
583 	u32 mask;
584 
585 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
586 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
587 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
588 
589 	if (DISPLAY_VER(display) >= 10)
590 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
591 
592 	if (HAS_AS_SDP(display))
593 		mask |= VIDEO_DIP_ENABLE_AS_ADL;
594 
595 	return val & mask;
596 }
597 
598 static const u8 infoframe_type_to_idx[] = {
599 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
600 	HDMI_PACKET_TYPE_GAMUT_METADATA,
601 	DP_SDP_VSC,
602 	DP_SDP_ADAPTIVE_SYNC,
603 	HDMI_INFOFRAME_TYPE_AVI,
604 	HDMI_INFOFRAME_TYPE_SPD,
605 	HDMI_INFOFRAME_TYPE_VENDOR,
606 	HDMI_INFOFRAME_TYPE_DRM,
607 };
608 
609 u32 intel_hdmi_infoframe_enable(unsigned int type)
610 {
611 	int i;
612 
613 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
614 		if (infoframe_type_to_idx[i] == type)
615 			return BIT(i);
616 	}
617 
618 	return 0;
619 }
620 
621 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
622 				  const struct intel_crtc_state *crtc_state)
623 {
624 	struct intel_display *display = to_intel_display(encoder);
625 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
626 	u32 val, ret = 0;
627 	int i;
628 
629 	val = dig_port->infoframes_enabled(encoder, crtc_state);
630 
631 	/* map from hardware bits to dip idx */
632 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
633 		unsigned int type = infoframe_type_to_idx[i];
634 
635 		if (HAS_DDI(display)) {
636 			if (val & hsw_infoframe_enable(type))
637 				ret |= BIT(i);
638 		} else {
639 			if (val & g4x_infoframe_enable(type))
640 				ret |= BIT(i);
641 		}
642 	}
643 
644 	return ret;
645 }
646 
647 /*
648  * The data we write to the DIP data buffer registers is 1 byte bigger than the
649  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
650  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
651  * used for both technologies.
652  *
653  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
654  * DW1:       DB3       | DB2 | DB1 | DB0
655  * DW2:       DB7       | DB6 | DB5 | DB4
656  * DW3: ...
657  *
658  * (HB is Header Byte, DB is Data Byte)
659  *
660  * The hdmi pack() functions don't know about that hardware specific hole so we
661  * trick them by giving an offset into the buffer and moving back the header
662  * bytes by one.
663  */
664 static void intel_write_infoframe(struct intel_encoder *encoder,
665 				  const struct intel_crtc_state *crtc_state,
666 				  enum hdmi_infoframe_type type,
667 				  const union hdmi_infoframe *frame)
668 {
669 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
670 	u8 buffer[VIDEO_DIP_DATA_SIZE];
671 	ssize_t len;
672 
673 	if ((crtc_state->infoframes.enable &
674 	     intel_hdmi_infoframe_enable(type)) == 0)
675 		return;
676 
677 	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
678 		return;
679 
680 	/* see comment above for the reason for this offset */
681 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
682 	if (drm_WARN_ON(encoder->base.dev, len < 0))
683 		return;
684 
685 	/* Insert the 'hole' (see big comment above) at position 3 */
686 	memmove(&buffer[0], &buffer[1], 3);
687 	buffer[3] = 0;
688 	len++;
689 
690 	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
691 }
692 
693 void intel_read_infoframe(struct intel_encoder *encoder,
694 			  const struct intel_crtc_state *crtc_state,
695 			  enum hdmi_infoframe_type type,
696 			  union hdmi_infoframe *frame)
697 {
698 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
699 	u8 buffer[VIDEO_DIP_DATA_SIZE];
700 	int ret;
701 
702 	if ((crtc_state->infoframes.enable &
703 	     intel_hdmi_infoframe_enable(type)) == 0)
704 		return;
705 
706 	dig_port->read_infoframe(encoder, crtc_state,
707 				       type, buffer, sizeof(buffer));
708 
709 	/* Fill the 'hole' (see big comment above) at position 3 */
710 	memmove(&buffer[1], &buffer[0], 3);
711 
712 	/* see comment above for the reason for this offset */
713 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
714 	if (ret) {
715 		drm_dbg_kms(encoder->base.dev,
716 			    "Failed to unpack infoframe type 0x%02x\n", type);
717 		return;
718 	}
719 
720 	if (frame->any.type != type)
721 		drm_dbg_kms(encoder->base.dev,
722 			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
723 			    frame->any.type, type);
724 }
725 
726 static bool
727 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
728 				 struct intel_crtc_state *crtc_state,
729 				 struct drm_connector_state *conn_state)
730 {
731 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
732 	const struct drm_display_mode *adjusted_mode =
733 		&crtc_state->hw.adjusted_mode;
734 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
735 	int ret;
736 
737 	if (!crtc_state->has_infoframe)
738 		return true;
739 
740 	crtc_state->infoframes.enable |=
741 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
742 
743 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, &connector->base,
744 						       adjusted_mode);
745 	if (ret)
746 		return false;
747 
748 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
749 		frame->colorspace = HDMI_COLORSPACE_YUV420;
750 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
751 		frame->colorspace = HDMI_COLORSPACE_YUV444;
752 	else
753 		frame->colorspace = HDMI_COLORSPACE_RGB;
754 
755 	drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
756 
757 	/* nonsense combination */
758 	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
759 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
760 
761 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
762 		drm_hdmi_avi_infoframe_quant_range(frame, &connector->base,
763 						   adjusted_mode,
764 						   crtc_state->limited_color_range ?
765 						   HDMI_QUANTIZATION_RANGE_LIMITED :
766 						   HDMI_QUANTIZATION_RANGE_FULL);
767 	} else {
768 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
769 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
770 	}
771 
772 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
773 
774 	/* TODO: handle pixel repetition for YCBCR420 outputs */
775 
776 	ret = hdmi_avi_infoframe_check(frame);
777 	if (drm_WARN_ON(encoder->base.dev, ret))
778 		return false;
779 
780 	return true;
781 }
782 
783 static bool
784 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
785 				 struct intel_crtc_state *crtc_state,
786 				 struct drm_connector_state *conn_state)
787 {
788 	struct intel_display *display = to_intel_display(crtc_state);
789 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
790 	int ret;
791 
792 	if (!crtc_state->has_infoframe)
793 		return true;
794 
795 	crtc_state->infoframes.enable |=
796 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
797 
798 	if (display->platform.dgfx)
799 		ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx");
800 	else
801 		ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
802 
803 	if (drm_WARN_ON(encoder->base.dev, ret))
804 		return false;
805 
806 	frame->sdi = HDMI_SPD_SDI_PC;
807 
808 	ret = hdmi_spd_infoframe_check(frame);
809 	if (drm_WARN_ON(encoder->base.dev, ret))
810 		return false;
811 
812 	return true;
813 }
814 
815 static bool
816 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
817 				  struct intel_crtc_state *crtc_state,
818 				  struct drm_connector_state *conn_state)
819 {
820 	struct hdmi_vendor_infoframe *frame =
821 		&crtc_state->infoframes.hdmi.vendor.hdmi;
822 	const struct drm_display_info *info =
823 		&conn_state->connector->display_info;
824 	int ret;
825 
826 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
827 		return true;
828 
829 	crtc_state->infoframes.enable |=
830 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
831 
832 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
833 							  conn_state->connector,
834 							  &crtc_state->hw.adjusted_mode);
835 	if (drm_WARN_ON(encoder->base.dev, ret))
836 		return false;
837 
838 	ret = hdmi_vendor_infoframe_check(frame);
839 	if (drm_WARN_ON(encoder->base.dev, ret))
840 		return false;
841 
842 	return true;
843 }
844 
845 static bool
846 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
847 				 struct intel_crtc_state *crtc_state,
848 				 struct drm_connector_state *conn_state)
849 {
850 	struct intel_display *display = to_intel_display(encoder);
851 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
852 	int ret;
853 
854 	if (DISPLAY_VER(display) < 10)
855 		return true;
856 
857 	if (!crtc_state->has_infoframe)
858 		return true;
859 
860 	if (!conn_state->hdr_output_metadata)
861 		return true;
862 
863 	crtc_state->infoframes.enable |=
864 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
865 
866 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
867 	if (ret < 0) {
868 		drm_dbg_kms(display->drm,
869 			    "couldn't set HDR metadata in infoframe\n");
870 		return false;
871 	}
872 
873 	ret = hdmi_drm_infoframe_check(frame);
874 	if (drm_WARN_ON(display->drm, ret))
875 		return false;
876 
877 	return true;
878 }
879 
880 static void g4x_set_infoframes(struct intel_encoder *encoder,
881 			       bool enable,
882 			       const struct intel_crtc_state *crtc_state,
883 			       const struct drm_connector_state *conn_state)
884 {
885 	struct intel_display *display = to_intel_display(encoder);
886 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
887 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
888 	i915_reg_t reg = VIDEO_DIP_CTL;
889 	u32 val = intel_de_read(display, reg);
890 	u32 port = VIDEO_DIP_PORT(encoder->port);
891 
892 	assert_hdmi_port_disabled(intel_hdmi);
893 
894 	/* If the registers were not initialized yet, they might be zeroes,
895 	 * which means we're selecting the AVI DIP and we're setting its
896 	 * frequency to once. This seems to really confuse the HW and make
897 	 * things stop working (the register spec says the AVI always needs to
898 	 * be sent every VSync). So here we avoid writing to the register more
899 	 * than we need and also explicitly select the AVI DIP and explicitly
900 	 * set its frequency to every VSync. Avoiding to write it twice seems to
901 	 * be enough to solve the problem, but being defensive shouldn't hurt us
902 	 * either. */
903 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
904 
905 	if (!enable) {
906 		if (!(val & VIDEO_DIP_ENABLE))
907 			return;
908 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
909 			drm_dbg_kms(display->drm,
910 				    "video DIP still enabled on port %c\n",
911 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
912 			return;
913 		}
914 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
915 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
916 		intel_de_write(display, reg, val);
917 		intel_de_posting_read(display, reg);
918 		return;
919 	}
920 
921 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
922 		if (val & VIDEO_DIP_ENABLE) {
923 			drm_dbg_kms(display->drm,
924 				    "video DIP already enabled on port %c\n",
925 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
926 			return;
927 		}
928 		val &= ~VIDEO_DIP_PORT_MASK;
929 		val |= port;
930 	}
931 
932 	val |= VIDEO_DIP_ENABLE;
933 	val &= ~(VIDEO_DIP_ENABLE_AVI |
934 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
935 
936 	intel_de_write(display, reg, val);
937 	intel_de_posting_read(display, reg);
938 
939 	intel_write_infoframe(encoder, crtc_state,
940 			      HDMI_INFOFRAME_TYPE_AVI,
941 			      &crtc_state->infoframes.avi);
942 	intel_write_infoframe(encoder, crtc_state,
943 			      HDMI_INFOFRAME_TYPE_SPD,
944 			      &crtc_state->infoframes.spd);
945 	intel_write_infoframe(encoder, crtc_state,
946 			      HDMI_INFOFRAME_TYPE_VENDOR,
947 			      &crtc_state->infoframes.hdmi);
948 }
949 
950 /*
951  * Determine if default_phase=1 can be indicated in the GCP infoframe.
