xref: /linux/drivers/gpu/drm/i915/display/intel_hdmi.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 #include <linux/string_helpers.h>
34 
35 #include <drm/display/drm_hdcp_helper.h>
36 #include <drm/display/drm_hdmi_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_crtc.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/intel/intel_lpe_audio.h>
43 
44 #include <media/cec-notifier.h>
45 
46 #include "g4x_hdmi.h"
47 #include "i915_drv.h"
48 #include "i915_reg.h"
49 #include "intel_atomic.h"
50 #include "intel_audio.h"
51 #include "intel_connector.h"
52 #include "intel_cx0_phy.h"
53 #include "intel_ddi.h"
54 #include "intel_de.h"
55 #include "intel_display_driver.h"
56 #include "intel_display_types.h"
57 #include "intel_dp.h"
58 #include "intel_gmbus.h"
59 #include "intel_hdcp.h"
60 #include "intel_hdcp_regs.h"
61 #include "intel_hdcp_shim.h"
62 #include "intel_hdmi.h"
63 #include "intel_lspcon.h"
64 #include "intel_panel.h"
65 #include "intel_pfit.h"
66 #include "intel_snps_phy.h"
67 
68 static void
69 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
70 {
71 	struct intel_display *display = to_intel_display(intel_hdmi);
72 	u32 enabled_bits;
73 
74 	enabled_bits = HAS_DDI(display) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
75 
76 	drm_WARN(display->drm,
77 		 intel_de_read(display, intel_hdmi->hdmi_reg) & enabled_bits,
78 		 "HDMI port enabled, expecting disabled\n");
79 }
80 
81 static void
82 assert_hdmi_transcoder_func_disabled(struct intel_display *display,
83 				     enum transcoder cpu_transcoder)
84 {
85 	drm_WARN(display->drm,
86 		 intel_de_read(display, TRANS_DDI_FUNC_CTL(display, cpu_transcoder)) &
87 		 TRANS_DDI_FUNC_ENABLE,
88 		 "HDMI transcoder function enabled, expecting disabled\n");
89 }
90 
91 static u32 g4x_infoframe_index(unsigned int type)
92 {
93 	switch (type) {
94 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
95 		return VIDEO_DIP_SELECT_GAMUT;
96 	case HDMI_INFOFRAME_TYPE_AVI:
97 		return VIDEO_DIP_SELECT_AVI;
98 	case HDMI_INFOFRAME_TYPE_SPD:
99 		return VIDEO_DIP_SELECT_SPD;
100 	case HDMI_INFOFRAME_TYPE_VENDOR:
101 		return VIDEO_DIP_SELECT_VENDOR;
102 	default:
103 		MISSING_CASE(type);
104 		return 0;
105 	}
106 }
107 
108 static u32 g4x_infoframe_enable(unsigned int type)
109 {
110 	switch (type) {
111 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
112 		return VIDEO_DIP_ENABLE_GCP;
113 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
114 		return VIDEO_DIP_ENABLE_GAMUT;
115 	case DP_SDP_VSC:
116 		return 0;
117 	case DP_SDP_ADAPTIVE_SYNC:
118 		return 0;
119 	case HDMI_INFOFRAME_TYPE_AVI:
120 		return VIDEO_DIP_ENABLE_AVI;
121 	case HDMI_INFOFRAME_TYPE_SPD:
122 		return VIDEO_DIP_ENABLE_SPD;
123 	case HDMI_INFOFRAME_TYPE_VENDOR:
124 		return VIDEO_DIP_ENABLE_VENDOR;
125 	case HDMI_INFOFRAME_TYPE_DRM:
126 		return 0;
127 	default:
128 		MISSING_CASE(type);
129 		return 0;
130 	}
131 }
132 
133 static u32 hsw_infoframe_enable(unsigned int type)
134 {
135 	switch (type) {
136 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
137 		return VIDEO_DIP_ENABLE_GCP_HSW;
138 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
139 		return VIDEO_DIP_ENABLE_GMP_HSW;
140 	case DP_SDP_VSC:
141 		return VIDEO_DIP_ENABLE_VSC_HSW;
142 	case DP_SDP_ADAPTIVE_SYNC:
143 		return VIDEO_DIP_ENABLE_AS_ADL;
144 	case DP_SDP_PPS:
145 		return VDIP_ENABLE_PPS;
146 	case HDMI_INFOFRAME_TYPE_AVI:
147 		return VIDEO_DIP_ENABLE_AVI_HSW;
148 	case HDMI_INFOFRAME_TYPE_SPD:
149 		return VIDEO_DIP_ENABLE_SPD_HSW;
150 	case HDMI_INFOFRAME_TYPE_VENDOR:
151 		return VIDEO_DIP_ENABLE_VS_HSW;
152 	case HDMI_INFOFRAME_TYPE_DRM:
153 		return VIDEO_DIP_ENABLE_DRM_GLK;
154 	default:
155 		MISSING_CASE(type);
156 		return 0;
157 	}
158 }
159 
160 static i915_reg_t
161 hsw_dip_data_reg(struct intel_display *display,
162 		 enum transcoder cpu_transcoder,
163 		 unsigned int type,
164 		 int i)
165 {
166 	switch (type) {
167 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
168 		return HSW_TVIDEO_DIP_GMP_DATA(display, cpu_transcoder, i);
169 	case DP_SDP_VSC:
170 		return HSW_TVIDEO_DIP_VSC_DATA(display, cpu_transcoder, i);
171 	case DP_SDP_ADAPTIVE_SYNC:
172 		return ADL_TVIDEO_DIP_AS_SDP_DATA(display, cpu_transcoder, i);
173 	case DP_SDP_PPS:
174 		return ICL_VIDEO_DIP_PPS_DATA(display, cpu_transcoder, i);
175 	case HDMI_INFOFRAME_TYPE_AVI:
176 		return HSW_TVIDEO_DIP_AVI_DATA(display, cpu_transcoder, i);
177 	case HDMI_INFOFRAME_TYPE_SPD:
178 		return HSW_TVIDEO_DIP_SPD_DATA(display, cpu_transcoder, i);
179 	case HDMI_INFOFRAME_TYPE_VENDOR:
180 		return HSW_TVIDEO_DIP_VS_DATA(display, cpu_transcoder, i);
181 	case HDMI_INFOFRAME_TYPE_DRM:
182 		return GLK_TVIDEO_DIP_DRM_DATA(display, cpu_transcoder, i);
183 	default:
184 		MISSING_CASE(type);
185 		return INVALID_MMIO_REG;
186 	}
187 }
188 
189 static int hsw_dip_data_size(struct intel_display *display,
190 			     unsigned int type)
191 {
192 	switch (type) {
193 	case DP_SDP_VSC:
194 		return VIDEO_DIP_VSC_DATA_SIZE;
195 	case DP_SDP_ADAPTIVE_SYNC:
196 		return VIDEO_DIP_ASYNC_DATA_SIZE;
197 	case DP_SDP_PPS:
198 		return VIDEO_DIP_PPS_DATA_SIZE;
199 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
200 		if (DISPLAY_VER(display) >= 11)
201 			return VIDEO_DIP_GMP_DATA_SIZE;
202 		else
203 			return VIDEO_DIP_DATA_SIZE;
204 	default:
205 		return VIDEO_DIP_DATA_SIZE;
206 	}
207 }
208 
209 static void g4x_write_infoframe(struct intel_encoder *encoder,
210 				const struct intel_crtc_state *crtc_state,
211 				unsigned int type,
212 				const void *frame, ssize_t len)
213 {
214 	struct intel_display *display = to_intel_display(encoder);
215 	const u32 *data = frame;
216 	u32 val = intel_de_read(display, VIDEO_DIP_CTL);
217 	int i;
218 
219 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
220 		 "Writing DIP with CTL reg disabled\n");
221 
222 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
223 	val |= g4x_infoframe_index(type);
224 
225 	val &= ~g4x_infoframe_enable(type);
226 
227 	intel_de_write(display, VIDEO_DIP_CTL, val);
228 
229 	for (i = 0; i < len; i += 4) {
230 		intel_de_write(display, VIDEO_DIP_DATA, *data);
231 		data++;
232 	}
233 	/* Write every possible data byte to force correct ECC calculation. */
234 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
235 		intel_de_write(display, VIDEO_DIP_DATA, 0);
236 
237 	val |= g4x_infoframe_enable(type);
238 	val &= ~VIDEO_DIP_FREQ_MASK;
239 	val |= VIDEO_DIP_FREQ_VSYNC;
240 
241 	intel_de_write(display, VIDEO_DIP_CTL, val);
242 	intel_de_posting_read(display, VIDEO_DIP_CTL);
243 }
244 
245 static void g4x_read_infoframe(struct intel_encoder *encoder,
246 			       const struct intel_crtc_state *crtc_state,
247 			       unsigned int type,
248 			       void *frame, ssize_t len)
249 {
250 	struct intel_display *display = to_intel_display(encoder);
251 	u32 *data = frame;
252 	int i;
253 
254 	intel_de_rmw(display, VIDEO_DIP_CTL,
255 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
256 
257 	for (i = 0; i < len; i += 4)
258 		*data++ = intel_de_read(display, VIDEO_DIP_DATA);
259 }
260 
261 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
262 				  const struct intel_crtc_state *pipe_config)
263 {
264 	struct intel_display *display = to_intel_display(encoder);
265 	u32 val = intel_de_read(display, VIDEO_DIP_CTL);
266 
267 	if ((val & VIDEO_DIP_ENABLE) == 0)
268 		return 0;
269 
270 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
271 		return 0;
272 
273 	return val & (VIDEO_DIP_ENABLE_AVI |
274 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
275 }
276 
277 static void ibx_write_infoframe(struct intel_encoder *encoder,
278 				const struct intel_crtc_state *crtc_state,
279 				unsigned int type,
280 				const void *frame, ssize_t len)
281 {
282 	struct intel_display *display = to_intel_display(encoder);
283 	const u32 *data = frame;
284 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
285 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
286 	u32 val = intel_de_read(display, reg);
287 	int i;
288 
289 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
290 		 "Writing DIP with CTL reg disabled\n");
291 
292 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
293 	val |= g4x_infoframe_index(type);
294 
295 	val &= ~g4x_infoframe_enable(type);
296 
297 	intel_de_write(display, reg, val);
298 
299 	for (i = 0; i < len; i += 4) {
300 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
301 			       *data);
302 		data++;
303 	}
304 	/* Write every possible data byte to force correct ECC calculation. */
305 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
306 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
307 
308 	val |= g4x_infoframe_enable(type);
309 	val &= ~VIDEO_DIP_FREQ_MASK;
310 	val |= VIDEO_DIP_FREQ_VSYNC;
311 
312 	intel_de_write(display, reg, val);
313 	intel_de_posting_read(display, reg);
314 }
315 
316 static void ibx_read_infoframe(struct intel_encoder *encoder,
317 			       const struct intel_crtc_state *crtc_state,
318 			       unsigned int type,
319 			       void *frame, ssize_t len)
320 {
321 	struct intel_display *display = to_intel_display(encoder);
322 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
323 	u32 *data = frame;
324 	int i;
325 
326 	intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
327 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
328 
329 	for (i = 0; i < len; i += 4)
330 		*data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
331 }
332 
333 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
334 				  const struct intel_crtc_state *pipe_config)
335 {
336 	struct intel_display *display = to_intel_display(encoder);
337 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
338 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
339 	u32 val = intel_de_read(display, reg);
340 
341 	if ((val & VIDEO_DIP_ENABLE) == 0)
342 		return 0;
343 
344 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
345 		return 0;
346 
347 	return val & (VIDEO_DIP_ENABLE_AVI |
348 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
349 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
350 }
351 
352 static void cpt_write_infoframe(struct intel_encoder *encoder,
353 				const struct intel_crtc_state *crtc_state,
354 				unsigned int type,
355 				const void *frame, ssize_t len)
356 {
357 	struct intel_display *display = to_intel_display(encoder);
358 	const u32 *data = frame;
359 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
360 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
361 	u32 val = intel_de_read(display, reg);
362 	int i;
363 
364 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
365 		 "Writing DIP with CTL reg disabled\n");
366 
367 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
368 	val |= g4x_infoframe_index(type);
369 
370 	/* The DIP control register spec says that we need to update the AVI
371 	 * infoframe without clearing its enable bit */
372 	if (type != HDMI_INFOFRAME_TYPE_AVI)
373 		val &= ~g4x_infoframe_enable(type);
374 
375 	intel_de_write(display, reg, val);
376 
377 	for (i = 0; i < len; i += 4) {
378 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
379 			       *data);
380 		data++;
381 	}
382 	/* Write every possible data byte to force correct ECC calculation. */
383 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
384 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
385 
386 	val |= g4x_infoframe_enable(type);
387 	val &= ~VIDEO_DIP_FREQ_MASK;
388 	val |= VIDEO_DIP_FREQ_VSYNC;
389 
390 	intel_de_write(display, reg, val);
391 	intel_de_posting_read(display, reg);
392 }
393 
394 static void cpt_read_infoframe(struct intel_encoder *encoder,
