1 /* 2 * Copyright 2006 Dave Airlie <airlied@linux.ie> 3 * Copyright © 2006-2009 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Eric Anholt <eric@anholt.net> 26 * Jesse Barnes <jesse.barnes@intel.com> 27 */ 28 29 #include <linux/delay.h> 30 #include <linux/hdmi.h> 31 #include <linux/i2c.h> 32 #include <linux/slab.h> 33 #include <linux/string_helpers.h> 34 35 #include <drm/display/drm_hdcp_helper.h> 36 #include <drm/display/drm_hdmi_helper.h> 37 #include <drm/display/drm_scdc_helper.h> 38 #include <drm/drm_atomic_helper.h> 39 #include <drm/drm_crtc.h> 40 #include <drm/drm_edid.h> 41 #include <drm/intel_lpe_audio.h> 42 43 #include "g4x_hdmi.h" 44 #include "i915_drv.h" 45 #include "i915_reg.h" 46 #include "intel_atomic.h" 47 #include "intel_audio.h" 48 #include "intel_connector.h" 49 #include "intel_cx0_phy.h" 50 #include "intel_ddi.h" 51 #include "intel_de.h" 52 #include "intel_display_types.h" 53 #include "intel_dp.h" 54 #include "intel_gmbus.h" 55 #include "intel_hdcp.h" 56 #include "intel_hdcp_regs.h" 57 #include "intel_hdmi.h" 58 #include "intel_lspcon.h" 59 #include "intel_panel.h" 60 #include "intel_snps_phy.h" 61 62 inline struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi) 63 { 64 return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev); 65 } 66 67 static void 68 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi) 69 { 70 struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi); 71 u32 enabled_bits; 72 73 enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE; 74 75 drm_WARN(&dev_priv->drm, 76 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits, 77 "HDMI port enabled, expecting disabled\n"); 78 } 79 80 static void 81 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv, 82 enum transcoder cpu_transcoder) 83 { 84 drm_WARN(&dev_priv->drm, 85 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) & 86 TRANS_DDI_FUNC_ENABLE, 87 "HDMI transcoder function enabled, expecting disabled\n"); 88 } 89 90 static u32 g4x_infoframe_index(unsigned int type) 91 { 92 switch (type) { 93 case HDMI_PACKET_TYPE_GAMUT_METADATA: 94 return VIDEO_DIP_SELECT_GAMUT; 95 case HDMI_INFOFRAME_TYPE_AVI: 96 return VIDEO_DIP_SELECT_AVI; 97 case HDMI_INFOFRAME_TYPE_SPD: 98 return VIDEO_DIP_SELECT_SPD; 99 case HDMI_INFOFRAME_TYPE_VENDOR: 100 return VIDEO_DIP_SELECT_VENDOR; 101 default: 102 MISSING_CASE(type); 103 return 0; 104 } 105 } 106 107 static u32 g4x_infoframe_enable(unsigned int type) 108 { 109 switch (type) { 110 case HDMI_PACKET_TYPE_GENERAL_CONTROL: 111 return VIDEO_DIP_ENABLE_GCP; 112 case HDMI_PACKET_TYPE_GAMUT_METADATA: 113 return VIDEO_DIP_ENABLE_GAMUT; 114 case DP_SDP_VSC: 115 return 0; 116 case HDMI_INFOFRAME_TYPE_AVI: 117 return VIDEO_DIP_ENABLE_AVI; 118 case HDMI_INFOFRAME_TYPE_SPD: 119 return VIDEO_DIP_ENABLE_SPD; 120 case HDMI_INFOFRAME_TYPE_VENDOR: 121 return VIDEO_DIP_ENABLE_VENDOR; 122 case HDMI_INFOFRAME_TYPE_DRM: 123 return 0; 124 default: 125 MISSING_CASE(type); 126 return 0; 127 } 128 } 129 130 static u32 hsw_infoframe_enable(unsigned int type) 131 { 132 switch (type) { 133 case HDMI_PACKET_TYPE_GENERAL_CONTROL: 134 return VIDEO_DIP_ENABLE_GCP_HSW; 135 case HDMI_PACKET_TYPE_GAMUT_METADATA: 136 return VIDEO_DIP_ENABLE_GMP_HSW; 137 case DP_SDP_VSC: 138 return VIDEO_DIP_ENABLE_VSC_HSW; 139 case DP_SDP_PPS: 140 return VDIP_ENABLE_PPS; 141 case HDMI_INFOFRAME_TYPE_AVI: 142 return VIDEO_DIP_ENABLE_AVI_HSW; 143 case HDMI_INFOFRAME_TYPE_SPD: 144 return VIDEO_DIP_ENABLE_SPD_HSW; 145 case HDMI_INFOFRAME_TYPE_VENDOR: 146 return VIDEO_DIP_ENABLE_VS_HSW; 147 case HDMI_INFOFRAME_TYPE_DRM: 148 return VIDEO_DIP_ENABLE_DRM_GLK; 149 default: 150 MISSING_CASE(type); 151 return 0; 152 } 153 } 154 155 static i915_reg_t 156 hsw_dip_data_reg(struct drm_i915_private *dev_priv, 157 enum transcoder cpu_transcoder, 158 unsigned int type, 159 int i) 160 { 161 switch (type) { 162 case HDMI_PACKET_TYPE_GAMUT_METADATA: 163 