952  *
953  * From HDMI specification 1.4a:
954  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
955  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
956  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
957  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
958  *   phase of 0
959  */
960 static bool gcp_default_phase_possible(int pipe_bpp,
961 				       const struct drm_display_mode *mode)
962 {
963 	unsigned int pixels_per_group;
964 
965 	switch (pipe_bpp) {
966 	case 30:
967 		/* 4 pixels in 5 clocks */
968 		pixels_per_group = 4;
969 		break;
970 	case 36:
971 		/* 2 pixels in 3 clocks */
972 		pixels_per_group = 2;
973 		break;
974 	case 48:
975 		/* 1 pixel in 2 clocks */
976 		pixels_per_group = 1;
977 		break;
978 	default:
979 		/* phase information not relevant for 8bpc */
980 		return false;
981 	}
982 
983 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
984 		mode->crtc_htotal % pixels_per_group == 0 &&
985 		mode->crtc_hblank_start % pixels_per_group == 0 &&
986 		mode->crtc_hblank_end % pixels_per_group == 0 &&
987 		mode->crtc_hsync_start % pixels_per_group == 0 &&
988 		mode->crtc_hsync_end % pixels_per_group == 0 &&
989 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
990 		 mode->crtc_htotal/2 % pixels_per_group == 0);
991 }
992 
993 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
994 					 const struct intel_crtc_state *crtc_state,
995 					 const struct drm_connector_state *conn_state)
996 {
997 	struct intel_display *display = to_intel_display(encoder);
998 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
999 	i915_reg_t reg;
1000 
1001 	if ((crtc_state->infoframes.enable &
1002 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1003 		return false;
1004 
1005 	if (HAS_DDI(display))
1006 		reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
1007 	else if (display->platform.valleyview || display->platform.cherryview)
1008 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1009 	else if (HAS_PCH_SPLIT(display))
1010 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1011 	else
1012 		return false;
1013 
1014 	intel_de_write(display, reg, crtc_state->infoframes.gcp);
1015 
1016 	return true;
1017 }
1018 
1019 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
1020 				   struct intel_crtc_state *crtc_state)
1021 {
1022 	struct intel_display *display = to_intel_display(encoder);
1023 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1024 	i915_reg_t reg;
1025 
1026 	if ((crtc_state->infoframes.enable &
1027 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1028 		return;
1029 
1030 	if (HAS_DDI(display))
1031 		reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
1032 	else if (display->platform.valleyview || display->platform.cherryview)
1033 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1034 	else if (HAS_PCH_SPLIT(display))
1035 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1036 	else
1037 		return;
1038 
1039 	crtc_state->infoframes.gcp = intel_de_read(display, reg);
1040 }
1041 
1042 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1043 					     struct intel_crtc_state *crtc_state,
1044 					     struct drm_connector_state *conn_state)
1045 {
1046 	struct intel_display *display = to_intel_display(encoder);
1047 
1048 	if (display->platform.g4x || !crtc_state->has_infoframe)
1049 		return;
1050 
1051 	crtc_state->infoframes.enable |=
1052 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1053 
1054 	/* Indicate color indication for deep color mode */
1055 	if (crtc_state->pipe_bpp > 24)
1056 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1057 
1058 	/* Enable default_phase whenever the display mode is suitably aligned */
1059 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1060 				       &crtc_state->hw.adjusted_mode))
1061 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1062 }
1063 
1064 static void ibx_set_infoframes(struct intel_encoder *encoder,
1065 			       bool enable,
1066 			       const struct intel_crtc_state *crtc_state,
1067 			       const struct drm_connector_state *conn_state)
1068 {
1069 	struct intel_display *display = to_intel_display(encoder);
1070 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1071 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1072 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1073 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1074 	u32 val = intel_de_read(display, reg);
1075 	u32 port = VIDEO_DIP_PORT(encoder->port);
1076 
1077 	assert_hdmi_port_disabled(intel_hdmi);
1078 
1079 	/* See the big comment in g4x_set_infoframes() */
1080 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1081 
1082 	if (!enable) {
1083 		if (!(val & VIDEO_DIP_ENABLE))
1084 			return;
1085 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1086 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1087 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1088 		intel_de_write(display, reg, val);
1089 		intel_de_posting_read(display, reg);
1090 		return;
1091 	}
1092 
1093 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1094 		drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1095 			 "DIP already enabled on port %c\n",
1096 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1097 		val &= ~VIDEO_DIP_PORT_MASK;
1098 		val |= port;
1099 	}
1100 
1101 	val |= VIDEO_DIP_ENABLE;
1102 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1103 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1104 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1105 
1106 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1107 		val |= VIDEO_DIP_ENABLE_GCP;
1108 
1109 	intel_de_write(display, reg, val);
1110 	intel_de_posting_read(display, reg);
1111 
1112 	intel_write_infoframe(encoder, crtc_state,
1113 			      HDMI_INFOFRAME_TYPE_AVI,
1114 			      &crtc_state->infoframes.avi);
1115 	intel_write_infoframe(encoder, crtc_state,
1116 			      HDMI_INFOFRAME_TYPE_SPD,
1117 			      &crtc_state->infoframes.spd);
1118 	intel_write_infoframe(encoder, crtc_state,
1119 			      HDMI_INFOFRAME_TYPE_VENDOR,
1120 			      &crtc_state->infoframes.hdmi);
1121 }
1122 
1123 static void cpt_set_infoframes(struct intel_encoder *encoder,
1124 			       bool enable,
1125 			       const struct intel_crtc_state *crtc_state,
1126 			       const struct drm_connector_state *conn_state)
1127 {
1128 	struct intel_display *display = to_intel_display(encoder);
1129 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1130 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1131 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1132 	u32 val = intel_de_read(display, reg);
1133 
1134 	assert_hdmi_port_disabled(intel_hdmi);
1135 
1136 	/* See the big comment in g4x_set_infoframes() */
1137 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1138 
1139 	if (!enable) {
1140 		if (!(val & VIDEO_DIP_ENABLE))
1141 			return;
1142 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1143 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1144 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1145 		intel_de_write(display, reg, val);
1146 		intel_de_posting_read(display, reg);
1147 		return;
1148 	}
1149 
1150 	/* Set both together, unset both together: see the spec. */
1151 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1152 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1153 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1154 
1155 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1156 		val |= VIDEO_DIP_ENABLE_GCP;
1157 
1158 	intel_de_write(display, reg, val);
1159 	intel_de_posting_read(display, reg);
1160 
1161 	intel_write_infoframe(encoder, crtc_state,
1162 			      HDMI_INFOFRAME_TYPE_AVI,
1163 			      &crtc_state->infoframes.avi);
1164 	intel_write_infoframe(encoder, crtc_state,
1165 			      HDMI_INFOFRAME_TYPE_SPD,
1166 			      &crtc_state->infoframes.spd);
1167 	intel_write_infoframe(encoder, crtc_state,
1168 			      HDMI_INFOFRAME_TYPE_VENDOR,
1169 			      &crtc_state->infoframes.hdmi);
1170 }
1171 
1172 static void vlv_set_infoframes(struct intel_encoder *encoder,
1173 			       bool enable,
1174 			       const struct intel_crtc_state *crtc_state,
1175 			       const struct drm_connector_state *conn_state)
1176 {
1177 	struct intel_display *display = to_intel_display(encoder);
1178 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1179 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1180 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1181 	u32 val = intel_de_read(display, reg);
1182 	u32 port = VIDEO_DIP_PORT(encoder->port);
1183 
1184 	assert_hdmi_port_disabled(intel_hdmi);
1185 
1186 	/* See the big comment in g4x_set_infoframes() */
1187 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1188 
1189 	if (!enable) {
1190 		if (!(val & VIDEO_DIP_ENABLE))
1191 			return;
1192 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1193 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1194 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1195 		intel_de_write(display, reg, val);
1196 		intel_de_posting_read(display, reg);
1197 		return;
1198 	}
1199 
1200 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1201 		drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1202 			 "DIP already enabled on port %c\n",
1203 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1204 		val &= ~VIDEO_DIP_PORT_MASK;
1205 		val |= port;
1206 	}
1207 
1208 	val |= VIDEO_DIP_ENABLE;
1209 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1210 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1211 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1212 
1213 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1214 		val |= VIDEO_DIP_ENABLE_GCP;
1215 
1216 	intel_de_write(display, reg, val);
1217 	intel_de_posting_read(display, reg);
1218 
1219 	intel_write_infoframe(encoder, crtc_state,
1220 			      HDMI_INFOFRAME_TYPE_AVI,
1221 			      &crtc_state->infoframes.avi);
1222 	intel_write_infoframe(encoder, crtc_state,
1223 			      HDMI_INFOFRAME_TYPE_SPD,
1224 			      &crtc_state->infoframes.spd);
1225 	intel_write_infoframe(encoder, crtc_state,
1226 			      HDMI_INFOFRAME_TYPE_VENDOR,
1227 			      &crtc_state->infoframes.hdmi);
1228 }
1229 
1230 void intel_hdmi_fastset_infoframes(struct intel_encoder *encoder,
1231 				   const struct intel_crtc_state *crtc_state,
1232 				   const struct drm_connector_state *conn_state)
1233 {
1234 	struct intel_display *display = to_intel_display(encoder);
1235 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display,
1236 					    crtc_state->cpu_transcoder);
1237 	u32 val = intel_de_read(display, reg);
1238 
1239 	if ((crtc_state->infoframes.enable &
1240 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) == 0 &&
1241 			(val & VIDEO_DIP_ENABLE_DRM_GLK) == 0)
1242 		return;
1243 
1244 	val &= ~(VIDEO_DIP_ENABLE_DRM_GLK);
1245 
1246 	intel_de_write(display, reg, val);
1247 	intel_de_posting_read(display, reg);
1248 
1249 	intel_write_infoframe(encoder, crtc_state,
1250 			      HDMI_INFOFRAME_TYPE_DRM,
1251 			      &crtc_state->infoframes.drm);
1252 }
1253 
1254 static void hsw_set_infoframes(struct intel_encoder *encoder,
1255 			       bool enable,
1256 			       const struct intel_crtc_state *crtc_state,
1257 			       const struct drm_connector_state *conn_state)
1258 {
1259 	struct intel_display *display = to_intel_display(encoder);
1260 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display,
1261 					    crtc_state->cpu_transcoder);
1262 	u32 val = intel_de_read(display, reg);
1263 
1264 	assert_hdmi_transcoder_func_disabled(display,
1265 					     crtc_state->cpu_transcoder);
1266 
1267 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1268 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1269 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1270 		 VIDEO_DIP_ENABLE_DRM_GLK | VIDEO_DIP_ENABLE_AS_ADL);
1271 
1272 	if (!enable) {
1273 		intel_de_write(display, reg, val);
1274 		intel_de_posting_read(display, reg);
1275 		return;
1276 	}
1277 
1278 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1279 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1280 
1281 	intel_de_write(display, reg, val);
1282 	intel_de_posting_read(display, reg);
1283 
1284 	intel_write_infoframe(encoder, crtc_state,
1285 			      HDMI_INFOFRAME_TYPE_AVI,
1286 			      &crtc_state->infoframes.avi);
1287 	intel_write_infoframe(encoder, crtc_state,
1288 			      HDMI_INFOFRAME_TYPE_SPD,
1289 			      &crtc_state->infoframes.spd);
1290 	intel_write_infoframe(encoder, crtc_state,
1291 			      HDMI_INFOFRAME_TYPE_VENDOR,
1292 			      &crtc_state->infoframes.hdmi);
1293 	intel_write_infoframe(encoder, crtc_state,
1294 			      HDMI_INFOFRAME_TYPE_DRM,
1295 			      &crtc_state->infoframes.drm);
1296 }
1297 
1298 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1299 {
1300 	struct intel_display *display = to_intel_display(hdmi);
1301 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1302 
1303 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1304 		return;