395 			       const struct intel_crtc_state *crtc_state,
396 			       unsigned int type,
397 			       void *frame, ssize_t len)
398 {
399 	struct intel_display *display = to_intel_display(encoder);
400 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
401 	u32 *data = frame;
402 	int i;
403 
404 	intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
405 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
406 
407 	for (i = 0; i < len; i += 4)
408 		*data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
409 }
410 
411 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
412 				  const struct intel_crtc_state *pipe_config)
413 {
414 	struct intel_display *display = to_intel_display(encoder);
415 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
416 	u32 val = intel_de_read(display, TVIDEO_DIP_CTL(pipe));
417 
418 	if ((val & VIDEO_DIP_ENABLE) == 0)
419 		return 0;
420 
421 	return val & (VIDEO_DIP_ENABLE_AVI |
422 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
423 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
424 }
425 
426 static void vlv_write_infoframe(struct intel_encoder *encoder,
427 				const struct intel_crtc_state *crtc_state,
428 				unsigned int type,
429 				const void *frame, ssize_t len)
430 {
431 	struct intel_display *display = to_intel_display(encoder);
432 	const u32 *data = frame;
433 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
434 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
435 	u32 val = intel_de_read(display, reg);
436 	int i;
437 
438 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
439 		 "Writing DIP with CTL reg disabled\n");
440 
441 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
442 	val |= g4x_infoframe_index(type);
443 
444 	val &= ~g4x_infoframe_enable(type);
445 
446 	intel_de_write(display, reg, val);
447 
448 	for (i = 0; i < len; i += 4) {
449 		intel_de_write(display,
450 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
451 		data++;
452 	}
453 	/* Write every possible data byte to force correct ECC calculation. */
454 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
455 		intel_de_write(display,
456 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
457 
458 	val |= g4x_infoframe_enable(type);
459 	val &= ~VIDEO_DIP_FREQ_MASK;
460 	val |= VIDEO_DIP_FREQ_VSYNC;
461 
462 	intel_de_write(display, reg, val);
463 	intel_de_posting_read(display, reg);
464 }
465 
466 static void vlv_read_infoframe(struct intel_encoder *encoder,
467 			       const struct intel_crtc_state *crtc_state,
468 			       unsigned int type,
469 			       void *frame, ssize_t len)
470 {
471 	struct intel_display *display = to_intel_display(encoder);
472 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
473 	u32 *data = frame;
474 	int i;
475 
476 	intel_de_rmw(display, VLV_TVIDEO_DIP_CTL(crtc->pipe),
477 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
478 
479 	for (i = 0; i < len; i += 4)
480 		*data++ = intel_de_read(display,
481 				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
482 }
483 
484 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
485 				  const struct intel_crtc_state *pipe_config)
486 {
487 	struct intel_display *display = to_intel_display(encoder);
488 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
489 	u32 val = intel_de_read(display, VLV_TVIDEO_DIP_CTL(pipe));
490 
491 	if ((val & VIDEO_DIP_ENABLE) == 0)
492 		return 0;
493 
494 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
495 		return 0;
496 
497 	return val & (VIDEO_DIP_ENABLE_AVI |
498 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
499 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
500 }
501 
502 void hsw_write_infoframe(struct intel_encoder *encoder,
503 			 const struct intel_crtc_state *crtc_state,
504 			 unsigned int type,
505 			 const void *frame, ssize_t len)
506 {
507 	struct intel_display *display = to_intel_display(encoder);
508 	const u32 *data = frame;
509 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
510 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(display, cpu_transcoder);
511 	int data_size;
512 	int i;
513 	u32 val = intel_de_read(display, ctl_reg);
514 
515 	data_size = hsw_dip_data_size(display, type);
516 
517 	drm_WARN_ON(display->drm, len > data_size);
518 
519 	val &= ~hsw_infoframe_enable(type);
520 	intel_de_write(display, ctl_reg, val);
521 
522 	for (i = 0; i < len; i += 4) {
523 		intel_de_write(display,
524 			       hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
525 			       *data);
526 		data++;
527 	}
528 	/* Write every possible data byte to force correct ECC calculation. */
529 	for (; i < data_size; i += 4)
530 		intel_de_write(display,
531 			       hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
532 			       0);
533 
534 	/* Wa_14013475917 */
535 	if (!(IS_DISPLAY_VER(display, 13, 14) && crtc_state->has_psr &&
536 	      !crtc_state->has_panel_replay && type == DP_SDP_VSC))
537 		val |= hsw_infoframe_enable(type);
538 
539 	if (type == DP_SDP_VSC)
540 		val |= VSC_DIP_HW_DATA_SW_HEA;
541 
542 	intel_de_write(display, ctl_reg, val);
543 	intel_de_posting_read(display, ctl_reg);
544 }
545 
546 void hsw_read_infoframe(struct intel_encoder *encoder,
547 			const struct intel_crtc_state *crtc_state,
548 			unsigned int type, void *frame, ssize_t len)
549 {
550 	struct intel_display *display = to_intel_display(encoder);
551 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
552 	u32 *data = frame;
553 	int i;
554 
555 	for (i = 0; i < len; i += 4)
556 		*data++ = intel_de_read(display,
557 					hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2));
558 }
559 
560 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
561 				  const struct intel_crtc_state *pipe_config)
562 {
563 	struct intel_display *display = to_intel_display(encoder);
564 	u32 val = intel_de_read(display,
565 				HSW_TVIDEO_DIP_CTL(display, pipe_config->cpu_transcoder));
566 	u32 mask;
567 
568 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
569 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
570 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
571 
572 	if (DISPLAY_VER(display) >= 10)
573 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
574 
575 	if (HAS_AS_SDP(display))
576 		mask |= VIDEO_DIP_ENABLE_AS_ADL;
577 
578 	return val & mask;
579 }
580 
581 static const u8 infoframe_type_to_idx[] = {
582 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
583 	HDMI_PACKET_TYPE_GAMUT_METADATA,
584 	DP_SDP_VSC,
585 	DP_SDP_ADAPTIVE_SYNC,
586 	HDMI_INFOFRAME_TYPE_AVI,
587 	HDMI_INFOFRAME_TYPE_SPD,
588 	HDMI_INFOFRAME_TYPE_VENDOR,
589 	HDMI_INFOFRAME_TYPE_DRM,
590 };
591 
592 u32 intel_hdmi_infoframe_enable(unsigned int type)
593 {
594 	int i;
595 
596 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
597 		if (infoframe_type_to_idx[i] == type)
598 			return BIT(i);
599 	}
600 
601 	return 0;
602 }
603 
604 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
605 				  const struct intel_crtc_state *crtc_state)
606 {
607 	struct intel_display *display = to_intel_display(encoder);
608 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
609 	u32 val, ret = 0;
610 	int i;
611 
612 	val = dig_port->infoframes_enabled(encoder, crtc_state);
613 
614 	/* map from hardware bits to dip idx */
615 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
616 		unsigned int type = infoframe_type_to_idx[i];
617 
618 		if (HAS_DDI(display)) {
619 			if (val & hsw_infoframe_enable(type))
620 				ret |= BIT(i);
621 		} else {
622 			if (val & g4x_infoframe_enable(type))
623 				ret |= BIT(i);
624 		}
625 	}
626 
627 	return ret;
628 }
629 
630 /*
631  * The data we write to the DIP data buffer registers is 1 byte bigger than the
632  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
633  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
634  * used for both technologies.
635  *
636  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
637  * DW1:       DB3       | DB2 | DB1 | DB0
638  * DW2:       DB7       | DB6 | DB5 | DB4
639  * DW3: ...
640  *
641  * (HB is Header Byte, DB is Data Byte)
642  *
643  * The hdmi pack() functions don't know about that hardware specific hole so we
644  * trick them by giving an offset into the buffer and moving back the header
645  * bytes by one.
646  */
647 static void intel_write_infoframe(struct intel_encoder *encoder,
648 				  const struct intel_crtc_state *crtc_state,
649 				  enum hdmi_infoframe_type type,
650 				  const union hdmi_infoframe *frame)
651 {
652 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
653 	u8 buffer[VIDEO_DIP_DATA_SIZE];
654 	ssize_t len;
655 
656 	if ((crtc_state->infoframes.enable &
657 	     intel_hdmi_infoframe_enable(type)) == 0)
658 		return;
659 
660 	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
661 		return;
662 
663 	/* see comment above for the reason for this offset */
664 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
665 	if (drm_WARN_ON(encoder->base.dev, len < 0))
666 		return;
667 
668 	/* Insert the 'hole' (see big comment above) at position 3 */
669 	memmove(&buffer[0], &buffer[1], 3);
670 	buffer[3] = 0;
671 	len++;
672 
673 	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
674 }
675 
676 void intel_read_infoframe(struct intel_encoder *encoder,
677 			  const struct intel_crtc_state *crtc_state,
678 			  enum hdmi_infoframe_type type,
679 			  union hdmi_infoframe *frame)
680 {
681 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
682 	u8 buffer[VIDEO_DIP_DATA_SIZE];
683 	int ret;
684 
685 	if ((crtc_state->infoframes.enable &
686 	     intel_hdmi_infoframe_enable(type)) == 0)
687 		return;
688 
689 	dig_port->read_infoframe(encoder, crtc_state,
690 				       type, buffer, sizeof(buffer));
691 
692 	/* Fill the 'hole' (see big comment above) at position 3 */
693 	memmove(&buffer[1], &buffer[0], 3);
694 
695 	/* see comment above for the reason for this offset */
696 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
697 	if (ret) {
698 		drm_dbg_kms(encoder->base.dev,
699 			    "Failed to unpack infoframe type 0x%02x\n", type);
700 		return;
701 	}
702 
703 	if (frame->any.type != type)
704 		drm_dbg_kms(encoder->base.dev,
705 			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
706 			    frame->any.type, type);
707 }
708 
709 static bool
710 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
711 				 struct intel_crtc_state *crtc_state,
712 				 struct drm_connector_state *conn_state)
713 {
714 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
715 	const struct drm_display_mode *adjusted_mode =
716 		&crtc_state->hw.adjusted_mode;
717 	struct drm_connector *connector = conn_state->connector;
718 	int ret;
719 
720 	if (!crtc_state->has_infoframe)
721 		return true;
722 
723 	crtc_state->infoframes.enable |=
724 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
725 
726 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
727 						       adjusted_mode);
728 	if (ret)
729 		return false;
730 
731 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
732 		frame->colorspace = HDMI_COLORSPACE_YUV420;
733 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
734 		frame->colorspace = HDMI_COLORSPACE_YUV444;
735 	else
736 		frame->colorspace = HDMI_COLORSPACE_RGB;
737 
738 	drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
739 
740 	/* nonsense combination */
741 	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
742 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
743 
744 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
745 		drm_hdmi_avi_infoframe_quant_range(frame, connector,
746 						   adjusted_mode,
747 						   crtc_state->limited_color_range ?