return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i); 164 case DP_SDP_VSC: 165 return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i); 166 case DP_SDP_PPS: 167 return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i); 168 case HDMI_INFOFRAME_TYPE_AVI: 169 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i); 170 case HDMI_INFOFRAME_TYPE_SPD: 171 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i); 172 case HDMI_INFOFRAME_TYPE_VENDOR: 173 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i); 174 case HDMI_INFOFRAME_TYPE_DRM: 175 return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i); 176 default: 177 MISSING_CASE(type); 178 return INVALID_MMIO_REG; 179 } 180 } 181 182 static int hsw_dip_data_size(struct drm_i915_private *dev_priv, 183 unsigned int type) 184 { 185 switch (type) { 186 case DP_SDP_VSC: 187 return VIDEO_DIP_VSC_DATA_SIZE; 188 case DP_SDP_PPS: 189 return VIDEO_DIP_PPS_DATA_SIZE; 190 case HDMI_PACKET_TYPE_GAMUT_METADATA: 191 if (DISPLAY_VER(dev_priv) >= 11) 192 return VIDEO_DIP_GMP_DATA_SIZE; 193 else 194 return VIDEO_DIP_DATA_SIZE; 195 default: 196 return VIDEO_DIP_DATA_SIZE; 197 } 198 } 199 200 static void g4x_write_infoframe(struct intel_encoder *encoder, 201 const struct intel_crtc_state *crtc_state, 202 unsigned int type, 203 const void *frame, ssize_t len) 204 { 205 const u32 *data = frame; 206 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 207 u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL); 208 int i; 209 210 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 211 "Writing DIP with CTL reg disabled\n"); 212 213 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 214 val |= g4x_infoframe_index(type); 215 216 val &= ~g4x_infoframe_enable(type); 217 218 intel_de_write(dev_priv, VIDEO_DIP_CTL, val); 219 220 for (i = 0; i < len; i += 4) { 221 intel_de_write(dev_priv, VIDEO_DIP_DATA, *data); 222 data++; 223 } 224 /* Write every possible data byte to force correct ECC calculation. */ 225 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 226 intel_de_write(dev_priv, VIDEO_DIP_DATA, 0); 227 228 val |= g4x_infoframe_enable(type); 229 val &= ~VIDEO_DIP_FREQ_MASK; 230 val |= VIDEO_DIP_FREQ_VSYNC; 231 232 intel_de_write(dev_priv, VIDEO_DIP_CTL, val); 233 intel_de_posting_read(dev_priv, VIDEO_DIP_CTL); 234 } 235 236 static void g4x_read_infoframe(struct intel_encoder *encoder, 237 const struct intel_crtc_state *crtc_state, 238 unsigned int type, 239 void *frame, ssize_t len) 240 { 241 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 242 u32 *data = frame; 243 int i; 244 245 intel_de_rmw(dev_priv, VIDEO_DIP_CTL, 246 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type)); 247 248 for (i = 0; i < len; i += 4) 249 *data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA); 250 } 251 252 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder, 253 const struct intel_crtc_state *pipe_config) 254 { 255 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 256 u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL); 257 258 if ((val & VIDEO_DIP_ENABLE) == 0) 259 return 0; 260 261 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) 262 return 0; 263 264 return val & (VIDEO_DIP_ENABLE_AVI | 265 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); 266 } 267 268 static void ibx_write_infoframe(struct intel_encoder *encoder, 269 const struct intel_crtc_state *crtc_state, 270 unsigned int type, 271 const void *frame, ssize_t len) 272 { 273 const u32 *data = frame; 274 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 275 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 276 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); 277 u32 val = intel_de_read(dev_priv, reg); 278 int i; 279 280 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 281 "Writing DIP with CTL reg disabled\n"); 282 283 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 284 val |= g4x_infoframe_index(type); 285 