1305 
1306 	drm_dbg_kms(display->drm, "%s DP dual mode adaptor TMDS output\n",
1307 		    enable ? "Enabling" : "Disabling");
1308 
1309 	drm_dp_dual_mode_set_tmds_output(display->drm,
1310 					 hdmi->dp_dual_mode.type, ddc, enable);
1311 }
1312 
1313 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1314 				unsigned int offset, void *buffer, size_t size)
1315 {
1316 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1317 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1318 	int ret;
1319 	u8 start = offset & 0xff;
1320 	struct i2c_msg msgs[] = {
1321 		{
1322 			.addr = DRM_HDCP_DDC_ADDR,
1323 			.flags = 0,
1324 			.len = 1,
1325 			.buf = &start,
1326 		},
1327 		{
1328 			.addr = DRM_HDCP_DDC_ADDR,
1329 			.flags = I2C_M_RD,
1330 			.len = size,
1331 			.buf = buffer
1332 		}
1333 	};
1334 	ret = i2c_transfer(ddc, msgs, ARRAY_SIZE(msgs));
1335 	if (ret == ARRAY_SIZE(msgs))
1336 		return 0;
1337 	return ret >= 0 ? -EIO : ret;
1338 }
1339 
1340 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1341 				 unsigned int offset, void *buffer, size_t size)
1342 {
1343 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1344 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1345 	int ret;
1346 	u8 *write_buf;
1347 	struct i2c_msg msg;
1348 
1349 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1350 	if (!write_buf)
1351 		return -ENOMEM;
1352 
1353 	write_buf[0] = offset & 0xff;
1354 	memcpy(&write_buf[1], buffer, size);
1355 
1356 	msg.addr = DRM_HDCP_DDC_ADDR;
1357 	msg.flags = 0;
1358 	msg.len = size + 1;
1359 	msg.buf = write_buf;
1360 
1361 	ret = i2c_transfer(ddc, &msg, 1);
1362 	if (ret == 1)
1363 		ret = 0;
1364 	else if (ret >= 0)
1365 		ret = -EIO;
1366 
1367 	kfree(write_buf);
1368 	return ret;
1369 }
1370 
1371 static
1372 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1373 				  u8 *an)
1374 {
1375 	struct intel_display *display = to_intel_display(dig_port);
1376 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1377 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1378 	int ret;
1379 
1380 	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1381 				    DRM_HDCP_AN_LEN);
1382 	if (ret) {
1383 		drm_dbg_kms(display->drm, "Write An over DDC failed (%d)\n",
1384 			    ret);
1385 		return ret;
1386 	}
1387 
1388 	ret = intel_gmbus_output_aksv(ddc);
1389 	if (ret < 0) {
1390 		drm_dbg_kms(display->drm, "Failed to output aksv (%d)\n", ret);
1391 		return ret;
1392 	}
1393 	return 0;
1394 }
1395 
1396 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1397 				     u8 *bksv)
1398 {
1399 	struct intel_display *display = to_intel_display(dig_port);
1400 
1401 	int ret;
1402 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1403 				   DRM_HDCP_KSV_LEN);
1404 	if (ret)
1405 		drm_dbg_kms(display->drm, "Read Bksv over DDC failed (%d)\n",
1406 			    ret);
1407 	return ret;
1408 }
1409 
1410 static
1411 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1412 				 u8 *bstatus)
1413 {
1414 	struct intel_display *display = to_intel_display(dig_port);
1415 
1416 	int ret;
1417 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1418 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1419 	if (ret)
1420 		drm_dbg_kms(display->drm,
1421 			    "Read bstatus over DDC failed (%d)\n",
1422 			    ret);
1423 	return ret;
1424 }
1425 
1426 static
1427 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1428 				     bool *repeater_present)
1429 {
1430 	struct intel_display *display = to_intel_display(dig_port);
1431 	int ret;
1432 	u8 val;
1433 
1434 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1435 	if (ret) {
1436 		drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1437 			    ret);
1438 		return ret;
1439 	}
1440 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1441 	return 0;
1442 }
1443 
1444 static
1445 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1446 				  u8 *ri_prime)
1447 {
1448 	struct intel_display *display = to_intel_display(dig_port);
1449 
1450 	int ret;
1451 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1452 				   ri_prime, DRM_HDCP_RI_LEN);
1453 	if (ret)
1454 		drm_dbg_kms(display->drm, "Read Ri' over DDC failed (%d)\n",
1455 			    ret);
1456 	return ret;
1457 }
1458 
1459 static
1460 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1461 				   bool *ksv_ready)
1462 {
1463 	struct intel_display *display = to_intel_display(dig_port);
1464 	int ret;
1465 	u8 val;
1466 
1467 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1468 	if (ret) {
1469 		drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1470 			    ret);
1471 		return ret;
1472 	}
1473 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1474 	return 0;
1475 }
1476 
1477 static
1478 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1479 				  int num_downstream, u8 *ksv_fifo)
1480 {
1481 	struct intel_display *display = to_intel_display(dig_port);
1482 	int ret;
1483 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1484 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1485 	if (ret) {
1486 		drm_dbg_kms(display->drm,
1487 			    "Read ksv fifo over DDC failed (%d)\n", ret);
1488 		return ret;
1489 	}
1490 	return 0;
1491 }
1492 
1493 static
1494 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1495 				      int i, u32 *part)
1496 {
1497 	struct intel_display *display = to_intel_display(dig_port);
1498 	int ret;
1499 
1500 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1501 		return -EINVAL;
1502 
1503 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1504 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1505 	if (ret)
1506 		drm_dbg_kms(display->drm,
1507 			    "Read V'[%d] over DDC failed (%d)\n",
1508 			    i, ret);
1509 	return ret;
1510 }
1511 
1512 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1513 					   enum transcoder cpu_transcoder)
1514 {
1515 	struct intel_display *display = to_intel_display(connector);
1516 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1517 	struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1518 	u32 scanline;
1519 	int ret;
1520 
1521 	for (;;) {
1522 		scanline = intel_de_read(display,
1523 					 PIPEDSL(display, crtc->pipe));
1524 		if (scanline > 100 && scanline < 200)
1525 			break;
1526 		usleep_range(25, 50);
1527 	}
1528 
1529 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1530 					 false, TRANS_DDI_HDCP_SIGNALLING);
1531 	if (ret) {
1532 		drm_err(display->drm,
1533 			"Disable HDCP signalling failed (%d)\n", ret);
1534 		return ret;
1535 	}
1536 
1537 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1538 					 true, TRANS_DDI_HDCP_SIGNALLING);
1539 	if (ret) {
1540 		drm_err(display->drm,
1541 			"Enable HDCP signalling failed (%d)\n", ret);
1542 		return ret;
1543 	}
1544 
1545 	return 0;
1546 }
1547 
1548 static
1549 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1550 				      enum transcoder cpu_transcoder,
1551 				      bool enable)
1552 {
1553 	struct intel_display *display = to_intel_display(dig_port);
1554 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1555 	struct intel_connector *connector = hdmi->attached_connector;
1556 	int ret;
1557 
1558 	if (!enable)
1559 		usleep_range(6, 60); /* Bspec says >= 6us */
1560 
1561 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1562 					 cpu_transcoder, enable,
1563 					 TRANS_DDI_HDCP_SIGNALLING);
1564 	if (ret) {
1565 		drm_err(display->drm, "%s HDCP signalling failed (%d)\n",
1566 			enable ? "Enable" : "Disable", ret);
1567 		return ret;
1568 	}
1569 
1570 	/*
1571 	 * WA: To fix incorrect positioning of the window of
1572 	 * opportunity and enc_en signalling in KABYLAKE.
1573 	 */
1574 	if (display->platform.kabylake && enable)
1575 		return kbl_repositioning_enc_en_signal(connector,
1576 						       cpu_transcoder);
1577 
1578 	return 0;
1579 }
1580 
1581 static
1582 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1583 				     struct intel_connector *connector)
1584 {
1585 	struct intel_display *display = to_intel_display(dig_port);
1586 	enum port port = dig_port->base.port;
1587 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1588 	int ret;
1589 	union {
1590 		u32 reg;
1591 		u8 shim[DRM_HDCP_RI_LEN];
1592 	} ri;
1593 
1594 	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1595 	if (ret)
1596 		return false;
1597 
1598 	intel_de_write(display, HDCP_RPRIME(display, cpu_transcoder, port), ri.reg);
1599 
1600 	/* Wait for Ri prime match */
1601 	ret = intel_de_wait_for_set(display, HDCP_STATUS(display, cpu_transcoder, port),
1602 				    HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC, 1);
1603 	if (ret) {
1604 		drm_dbg_kms(display->drm, "Ri' mismatch detected (%x)\n",
1605 			    intel_de_read(display, HDCP_STATUS(display, cpu_transcoder,
1606 							       port)));
1607 		return false;
1608 	}
1609 	return true;
1610 }
1611 
1612 static
1613 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1614 				struct intel_connector *connector)
1615 {
1616 	int retry;
1617 
1618 	for (retry = 0; retry < 3; retry++)
1619 		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1620 			return true;
1621 
1622 	return false;
1623 }
1624 
1625 struct hdcp2_hdmi_msg_timeout {
1626 	u8 msg_id;
1627 	u16 timeout;
1628 };
1629 
1630 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1631 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1632 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1633 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1634 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1635 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1636 };
1637 
1638 static
1639 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1640 				    u8 *rx_status)
1641 {
1642 	return intel_hdmi_hdcp_read(dig_port,
1643 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1644 				    rx_status,
1645 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1646 }
1647 
1648 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1649 {
1650 	int i;
1651 
1652 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1653 		if (is_paired)
1654 			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1655 		else
1656 			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1657 	}
1658 
1659 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1660 		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1661 			return hdcp2_msg_timeout[i].timeout;
1662 	}
1663 
1664 	return -EINVAL;
1665 }
1666 
1667 static int
1668 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1669 			      u8 msg_id, bool *msg_ready,
1670 			      ssize_t *msg_sz)
1671 {
1672 	struct intel_display *display = to_intel_display(dig_port);
1673 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1674 	int ret;
1675 
1676 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1677 	if (ret < 0) {
1678 		drm_dbg_kms(display->drm, "rx_status read failed. Err %d\n",
1679 			    ret);
1680 		return ret;
1681 	}
1682 
1683 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1684 		  rx_status[0]);
1685 
1686 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1687 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1688 			     *msg_sz);
1689 	else
1690 		*msg_ready = *msg_sz;
1691 
1692 	return 0;
1693 }
1694 
1695 static ssize_t
1696 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1697 			      u8 msg_id, bool paired)
1698 {
1699 	struct intel_display *display = to_intel_display(dig_port);
1700 	bool msg_ready = false;
1701 	int timeout, ret;
1702 	ssize_t msg_sz = 0;
1703 
1704 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1705 	if (timeout < 0)
1706 		return timeout;
1707 
1708 	ret = poll_timeout_us(ret = hdcp2_detect_msg_availability(dig_port, msg_id,
1709 								  &msg_ready, &msg_sz),
1710 			      !ret && msg_ready && msg_sz,
1711 			      4000, timeout * 1000, false);
1712 	if (ret)
1713 		drm_dbg_kms(display->drm,
1714 			    "msg_id: %d, ret: %d, timeout: %d\n",
1715 			    msg_id, ret, timeout);
1716 
1717 	return ret ? ret : msg_sz;
1718 }
1719 
1720 static
1721 int intel_hdmi_hdcp2_write_msg(struct intel_connector *connector,
1722 			       void *buf, size_t size)
1723 {
1724 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1725 	unsigned int offset;
1726 
1727 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1728 	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1729 }
1730 
1731 static
1732 int intel_hdmi_hdcp2_read_msg(struct intel_connector *connector,
1733 			      u8 msg_id, void *buf, size_t size)
1734 {
1735 	struct intel_display *display = to_intel_display(connector);
1736 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1737 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1738 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1739 	unsigned int offset;
1740 	ssize_t ret;
1741 
1742 	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1743 					    hdcp->is_paired);
1744 	if (ret < 0)
1745 		return ret;
1746 
1747 	/*
1748 	 * Available msg size should be equal to or lesser than the
1749 	 * available buffer.