748 						   HDMI_QUANTIZATION_RANGE_LIMITED :
749 						   HDMI_QUANTIZATION_RANGE_FULL);
750 	} else {
751 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
752 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
753 	}
754 
755 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
756 
757 	/* TODO: handle pixel repetition for YCBCR420 outputs */
758 
759 	ret = hdmi_avi_infoframe_check(frame);
760 	if (drm_WARN_ON(encoder->base.dev, ret))
761 		return false;
762 
763 	return true;
764 }
765 
766 static bool
767 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
768 				 struct intel_crtc_state *crtc_state,
769 				 struct drm_connector_state *conn_state)
770 {
771 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
772 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
773 	int ret;
774 
775 	if (!crtc_state->has_infoframe)
776 		return true;
777 
778 	crtc_state->infoframes.enable |=
779 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
780 
781 	if (IS_DGFX(i915))
782 		ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx");
783 	else
784 		ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
785 
786 	if (drm_WARN_ON(encoder->base.dev, ret))
787 		return false;
788 
789 	frame->sdi = HDMI_SPD_SDI_PC;
790 
791 	ret = hdmi_spd_infoframe_check(frame);
792 	if (drm_WARN_ON(encoder->base.dev, ret))
793 		return false;
794 
795 	return true;
796 }
797 
798 static bool
799 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
800 				  struct intel_crtc_state *crtc_state,
801 				  struct drm_connector_state *conn_state)
802 {
803 	struct hdmi_vendor_infoframe *frame =
804 		&crtc_state->infoframes.hdmi.vendor.hdmi;
805 	const struct drm_display_info *info =
806 		&conn_state->connector->display_info;
807 	int ret;
808 
809 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
810 		return true;
811 
812 	crtc_state->infoframes.enable |=
813 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
814 
815 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
816 							  conn_state->connector,
817 							  &crtc_state->hw.adjusted_mode);
818 	if (drm_WARN_ON(encoder->base.dev, ret))
819 		return false;
820 
821 	ret = hdmi_vendor_infoframe_check(frame);
822 	if (drm_WARN_ON(encoder->base.dev, ret))
823 		return false;
824 
825 	return true;
826 }
827 
828 static bool
829 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
830 				 struct intel_crtc_state *crtc_state,
831 				 struct drm_connector_state *conn_state)
832 {
833 	struct intel_display *display = to_intel_display(encoder);
834 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
835 	int ret;
836 
837 	if (DISPLAY_VER(display) < 10)
838 		return true;
839 
840 	if (!crtc_state->has_infoframe)
841 		return true;
842 
843 	if (!conn_state->hdr_output_metadata)
844 		return true;
845 
846 	crtc_state->infoframes.enable |=
847 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
848 
849 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
850 	if (ret < 0) {
851 		drm_dbg_kms(display->drm,
852 			    "couldn't set HDR metadata in infoframe\n");
853 		return false;
854 	}
855 
856 	ret = hdmi_drm_infoframe_check(frame);
857 	if (drm_WARN_ON(display->drm, ret))
858 		return false;
859 
860 	return true;
861 }
862 
863 static void g4x_set_infoframes(struct intel_encoder *encoder,
864 			       bool enable,
865 			       const struct intel_crtc_state *crtc_state,
866 			       const struct drm_connector_state *conn_state)
867 {
868 	struct intel_display *display = to_intel_display(encoder);
869 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
870 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
871 	i915_reg_t reg = VIDEO_DIP_CTL;
872 	u32 val = intel_de_read(display, reg);
873 	u32 port = VIDEO_DIP_PORT(encoder->port);
874 
875 	assert_hdmi_port_disabled(intel_hdmi);
876 
877 	/* If the registers were not initialized yet, they might be zeroes,
878 	 * which means we're selecting the AVI DIP and we're setting its
879 	 * frequency to once. This seems to really confuse the HW and make
880 	 * things stop working (the register spec says the AVI always needs to
881 	 * be sent every VSync). So here we avoid writing to the register more
882 	 * than we need and also explicitly select the AVI DIP and explicitly
883 	 * set its frequency to every VSync. Avoiding to write it twice seems to
884 	 * be enough to solve the problem, but being defensive shouldn't hurt us
885 	 * either. */
886 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
887 
888 	if (!enable) {
889 		if (!(val & VIDEO_DIP_ENABLE))
890 			return;
891 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
892 			drm_dbg_kms(display->drm,
893 				    "video DIP still enabled on port %c\n",
894 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
895 			return;
896 		}
897 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
898 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
899 		intel_de_write(display, reg, val);
900 		intel_de_posting_read(display, reg);
901 		return;
902 	}
903 
904 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
905 		if (val & VIDEO_DIP_ENABLE) {
906 			drm_dbg_kms(display->drm,
907 				    "video DIP already enabled on port %c\n",
908 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
909 			return;
910 		}
911 		val &= ~VIDEO_DIP_PORT_MASK;
912 		val |= port;
913 	}
914 
915 	val |= VIDEO_DIP_ENABLE;
916 	val &= ~(VIDEO_DIP_ENABLE_AVI |
917 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
918 
919 	intel_de_write(display, reg, val);
920 	intel_de_posting_read(display, reg);
921 
922 	intel_write_infoframe(encoder, crtc_state,
923 			      HDMI_INFOFRAME_TYPE_AVI,
924 			      &crtc_state->infoframes.avi);
925 	intel_write_infoframe(encoder, crtc_state,
926 			      HDMI_INFOFRAME_TYPE_SPD,
927 			      &crtc_state->infoframes.spd);
928 	intel_write_infoframe(encoder, crtc_state,
929 			      HDMI_INFOFRAME_TYPE_VENDOR,
930 			      &crtc_state->infoframes.hdmi);
931 }
932 
933 /*
934  * Determine if default_phase=1 can be indicated in the GCP infoframe.
935  *
936  * From HDMI specification 1.4a:
937  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
938  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
939  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
940  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
941  *   phase of 0
942  */
943 static bool gcp_default_phase_possible(int pipe_bpp,
944 				       const struct drm_display_mode *mode)
945 {
946 	unsigned int pixels_per_group;
947 
948 	switch (pipe_bpp) {
949 	case 30:
950 		/* 4 pixels in 5 clocks */
951 		pixels_per_group = 4;
952 		break;
953 	case 36:
954 		/* 2 pixels in 3 clocks */
955 		pixels_per_group = 2;
956 		break;
957 	case 48:
958 		/* 1 pixel in 2 clocks */
959 		pixels_per_group = 1;
960 		break;
961 	default:
962 		/* phase information not relevant for 8bpc */
963 		return false;
964 	}
965 
966 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
967 		mode->crtc_htotal % pixels_per_group == 0 &&
968 		mode->crtc_hblank_start % pixels_per_group == 0 &&
969 		mode->crtc_hblank_end % pixels_per_group == 0 &&
970 		mode->crtc_hsync_start % pixels_per_group == 0 &&
971 		mode->crtc_hsync_end % pixels_per_group == 0 &&
972 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
973 		 mode->crtc_htotal/2 % pixels_per_group == 0);
974 }
975 
976 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
977 					 const struct intel_crtc_state *crtc_state,
978 					 const struct drm_connector_state *conn_state)
979 {
980 	struct intel_display *display = to_intel_display(encoder);
981 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
982 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
983 	i915_reg_t reg;
984 
985 	if ((crtc_state->infoframes.enable &
986 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
987 		return false;
988 
989 	if (HAS_DDI(display))
990 		reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
991 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
992 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
993 	else if (HAS_PCH_SPLIT(dev_priv))
994 		reg = TVIDEO_DIP_GCP(crtc->pipe);
995 	else
996 		return false;
997 
998 	intel_de_write(display, reg, crtc_state->infoframes.gcp);
999 
1000 	return true;
1001 }
1002 
1003 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
1004 				   struct intel_crtc_state *crtc_state)
1005 {
1006 	struct intel_display *display = to_intel_display(encoder);
1007 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1008 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1009 	i915_reg_t reg;
1010 
1011 	if ((crtc_state->infoframes.enable &
1012 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1013 		return;
1014 
1015 	if (HAS_DDI(display))
1016 		reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
1017 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1018 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1019 	else if (HAS_PCH_SPLIT(dev_priv))
1020 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1021 	else
1022 		return;
1023 
1024 	crtc_state->infoframes.gcp = intel_de_read(display, reg);
1025 }
1026 
1027 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1028 					     struct intel_crtc_state *crtc_state,
1029 					     struct drm_connector_state *conn_state)
1030 {
1031 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1032 
1033 	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1034 		return;
1035 
1036 	crtc_state->infoframes.enable |=
1037 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1038 
1039 	/* Indicate color indication for deep color mode */
1040 	if (crtc_state->pipe_bpp > 24)
1041 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1042 
1043 	/* Enable default_phase whenever the display mode is suitably aligned */
1044 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1045 				       &crtc_state->hw.adjusted_mode))
1046 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1047 }
1048 
1049 static void ibx_set_infoframes(struct intel_encoder *encoder,
1050 			       bool enable,
1051 			       const struct intel_crtc_state *crtc_state,
1052 			       const struct drm_connector_state *conn_state)
1053 {
1054 	struct intel_display *display = to_intel_display(encoder);
1055 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1056 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1057 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1058 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1059 	u32 val = intel_de_read(display, reg);
1060 	u32 port = VIDEO_DIP_PORT(encoder->port);
1061 
1062 	assert_hdmi_port_disabled(intel_hdmi);
1063 
1064 	/* See the big comment in g4x_set_infoframes() */
1065 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1066 
1067 	if (!enable) {
1068 		if (!(val & VIDEO_DIP_ENABLE))
1069 			return;
1070 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1071 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1072 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1073 		intel_de_write(display, reg, val);
1074 		intel_de_posting_read(display, reg);
1075 		return;
1076 	}
1077 
1078 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1079 		drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1080 			 "DIP already enabled on port %c\n",
1081 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1082 		val &= ~VIDEO_DIP_PORT_MASK;
1083 		val |= port;
1084 	}
1085 
1086 	val |= VIDEO_DIP_ENABLE;
1087 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1088 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1089 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1090 
1091 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1092 		val |= VIDEO_DIP_ENABLE_GCP;
1093 
1094 	intel_de_write(display, reg, val);
1095 	intel_de_posting_read(display, reg);
1096 
1097 	intel_write_infoframe(encoder, crtc_state,
1098 			      HDMI_INFOFRAME_TYPE_AVI,
1099 			      &crtc_state->infoframes.avi);
1100 	intel_write_infoframe(encoder, crtc_state,
1101 			      HDMI_INFOFRAME_TYPE_SPD,
1102 			      &crtc_state->infoframes.spd);
1103 	intel_write_infoframe(encoder, crtc_state,
1104 			      HDMI_INFOFRAME_TYPE_VENDOR,
1105 			      &crtc_state->infoframes.hdmi);
1106 }
1107 
1108 static void cpt_set_infoframes(struct intel_encoder *encoder,
1109 			       bool enable,
1110 			       const struct intel_crtc_state *crtc_state,
1111 			       const struct drm_connector_state *conn_state)
1112 {
1113 	struct intel_display *display = to_intel_display(encoder);
1114 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1115 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1116 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1117 	u32 val = intel_de_read(display, reg);
1118 
1119 	assert_hdmi_port_disabled(intel_hdmi);
1120 
1121 	/* See the big comment in g4x_set_infoframes() */
1122 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1123 
1124 	if (!enable) {
1125 		if (!(val & VIDEO_DIP_ENABLE))
1126 			return;
1127 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1128 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1129 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1130 		intel_de_write(display, reg, val);
1131 		intel_de_posting_read(display, reg);
1132 		return;
1133 	}
1134 
1135 	/* Set both together, unset both together: see the spec. */
1136 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1137 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1138 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1139 
1140 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1141 		val |= VIDEO_DIP_ENABLE_GCP;
1142 
1143 	intel_de_write(display, reg, val);
1144 	intel_de_posting_read(display, reg);
1145 
1146 	intel_write_infoframe(encoder, crtc_state,
1147 			      HDMI_INFOFRAME_TYPE_AVI,
1148 			      &crtc_state->infoframes.avi);
1149 	intel_write_infoframe(encoder, crtc_state,
1150 			      HDMI_INFOFRAME_TYPE_SPD,
1151 			      &crtc_state->infoframes.spd);
1152 	intel_write_infoframe(encoder, crtc_state,
1153 			      HDMI_INFOFRAME_TYPE_VENDOR,
1154 			      &crtc_state->infoframes.hdmi);
1155 }
1156 
1157 static void vlv_set_infoframes(struct intel_encoder *encoder,
1158 			       bool enable,
1159 			       const struct intel_crtc_state *crtc_state,
1160 			       const struct drm_connector_state *conn_state)
1161 {
1162 	struct intel_display *display = to_intel_display(encoder);
1163 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1164 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1165 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1166 	u32 val = intel_de_read(display, reg);
1167 	u32 port = VIDEO_DIP_PORT(encoder->port);
1168 
1169 	assert_hdmi_port_disabled(intel_hdmi);
1170 
1171 	/* See the big comment in g4x_set_infoframes() */
1172 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1173 
1174 	if (!enable) {
1175 		if (!(val & VIDEO_DIP_ENABLE))
1176 			return;
1177 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1178 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1179 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1180 		intel_de_write(display, reg, val);
1181 		intel_de_posting_read(display, reg);
1182 		return;
1183 	}
1184 
1185 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1186 		drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1187 			 "DIP already enabled on port %c\n",
1188 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1189 		val &= ~VIDEO_DIP_PORT_MASK;
1190 		val |= port;
1191 	}
1192 
1193 	val |= VIDEO_DIP_ENABLE;
1194 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1195 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1196 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1197 
1198 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1199 		val |= VIDEO_DIP_ENABLE_GCP;
1200 
1201 	intel_de_write(display, reg, val);
1202 	intel_de_posting_read(display, reg);
1203 
1204 	intel_write_infoframe(encoder, crtc_state,
1205 			      HDMI_INFOFRAME_TYPE_AVI,
1206 			      &crtc_state->infoframes.avi);
1207 	intel_write_infoframe(encoder, crtc_state,
1208 			      HDMI_INFOFRAME_TYPE_SPD,
1209 			      &crtc_state->infoframes.spd);