1750 	 */
1751 	if (ret > size) {
1752 		drm_dbg_kms(display->drm,
1753 			    "msg_sz(%zd) is more than exp size(%zu)\n",
1754 			    ret, size);
1755 		return -EINVAL;
1756 	}
1757 
1758 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1759 	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1760 	if (ret)
1761 		drm_dbg_kms(display->drm, "Failed to read msg_id: %d(%zd)\n",
1762 			    msg_id, ret);
1763 
1764 	return ret;
1765 }
1766 
1767 static
1768 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1769 				struct intel_connector *connector)
1770 {
1771 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1772 	int ret;
1773 
1774 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1775 	if (ret)
1776 		return ret;
1777 
1778 	/*
1779 	 * Re-auth request and Link Integrity Failures are represented by
1780 	 * same bit. i.e reauth_req.
1781 	 */
1782 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1783 		ret = HDCP_REAUTH_REQUEST;
1784 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1785 		ret = HDCP_TOPOLOGY_CHANGE;
1786 
1787 	return ret;
1788 }
1789 
1790 static
1791 int intel_hdmi_hdcp2_get_capability(struct intel_connector *connector,
1792 				    bool *capable)
1793 {
1794 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1795 	u8 hdcp2_version;
1796 	int ret;
1797 
1798 	*capable = false;
1799 	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1800 				   &hdcp2_version, sizeof(hdcp2_version));
1801 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1802 		*capable = true;
1803 
1804 	return ret;
1805 }
1806 
1807 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1808 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1809 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1810 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1811 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1812 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1813 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1814 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1815 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1816 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1817 	.check_link = intel_hdmi_hdcp_check_link,
1818 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1819 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1820 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1821 	.hdcp_2_2_get_capability = intel_hdmi_hdcp2_get_capability,
1822 	.protocol = HDCP_PROTOCOL_HDMI,
1823 };
1824 
1825 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1826 {
1827 	struct intel_display *display = to_intel_display(encoder);
1828 	int max_tmds_clock, vbt_max_tmds_clock;
1829 
1830 	if (DISPLAY_VER(display) >= 13 || display->platform.alderlake_s)
1831 		max_tmds_clock = 600000;
1832 	else if (DISPLAY_VER(display) >= 10)
1833 		max_tmds_clock = 594000;
1834 	else if (DISPLAY_VER(display) >= 8 || display->platform.haswell)
1835 		max_tmds_clock = 300000;
1836 	else if (DISPLAY_VER(display) >= 5)
1837 		max_tmds_clock = 225000;
1838 	else
1839 		max_tmds_clock = 165000;
1840 
1841 	vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata);
1842 	if (vbt_max_tmds_clock)
1843 		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1844 
1845 	return max_tmds_clock;
1846 }
1847 
1848 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1849 				const struct drm_connector_state *conn_state)
1850 {
1851 	struct intel_connector *connector = hdmi->attached_connector;
1852 
1853 	return connector->base.display_info.is_hdmi &&
1854 		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1855 }
1856 
1857 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1858 {
1859 	return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1860 }
1861 
1862 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1863 				 bool respect_downstream_limits,
1864 				 bool has_hdmi_sink)
1865 {
1866 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1867 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1868 
1869 	if (respect_downstream_limits) {
1870 		struct intel_connector *connector = hdmi->attached_connector;
1871 		const struct drm_display_info *info = &connector->base.display_info;
1872 
1873 		if (hdmi->dp_dual_mode.max_tmds_clock)
1874 			max_tmds_clock = min(max_tmds_clock,
1875 					     hdmi->dp_dual_mode.max_tmds_clock);
1876 
1877 		if (info->max_tmds_clock)
1878 			max_tmds_clock = min(max_tmds_clock,
1879 					     info->max_tmds_clock);
1880 		else if (!has_hdmi_sink)
1881 			max_tmds_clock = min(max_tmds_clock, 165000);
1882 	}
1883 
1884 	return max_tmds_clock;
1885 }
1886 
1887 static enum drm_mode_status
1888 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1889 		      int clock, bool respect_downstream_limits,
1890 		      bool has_hdmi_sink)
1891 {
1892 	struct intel_display *display = to_intel_display(hdmi);
1893 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1894 
1895 	if (clock < 25000)
1896 		return MODE_CLOCK_LOW;
1897 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1898 					  has_hdmi_sink))
1899 		return MODE_CLOCK_HIGH;
1900 
1901 	/* GLK DPLL can't generate 446-480 MHz */
1902 	if (display->platform.geminilake && clock > 446666 && clock < 480000)
1903 		return MODE_CLOCK_RANGE;
1904 
1905 	/* BXT/GLK DPLL can't generate 223-240 MHz */
1906 	if ((display->platform.geminilake || display->platform.broxton) &&
1907 	    clock > 223333 && clock < 240000)
1908 		return MODE_CLOCK_RANGE;
1909 
1910 	/* CHV DPLL can't generate 216-240 MHz */
1911 	if (display->platform.cherryview && clock > 216000 && clock < 240000)
1912 		return MODE_CLOCK_RANGE;
1913 
1914 	/* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1915 	if (intel_encoder_is_combo(encoder) && clock > 500000 && clock < 533200)
1916 		return MODE_CLOCK_RANGE;
1917 
1918 	/* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1919 	if (intel_encoder_is_tc(encoder) && clock > 500000 && clock < 532800)
1920 		return MODE_CLOCK_RANGE;
1921 
1922 	return MODE_OK;
1923 }
1924 
1925 int intel_hdmi_tmds_clock(int clock, int bpc,
1926 			  enum intel_output_format sink_format)
1927 {
1928 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
1929 	if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1930 		clock /= 2;
1931 
1932 	/*
1933 	 * Need to adjust the port link by:
1934 	 *  1.5x for 12bpc
1935 	 *  1.25x for 10bpc
1936 	 */
1937 	return DIV_ROUND_CLOSEST(clock * bpc, 8);
1938 }
1939 
1940 static bool intel_hdmi_source_bpc_possible(struct intel_display *display, int bpc)
1941 {
1942 	switch (bpc) {
1943 	case 12:
1944 		return !HAS_GMCH(display);
1945 	case 10:
1946 		return DISPLAY_VER(display) >= 11;
1947 	case 8:
1948 		return true;
1949 	default:
1950 		MISSING_CASE(bpc);
1951 		return false;
1952 	}
1953 }
1954 
1955 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *_connector,
1956 					 int bpc, bool has_hdmi_sink,
1957 					 enum intel_output_format sink_format)
1958 {
1959 	struct intel_connector *connector = to_intel_connector(_connector);
1960 	const struct drm_display_info *info = &connector->base.display_info;
1961 	const struct drm_hdmi_info *hdmi = &info->hdmi;
1962 
1963 	switch (bpc) {
1964 	case 12:
1965 		if (!has_hdmi_sink)
1966 			return false;
1967 
1968 		if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1969 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1970 		else
1971 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1972 	case 10:
1973 		if (!has_hdmi_sink)
1974 			return false;
1975 
1976 		if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1977 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1978 		else
1979 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1980 	case 8:
1981 		return true;
1982 	default:
1983 		MISSING_CASE(bpc);
1984 		return false;
1985 	}
1986 }
1987 
1988 static enum drm_mode_status
1989 intel_hdmi_mode_clock_valid(struct drm_connector *_connector, int clock,
1990 			    bool has_hdmi_sink,
1991 			    enum intel_output_format sink_format)
1992 {
1993 	struct intel_connector *connector = to_intel_connector(_connector);
1994 	struct intel_display *display = to_intel_display(connector);
1995 	struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
1996 	enum drm_mode_status status = MODE_OK;
1997 	int bpc;
1998 
1999 	/*
2000 	 * Try all color depths since valid port clock range
2001 	 * can have holes. Any mode that can be used with at
2002 	 * least one color depth is accepted.
2003 	 */
2004 	for (bpc = 12; bpc >= 8; bpc -= 2) {
2005 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format);
2006 
2007 		if (!intel_hdmi_source_bpc_possible(display, bpc))
2008 			continue;
2009 
2010 		if (!intel_hdmi_sink_bpc_possible(&connector->base, bpc, has_hdmi_sink,
2011 						  sink_format))
2012 			continue;
2013 
2014 		status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
2015 		if (status == MODE_OK)
2016 			return MODE_OK;
2017 	}
2018 
2019 	/* can never happen */
2020 	drm_WARN_ON(display->drm, status == MODE_OK);
2021 
2022 	return status;
2023 }
2024 
2025 static enum drm_mode_status
2026 intel_hdmi_mode_valid(struct drm_connector *_connector,
2027 		      const struct drm_display_mode *mode)
2028 {
2029 	struct intel_connector *connector = to_intel_connector(_connector);
2030 	struct intel_display *display = to_intel_display(connector);
2031 	struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
2032 	enum drm_mode_status status;
2033 	int clock = mode->clock;
2034 	int max_dotclk = display->cdclk.max_dotclk_freq;
2035 	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->base.state);
2036 	bool ycbcr_420_only;
2037 	enum intel_output_format sink_format;
2038 
2039 	status = intel_cpu_transcoder_mode_valid(display, mode);
2040 	if (status != MODE_OK)
2041 		return status;
2042 
2043 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
2044 		clock *= 2;
2045 
2046 	if (clock > max_dotclk)
2047 		return MODE_CLOCK_HIGH;
2048 
2049 	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
2050 		if (!has_hdmi_sink)
2051 			return MODE_CLOCK_LOW;
2052 		clock *= 2;
2053 	}
2054 
2055 	/*
2056 	 * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
2057 	 * enumerated only if FRL is supported. Current platforms do not support
2058 	 * FRL so prune the higher resolution modes that require doctclock more
2059 	 * than 600MHz.
2060 	 */
2061 	if (clock > 600000)
2062 		return MODE_CLOCK_HIGH;
2063 
2064 	ycbcr_420_only = drm_mode_is_420_only(&connector->base.display_info, mode);
2065 
2066 	if (ycbcr_420_only)
2067 		sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2068 	else
2069 		sink_format = INTEL_OUTPUT_FORMAT_RGB;
2070 
2071 	status = intel_pfit_mode_valid(display, mode, sink_format, 0);
2072 	if (status != MODE_OK)
2073 		return status;
2074 
2075 	status = intel_hdmi_mode_clock_valid(&connector->base, clock, has_hdmi_sink, sink_format);
2076 	if (status != MODE_OK) {
2077 		if (ycbcr_420_only ||
2078 		    !connector->base.ycbcr_420_allowed ||
2079 		    !drm_mode_is_420_also(&connector->base.display_info, mode))
2080 			return status;
2081 
2082 		sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2083 		status = intel_hdmi_mode_clock_valid(&connector->base, clock, has_hdmi_sink,
2084 						     sink_format);
2085 		if (status != MODE_OK)
2086 			return status;
2087 	}
2088 
2089 	return intel_mode_valid_max_plane_size(display, mode, 1);
2090 }
2091 
2092 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2093 			     int bpc, bool has_hdmi_sink)
2094 {
2095 	struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
2096 	struct intel_digital_connector_state *connector_state;
2097 	struct intel_connector *connector;
2098 	int i;
2099 
2100 	for_each_new_intel_connector_in_state(state, connector, connector_state, i) {
2101 		if (connector_state->base.crtc != crtc_state->uapi.crtc)
2102 			continue;
2103 
2104 		if (!intel_hdmi_sink_bpc_possible(&connector->base, bpc, has_hdmi_sink,
2105 						  crtc_state->sink_format))
2106 			return false;
2107 	}
2108 
2109 	return true;
2110 }
2111 
2112 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
2113 {
2114 	struct intel_display *display = to_intel_display(crtc_state);
2115 	const struct drm_display_mode *adjusted_mode =
2116 		&crtc_state->hw.adjusted_mode;
2117 
2118 	if (!intel_hdmi_source_bpc_possible(display, bpc))
2119 		return false;
2120 
2121 	/* Display Wa_1405510057:icl,ehl */
2122 	if (intel_hdmi_is_ycbcr420(crtc_state) &&
2123 	    bpc == 10 && DISPLAY_VER(display) == 11 &&
2124 	    (adjusted_mode->crtc_hblank_end -
2125 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2126 		return false;
2127 
2128 	return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink);
2129 }
2130 
2131 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2132 				  struct intel_crtc_state *crtc_state,
2133 				  int clock, bool respect_downstream_limits)
2134 {
2135 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2136 	int bpc;
2137 
2138 	/*
2139 	 * pipe_bpp could already be below 8bpc due to FDI
2140 	 * bandwidth constraints. HDMI minimum is 8bpc however.
2141 	 */
2142 	bpc = max(crtc_state->pipe_bpp / 3, 8);
2143 
2144 	/*
2145 	 * We will never exceed downstream TMDS clock limits while
2146 	 * attempting deep color. If the user insists on forcing an
2147 	 * out of spec mode they will have to be satisfied with 8bpc.
2148 	 */
2149 	if (!respect_downstream_limits)
2150 		bpc = 8;
2151 
2152 	for (; bpc >= 8; bpc -= 2) {
2153 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc,
2154 						       crtc_state->sink_format);
2155 
2156 		if (hdmi_bpc_possible(crtc_state, bpc) &&
2157 		    hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2158 					  respect_downstream_limits,
2159 					  crtc_state->has_hdmi_sink) == MODE_OK)
2160 			return bpc;
2161 	}
2162 
2163 	return -EINVAL;
2164 }
2165 
2166 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2167 				    struct intel_crtc_state *crtc_state,
2168 				    bool respect_downstream_limits)
2169 {
2170 	struct intel_display *display = to_intel_display(encoder);
2171 	const struct drm_display_mode *adjusted_mode =
2172 		&crtc_state->hw.adjusted_mode;
2173 	int bpc, clock = adjusted_mode->crtc_clock;
2174 
2175 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2176 		clock *= 2;
2177 
2178 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2179 				     respect_downstream_limits);
2180 	if (bpc < 0)
2181 		return bpc;
2182 
2183 	crtc_state->port_clock =
2184 		intel_hdmi_tmds_clock(clock, bpc, crtc_state->sink_format);
2185 
2186 	/*
2187 	 * pipe_bpp could already be below 8bpc due to
2188 	 * FDI bandwidth constraints. We shouldn't bump it
2189 	 * back up to the HDMI minimum 8bpc in that case.
2190 	 */
2191 	crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
2192 
2193 	drm_dbg_kms(display->drm,
2194 		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2195 		    bpc, crtc_state->pipe_bpp);
2196 
2197 	return 0;
2198 }
2199 
2200 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2201 				    const struct drm_connector_state *conn_state)
2202 {
2203 	const struct intel_digital_connector_state *intel_conn_state =
2204 		to_intel_digital_connector_state(conn_state);
2205 	const struct drm_display_mode *adjusted_mode =
2206 		&crtc_state->hw.adjusted_mode;
2207 
2208 	/*
2209 	 * Our YCbCr output is always limited range.
2210 	 * crtc_state->limited_color_range only applies to RGB,
2211 	 * and it must never be set for YCbCr or we risk setting
2212 	 * some conflicting bits in TRANSCONF which will mess up
2213 	 * the colors on the monitor.
2214 	 */
2215 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2216 		return false;
2217 
2218 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2219 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2220 		return crtc_state->has_hdmi_sink &&
2221 			drm_default_rgb_quant_range(adjusted_mode) ==
2222 			HDMI_QUANTIZATION_RANGE_LIMITED;
2223 	} else {
2224 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2225 	}
2226 }
2227 
2228 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2229 				 const struct intel_crtc_state *crtc_state,
2230 				 const struct drm_connector_state *conn_state)
2231 {
2232 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
2233 	const struct intel_digital_connector_state *intel_conn_state =
2234 		to_intel_digital_connector_state(conn_state);
2235 
2236 	if (!crtc_state->has_hdmi_sink)
2237 		return false;
2238 
2239 	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2240 		return connector->base.display_info.has_audio;
2241 	else
2242 		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2243 }
2244 
2245 static enum intel_output_format
2246 intel_hdmi_sink_format(const struct intel_crtc_state *crtc_state,
2247 		       struct intel_connector *connector,
2248 		       bool ycbcr_420_output)
2249 {
2250 	if (!crtc_state->has_hdmi_sink)
2251 		return INTEL_OUTPUT_FORMAT_RGB;
2252 
2253 	if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2254 		return INTEL_OUTPUT_FORMAT_YCBCR420;
2255 	else
2256 		return INTEL_OUTPUT_FORMAT_RGB;
2257 }
2258 
2259 static enum intel_output_format
2260 intel_hdmi_output_format(const struct intel_crtc_state *crtc_state)
2261 {
2262 	return crtc_state->sink_format;
2263 }
2264 
2265 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2266 					    struct intel_crtc_state *crtc_state,
2267 					    const struct drm_connector_state *conn_state,
2268 					    bool respect_downstream_limits)
2269 {
2270 	struct intel_display *display = to_intel_display(encoder);
2271 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
2272 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2273 	const struct drm_display_info *info = &connector->base.display_info;
2274 	bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2275 	int ret;
2276 
2277 	crtc_state->sink_format =
2278 		intel_hdmi_sink_format(crtc_state, connector, ycbcr_420_only);
2279 
2280 	if (ycbcr_420_only && crtc_state->sink_format != INTEL_OUTPUT_FORMAT_YCBCR420) {
2281 		drm_dbg_kms(display->drm,
2282 			    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2283 		crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB;
2284 	}
2285 
2286 	crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2287 	ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2288 	if (ret) {
2289 		if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
2290 		    !crtc_state->has_hdmi_sink ||
2291 		    !connector->base.ycbcr_420_allowed ||
2292 		    !drm_mode_is_420_also(info, adjusted_mode))
2293 			return ret;
2294 
2295 		crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2296 		crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2297 		ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2298 	}
2299 
2300 	return ret;
2301 }
2302 
2303 static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state)
2304 {
2305 	return crtc_state->uapi.encoder_mask &&
2306 		!is_power_of_2(crtc_state->uapi.encoder_mask);
2307 }
2308 
2309 static bool source_supports_scrambling(struct intel_encoder *encoder)
2310 {
2311 	/*
2312 	 * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and
2313 	 * scrambling is supported.
2314 	 * But there seem to be cases where certain platforms that support
2315 	 * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is
2316 	 * capped by VBT to less than 340MHz.
2317 	 *
2318 	 * In such cases when an HDMI2.0 sink is connected, it creates a
2319 	 * problem : the platform and the sink both support scrambling but the
2320 	 * HDMI 1.4 retimer chip doesn't.
2321 	 *
2322 	 * So go for scrambling, based on the max tmds clock taking into account,
2323 	 * restrictions coming from VBT.
2324 	 */
2325 	return intel_hdmi_source_max_tmds_clock(encoder) > 340000;
2326 }
2327 
2328 bool intel_hdmi_compute_has_hdmi_sink(struct intel_encoder *encoder,
2329 				      const struct intel_crtc_state *crtc_state,
2330 				      const struct drm_connector_state *conn_state)
2331 {
2332 	struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder);
2333 
2334 	return intel_has_hdmi_sink(hdmi, conn_state) &&
2335 		!intel_hdmi_is_cloned(crtc_state);
2336 }
2337 
2338 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2339 			      struct intel_crtc_state *pipe_config,
2340 			      struct drm_connector_state *conn_state)
2341 {
2342 	struct intel_display *display = to_intel_display(encoder);
2343 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2344 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
2345 	struct drm_scdc *scdc = &connector->base.display_info.hdmi.scdc;
2346 	int ret;
2347 
2348 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2349 		return -EINVAL;
2350 
2351 	if (!connector->base.interlace_allowed &&
2352 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2353 		return -EINVAL;
2354 
2355 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2356 
2357 	if (pipe_config->has_hdmi_sink)
2358 		pipe_config->has_infoframe = true;
2359 
2360 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2361 		pipe_config->pixel_multiplier = 2;
2362 
2363 	if (!intel_link_bw_compute_pipe_bpp(pipe_config))
2364 		return -EINVAL;
2365 
2366 	pipe_config->has_audio =
2367 		intel_hdmi_has_audio(encoder, pipe_config, conn_state) &&
2368 		intel_audio_compute_config(encoder, pipe_config, conn_state);
2369 
2370 	/*
2371 	 * Try to respect downstream TMDS clock limits first, if
2372 	 * that fails assume the user might know something we don't.