1210 	intel_write_infoframe(encoder, crtc_state,
1211 			      HDMI_INFOFRAME_TYPE_VENDOR,
1212 			      &crtc_state->infoframes.hdmi);
1213 }
1214 
1215 void intel_hdmi_fastset_infoframes(struct intel_encoder *encoder,
1216 				   const struct intel_crtc_state *crtc_state,
1217 				   const struct drm_connector_state *conn_state)
1218 {
1219 	struct intel_display *display = to_intel_display(encoder);
1220 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display,
1221 					    crtc_state->cpu_transcoder);
1222 	u32 val = intel_de_read(display, reg);
1223 
1224 	if ((crtc_state->infoframes.enable &
1225 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) == 0 &&
1226 			(val & VIDEO_DIP_ENABLE_DRM_GLK) == 0)
1227 		return;
1228 
1229 	val &= ~(VIDEO_DIP_ENABLE_DRM_GLK);
1230 
1231 	intel_de_write(display, reg, val);
1232 	intel_de_posting_read(display, reg);
1233 
1234 	intel_write_infoframe(encoder, crtc_state,
1235 			      HDMI_INFOFRAME_TYPE_DRM,
1236 			      &crtc_state->infoframes.drm);
1237 }
1238 
1239 static void hsw_set_infoframes(struct intel_encoder *encoder,
1240 			       bool enable,
1241 			       const struct intel_crtc_state *crtc_state,
1242 			       const struct drm_connector_state *conn_state)
1243 {
1244 	struct intel_display *display = to_intel_display(encoder);
1245 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display,
1246 					    crtc_state->cpu_transcoder);
1247 	u32 val = intel_de_read(display, reg);
1248 
1249 	assert_hdmi_transcoder_func_disabled(display,
1250 					     crtc_state->cpu_transcoder);
1251 
1252 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1253 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1254 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1255 		 VIDEO_DIP_ENABLE_DRM_GLK | VIDEO_DIP_ENABLE_AS_ADL);
1256 
1257 	if (!enable) {
1258 		intel_de_write(display, reg, val);
1259 		intel_de_posting_read(display, reg);
1260 		return;
1261 	}
1262 
1263 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1264 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1265 
1266 	intel_de_write(display, reg, val);
1267 	intel_de_posting_read(display, reg);
1268 
1269 	intel_write_infoframe(encoder, crtc_state,
1270 			      HDMI_INFOFRAME_TYPE_AVI,
1271 			      &crtc_state->infoframes.avi);
1272 	intel_write_infoframe(encoder, crtc_state,
1273 			      HDMI_INFOFRAME_TYPE_SPD,
1274 			      &crtc_state->infoframes.spd);
1275 	intel_write_infoframe(encoder, crtc_state,
1276 			      HDMI_INFOFRAME_TYPE_VENDOR,
1277 			      &crtc_state->infoframes.hdmi);
1278 	intel_write_infoframe(encoder, crtc_state,
1279 			      HDMI_INFOFRAME_TYPE_DRM,
1280 			      &crtc_state->infoframes.drm);
1281 }
1282 
1283 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1284 {
1285 	struct intel_display *display = to_intel_display(hdmi);
1286 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1287 
1288 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1289 		return;
1290 
1291 	drm_dbg_kms(display->drm, "%s DP dual mode adaptor TMDS output\n",
1292 		    enable ? "Enabling" : "Disabling");
1293 
1294 	drm_dp_dual_mode_set_tmds_output(display->drm,
1295 					 hdmi->dp_dual_mode.type, ddc, enable);
1296 }
1297 
1298 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1299 				unsigned int offset, void *buffer, size_t size)
1300 {
1301 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1302 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1303 	int ret;
1304 	u8 start = offset & 0xff;
1305 	struct i2c_msg msgs[] = {
1306 		{
1307 			.addr = DRM_HDCP_DDC_ADDR,
1308 			.flags = 0,
1309 			.len = 1,
1310 			.buf = &start,
1311 		},
1312 		{
1313 			.addr = DRM_HDCP_DDC_ADDR,
1314 			.flags = I2C_M_RD,
1315 			.len = size,
1316 			.buf = buffer
1317 		}
1318 	};
1319 	ret = i2c_transfer(ddc, msgs, ARRAY_SIZE(msgs));
1320 	if (ret == ARRAY_SIZE(msgs))
1321 		return 0;
1322 	return ret >= 0 ? -EIO : ret;
1323 }
1324 
1325 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1326 				 unsigned int offset, void *buffer, size_t size)
1327 {
1328 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1329 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1330 	int ret;
1331 	u8 *write_buf;
1332 	struct i2c_msg msg;
1333 
1334 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1335 	if (!write_buf)
1336 		return -ENOMEM;
1337 
1338 	write_buf[0] = offset & 0xff;
1339 	memcpy(&write_buf[1], buffer, size);
1340 
1341 	msg.addr = DRM_HDCP_DDC_ADDR;
1342 	msg.flags = 0;
1343 	msg.len = size + 1;
1344 	msg.buf = write_buf;
1345 
1346 	ret = i2c_transfer(ddc, &msg, 1);
1347 	if (ret == 1)
1348 		ret = 0;
1349 	else if (ret >= 0)
1350 		ret = -EIO;
1351 
1352 	kfree(write_buf);
1353 	return ret;
1354 }
1355 
1356 static
1357 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1358 				  u8 *an)
1359 {
1360 	struct intel_display *display = to_intel_display(dig_port);
1361 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1362 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1363 	int ret;
1364 
1365 	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1366 				    DRM_HDCP_AN_LEN);
1367 	if (ret) {
1368 		drm_dbg_kms(display->drm, "Write An over DDC failed (%d)\n",
1369 			    ret);
1370 		return ret;
1371 	}
1372 
1373 	ret = intel_gmbus_output_aksv(ddc);
1374 	if (ret < 0) {
1375 		drm_dbg_kms(display->drm, "Failed to output aksv (%d)\n", ret);
1376 		return ret;
1377 	}
1378 	return 0;
1379 }
1380 
1381 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1382 				     u8 *bksv)
1383 {
1384 	struct intel_display *display = to_intel_display(dig_port);
1385 
1386 	int ret;
1387 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1388 				   DRM_HDCP_KSV_LEN);
1389 	if (ret)
1390 		drm_dbg_kms(display->drm, "Read Bksv over DDC failed (%d)\n",
1391 			    ret);
1392 	return ret;
1393 }
1394 
1395 static
1396 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1397 				 u8 *bstatus)
1398 {
1399 	struct intel_display *display = to_intel_display(dig_port);
1400 
1401 	int ret;
1402 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1403 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1404 	if (ret)
1405 		drm_dbg_kms(display->drm,
1406 			    "Read bstatus over DDC failed (%d)\n",
1407 			    ret);
1408 	return ret;
1409 }
1410 
1411 static
1412 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1413 				     bool *repeater_present)
1414 {
1415 	struct intel_display *display = to_intel_display(dig_port);
1416 	int ret;
1417 	u8 val;
1418 
1419 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1420 	if (ret) {
1421 		drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1422 			    ret);
1423 		return ret;
1424 	}
1425 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1426 	return 0;
1427 }
1428 
1429 static
1430 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1431 				  u8 *ri_prime)
1432 {
1433 	struct intel_display *display = to_intel_display(dig_port);
1434 
1435 	int ret;
1436 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1437 				   ri_prime, DRM_HDCP_RI_LEN);
1438 	if (ret)
1439 		drm_dbg_kms(display->drm, "Read Ri' over DDC failed (%d)\n",
1440 			    ret);
1441 	return ret;
1442 }
1443 
1444 static
1445 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1446 				   bool *ksv_ready)
1447 {
1448 	struct intel_display *display = to_intel_display(dig_port);
1449 	int ret;
1450 	u8 val;
1451 
1452 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1453 	if (ret) {
1454 		drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1455 			    ret);
1456 		return ret;
1457 	}
1458 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1459 	return 0;
1460 }
1461 
1462 static
1463 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1464 				  int num_downstream, u8 *ksv_fifo)
1465 {
1466 	struct intel_display *display = to_intel_display(dig_port);
1467 	int ret;
1468 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1469 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1470 	if (ret) {
1471 		drm_dbg_kms(display->drm,
1472 			    "Read ksv fifo over DDC failed (%d)\n", ret);
1473 		return ret;
1474 	}
1475 	return 0;
1476 }
1477 
1478 static
1479 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1480 				      int i, u32 *part)
1481 {
1482 	struct intel_display *display = to_intel_display(dig_port);
1483 	int ret;
1484 
1485 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1486 		return -EINVAL;
1487 
1488 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1489 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1490 	if (ret)
1491 		drm_dbg_kms(display->drm,
1492 			    "Read V'[%d] over DDC failed (%d)\n",
1493 			    i, ret);
1494 	return ret;
1495 }
1496 
1497 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1498 					   enum transcoder cpu_transcoder)
1499 {
1500 	struct intel_display *display = to_intel_display(connector);
1501 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1502 	struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1503 	u32 scanline;
1504 	int ret;
1505 
1506 	for (;;) {
1507 		scanline = intel_de_read(display,
1508 					 PIPEDSL(display, crtc->pipe));
1509 		if (scanline > 100 && scanline < 200)
1510 			break;
1511 		usleep_range(25, 50);
1512 	}
1513 
1514 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1515 					 false, TRANS_DDI_HDCP_SIGNALLING);
1516 	if (ret) {
1517 		drm_err(display->drm,
1518 			"Disable HDCP signalling failed (%d)\n", ret);
1519 		return ret;
1520 	}
1521 
1522 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1523 					 true, TRANS_DDI_HDCP_SIGNALLING);
1524 	if (ret) {
1525 		drm_err(display->drm,
1526 			"Enable HDCP signalling failed (%d)\n", ret);
1527 		return ret;
1528 	}
1529 
1530 	return 0;
1531 }
1532 
1533 static
1534 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1535 				      enum transcoder cpu_transcoder,
1536 				      bool enable)
1537 {
1538 	struct intel_display *display = to_intel_display(dig_port);
1539 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1540 	struct intel_connector *connector = hdmi->attached_connector;
1541 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1542 	int ret;
1543 
1544 	if (!enable)
1545 		usleep_range(6, 60); /* Bspec says >= 6us */
1546 
1547 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1548 					 cpu_transcoder, enable,
1549 					 TRANS_DDI_HDCP_SIGNALLING);
1550 	if (ret) {
1551 		drm_err(display->drm, "%s HDCP signalling failed (%d)\n",
1552 			enable ? "Enable" : "Disable", ret);
1553 		return ret;
1554 	}
1555 
1556 	/*
1557 	 * WA: To fix incorrect positioning of the window of
1558 	 * opportunity and enc_en signalling in KABYLAKE.
1559 	 */
1560 	if (IS_KABYLAKE(dev_priv) && enable)
1561 		return kbl_repositioning_enc_en_signal(connector,
1562 						       cpu_transcoder);
1563 
1564 	return 0;
1565 }
1566 
1567 static
1568 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1569 				     struct intel_connector *connector)
1570 {
1571 	struct intel_display *display = to_intel_display(dig_port);
1572 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1573 	enum port port = dig_port->base.port;
1574 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1575 	int ret;
1576 	union {
1577 		u32 reg;
1578 		u8 shim[DRM_HDCP_RI_LEN];
1579 	} ri;
1580 
1581 	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1582 	if (ret)
1583 		return false;
1584 
1585 	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1586 
1587 	/* Wait for Ri prime match */
1588 	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1589 		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1590 		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1591 		drm_dbg_kms(display->drm, "Ri' mismatch detected (%x)\n",
1592 			    intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1593 							    port)));
1594 		return false;
1595 	}
1596 	return true;
1597 }
1598 
1599 static
1600 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1601 				struct intel_connector *connector)
1602 {
1603 	struct intel_display *display = to_intel_display(dig_port);
1604 	int retry;
1605 
1606 	for (retry = 0; retry < 3; retry++)
1607 		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1608 			return true;
1609 
1610 	drm_err(display->drm, "Link check failed\n");
1611 	return false;
1612 }
1613 
1614 struct hdcp2_hdmi_msg_timeout {
1615 	u8 msg_id;
1616 	u16 timeout;
1617 };
1618 
1619 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1620 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1621 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1622 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1623 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1624 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1625 };
1626 
1627 static
1628 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1629 				    u8 *rx_status)
1630 {
1631 	return intel_hdmi_hdcp_read(dig_port,
1632 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1633 				    rx_status,
1634 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1635 }
1636 
1637 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1638 {
1639 	int i;
1640 
1641 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1642 		if (is_paired)
1643 			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1644 		else
1645 			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1646 	}
1647 
1648 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1649 		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1650 			return hdcp2_msg_timeout[i].timeout;
1651 	}
1652 
1653 	return -EINVAL;
1654 }
1655 
1656 static int
1657 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1658 			      u8 msg_id, bool *msg_ready,
1659 			      ssize_t *msg_sz)
1660 {
1661 	struct intel_display *display = to_intel_display(dig_port);
1662 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1663 	int ret;
1664 
1665 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1666 	if (ret < 0) {
1667 		drm_dbg_kms(display->drm, "rx_status read failed. Err %d\n",
1668 			    ret);
1669 		return ret;
1670 	}
1671 
1672 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1673 		  rx_status[0]);
1674 
1675 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1676 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1677 			     *msg_sz);
1678 	else
1679 		*msg_ready = *msg_sz;
1680 
1681 	return 0;
1682 }
1683 
1684 static ssize_t
1685 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1686 			      u8 msg_id, bool paired)
1687 {
1688 	struct intel_display *display = to_intel_display(dig_port);
1689 	bool msg_ready = false;
1690 	int timeout, ret;
1691 	ssize_t msg_sz = 0;
1692 
1693 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1694 	if (timeout < 0)
1695 		return timeout;
1696 
1697 	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1698 							     msg_id, &msg_ready,
1699 							     &msg_sz),
1700 			 !ret && msg_ready && msg_sz, timeout * 1000,
1701 			 1000, 5 * 1000);
1702 	if (ret)
1703 		drm_dbg_kms(display->drm,
1704 			    "msg_id: %d, ret: %d, timeout: %d\n",
1705 			    msg_id, ret, timeout);
1706 
1707 	return ret ? ret : msg_sz;
1708 }
1709 
1710 static
1711 int intel_hdmi_hdcp2_write_msg(struct intel_connector *connector,
1712 			       void *buf, size_t size)
1713 {
1714 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1715 	unsigned int offset;
1716 
1717 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1718 	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1719 }
1720 
1721 static
1722 int intel_hdmi_hdcp2_read_msg(struct intel_connector *connector,
1723 			      u8 msg_id, void *buf, size_t size)
1724 {
1725 	struct intel_display *display = to_intel_display(connector);
1726 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1727 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1728 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1729 	unsigned int offset;
1730 	ssize_t ret;
1731 
1732 	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1733 					    hdcp->is_paired);
1734 	if (ret < 0)
1735 		return ret;
1736 
1737 	/*
1738 	 * Available msg size should be equal to or lesser than the
1739 	 * available buffer.