2373 	 */
2374 	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2375 	if (ret)
2376 		ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2377 	if (ret) {
2378 		drm_dbg_kms(display->drm,
2379 			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2380 			    pipe_config->hw.adjusted_mode.crtc_clock);
2381 		return ret;
2382 	}
2383 
2384 	if (intel_hdmi_is_ycbcr420(pipe_config)) {
2385 		ret = intel_pfit_compute_config(pipe_config, conn_state);
2386 		if (ret)
2387 			return ret;
2388 	}
2389 
2390 	pipe_config->limited_color_range =
2391 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2392 
2393 	if (conn_state->picture_aspect_ratio)
2394 		adjusted_mode->picture_aspect_ratio =
2395 			conn_state->picture_aspect_ratio;
2396 
2397 	pipe_config->lane_count = 4;
2398 
2399 	if (scdc->scrambling.supported && source_supports_scrambling(encoder)) {
2400 		if (scdc->scrambling.low_rates)
2401 			pipe_config->hdmi_scrambling = true;
2402 
2403 		if (pipe_config->port_clock > 340000) {
2404 			pipe_config->hdmi_scrambling = true;
2405 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2406 		}
2407 	}
2408 
2409 	intel_vrr_compute_config(pipe_config, conn_state);
2410 
2411 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2412 					 conn_state);
2413 
2414 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2415 		drm_dbg_kms(display->drm, "bad AVI infoframe\n");
2416 		return -EINVAL;
2417 	}
2418 
2419 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2420 		drm_dbg_kms(display->drm, "bad SPD infoframe\n");
2421 		return -EINVAL;
2422 	}
2423 
2424 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2425 		drm_dbg_kms(display->drm, "bad HDMI infoframe\n");
2426 		return -EINVAL;
2427 	}
2428 
2429 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2430 		drm_dbg_kms(display->drm, "bad DRM infoframe\n");
2431 		return -EINVAL;
2432 	}
2433 
2434 	return 0;
2435 }
2436 
2437 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2438 {
2439 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2440 
2441 	/*
2442 	 * Give a hand to buggy BIOSen which forget to turn
2443 	 * the TMDS output buffers back on after a reboot.
2444 	 */
2445 	intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2446 }
2447 
2448 static void
2449 intel_hdmi_unset_edid(struct drm_connector *_connector)
2450 {
2451 	struct intel_connector *connector = to_intel_connector(_connector);
2452 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
2453 
2454 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2455 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2456 
2457 	drm_edid_free(connector->detect_edid);
2458 	connector->detect_edid = NULL;
2459 }
2460 
2461 static void
2462 intel_hdmi_dp_dual_mode_detect(struct drm_connector *_connector)
2463 {
2464 	struct intel_connector *connector = to_intel_connector(_connector);
2465 	struct intel_display *display = to_intel_display(connector);
2466 	struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
2467 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
2468 	struct i2c_adapter *ddc = connector->base.ddc;
2469 	enum drm_dp_dual_mode_type type;
2470 
2471 	type = drm_dp_dual_mode_detect(display->drm, ddc);
2472 
2473 	/*
2474 	 * Type 1 DVI adaptors are not required to implement any
2475 	 * registers, so we can't always detect their presence.
2476 	 * Ideally we should be able to check the state of the
2477 	 * CONFIG1 pin, but no such luck on our hardware.
2478 	 *
2479 	 * The only method left to us is to check the VBT to see
2480 	 * if the port is a dual mode capable DP port.
2481 	 */
2482 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2483 		if (!connector->base.force &&
2484 		    intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2485 			drm_dbg_kms(display->drm,
2486 				    "Assuming DP dual mode adaptor presence based on VBT\n");
2487 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2488 		} else {
2489 			type = DRM_DP_DUAL_MODE_NONE;
2490 		}
2491 	}
2492 
2493 	if (type == DRM_DP_DUAL_MODE_NONE)
2494 		return;
2495 
2496 	hdmi->dp_dual_mode.type = type;
2497 	hdmi->dp_dual_mode.max_tmds_clock =
2498 		drm_dp_dual_mode_max_tmds_clock(display->drm, type, ddc);
2499 
2500 	drm_dbg_kms(display->drm,
2501 		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2502 		    drm_dp_get_dual_mode_type_name(type),
2503 		    hdmi->dp_dual_mode.max_tmds_clock);
2504 
2505 	/* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2506 	if ((DISPLAY_VER(display) >= 8 || display->platform.haswell) &&
2507 	    !intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2508 		drm_dbg_kms(display->drm,
2509 			    "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2510 		hdmi->dp_dual_mode.max_tmds_clock = 0;
2511 	}
2512 }
2513 
2514 static bool
2515 intel_hdmi_set_edid(struct drm_connector *_connector)
2516 {
2517 	struct intel_connector *connector = to_intel_connector(_connector);
2518 	struct intel_display *display = to_intel_display(connector);
2519 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
2520 	struct i2c_adapter *ddc = connector->base.ddc;
2521 	intel_wakeref_t wakeref;
2522 	const struct drm_edid *drm_edid;
2523 	bool connected = false;
2524 
2525 	wakeref = intel_display_power_get(display, POWER_DOMAIN_GMBUS);
2526 
2527 	drm_edid = drm_edid_read_ddc(&connector->base, ddc);
2528 
2529 	if (!drm_edid && !intel_gmbus_is_forced_bit(ddc)) {
2530 		drm_dbg_kms(display->drm,
2531 			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2532 		intel_gmbus_force_bit(ddc, true);
2533 		drm_edid = drm_edid_read_ddc(&connector->base, ddc);
2534 		intel_gmbus_force_bit(ddc, false);
2535 	}
2536 
2537 	/* Below we depend on display info having been updated */
2538 	drm_edid_connector_update(&connector->base, drm_edid);
2539 
2540 	connector->detect_edid = drm_edid;
2541 
2542 	if (drm_edid_is_digital(drm_edid)) {
2543 		intel_hdmi_dp_dual_mode_detect(&connector->base);
2544 
2545 		connected = true;
2546 	}
2547 
2548 	intel_display_power_put(display, POWER_DOMAIN_GMBUS, wakeref);
2549 
2550 	cec_notifier_set_phys_addr(intel_hdmi->cec_notifier,
2551 				   connector->base.display_info.source_physical_address);
2552 
2553 	return connected;
2554 }
2555 
2556 static enum drm_connector_status
2557 intel_hdmi_detect(struct drm_connector *_connector, bool force)
2558 {
2559 	struct intel_connector *connector = to_intel_connector(_connector);
2560 	struct intel_display *display = to_intel_display(connector);
2561 	enum drm_connector_status status = connector_status_disconnected;
2562 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
2563 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2564 	intel_wakeref_t wakeref;
2565 
2566 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2567 		    connector->base.base.id, connector->base.name);
2568 
2569 	if (!intel_display_device_enabled(display))
2570 		return connector_status_disconnected;
2571 
2572 	if (!intel_display_driver_check_access(display))
2573 		return connector->base.status;
2574 
2575 	wakeref = intel_display_power_get(display, POWER_DOMAIN_GMBUS);
2576 
2577 	if (DISPLAY_VER(display) >= 11 &&
2578 	    !intel_digital_port_connected(encoder))
2579 		goto out;
2580 
2581 	intel_hdmi_unset_edid(&connector->base);
2582 
2583 	if (intel_hdmi_set_edid(&connector->base))
2584 		status = connector_status_connected;
2585 
2586 out:
2587 	intel_display_power_put(display, POWER_DOMAIN_GMBUS, wakeref);
2588 
2589 	if (status != connector_status_connected)
2590 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2591 
2592 	return status;
2593 }
2594 
2595 static void
2596 intel_hdmi_force(struct drm_connector *_connector)
2597 {
2598 	struct intel_connector *connector = to_intel_connector(_connector);
2599 	struct intel_display *display = to_intel_display(connector);
2600 
2601 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2602 		    connector->base.base.id, connector->base.name);
2603 
2604 	if (!intel_display_driver_check_access(display))
2605 		return;
2606 
2607 	intel_hdmi_unset_edid(&connector->base);
2608 
2609 	if (connector->base.status != connector_status_connected)
2610 		return;
2611 
2612 	intel_hdmi_set_edid(&connector->base);
2613 }
2614 
2615 static int intel_hdmi_get_modes(struct drm_connector *_connector)
2616 {
2617 	struct intel_connector *connector = to_intel_connector(_connector);
2618 
2619 	/* drm_edid_connector_update() done in ->detect() or ->force() */
2620 	return drm_edid_connector_add_modes(&connector->base);
2621 }
2622 
2623 static int
2624 intel_hdmi_connector_register(struct drm_connector *_connector)
2625 {
2626 	struct intel_connector *connector = to_intel_connector(_connector);
2627 	int ret;
2628 
2629 	ret = intel_connector_register(&connector->base);
2630 	if (ret)
2631 		return ret;
2632 
2633 	return ret;
2634 }
2635 
2636 static void intel_hdmi_connector_unregister(struct drm_connector *_connector)
2637 {
2638 	struct intel_connector *connector = to_intel_connector(_connector);
2639 	struct cec_notifier *n = intel_attached_hdmi(connector)->cec_notifier;
2640 
2641 	cec_notifier_conn_unregister(n);
2642 
2643 	intel_connector_unregister(&connector->base);
2644 }
2645 
2646 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2647 	.detect = intel_hdmi_detect,
2648 	.force = intel_hdmi_force,
2649 	.fill_modes = drm_helper_probe_single_connector_modes,
2650 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2651 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2652 	.late_register = intel_hdmi_connector_register,
2653 	.early_unregister = intel_hdmi_connector_unregister,
2654 	.destroy = intel_connector_destroy,
2655 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2656 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2657 };
2658 
2659 static int intel_hdmi_connector_atomic_check(struct drm_connector *_connector,
2660 					     struct drm_atomic_state *state)
2661 {
2662 	struct intel_connector *connector = to_intel_connector(_connector);
2663 	struct intel_display *display = to_intel_display(connector);
2664 
2665 	if (HAS_DDI(display))
2666 		return intel_digital_connector_atomic_check(&connector->base, state);
2667 	else
2668 		return g4x_hdmi_connector_atomic_check(&connector->base, state);
2669 }
2670 
2671 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2672 	.get_modes = intel_hdmi_get_modes,
2673 	.mode_valid = intel_hdmi_mode_valid,
2674 	.atomic_check = intel_hdmi_connector_atomic_check,
2675 };
2676 
2677 static void
2678 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *_connector)
2679 {
2680 	struct intel_connector *connector = to_intel_connector(_connector);
2681 	struct intel_display *display = to_intel_display(intel_hdmi);
2682 
2683 	intel_attach_force_audio_property(&connector->base);
2684 	intel_attach_broadcast_rgb_property(&connector->base);
2685 	intel_attach_aspect_ratio_property(&connector->base);
2686 
2687 	intel_attach_hdmi_colorspace_property(&connector->base);
2688 	drm_connector_attach_content_type_property(&connector->base);
2689 
2690 	if (DISPLAY_VER(display) >= 10)
2691 		drm_connector_attach_hdr_output_metadata_property(&connector->base);
2692 
2693 	if (!HAS_GMCH(display))
2694 		drm_connector_attach_max_bpc_property(&connector->base, 8, 12);
2695 }
2696 
2697 /*
2698  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2699  * @encoder: intel_encoder
2700  * @connector: drm_connector
2701  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2702  *  or reset the high tmds clock ratio for scrambling
2703  * @scrambling: bool to Indicate if the function needs to set or reset
2704  *  sink scrambling
2705  *
2706  * This function handles scrambling on HDMI 2.0 capable sinks.
2707  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2708  * it enables scrambling. This should be called before enabling the HDMI
2709  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2710  * detect a scrambled clock within 100 ms.
2711  *
2712  * Returns:
2713  * True on success, false on failure.
2714  */
2715 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2716 				       struct drm_connector *_connector,
2717 				       bool high_tmds_clock_ratio,
2718 				       bool scrambling)
2719 {
2720 	struct intel_connector *connector = to_intel_connector(_connector);
2721 	struct intel_display *display = to_intel_display(encoder);
2722 	struct drm_scrambling *sink_scrambling =
2723 		&connector->base.display_info.hdmi.scdc.scrambling;
2724 
2725 	if (!sink_scrambling->supported)
2726 		return true;
2727 
2728 	drm_dbg_kms(display->drm,
2729 		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2730 		    connector->base.base.id, connector->base.name,
2731 		    str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2732 
2733 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2734 	return drm_scdc_set_high_tmds_clock_ratio(&connector->base, high_tmds_clock_ratio) &&
2735 		drm_scdc_set_scrambling(&connector->base, scrambling);
2736 }
2737 
2738 static u8 chv_encoder_to_ddc_pin(struct intel_encoder *encoder)
2739 {
2740 	enum port port = encoder->port;
2741 	u8 ddc_pin;
2742 
2743 	switch (port) {
2744 	case PORT_B:
2745 		ddc_pin = GMBUS_PIN_DPB;
2746 		break;
2747 	case PORT_C:
2748 		ddc_pin = GMBUS_PIN_DPC;
2749 		break;
2750 	case PORT_D:
2751 		ddc_pin = GMBUS_PIN_DPD_CHV;
2752 		break;
2753 	default:
2754 		MISSING_CASE(port);
2755 		ddc_pin = GMBUS_PIN_DPB;
2756 		break;
2757 	}
2758 	return ddc_pin;
2759 }
2760 
2761 static u8 bxt_encoder_to_ddc_pin(struct intel_encoder *encoder)
2762 {
2763 	enum port port = encoder->port;
2764 	u8 ddc_pin;
2765 
2766 	switch (port) {
2767 	case PORT_B:
2768 		ddc_pin = GMBUS_PIN_1_BXT;
2769 		break;
2770 	case PORT_C:
2771 		ddc_pin = GMBUS_PIN_2_BXT;
2772 		break;
2773 	default:
2774 		MISSING_CASE(port);
2775 		ddc_pin = GMBUS_PIN_1_BXT;
2776 		break;
2777 	}
2778 	return ddc_pin;
2779 }
2780 
2781 static u8 cnp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2782 {
2783 	enum port port = encoder->port;
2784 	u8 ddc_pin;
2785 
2786 	switch (port) {
2787 	case PORT_B:
2788 		ddc_pin = GMBUS_PIN_1_BXT;
2789 		break;
2790 	case PORT_C:
2791 		ddc_pin = GMBUS_PIN_2_BXT;
2792 		break;
2793 	case PORT_D:
2794 		ddc_pin = GMBUS_PIN_4_CNP;
2795 		break;
2796 	case PORT_F:
2797 		ddc_pin = GMBUS_PIN_3_BXT;
2798 		break;
2799 	default:
2800 		MISSING_CASE(port);
2801 		ddc_pin = GMBUS_PIN_1_BXT;
2802 		break;
2803 	}
2804 	return ddc_pin;
2805 }
2806 
2807 static u8 icl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2808 {
2809 	struct intel_display *display = to_intel_display(encoder);
2810 	enum port port = encoder->port;
2811 
2812 	if (intel_encoder_is_combo(encoder))
2813 		return GMBUS_PIN_1_BXT + port;
2814 	else if (intel_encoder_is_tc(encoder))
2815 		return GMBUS_PIN_9_TC1_ICP + intel_encoder_to_tc(encoder);
2816 
2817 	drm_WARN(display->drm, 1, "Unknown port:%c\n", port_name(port));
2818 	return GMBUS_PIN_2_BXT;
2819 }
2820 
2821 static u8 mcc_encoder_to_ddc_pin(struct intel_encoder *encoder)
2822 {
2823 	enum phy phy = intel_encoder_to_phy(encoder);
2824 	u8 ddc_pin;
2825 
2826 	switch (phy) {
2827 	case PHY_A:
2828 		ddc_pin = GMBUS_PIN_1_BXT;
2829 		break;
2830 	case PHY_B:
2831 		ddc_pin = GMBUS_PIN_2_BXT;
2832 		break;
2833 	case PHY_C:
2834 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2835 		break;
2836 	default:
2837 		MISSING_CASE(phy);
2838 		ddc_pin = GMBUS_PIN_1_BXT;
2839 		break;
2840 	}
2841 	return ddc_pin;
2842 }
2843 
2844 static u8 rkl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2845 {
2846 	struct intel_display *display = to_intel_display(encoder);
2847 	enum phy phy = intel_encoder_to_phy(encoder);
2848 
2849 	WARN_ON(encoder->port == PORT_C);
2850 
2851 	/*
2852 	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2853 	 * final two outputs use type-c pins, even though they're actually
2854 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2855 	 * all outputs.
2856 	 */
2857 	if (INTEL_PCH_TYPE(display) >= PCH_TGP && phy >= PHY_C)
2858 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2859 
2860 	return GMBUS_PIN_1_BXT + phy;
2861 }
2862 
2863 static u8 gen9bc_tgp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2864 {
2865 	struct intel_display *display = to_intel_display(encoder);
2866 	enum phy phy = intel_encoder_to_phy(encoder);
2867 
2868 	drm_WARN_ON(display->drm, encoder->port == PORT_A);
2869 
2870 	/*
2871 	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2872 	 * final two outputs use type-c pins, even though they're actually
2873 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2874 	 * all outputs.
2875 	 */
2876 	if (INTEL_PCH_TYPE(display) >= PCH_TGP && phy >= PHY_C)
2877 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2878 
2879 	return GMBUS_PIN_1_BXT + phy;
2880 }
2881 
2882 static u8 dg1_encoder_to_ddc_pin(struct intel_encoder *encoder)
2883 {
2884 	return intel_encoder_to_phy(encoder) + 1;
2885 }
2886 
2887 static u8 adls_encoder_to_ddc_pin(struct intel_encoder *encoder)
2888 {
2889 	enum phy phy = intel_encoder_to_phy(encoder);
2890 
2891 	WARN_ON(encoder->port == PORT_B || encoder->port == PORT_C);
2892 
2893 	/*
2894 	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2895 	 * except first combo output.
2896 	 */
2897 	if (phy == PHY_A)
2898 		return GMBUS_PIN_1_BXT;
2899 
2900 	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2901 }
2902 
2903 static u8 g4x_encoder_to_ddc_pin(struct intel_encoder *encoder)
2904 {
2905 	enum port port = encoder->port;
2906 	u8 ddc_pin;
2907 
2908 	switch (port) {
2909 	case PORT_B:
2910 		ddc_pin = GMBUS_PIN_DPB;
2911 		break;
2912 	case PORT_C:
2913 		ddc_pin = GMBUS_PIN_DPC;
2914 		break;
2915 	case PORT_D:
2916 		ddc_pin = GMBUS_PIN_DPD;
2917 		break;
2918 	default:
2919 		MISSING_CASE(port);
2920 		ddc_pin = GMBUS_PIN_DPB;
2921 		break;
2922 	}
2923 	return ddc_pin;
2924 }
2925 
2926 static u8 intel_hdmi_default_ddc_pin(struct intel_encoder *encoder)
2927 {
2928 	struct intel_display *display = to_intel_display(encoder);
2929 	u8 ddc_pin;
2930 
2931 	if (display->platform.alderlake_s)
2932 		ddc_pin = adls_encoder_to_ddc_pin(encoder);
2933 	else if (INTEL_PCH_TYPE(display) >= PCH_DG1)
2934 		ddc_pin = dg1_encoder_to_ddc_pin(encoder);
2935 	else if (display->platform.rocketlake)
2936 		ddc_pin = rkl_encoder_to_ddc_pin(encoder);
2937 	else if (DISPLAY_VER(display) == 9 && HAS_PCH_TGP(display))
2938 		ddc_pin = gen9bc_tgp_encoder_to_ddc_pin(encoder);
2939 	else if ((display->platform.jasperlake || display->platform.elkhartlake) &&
2940 		 HAS_PCH_TGP(display))
2941 		ddc_pin = mcc_encoder_to_ddc_pin(encoder);
2942 	else if (INTEL_PCH_TYPE(display) >= PCH_ICP)
2943 		ddc_pin = icl_encoder_to_ddc_pin(encoder);
2944 	else if (HAS_PCH_CNP(display))
2945 		ddc_pin = cnp_encoder_to_ddc_pin(encoder);
2946 	else if (display->platform.geminilake || display->platform.broxton)
2947 		ddc_pin = bxt_encoder_to_ddc_pin(encoder);
2948 	else if (display->platform.cherryview)
2949 		ddc_pin = chv_encoder_to_ddc_pin(encoder);
2950 	else
2951 		ddc_pin = g4x_encoder_to_ddc_pin(encoder);
2952 
2953 	return ddc_pin;
2954 }
2955 
2956 static struct intel_encoder *
2957 get_encoder_by_ddc_pin(struct intel_encoder *encoder, u8 ddc_pin)
2958 {
2959 	struct intel_display *display = to_intel_display(encoder);
2960 	struct intel_encoder *other;
2961 
2962 	for_each_intel_encoder(display->drm, other) {
2963 		struct intel_connector *connector;
2964 
2965 		if (other == encoder)
2966 			continue;
2967 
2968 		if (!intel_encoder_is_dig_port(other))
2969 			continue;
2970 
2971 		connector = enc_to_dig_port(other)->hdmi.attached_connector;
2972 
2973 		if (connector && connector->base.ddc == intel_gmbus_get_adapter(display, ddc_pin))
2974 			return other;
2975 	}
2976 
2977 	return NULL;
2978 }
2979 
2980 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2981 {
2982 	struct intel_display *display = to_intel_display(encoder);
2983 	struct intel_encoder *other;
2984 	const char *source;
2985 	u8 ddc_pin;
2986 
2987 	ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata);
2988 	source = "VBT";
2989 
2990 	if (!ddc_pin) {
2991 		ddc_pin = intel_hdmi_default_ddc_pin(encoder);
2992 		source = "platform default";
2993 	}
2994 
2995 	if (!intel_gmbus_is_valid_pin(display, ddc_pin)) {
2996 		drm_dbg_kms(display->drm,
2997 			    "[ENCODER:%d:%s] Invalid DDC pin %d\n",
2998 			    encoder->base.base.id, encoder->base.name, ddc_pin);
2999 		return 0;
3000 	}
3001 
3002 	other = get_encoder_by_ddc_pin(encoder, ddc_pin);
3003 	if (other) {
3004 		drm_dbg_kms(display->drm,
3005 			    "[ENCODER:%d:%s] DDC pin %d already claimed by [ENCODER:%d:%s]\n",
3006 			    encoder->base.base.id, encoder->base.name, ddc_pin,
3007 			    other->base.base.id, other->base.name);
3008 		return 0;
3009 	}
3010 
3011 	drm_dbg_kms(display->drm,
3012 		    "[ENCODER:%d:%s] Using DDC pin 0x%x (%s)\n",
3013 		    encoder->base.base.id, encoder->base.name,
3014 		    ddc_pin, source);
3015 
3016 	return ddc_pin;
3017 }
3018 
3019 void intel_infoframe_init(struct intel_digital_port *dig_port)
3020 {
3021 	struct intel_display *display = to_intel_display(dig_port);
3022 
3023 	if (display->platform.valleyview || display->platform.cherryview) {
3024 		dig_port->write_infoframe = vlv_write_infoframe;
3025 		dig_port->read_infoframe = vlv_read_infoframe;
3026 		dig_port->set_infoframes = vlv_set_infoframes;
3027 		dig_port->infoframes_enabled = vlv_infoframes_enabled;
3028 	} else if (display->platform.g4x) {
3029 		dig_port->write_infoframe = g4x_write_infoframe;
3030 		dig_port->read_infoframe = g4x_read_infoframe;
3031 		dig_port->set_infoframes = g4x_set_infoframes;
3032 		dig_port->infoframes_enabled = g4x_infoframes_enabled;
3033 	} else if (HAS_DDI(display)) {
3034 		if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) {
3035 			dig_port->write_infoframe = lspcon_write_infoframe;
3036 			dig_port->read_infoframe = lspcon_read_infoframe;
3037 			dig_port->set_infoframes = lspcon_set_infoframes;
3038 			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
3039 		} else {
3040 			dig_port->write_infoframe = hsw_write_infoframe;
3041 			dig_port->read_infoframe = hsw_read_infoframe;
3042 			dig_port->set_infoframes = hsw_set_infoframes;
3043 			dig_port->infoframes_enabled = hsw_infoframes_enabled;
3044 		}
3045 	} else if (HAS_PCH_IBX(display)) {
3046 		dig_port->write_infoframe = ibx_write_infoframe;
3047 		dig_port->read_infoframe = ibx_read_infoframe;
3048 		dig_port->set_infoframes = ibx_set_infoframes;
3049 		dig_port->infoframes_enabled = ibx_infoframes_enabled;
3050 	} else {
3051 		dig_port->write_infoframe = cpt_write_infoframe;
3052 		dig_port->read_infoframe = cpt_read_infoframe;
3053 		dig_port->set_infoframes = cpt_set_infoframes;
3054 		dig_port->infoframes_enabled = cpt_infoframes_enabled;
3055 	}
3056 }
3057 
3058 bool intel_hdmi_init_connector(struct intel_digital_port *dig_port,
3059 			       struct intel_connector *intel_connector)