1740 	 */
1741 	if (ret > size) {
1742 		drm_dbg_kms(display->drm,
1743 			    "msg_sz(%zd) is more than exp size(%zu)\n",
1744 			    ret, size);
1745 		return -EINVAL;
1746 	}
1747 
1748 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1749 	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1750 	if (ret)
1751 		drm_dbg_kms(display->drm, "Failed to read msg_id: %d(%zd)\n",
1752 			    msg_id, ret);
1753 
1754 	return ret;
1755 }
1756 
1757 static
1758 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1759 				struct intel_connector *connector)
1760 {
1761 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1762 	int ret;
1763 
1764 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1765 	if (ret)
1766 		return ret;
1767 
1768 	/*
1769 	 * Re-auth request and Link Integrity Failures are represented by
1770 	 * same bit. i.e reauth_req.
1771 	 */
1772 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1773 		ret = HDCP_REAUTH_REQUEST;
1774 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1775 		ret = HDCP_TOPOLOGY_CHANGE;
1776 
1777 	return ret;
1778 }
1779 
1780 static
1781 int intel_hdmi_hdcp2_get_capability(struct intel_connector *connector,
1782 				    bool *capable)
1783 {
1784 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1785 	u8 hdcp2_version;
1786 	int ret;
1787 
1788 	*capable = false;
1789 	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1790 				   &hdcp2_version, sizeof(hdcp2_version));
1791 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1792 		*capable = true;
1793 
1794 	return ret;
1795 }
1796 
1797 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1798 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1799 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1800 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1801 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1802 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1803 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1804 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1805 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1806 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1807 	.check_link = intel_hdmi_hdcp_check_link,
1808 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1809 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1810 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1811 	.hdcp_2_2_get_capability = intel_hdmi_hdcp2_get_capability,
1812 	.protocol = HDCP_PROTOCOL_HDMI,
1813 };
1814 
1815 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1816 {
1817 	struct intel_display *display = to_intel_display(encoder);
1818 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1819 	int max_tmds_clock, vbt_max_tmds_clock;
1820 
1821 	if (DISPLAY_VER(display) >= 13 || IS_ALDERLAKE_S(dev_priv))
1822 		max_tmds_clock = 600000;
1823 	else if (DISPLAY_VER(display) >= 10)
1824 		max_tmds_clock = 594000;
1825 	else if (DISPLAY_VER(display) >= 8 || IS_HASWELL(dev_priv))
1826 		max_tmds_clock = 300000;
1827 	else if (DISPLAY_VER(display) >= 5)
1828 		max_tmds_clock = 225000;
1829 	else
1830 		max_tmds_clock = 165000;
1831 
1832 	vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata);
1833 	if (vbt_max_tmds_clock)
1834 		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1835 
1836 	return max_tmds_clock;
1837 }
1838 
1839 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1840 				const struct drm_connector_state *conn_state)
1841 {
1842 	struct intel_connector *connector = hdmi->attached_connector;
1843 
1844 	return connector->base.display_info.is_hdmi &&
1845 		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1846 }
1847 
1848 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1849 {
1850 	return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1851 }
1852 
1853 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1854 				 bool respect_downstream_limits,
1855 				 bool has_hdmi_sink)
1856 {
1857 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1858 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1859 
1860 	if (respect_downstream_limits) {
1861 		struct intel_connector *connector = hdmi->attached_connector;
1862 		const struct drm_display_info *info = &connector->base.display_info;
1863 
1864 		if (hdmi->dp_dual_mode.max_tmds_clock)
1865 			max_tmds_clock = min(max_tmds_clock,
1866 					     hdmi->dp_dual_mode.max_tmds_clock);
1867 
1868 		if (info->max_tmds_clock)
1869 			max_tmds_clock = min(max_tmds_clock,
1870 					     info->max_tmds_clock);
1871 		else if (!has_hdmi_sink)
1872 			max_tmds_clock = min(max_tmds_clock, 165000);
1873 	}
1874 
1875 	return max_tmds_clock;
1876 }
1877 
1878 static enum drm_mode_status
1879 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1880 		      int clock, bool respect_downstream_limits,
1881 		      bool has_hdmi_sink)
1882 {
1883 	struct intel_display *display = to_intel_display(hdmi);
1884 	struct drm_i915_private *dev_priv = to_i915(display->drm);
1885 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1886 
1887 	if (clock < 25000)
1888 		return MODE_CLOCK_LOW;
1889 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1890 					  has_hdmi_sink))
1891 		return MODE_CLOCK_HIGH;
1892 
1893 	/* GLK DPLL can't generate 446-480 MHz */
1894 	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1895 		return MODE_CLOCK_RANGE;
1896 
1897 	/* BXT/GLK DPLL can't generate 223-240 MHz */
1898 	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1899 	    clock > 223333 && clock < 240000)
1900 		return MODE_CLOCK_RANGE;
1901 
1902 	/* CHV DPLL can't generate 216-240 MHz */
1903 	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1904 		return MODE_CLOCK_RANGE;
1905 
1906 	/* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1907 	if (intel_encoder_is_combo(encoder) && clock > 500000 && clock < 533200)
1908 		return MODE_CLOCK_RANGE;
1909 
1910 	/* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1911 	if (intel_encoder_is_tc(encoder) && clock > 500000 && clock < 532800)
1912 		return MODE_CLOCK_RANGE;
1913 
1914 	/*
1915 	 * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1916 	 * set of link rates.
1917 	 *
1918 	 * FIXME: We will hopefully get an algorithmic way of programming
1919 	 * the MPLLB for HDMI in the future.
1920 	 */
1921 	if (DISPLAY_VER(display) >= 14)
1922 		return intel_cx0_phy_check_hdmi_link_rate(hdmi, clock);
1923 	else if (IS_DG2(dev_priv))
1924 		return intel_snps_phy_check_hdmi_link_rate(clock);
1925 
1926 	return MODE_OK;
1927 }
1928 
1929 int intel_hdmi_tmds_clock(int clock, int bpc,
1930 			  enum intel_output_format sink_format)
1931 {
1932 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
1933 	if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1934 		clock /= 2;
1935 
1936 	/*
1937 	 * Need to adjust the port link by:
1938 	 *  1.5x for 12bpc
1939 	 *  1.25x for 10bpc
1940 	 */
1941 	return DIV_ROUND_CLOSEST(clock * bpc, 8);
1942 }
1943 
1944 static bool intel_hdmi_source_bpc_possible(struct intel_display *display, int bpc)
1945 {
1946 	switch (bpc) {
1947 	case 12:
1948 		return !HAS_GMCH(display);
1949 	case 10:
1950 		return DISPLAY_VER(display) >= 11;
1951 	case 8:
1952 		return true;
1953 	default:
1954 		MISSING_CASE(bpc);
1955 		return false;
1956 	}
1957 }
1958 
1959 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1960 					 int bpc, bool has_hdmi_sink,
1961 					 enum intel_output_format sink_format)
1962 {
1963 	const struct drm_display_info *info = &connector->display_info;
1964 	const struct drm_hdmi_info *hdmi = &info->hdmi;
1965 
1966 	switch (bpc) {
1967 	case 12:
1968 		if (!has_hdmi_sink)
1969 			return false;
1970 
1971 		if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1972 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1973 		else
1974 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1975 	case 10:
1976 		if (!has_hdmi_sink)
1977 			return false;
1978 
1979 		if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1980 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1981 		else
1982 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1983 	case 8:
1984 		return true;
1985 	default:
1986 		MISSING_CASE(bpc);
1987 		return false;
1988 	}
1989 }
1990 
1991 static enum drm_mode_status
1992 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1993 			    bool has_hdmi_sink,
1994 			    enum intel_output_format sink_format)
1995 {
1996 	struct intel_display *display = to_intel_display(connector->dev);
1997 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1998 	enum drm_mode_status status = MODE_OK;
1999 	int bpc;
2000 
2001 	/*
2002 	 * Try all color depths since valid port clock range
2003 	 * can have holes. Any mode that can be used with at
2004 	 * least one color depth is accepted.
2005 	 */
2006 	for (bpc = 12; bpc >= 8; bpc -= 2) {
2007 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format);
2008 
2009 		if (!intel_hdmi_source_bpc_possible(display, bpc))
2010 			continue;
2011 
2012 		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, sink_format))
2013 			continue;
2014 
2015 		status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
2016 		if (status == MODE_OK)
2017 			return MODE_OK;
2018 	}
2019 
2020 	/* can never happen */
2021 	drm_WARN_ON(display->drm, status == MODE_OK);
2022 
2023 	return status;
2024 }
2025 
2026 static enum drm_mode_status
2027 intel_hdmi_mode_valid(struct drm_connector *connector,
2028 		      struct drm_display_mode *mode)
2029 {
2030 	struct intel_display *display = to_intel_display(connector->dev);
2031 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2032 	struct drm_i915_private *dev_priv = to_i915(display->drm);
2033 	enum drm_mode_status status;
2034 	int clock = mode->clock;
2035 	int max_dotclk = to_i915(connector->dev)->display.cdclk.max_dotclk_freq;
2036 	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
2037 	bool ycbcr_420_only;
2038 	enum intel_output_format sink_format;
2039 
2040 	status = intel_cpu_transcoder_mode_valid(dev_priv, mode);
2041 	if (status != MODE_OK)
2042 		return status;
2043 
2044 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
2045 		clock *= 2;
2046 
2047 	if (clock > max_dotclk)
2048 		return MODE_CLOCK_HIGH;
2049 
2050 	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
2051 		if (!has_hdmi_sink)
2052 			return MODE_CLOCK_LOW;
2053 		clock *= 2;
2054 	}
2055 
2056 	/*
2057 	 * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
2058 	 * enumerated only if FRL is supported. Current platforms do not support
2059 	 * FRL so prune the higher resolution modes that require doctclock more
2060 	 * than 600MHz.
2061 	 */
2062 	if (clock > 600000)
2063 		return MODE_CLOCK_HIGH;
2064 
2065 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
2066 
2067 	if (ycbcr_420_only)
2068 		sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2069 	else
2070 		sink_format = INTEL_OUTPUT_FORMAT_RGB;
2071 
2072 	status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2073 	if (status != MODE_OK) {
2074 		if (ycbcr_420_only ||
2075 		    !connector->ycbcr_420_allowed ||
2076 		    !drm_mode_is_420_also(&connector->display_info, mode))
2077 			return status;
2078 
2079 		sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2080 		status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2081 		if (status != MODE_OK)
2082 			return status;
2083 	}
2084 
2085 	return intel_mode_valid_max_plane_size(dev_priv, mode, 1);
2086 }
2087 
2088 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2089 			     int bpc, bool has_hdmi_sink)
2090 {
2091 	struct drm_atomic_state *state = crtc_state->uapi.state;
2092 	struct drm_connector_state *connector_state;
2093 	struct drm_connector *connector;
2094 	int i;
2095 
2096 	for_each_new_connector_in_state(state, connector, connector_state, i) {
2097 		if (connector_state->crtc != crtc_state->uapi.crtc)
2098 			continue;
2099 
2100 		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink,
2101 						  crtc_state->sink_format))
2102 			return false;
2103 	}
2104 
2105 	return true;
2106 }
2107 
2108 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
2109 {
2110 	struct intel_display *display = to_intel_display(crtc_state);
2111 	const struct drm_display_mode *adjusted_mode =
2112 		&crtc_state->hw.adjusted_mode;
2113 
2114 	if (!intel_hdmi_source_bpc_possible(display, bpc))
2115 		return false;
2116 
2117 	/* Display Wa_1405510057:icl,ehl */
2118 	if (intel_hdmi_is_ycbcr420(crtc_state) &&
2119 	    bpc == 10 && DISPLAY_VER(display) == 11 &&
2120 	    (adjusted_mode->crtc_hblank_end -
2121 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2122 		return false;
2123 
2124 	return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink);
2125 }
2126 
2127 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2128 				  struct intel_crtc_state *crtc_state,
2129 				  int clock, bool respect_downstream_limits)
2130 {
2131 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2132 	int bpc;
2133 
2134 	/*
2135 	 * pipe_bpp could already be below 8bpc due to FDI
2136 	 * bandwidth constraints. HDMI minimum is 8bpc however.
2137 	 */
2138 	bpc = max(crtc_state->pipe_bpp / 3, 8);
2139 
2140 	/*
2141 	 * We will never exceed downstream TMDS clock limits while
2142 	 * attempting deep color. If the user insists on forcing an
2143 	 * out of spec mode they will have to be satisfied with 8bpc.