3060 {
3061 	struct intel_display *display = to_intel_display(dig_port);
3062 	struct drm_connector *connector = &intel_connector->base;
3063 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
3064 	struct intel_encoder *intel_encoder = &dig_port->base;
3065 	struct drm_device *dev = intel_encoder->base.dev;
3066 	enum port port = intel_encoder->port;
3067 	struct cec_connector_info conn_info;
3068 	u8 ddc_pin;
3069 
3070 	drm_dbg_kms(display->drm,
3071 		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
3072 		    intel_encoder->base.base.id, intel_encoder->base.name);
3073 
3074 	if (DISPLAY_VER(display) < 12 && drm_WARN_ON(dev, port == PORT_A))
3075 		return false;
3076 
3077 	if (drm_WARN(dev, dig_port->max_lanes < 4,
3078 		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
3079 		     dig_port->max_lanes, intel_encoder->base.base.id,
3080 		     intel_encoder->base.name))
3081 		return false;
3082 
3083 	ddc_pin = intel_hdmi_ddc_pin(intel_encoder);
3084 	if (!ddc_pin)
3085 		return false;
3086 
3087 	drm_connector_init_with_ddc(dev, connector,
3088 				    &intel_hdmi_connector_funcs,
3089 				    DRM_MODE_CONNECTOR_HDMIA,
3090 				    intel_gmbus_get_adapter(display, ddc_pin));
3091 
3092 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
3093 
3094 	if (DISPLAY_VER(display) < 12)
3095 		connector->interlace_allowed = true;
3096 
3097 	connector->stereo_allowed = true;
3098 
3099 	if (DISPLAY_VER(display) >= 10)
3100 		connector->ycbcr_420_allowed = true;
3101 
3102 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
3103 	intel_connector->base.polled = intel_connector->polled;
3104 
3105 	if (HAS_DDI(display))
3106 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3107 	else
3108 		intel_connector->get_hw_state = intel_connector_get_hw_state;
3109 
3110 	intel_hdmi_add_properties(intel_hdmi, connector);
3111 
3112 	intel_connector_attach_encoder(intel_connector, intel_encoder);
3113 	intel_hdmi->attached_connector = intel_connector;
3114 
3115 	if (is_hdcp_supported(display, port)) {
3116 		int ret = intel_hdcp_init(intel_connector, dig_port,
3117 					  &intel_hdmi_hdcp_shim);
3118 		if (ret)
3119 			drm_dbg_kms(display->drm,
3120 				    "HDCP init failed, skipping.\n");
3121 	}
3122 
3123 	cec_fill_conn_info_from_drm(&conn_info, connector);
3124 
3125 	intel_hdmi->cec_notifier =
3126 		cec_notifier_conn_register(dev->dev, port_identifier(port),
3127 					   &conn_info);
3128 	if (!intel_hdmi->cec_notifier)
3129 		drm_dbg_kms(display->drm, "CEC notifier get failed\n");
3130 
3131 	return true;
3132 }
3133 
3134 /*
3135  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
3136  * @vactive: Vactive of a display mode
3137  *
3138  * @return: appropriate dsc slice height for a given mode.
3139  */
3140 int intel_hdmi_dsc_get_slice_height(int vactive)
3141 {
3142 	int slice_height;
3143 
3144 	/*
3145 	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
3146 	 * Select smallest slice height >=96, that results in a valid PPS and
3147 	 * requires minimum padding lines required for final slice.
3148 	 *
3149 	 * Assumption : Vactive is even.
3150 	 */
3151 	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3152 		if (vactive % slice_height == 0)
3153 			return slice_height;
3154 
3155 	return 0;
3156 }
3157 
3158 /*
3159  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3160  * and dsc decoder capabilities
3161  *
3162  * @crtc_state: intel crtc_state
3163  * @src_max_slices: maximum slices supported by the DSC encoder
3164  * @src_max_slice_width: maximum slice width supported by DSC encoder
3165  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3166  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3167  *
3168  * @return: num of dsc slices that can be supported by the dsc encoder
3169  * and decoder.
3170  */
3171 int
3172 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3173 			      int src_max_slices, int src_max_slice_width,
3174 			      int hdmi_max_slices, int hdmi_throughput)
3175 {
3176 /* Pixel rates in KPixels/sec */
3177 #define HDMI_DSC_PEAK_PIXEL_RATE		2720000
3178 /*
3179  * Rates at which the source and sink are required to process pixels in each
3180  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3181  */
3182 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
3183 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
3184 
3185 /* Spec limits the slice width to 2720 pixels */
3186 #define MAX_HDMI_SLICE_WIDTH			2720
3187 	int kslice_adjust;
3188 	int adjusted_clk_khz;
3189 	int min_slices;
3190 	int target_slices;
3191 	int max_throughput; /* max clock freq. in khz per slice */
3192 	int max_slice_width;
3193 	int slice_width;
3194 	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3195 
3196 	if (!hdmi_throughput)
3197 		return 0;
3198 
3199 	/*
3200 	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3201 	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3202 	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3203 	 * dividing adjusted clock value by 10.
3204 	 */
3205 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3206 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3207 		kslice_adjust = 10;
3208 	else
3209 		kslice_adjust = 5;
3210 
3211 	/*
3212 	 * As per spec, the rate at which the source and the sink process
3213 	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3214 	 * This depends upon the pixel clock rate and output formats
3215 	 * (kslice adjust).
3216 	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3217 	 * at max 340MHz, otherwise they can be processed at max 400MHz.
3218 	 */
3219 
3220 	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3221 
3222 	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3223 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3224 	else
3225 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3226 
3227 	/*
3228 	 * Taking into account the sink's capability for maximum
3229 	 * clock per slice (in MHz) as read from HF-VSDB.
3230 	 */
3231 	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3232 
3233 	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3234 	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3235 
3236 	/*
3237 	 * Keep on increasing the num of slices/line, starting from min_slices
3238 	 * per line till we get such a number, for which the slice_width is
3239 	 * just less than max_slice_width. The slices/line selected should be
3240 	 * less than or equal to the max horizontal slices that the combination
3241 	 * of PCON encoder and HDMI decoder can support.
3242 	 */
3243 	slice_width = max_slice_width;
3244 
3245 	do {
3246 		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3247 			target_slices = 1;
3248 		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3249 			target_slices = 2;
3250 		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3251 			target_slices = 4;
3252 		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3253 			target_slices = 8;
3254 		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3255 			target_slices = 12;
3256 		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3257 			target_slices = 16;
3258 		else
3259 			return 0;
3260 
3261 		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3262 		if (slice_width >= max_slice_width)
3263 			min_slices = target_slices + 1;
3264 	} while (slice_width >= max_slice_width);
3265 
3266 	return target_slices;
3267 }
3268 
3269 /*
3270  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3271  * source and sink capabilities.
3272  *
3273  * @src_fraction_bpp: fractional bpp supported by the source
3274  * @slice_width: dsc slice width supported by the source and sink
3275  * @num_slices: num of slices supported by the source and sink
3276  * @output_format: video output format
3277  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3278  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3279  *
3280  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3281  */
3282 int
3283 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3284 		       int output_format, bool hdmi_all_bpp,
3285 		       int hdmi_max_chunk_bytes)
3286 {
3287 	int max_dsc_bpp, min_dsc_bpp;
3288 	int target_bytes;
3289 	bool bpp_found = false;
3290 	int bpp_decrement_x16;
3291 	int bpp_target;
3292 	int bpp_target_x16;
3293 
3294 	/*
3295 	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3296 	 * Start with the max bpp and keep on decrementing with
3297 	 * fractional bpp, if supported by PCON DSC encoder
3298 	 *
3299 	 * for each bpp we check if no of bytes can be supported by HDMI sink
3300 	 */
3301 
3302 	/* Assuming: bpc as 8*/
3303 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3304 		min_dsc_bpp = 6;
3305 		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3306 	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3307 		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3308 		min_dsc_bpp = 8;
3309 		max_dsc_bpp = 3 * 8; /* 3*bpc */
3310 	} else {
3311 		/* Assuming 4:2:2 encoding */
3312 		min_dsc_bpp = 7;
3313 		max_dsc_bpp = 2 * 8; /* 2*bpc */
3314 	}
3315 
3316 	/*
3317 	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3318 	 * Section 7.7.34 : Source shall not enable compressed Video
3319 	 * Transport with bpp_target settings above 12 bpp unless
3320 	 * DSC_all_bpp is set to 1.
3321 	 */
3322 	if (!hdmi_all_bpp)
3323 		max_dsc_bpp = min(max_dsc_bpp, 12);
3324 
3325 	/*
3326 	 * The Sink has a limit of compressed data in bytes for a scanline,
3327 	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3328 	 * The no. of bytes depend on the target bits per pixel that the
3329 	 * source configures. So we start with the max_bpp and calculate
3330 	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3331 	 * till we get the target_chunk_bytes just less than what the sink's
3332 	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3333 	 *
3334 	 * The decrement is according to the fractional support from PCON DSC
3335 	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3336 	 *
3337 	 * bpp_target_x16 = bpp_target * 16
3338 	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3339 	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3340 	 */
3341 
3342 	bpp_target = max_dsc_bpp;
3343 
3344 	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3345 	if (!src_fractional_bpp)
3346 		src_fractional_bpp = 1;
3347 	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3348 	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3349 
3350 	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3351 		int bpp;
3352 
3353 		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3354 		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3355 		if (target_bytes <= hdmi_max_chunk_bytes) {
3356 			bpp_found = true;
3357 			break;
3358 		}
3359 		bpp_target_x16 -= bpp_decrement_x16;
3360 	}
3361 	if (bpp_found)
3362 		return bpp_target_x16;
3363 
3364 	return 0;
3365 }
3366