2144 	 */
2145 	if (!respect_downstream_limits)
2146 		bpc = 8;
2147 
2148 	for (; bpc >= 8; bpc -= 2) {
2149 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc,
2150 						       crtc_state->sink_format);
2151 
2152 		if (hdmi_bpc_possible(crtc_state, bpc) &&
2153 		    hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2154 					  respect_downstream_limits,
2155 					  crtc_state->has_hdmi_sink) == MODE_OK)
2156 			return bpc;
2157 	}
2158 
2159 	return -EINVAL;
2160 }
2161 
2162 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2163 				    struct intel_crtc_state *crtc_state,
2164 				    bool respect_downstream_limits)
2165 {
2166 	struct intel_display *display = to_intel_display(encoder);
2167 	const struct drm_display_mode *adjusted_mode =
2168 		&crtc_state->hw.adjusted_mode;
2169 	int bpc, clock = adjusted_mode->crtc_clock;
2170 
2171 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2172 		clock *= 2;
2173 
2174 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2175 				     respect_downstream_limits);
2176 	if (bpc < 0)
2177 		return bpc;
2178 
2179 	crtc_state->port_clock =
2180 		intel_hdmi_tmds_clock(clock, bpc, crtc_state->sink_format);
2181 
2182 	/*
2183 	 * pipe_bpp could already be below 8bpc due to
2184 	 * FDI bandwidth constraints. We shouldn't bump it
2185 	 * back up to the HDMI minimum 8bpc in that case.
2186 	 */
2187 	crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
2188 
2189 	drm_dbg_kms(display->drm,
2190 		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2191 		    bpc, crtc_state->pipe_bpp);
2192 
2193 	return 0;
2194 }
2195 
2196 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2197 				    const struct drm_connector_state *conn_state)
2198 {
2199 	const struct intel_digital_connector_state *intel_conn_state =
2200 		to_intel_digital_connector_state(conn_state);
2201 	const struct drm_display_mode *adjusted_mode =
2202 		&crtc_state->hw.adjusted_mode;
2203 
2204 	/*
2205 	 * Our YCbCr output is always limited range.
2206 	 * crtc_state->limited_color_range only applies to RGB,
2207 	 * and it must never be set for YCbCr or we risk setting
2208 	 * some conflicting bits in TRANSCONF which will mess up
2209 	 * the colors on the monitor.
2210 	 */
2211 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2212 		return false;
2213 
2214 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2215 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2216 		return crtc_state->has_hdmi_sink &&
2217 			drm_default_rgb_quant_range(adjusted_mode) ==
2218 			HDMI_QUANTIZATION_RANGE_LIMITED;
2219 	} else {
2220 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2221 	}
2222 }
2223 
2224 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2225 				 const struct intel_crtc_state *crtc_state,
2226 				 const struct drm_connector_state *conn_state)
2227 {
2228 	struct drm_connector *connector = conn_state->connector;
2229 	const struct intel_digital_connector_state *intel_conn_state =
2230 		to_intel_digital_connector_state(conn_state);
2231 
2232 	if (!crtc_state->has_hdmi_sink)
2233 		return false;
2234 
2235 	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2236 		return connector->display_info.has_audio;
2237 	else
2238 		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2239 }
2240 
2241 static enum intel_output_format
2242 intel_hdmi_sink_format(const struct intel_crtc_state *crtc_state,
2243 		       struct intel_connector *connector,
2244 		       bool ycbcr_420_output)
2245 {
2246 	if (!crtc_state->has_hdmi_sink)
2247 		return INTEL_OUTPUT_FORMAT_RGB;
2248 
2249 	if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2250 		return INTEL_OUTPUT_FORMAT_YCBCR420;
2251 	else
2252 		return INTEL_OUTPUT_FORMAT_RGB;
2253 }
2254 
2255 static enum intel_output_format
2256 intel_hdmi_output_format(const struct intel_crtc_state *crtc_state)
2257 {
2258 	return crtc_state->sink_format;
2259 }
2260 
2261 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2262 					    struct intel_crtc_state *crtc_state,
2263 					    const struct drm_connector_state *conn_state,
2264 					    bool respect_downstream_limits)
2265 {
2266 	struct intel_display *display = to_intel_display(encoder);
2267 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
2268 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2269 	const struct drm_display_info *info = &connector->base.display_info;
2270 	bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2271 	int ret;
2272 
2273 	crtc_state->sink_format =
2274 		intel_hdmi_sink_format(crtc_state, connector, ycbcr_420_only);
2275 
2276 	if (ycbcr_420_only && crtc_state->sink_format != INTEL_OUTPUT_FORMAT_YCBCR420) {
2277 		drm_dbg_kms(display->drm,
2278 			    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2279 		crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB;
2280 	}
2281 
2282 	crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2283 	ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2284 	if (ret) {
2285 		if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
2286 		    !crtc_state->has_hdmi_sink ||
2287 		    !connector->base.ycbcr_420_allowed ||
2288 		    !drm_mode_is_420_also(info, adjusted_mode))
2289 			return ret;
2290 
2291 		crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2292 		crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2293 		ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2294 	}
2295 
2296 	return ret;
2297 }
2298 
2299 static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state)
2300 {
2301 	return crtc_state->uapi.encoder_mask &&
2302 		!is_power_of_2(crtc_state->uapi.encoder_mask);
2303 }
2304 
2305 static bool source_supports_scrambling(struct intel_encoder *encoder)
2306 {
2307 	/*
2308 	 * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and
2309 	 * scrambling is supported.
2310 	 * But there seem to be cases where certain platforms that support
2311 	 * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is
2312 	 * capped by VBT to less than 340MHz.
2313 	 *
2314 	 * In such cases when an HDMI2.0 sink is connected, it creates a
2315 	 * problem : the platform and the sink both support scrambling but the
2316 	 * HDMI 1.4 retimer chip doesn't.
2317 	 *
2318 	 * So go for scrambling, based on the max tmds clock taking into account,
2319 	 * restrictions coming from VBT.
2320 	 */
2321 	return intel_hdmi_source_max_tmds_clock(encoder) > 340000;
2322 }
2323 
2324 bool intel_hdmi_compute_has_hdmi_sink(struct intel_encoder *encoder,
2325 				      const struct intel_crtc_state *crtc_state,
2326 				      const struct drm_connector_state *conn_state)
2327 {
2328 	struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder);
2329 
2330 	return intel_has_hdmi_sink(hdmi, conn_state) &&
2331 		!intel_hdmi_is_cloned(crtc_state);
2332 }
2333 
2334 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2335 			      struct intel_crtc_state *pipe_config,
2336 			      struct drm_connector_state *conn_state)
2337 {
2338 	struct intel_display *display = to_intel_display(encoder);
2339 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2340 	struct drm_connector *connector = conn_state->connector;
2341 	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2342 	int ret;
2343 
2344 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2345 		return -EINVAL;
2346 
2347 	if (!connector->interlace_allowed &&
2348 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2349 		return -EINVAL;
2350 
2351 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2352 
2353 	if (pipe_config->has_hdmi_sink)
2354 		pipe_config->has_infoframe = true;
2355 
2356 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2357 		pipe_config->pixel_multiplier = 2;
2358 
2359 	pipe_config->has_audio =
2360 		intel_hdmi_has_audio(encoder, pipe_config, conn_state) &&
2361 		intel_audio_compute_config(encoder, pipe_config, conn_state);
2362 
2363 	/*
2364 	 * Try to respect downstream TMDS clock limits first, if
2365 	 * that fails assume the user might know something we don't.
2366 	 */
2367 	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2368 	if (ret)
2369 		ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2370 	if (ret) {
2371 		drm_dbg_kms(display->drm,
2372 			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2373 			    pipe_config->hw.adjusted_mode.crtc_clock);
2374 		return ret;
2375 	}
2376 
2377 	if (intel_hdmi_is_ycbcr420(pipe_config)) {
2378 		ret = intel_panel_fitting(pipe_config, conn_state);
2379 		if (ret)
2380 			return ret;
2381 	}
2382 
2383 	pipe_config->limited_color_range =
2384 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2385 
2386 	if (conn_state->picture_aspect_ratio)
2387 		adjusted_mode->picture_aspect_ratio =
2388 			conn_state->picture_aspect_ratio;
2389 
2390 	pipe_config->lane_count = 4;
2391 
2392 	if (scdc->scrambling.supported && source_supports_scrambling(encoder)) {
2393 		if (scdc->scrambling.low_rates)
2394 			pipe_config->hdmi_scrambling = true;
2395 
2396 		if (pipe_config->port_clock > 340000) {
2397 			pipe_config->hdmi_scrambling = true;
2398 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2399 		}
2400 	}
2401 
2402 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2403 					 conn_state);
2404 
2405 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2406 		drm_dbg_kms(display->drm, "bad AVI infoframe\n");
2407 		return -EINVAL;
2408 	}
2409 
2410 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2411 		drm_dbg_kms(display->drm, "bad SPD infoframe\n");
2412 		return -EINVAL;
2413 	}
2414 
2415 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2416 		drm_dbg_kms(display->drm, "bad HDMI infoframe\n");
2417 		return -EINVAL;
2418 	}
2419 
2420 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2421 		drm_dbg_kms(display->drm, "bad DRM infoframe\n");
2422 		return -EINVAL;
2423 	}
2424 
2425 	return 0;
2426 }
2427 
2428 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2429 {
2430 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2431 
2432 	/*
2433 	 * Give a hand to buggy BIOSen which forget to turn
2434 	 * the TMDS output buffers back on after a reboot.
2435 	 */
2436 	intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2437 }
2438 
2439 static void
2440 intel_hdmi_unset_edid(struct drm_connector *connector)
2441 {
2442 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2443 
2444 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2445 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2446 
2447 	drm_edid_free(to_intel_connector(connector)->detect_edid);
2448 	to_intel_connector(connector)->detect_edid = NULL;
2449 }
2450 
2451 static void
2452 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector)
2453 {
2454 	struct intel_display *display = to_intel_display(connector->dev);
2455 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2456 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2457 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
2458 	struct i2c_adapter *ddc = connector->ddc;
2459 	enum drm_dp_dual_mode_type type;
2460 
2461 	type = drm_dp_dual_mode_detect(display->drm, ddc);
2462 
2463 	/*
2464 	 * Type 1 DVI adaptors are not required to implement any
2465 	 * registers, so we can't always detect their presence.
2466 	 * Ideally we should be able to check the state of the
2467 	 * CONFIG1 pin, but no such luck on our hardware.
2468 	 *
2469 	 * The only method left to us is to check the VBT to see
2470 	 * if the port is a dual mode capable DP port.
2471 	 */
2472 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2473 		if (!connector->force &&
2474 		    intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2475 			drm_dbg_kms(display->drm,
2476 				    "Assuming DP dual mode adaptor presence based on VBT\n");
2477 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2478 		} else {
2479 			type = DRM_DP_DUAL_MODE_NONE;
2480 		}
2481 	}
2482 
2483 	if (type == DRM_DP_DUAL_MODE_NONE)
2484 		return;
2485 
2486 	hdmi->dp_dual_mode.type = type;
2487 	hdmi->dp_dual_mode.max_tmds_clock =
2488 		drm_dp_dual_mode_max_tmds_clock(display->drm, type, ddc);
2489 
2490 	drm_dbg_kms(display->drm,
2491 		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2492 		    drm_dp_get_dual_mode_type_name(type),
2493 		    hdmi->dp_dual_mode.max_tmds_clock);
2494 
2495 	/* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2496 	if ((DISPLAY_VER(display) >= 8 || IS_HASWELL(dev_priv)) &&
2497 	    !intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2498 		drm_dbg_kms(display->drm,
2499 			    "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2500 		hdmi->dp_dual_mode.max_tmds_clock = 0;
2501 	}
2502 }
2503 
2504 static bool
2505 intel_hdmi_set_edid(struct drm_connector *connector)
2506 {
2507 	struct intel_display *display = to_intel_display(connector->dev);
2508 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2509 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2510 	struct i2c_adapter *ddc = connector->ddc;
2511 	intel_wakeref_t wakeref;
2512 	const struct drm_edid *drm_edid;
2513 	bool connected = false;
2514 
2515 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2516 
2517 	drm_edid = drm_edid_read_ddc(connector, ddc);
2518 
2519 	if (!drm_edid && !intel_gmbus_is_forced_bit(ddc)) {
2520 		drm_dbg_kms(display->drm,
2521 			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2522 		intel_gmbus_force_bit(ddc, true);
2523 		drm_edid = drm_edid_read_ddc(connector, ddc);
2524 		intel_gmbus_force_bit(ddc, false);
2525 	}
2526 
2527 	/* Below we depend on display info having been updated */
2528 	drm_edid_connector_update(connector, drm_edid);
2529 
2530 	to_intel_connector(connector)->detect_edid = drm_edid;
2531 
2532 	if (drm_edid_is_digital(drm_edid)) {
2533 		intel_hdmi_dp_dual_mode_detect(connector);
2534 
2535 		connected = true;
2536 	}
2537 
2538 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2539 
2540 	cec_notifier_set_phys_addr(intel_hdmi->cec_notifier,
2541 				   connector->display_info.source_physical_address);
2542 
2543 	return connected;
2544 }
2545 
2546 static enum drm_connector_status
2547 intel_hdmi_detect(struct drm_connector *connector, bool force)
2548 {
2549 	struct intel_display *display = to_intel_display(connector->dev);
2550 	enum drm_connector_status status = connector_status_disconnected;
2551 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2552 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2553 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2554 	intel_wakeref_t wakeref;
2555 
2556 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2557 		    connector->base.id, connector->name);
2558 
2559 	if (!intel_display_device_enabled(dev_priv))
2560 		return connector_status_disconnected;
2561 
2562 	if (!intel_display_driver_check_access(dev_priv))
2563 		return connector->status;
2564 
2565 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2566 
2567 	if (DISPLAY_VER(display) >= 11 &&
2568 	    !intel_digital_port_connected(encoder))
2569 		goto out;
2570 
2571 	intel_hdmi_unset_edid(connector);
2572 
2573 	if (intel_hdmi_set_edid(connector))
2574 		status = connector_status_connected;
2575 
2576 out:
2577 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2578 
2579 	if (status != connector_status_connected)
2580 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2581 
2582 	return status;
2583 }
2584 
2585 static void
2586 intel_hdmi_force(struct drm_connector *connector)
2587 {
2588 	struct intel_display *display = to_intel_display(connector->dev);
2589 	struct drm_i915_private *i915 = to_i915(connector->dev);
2590 
2591 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2592 		    connector->base.id, connector->name);
2593 
2594 	if (!intel_display_driver_check_access(i915))
2595 		return;
2596 
2597 	intel_hdmi_unset_edid(connector);
2598 
2599 	if (connector->status != connector_status_connected)
2600 		return;
2601 
2602 	intel_hdmi_set_edid(connector);
2603 }
2604 
2605 static int intel_hdmi_get_modes(struct drm_connector *connector)
2606 {
2607 	/* drm_edid_connector_update() done in ->detect() or ->force() */
2608 	return drm_edid_connector_add_modes(connector);
2609 }
2610 
2611 static int
2612 intel_hdmi_connector_register(struct drm_connector *connector)
2613 {
2614 	int ret;
2615 
2616 	ret = intel_connector_register(connector);
2617 	if (ret)
2618 		return ret;
2619 
2620 	return ret;
2621 }
2622 
2623 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2624 {
2625 	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2626 
2627 	cec_notifier_conn_unregister(n);
2628 
2629 	intel_connector_unregister(connector);
2630 }
2631 
2632 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2633 	.detect = intel_hdmi_detect,
2634 	.force = intel_hdmi_force,
2635 	.fill_modes = drm_helper_probe_single_connector_modes,
2636 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2637 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2638 	.late_register = intel_hdmi_connector_register,
2639 	.early_unregister = intel_hdmi_connector_unregister,
2640 	.destroy = intel_connector_destroy,
2641 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2642 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2643 };
2644 
2645 static int intel_hdmi_connector_atomic_check(struct drm_connector *connector,
2646 					     struct drm_atomic_state *state)
2647 {
2648 	struct intel_display *display = to_intel_display(connector->dev);
2649 
2650 	if (HAS_DDI(display))
2651 		return intel_digital_connector_atomic_check(connector, state);
2652 	else
2653 		return g4x_hdmi_connector_atomic_check(connector, state);
2654 }
2655 
2656 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2657 	.get_modes = intel_hdmi_get_modes,
2658 	.mode_valid = intel_hdmi_mode_valid,
2659 	.atomic_check = intel_hdmi_connector_atomic_check,
2660 };
2661 
2662 static void
2663 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2664 {
2665 	struct intel_display *display = to_intel_display(intel_hdmi);
2666 
2667 	intel_attach_force_audio_property(connector);
2668 	intel_attach_broadcast_rgb_property(connector);
2669 	intel_attach_aspect_ratio_property(connector);
2670 
2671 	intel_attach_hdmi_colorspace_property(connector);
2672 	drm_connector_attach_content_type_property(connector);
2673 
2674 	if (DISPLAY_VER(display) >= 10)
2675 		drm_connector_attach_hdr_output_metadata_property(connector);
2676 
2677 	if (!HAS_GMCH(display))
2678 		drm_connector_attach_max_bpc_property(connector, 8, 12);
2679 }
2680 
2681 /*
2682  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2683  * @encoder: intel_encoder
2684  * @connector: drm_connector
2685  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2686  *  or reset the high tmds clock ratio for scrambling
2687  * @scrambling: bool to Indicate if the function needs to set or reset
2688  *  sink scrambling
2689  *
2690  * This function handles scrambling on HDMI 2.0 capable sinks.
2691  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2692  * it enables scrambling. This should be called before enabling the HDMI
2693  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2694  * detect a scrambled clock within 100 ms.
2695  *
2696  * Returns:
2697  * True on success, false on failure.
2698  */
2699 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2700 				       struct drm_connector *connector,
2701 				       bool high_tmds_clock_ratio,
2702 				       bool scrambling)
2703 {
2704 	struct intel_display *display = to_intel_display(encoder);
2705 	struct drm_scrambling *sink_scrambling =
2706 		&connector->display_info.hdmi.scdc.scrambling;
2707 
2708 	if (!sink_scrambling->supported)
2709 		return true;
2710 
2711 	drm_dbg_kms(display->drm,
2712 		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2713 		    connector->base.id, connector->name,
2714 		    str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2715 
2716 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2717 	return drm_scdc_set_high_tmds_clock_ratio(connector, high_tmds_clock_ratio) &&
2718 		drm_scdc_set_scrambling(connector, scrambling);
2719 }
2720 
2721 static u8 chv_encoder_to_ddc_pin(struct intel_encoder *encoder)
2722 {
2723 	enum port port = encoder->port;
2724 	u8 ddc_pin;
2725 
2726 	switch (port) {
2727 	case PORT_B:
2728 		ddc_pin = GMBUS_PIN_DPB;
2729 		break;
2730 	case PORT_C:
2731 		ddc_pin = GMBUS_PIN_DPC;
2732 		break;
2733 	case PORT_D:
2734 		ddc_pin = GMBUS_PIN_DPD_CHV;
2735 		break;
2736 	default:
2737 		MISSING_CASE(port);
2738 		ddc_pin = GMBUS_PIN_DPB;
2739 		break;
2740 	}
2741 	return ddc_pin;
2742 }
2743 
2744 static u8 bxt_encoder_to_ddc_pin(struct intel_encoder *encoder)
2745 {
2746 	enum port port = encoder->port;
2747 	u8 ddc_pin;
2748 
2749 	switch (port) {
2750 	case PORT_B:
2751 		ddc_pin = GMBUS_PIN_1_BXT;
2752 		break;
2753 	case PORT_C:
2754 		ddc_pin = GMBUS_PIN_2_BXT;
2755 		break;
2756 	default:
2757 		MISSING_CASE(port);
2758 		ddc_pin = GMBUS_PIN_1_BXT;
2759 		break;
2760 	}
2761 	return ddc_pin;
2762 }
2763 
2764 static u8 cnp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2765 {
2766 	enum port port = encoder->port;
2767 	u8 ddc_pin;
2768 
2769 	switch (port) {
2770 	case PORT_B:
2771 		ddc_pin = GMBUS_PIN_1_BXT;
2772 		break;
2773 	case PORT_C:
2774 		ddc_pin = GMBUS_PIN_2_BXT;
2775 		break;
2776 	case PORT_D:
2777 		ddc_pin = GMBUS_PIN_4_CNP;
2778 		break;
2779 	case PORT_F:
2780 		ddc_pin = GMBUS_PIN_3_BXT;
2781 		break;
2782 	default:
2783 		MISSING_CASE(port);
2784 		ddc_pin = GMBUS_PIN_1_BXT;
2785 		break;
2786 	}
2787 	return ddc_pin;
2788 }
2789 
2790 static u8 icl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2791 {
2792 	struct intel_display *display = to_intel_display(encoder);
2793 	enum port port = encoder->port;
2794 
2795 	if (intel_encoder_is_combo(encoder))
2796 		return GMBUS_PIN_1_BXT + port;
2797 	else if (intel_encoder_is_tc(encoder))
2798 		return GMBUS_PIN_9_TC1_ICP + intel_encoder_to_tc(encoder);
2799 
2800 	drm_WARN(display->drm, 1, "Unknown port:%c\n", port_name(port));
2801 	return GMBUS_PIN_2_BXT;
2802 }
2803 
2804 static u8 mcc_encoder_to_ddc_pin(struct intel_encoder *encoder)
2805 {
2806 	enum phy phy = intel_encoder_to_phy(encoder);
2807 	u8 ddc_pin;
2808 
2809 	switch (phy) {
2810 	case PHY_A:
2811 		ddc_pin = GMBUS_PIN_1_BXT;
2812 		break;
2813 	case PHY_B:
2814 		ddc_pin = GMBUS_PIN_2_BXT;
2815 		break;
2816 	case PHY_C:
2817 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2818 		break;
2819 	default:
2820 		MISSING_CASE(phy);
2821 		ddc_pin = GMBUS_PIN_1_BXT;
2822 		break;
2823 	}
2824 	return ddc_pin;
2825 }
2826 
2827 static u8 rkl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2828 {
2829 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2830 	enum phy phy = intel_encoder_to_phy(encoder);
2831 
2832 	WARN_ON(encoder->port == PORT_C);
2833 
2834 	/*
2835 	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2836 	 * final two outputs use type-c pins, even though they're actually
2837 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2838 	 * all outputs.
2839 	 */
2840 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2841 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2842 
2843 	return GMBUS_PIN_1_BXT + phy;
2844 }
2845 
2846 static u8 gen9bc_tgp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2847 {
2848 	struct intel_display *display = to_intel_display(encoder);
2849 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2850 	enum phy phy = intel_encoder_to_phy(encoder);
2851 
2852 	drm_WARN_ON(display->drm, encoder->port == PORT_A);
2853 
2854 	/*
2855 	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2856 	 * final two outputs use type-c pins, even though they're actually
2857 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2858 	 * all outputs.
2859 	 */
2860 	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2861 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2862 
2863 	return GMBUS_PIN_1_BXT + phy;
2864 }
2865 
2866 static u8 dg1_encoder_to_ddc_pin(struct intel_encoder *encoder)
2867 {
2868 	return intel_encoder_to_phy(encoder) + 1;
2869 }
2870 
2871 static u8 adls_encoder_to_ddc_pin(struct intel_encoder *encoder)
2872 {
2873 	enum phy phy = intel_encoder_to_phy(encoder);
2874 
2875 	WARN_ON(encoder->port == PORT_B || encoder->port == PORT_C);
2876 
2877 	/*
2878 	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2879 	 * except first combo output.
2880 	 */
2881 	if (phy == PHY_A)
2882 		return GMBUS_PIN_1_BXT;
2883 
2884 	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2885 }
2886 
2887 static u8 g4x_encoder_to_ddc_pin(struct intel_encoder *encoder)
2888 {
2889 	enum port port = encoder->port;
2890 	u8 ddc_pin;
2891 
2892 	switch (port) {
2893 	case PORT_B:
2894 		ddc_pin = GMBUS_PIN_DPB;
2895 		break;
2896 	case PORT_C:
2897 		ddc_pin = GMBUS_PIN_DPC;
2898 		break;
2899 	case PORT_D:
2900 		ddc_pin = GMBUS_PIN_DPD;
2901 		break;
2902 	default:
2903 		MISSING_CASE(port);
2904 		ddc_pin = GMBUS_PIN_DPB;
2905 		break;
2906 	}
2907 	return ddc_pin;
2908 }
2909 
2910 static u8 intel_hdmi_default_ddc_pin(struct intel_encoder *encoder)
2911 {
2912 	struct intel_display *display = to_intel_display(encoder);
2913 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2914 	u8 ddc_pin;
2915 
2916 	if (IS_ALDERLAKE_S(dev_priv))
2917 		ddc_pin = adls_encoder_to_ddc_pin(encoder);
2918 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2919 		ddc_pin = dg1_encoder_to_ddc_pin(encoder);
2920 	else if (IS_ROCKETLAKE(dev_priv))
2921 		ddc_pin = rkl_encoder_to_ddc_pin(encoder);
2922 	else if (DISPLAY_VER(display) == 9 && HAS_PCH_TGP(dev_priv))
2923 		ddc_pin = gen9bc_tgp_encoder_to_ddc_pin(encoder);
2924 	else if ((IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) &&
2925 		 HAS_PCH_TGP(dev_priv))
2926 		ddc_pin = mcc_encoder_to_ddc_pin(encoder);
2927 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2928 		ddc_pin = icl_encoder_to_ddc_pin(encoder);
2929 	else if (HAS_PCH_CNP(dev_priv))
2930 		ddc_pin = cnp_encoder_to_ddc_pin(encoder);
2931 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2932 		ddc_pin = bxt_encoder_to_ddc_pin(encoder);
2933 	else if (IS_CHERRYVIEW(dev_priv))
2934 		ddc_pin = chv_encoder_to_ddc_pin(encoder);
2935 	else
2936 		ddc_pin = g4x_encoder_to_ddc_pin(encoder);
2937 
2938 	return ddc_pin;
2939 }
2940 
2941 static struct intel_encoder *
2942 get_encoder_by_ddc_pin(struct intel_encoder *encoder, u8 ddc_pin)
2943 {
2944 	struct intel_display *display = to_intel_display(encoder);
2945 	struct intel_encoder *other;
2946 
2947 	for_each_intel_encoder(display->drm, other) {
2948 		struct intel_connector *connector;
2949 
2950 		if (other == encoder)
2951 			continue;
2952 
2953 		if (!intel_encoder_is_dig_port(other))
2954 			continue;
2955 
2956 		connector = enc_to_dig_port(other)->hdmi.attached_connector;
2957 
2958 		if (connector && connector->base.ddc == intel_gmbus_get_adapter(display, ddc_pin))
2959 			return other;
2960 	}
2961 
2962 	return NULL;
2963 }
2964 
2965 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2966 {
2967 	struct intel_display *display = to_intel_display(encoder);
2968 	struct intel_encoder *other;
2969 	const char *source;
2970 	u8 ddc_pin;
2971 
2972 	ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata);
2973 	source = "VBT";
2974 
2975 	if (!ddc_pin) {
2976 		ddc_pin = intel_hdmi_default_ddc_pin(encoder);
2977 		source = "platform default";
2978 	}
2979 
2980 	if (!intel_gmbus_is_valid_pin(display, ddc_pin)) {
2981 		drm_dbg_kms(display->drm,
2982 			    "[ENCODER:%d:%s] Invalid DDC pin %d\n",
2983 			    encoder->base.base.id, encoder->base.name, ddc_pin);
2984 		return 0;
2985 	}
2986 
2987 	other = get_encoder_by_ddc_pin(encoder, ddc_pin);
2988 	if (other) {
2989 		drm_dbg_kms(display->drm,
2990 			    "[ENCODER:%d:%s] DDC pin %d already claimed by [ENCODER:%d:%s]\n",
2991 			    encoder->base.base.id, encoder->base.name, ddc_pin,
2992 			    other->base.base.id, other->base.name);
2993 		return 0;
2994 	}
2995 
2996 	drm_dbg_kms(display->drm,
2997 		    "[ENCODER:%d:%s] Using DDC pin 0x%x (%s)\n",
2998 		    encoder->base.base.id, encoder->base.name,
2999 		    ddc_pin, source);
3000 
3001 	return ddc_pin;
3002 }
3003 
3004 void intel_infoframe_init(struct intel_digital_port *dig_port)
3005 {
3006 	struct intel_display *display = to_intel_display(dig_port);
3007 	struct drm_i915_private *dev_priv =
3008 		to_i915(dig_port->base.base.dev);
3009 
3010 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3011 		dig_port->write_infoframe = vlv_write_infoframe;
3012 		dig_port->read_infoframe = vlv_read_infoframe;
3013 		dig_port->set_infoframes = vlv_set_infoframes;
3014 		dig_port->infoframes_enabled = vlv_infoframes_enabled;
3015 	} else if (IS_G4X(dev_priv)) {
3016 		dig_port->write_infoframe = g4x_write_infoframe;
3017 		dig_port->read_infoframe = g4x_read_infoframe;
3018 		dig_port->set_infoframes = g4x_set_infoframes;
3019 		dig_port->infoframes_enabled = g4x_infoframes_enabled;
3020 	} else if (HAS_DDI(display)) {
3021 		if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) {
3022 			dig_port->write_infoframe = lspcon_write_infoframe;
3023 			dig_port->read_infoframe = lspcon_read_infoframe;
3024 			dig_port->set_infoframes = lspcon_set_infoframes;
3025 			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
3026 		} else {
3027 			dig_port->write_infoframe = hsw_write_infoframe;
3028 			dig_port->read_infoframe = hsw_read_infoframe;
3029 			dig_port->set_infoframes = hsw_set_infoframes;
3030 			dig_port->infoframes_enabled = hsw_infoframes_enabled;
3031 		}
3032 	} else if (HAS_PCH_IBX(dev_priv)) {
3033 		dig_port->write_infoframe = ibx_write_infoframe;
3034 		dig_port->read_infoframe = ibx_read_infoframe;
3035 		dig_port->set_infoframes = ibx_set_infoframes;
3036 		dig_port->infoframes_enabled = ibx_infoframes_enabled;
3037 	} else {
3038 		dig_port->write_infoframe = cpt_write_infoframe;
3039 		dig_port->read_infoframe = cpt_read_infoframe;
3040 		dig_port->set_infoframes = cpt_set_infoframes;
3041 		dig_port->infoframes_enabled = cpt_infoframes_enabled;
3042 	}
3043 }
3044 
3045 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
3046 			       struct intel_connector *intel_connector)
3047 {
3048 	struct intel_display *display = to_intel_display(dig_port);
3049 	struct drm_connector *connector = &intel_connector->base;
3050 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
3051 	struct intel_encoder *intel_encoder = &dig_port->base;
3052 	struct drm_device *dev = intel_encoder->base.dev;
3053 	enum port port = intel_encoder->port;
3054 	struct cec_connector_info conn_info;
3055 	u8 ddc_pin;
3056 
3057 	drm_dbg_kms(display->drm,
3058 		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
3059 		    intel_encoder->base.base.id, intel_encoder->base.name);
3060 
3061 	if (DISPLAY_VER(display) < 12 && drm_WARN_ON(dev, port == PORT_A))
3062 		return;
3063 
3064 	if (drm_WARN(dev, dig_port->max_lanes < 4,
3065 		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
3066 		     dig_port->max_lanes, intel_encoder->base.base.id,
3067 		     intel_encoder->base.name))
3068 		return;
3069 
3070 	ddc_pin = intel_hdmi_ddc_pin(intel_encoder);
3071 	if (!ddc_pin)
3072 		return;
3073 
3074 	drm_connector_init_with_ddc(dev, connector,
3075 				    &intel_hdmi_connector_funcs,
3076 				    DRM_MODE_CONNECTOR_HDMIA,
3077 				    intel_gmbus_get_adapter(display, ddc_pin));
3078 
3079 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
3080 
3081 	if (DISPLAY_VER(display) < 12)
3082 		connector->interlace_allowed = true;
3083 
3084 	connector->stereo_allowed = true;
3085 
3086 	if (DISPLAY_VER(display) >= 10)
3087 		connector->ycbcr_420_allowed = true;
3088 
3089 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
3090 	intel_connector->base.polled = intel_connector->polled;
3091 
3092 	if (HAS_DDI(display))
3093 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3094 	else
3095 		intel_connector->get_hw_state = intel_connector_get_hw_state;
3096 
3097 	intel_hdmi_add_properties(intel_hdmi, connector);
3098 
3099 	intel_connector_attach_encoder(intel_connector, intel_encoder);
3100 	intel_hdmi->attached_connector = intel_connector;
3101 
3102 	if (is_hdcp_supported(display, port)) {
3103 		int ret = intel_hdcp_init(intel_connector, dig_port,
3104 					  &intel_hdmi_hdcp_shim);
3105 		if (ret)
3106 			drm_dbg_kms(display->drm,
3107 				    "HDCP init failed, skipping.\n");
3108 	}
3109 
3110 	cec_fill_conn_info_from_drm(&conn_info, connector);
3111 
3112 	intel_hdmi->cec_notifier =
3113 		cec_notifier_conn_register(dev->dev, port_identifier(port),
3114 					   &conn_info);
3115 	if (!intel_hdmi->cec_notifier)
3116 		drm_dbg_kms(display->drm, "CEC notifier get failed\n");
3117 }
3118 
3119 /*
3120  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
3121  * @vactive: Vactive of a display mode
3122  *
3123  * @return: appropriate dsc slice height for a given mode.
3124  */
3125 int intel_hdmi_dsc_get_slice_height(int vactive)
3126 {
3127 	int slice_height;
3128 
3129 	/*
3130 	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
3131 	 * Select smallest slice height >=96, that results in a valid PPS and
3132 	 * requires minimum padding lines required for final slice.
3133 	 *
3134 	 * Assumption : Vactive is even.
3135 	 */
3136 	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3137 		if (vactive % slice_height == 0)
3138 			return slice_height;
3139 
3140 	return 0;
3141 }
3142 
3143 /*
3144  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3145  * and dsc decoder capabilities
3146  *
3147  * @crtc_state: intel crtc_state
3148  * @src_max_slices: maximum slices supported by the DSC encoder
3149  * @src_max_slice_width: maximum slice width supported by DSC encoder
3150  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3151  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3152  *
3153  * @return: num of dsc slices that can be supported by the dsc encoder
3154  * and decoder.
3155  */
3156 int
3157 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3158 			      int src_max_slices, int src_max_slice_width,
3159 			      int hdmi_max_slices, int hdmi_throughput)
3160 {
3161 /* Pixel rates in KPixels/sec */
3162 #define HDMI_DSC_PEAK_PIXEL_RATE		2720000
3163 /*
3164  * Rates at which the source and sink are required to process pixels in each
3165  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3166  */
3167 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
3168 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
3169 
3170 /* Spec limits the slice width to 2720 pixels */
3171 #define MAX_HDMI_SLICE_WIDTH			2720
3172 	int kslice_adjust;
3173 	int adjusted_clk_khz;
3174 	int min_slices;
3175 	int target_slices;
3176 	int max_throughput; /* max clock freq. in khz per slice */
3177 	int max_slice_width;
3178 	int slice_width;
3179 	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3180 
3181 	if (!hdmi_throughput)
3182 		return 0;
3183 
3184 	/*
3185 	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3186 	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3187 	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3188 	 * dividing adjusted clock value by 10.
3189 	 */
3190 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3191 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3192 		kslice_adjust = 10;
3193 	else
3194 		kslice_adjust = 5;
3195 
3196 	/*
3197 	 * As per spec, the rate at which the source and the sink process
3198 	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3199 	 * This depends upon the pixel clock rate and output formats
3200 	 * (kslice adjust).
3201 	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3202 	 * at max 340MHz, otherwise they can be processed at max 400MHz.
3203 	 */
3204 
3205 	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3206 
3207 	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3208 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3209 	else
3210 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3211 
3212 	/*
3213 	 * Taking into account the sink's capability for maximum
3214 	 * clock per slice (in MHz) as read from HF-VSDB.
3215 	 */
3216 	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3217 
3218 	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3219 	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3220 
3221 	/*
3222 	 * Keep on increasing the num of slices/line, starting from min_slices
3223 	 * per line till we get such a number, for which the slice_width is
3224 	 * just less than max_slice_width. The slices/line selected should be
3225 	 * less than or equal to the max horizontal slices that the combination
3226 	 * of PCON encoder and HDMI decoder can support.
3227 	 */
3228 	slice_width = max_slice_width;
3229 
3230 	do {
3231 		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3232 			target_slices = 1;
3233 		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3234 			target_slices = 2;
3235 		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3236 			target_slices = 4;
3237 		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3238 			target_slices = 8;
3239 		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3240 			target_slices = 12;
3241 		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3242 			target_slices = 16;
3243 		else
3244 			return 0;
3245 
3246 		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3247 		if (slice_width >= max_slice_width)
3248 			min_slices = target_slices + 1;
3249 	} while (slice_width >= max_slice_width);
3250 
3251 	return target_slices;
3252 }
3253 
3254 /*
3255  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3256  * source and sink capabilities.
3257  *
3258  * @src_fraction_bpp: fractional bpp supported by the source
3259  * @slice_width: dsc slice width supported by the source and sink
3260  * @num_slices: num of slices supported by the source and sink
3261  * @output_format: video output format
3262  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3263  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3264  *
3265  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3266  */
3267 int
3268 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3269 		       int output_format, bool hdmi_all_bpp,
3270 		       int hdmi_max_chunk_bytes)
3271 {
3272 	int max_dsc_bpp, min_dsc_bpp;
3273 	int target_bytes;
3274 	bool bpp_found = false;
3275 	int bpp_decrement_x16;
3276 	int bpp_target;
3277 	int bpp_target_x16;
3278 
3279 	/*
3280 	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3281 	 * Start with the max bpp and keep on decrementing with
3282 	 * fractional bpp, if supported by PCON DSC encoder
3283 	 *
3284 	 * for each bpp we check if no of bytes can be supported by HDMI sink
3285 	 */
3286 
3287 	/* Assuming: bpc as 8*/
3288 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3289 		min_dsc_bpp = 6;
3290 		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3291 	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3292 		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3293 		min_dsc_bpp = 8;
3294 		max_dsc_bpp = 3 * 8; /* 3*bpc */
3295 	} else {
3296 		/* Assuming 4:2:2 encoding */
3297 		min_dsc_bpp = 7;
3298 		max_dsc_bpp = 2 * 8; /* 2*bpc */
3299 	}
3300 
3301 	/*
3302 	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3303 	 * Section 7.7.34 : Source shall not enable compressed Video
3304 	 * Transport with bpp_target settings above 12 bpp unless
3305 	 * DSC_all_bpp is set to 1.
3306 	 */
3307 	if (!hdmi_all_bpp)
3308 		max_dsc_bpp = min(max_dsc_bpp, 12);
3309 
3310 	/*
3311 	 * The Sink has a limit of compressed data in bytes for a scanline,
3312 	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3313 	 * The no. of bytes depend on the target bits per pixel that the
3314 	 * source configures. So we start with the max_bpp and calculate
3315 	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3316 	 * till we get the target_chunk_bytes just less than what the sink's
3317 	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3318 	 *
3319 	 * The decrement is according to the fractional support from PCON DSC
3320 	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3321 	 *
3322 	 * bpp_target_x16 = bpp_target * 16
3323 	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3324 	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3325 	 */
3326 
3327 	bpp_target = max_dsc_bpp;
3328 
3329 	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3330 	if (!src_fractional_bpp)
3331 		src_fractional_bpp = 1;
3332 	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3333 	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3334 
3335 	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3336 		int bpp;
3337 
3338 		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3339 		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3340 		if (target_bytes <= hdmi_max_chunk_bytes) {
3341 			bpp_found = true;
3342 			break;
3343 		}
3344 		bpp_target_x16 -= bpp_decrement_x16;
3345 	}
3346 	if (bpp_found)
3347 		return bpp_target_x16;
3348 
3349 	return 0;
3350 }
3351