286 val &= ~g4x_infoframe_enable(type); 287 288 intel_de_write(dev_priv, reg, val); 289 290 for (i = 0; i < len; i += 4) { 291 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 292 *data); 293 data++; 294 } 295 /* Write every possible data byte to force correct ECC calculation. */ 296 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 297 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0); 298 299 val |= g4x_infoframe_enable(type); 300 val &= ~VIDEO_DIP_FREQ_MASK; 301 val |= VIDEO_DIP_FREQ_VSYNC; 302 303 intel_de_write(dev_priv, reg, val); 304 intel_de_posting_read(dev_priv, reg); 305 } 306 307 static void ibx_read_infoframe(struct intel_encoder *encoder, 308 const struct intel_crtc_state *crtc_state, 309 unsigned int type, 310 void *frame, ssize_t len) 311 { 312 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 313 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 314 u32 *data = frame; 315 int i; 316 317 intel_de_rmw(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), 318 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type)); 319 320 for (i = 0; i < len; i += 4) 321 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe)); 322 } 323 324 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder, 325 const struct intel_crtc_state *pipe_config) 326 { 327 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 328 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; 329 i915_reg_t reg = TVIDEO_DIP_CTL(pipe); 330 u32 val = intel_de_read(dev_priv, reg); 331 332 if ((val & VIDEO_DIP_ENABLE) == 0) 333 return 0; 334 335 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) 336 return 0; 337 338 return val & (VIDEO_DIP_ENABLE_AVI | 339 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 340 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 341 } 342 343 static void cpt_write_infoframe(struct intel_encoder *encoder, 344 const struct intel_crtc_state *crtc_state, 345 unsigned int type, 346 const void *frame, ssize_t len) 347 { 348 const u32 *data = frame; 349 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 350 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 351 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); 352 u32 val = intel_de_read(dev_priv, reg); 353 int i; 354 355 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 356 "Writing DIP with CTL reg disabled\n"); 357 358 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 359 val |= g4x_infoframe_index(type); 360 361 /* The DIP control register spec says that we need to update the AVI 362 * infoframe without clearing its enable bit */ 363 if (type != HDMI_INFOFRAME_TYPE_AVI) 364 val &= ~g4x_infoframe_enable(type); 365 366 intel_de_write(dev_priv, reg, val); 367 368 for (i = 0; i < len; i += 4) { 369 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 370 *data); 371 data++; 372 } 373 /* Write every possible data byte to force correct ECC calculation. */ 374 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 375 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0); 376 377 val |= g4x_infoframe_enable(type); 378 val &= ~VIDEO_DIP_FREQ_MASK; 379 val |= VIDEO_DIP_FREQ_VSYNC; 380 381 intel_de_write(dev_priv, reg, val); 382 intel_de_posting_read(dev_priv, reg); 383 } 384 385 static void cpt_read_infoframe(struct intel_encoder *encoder, 386 const struct intel_crtc_state *crtc_state, 387 unsigned int type, 388 void *frame, ssize_t len) 389 { 390 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 391 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 392 u32 *data = frame; 393 int i; 394 395 intel_de_rmw(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), 396 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type)); 397 398 for (i = 0; i < len; i += 4) 399 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe)); 400 } 401 402 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder, 403 const struct intel_crtc_state *pipe_config) 404 { 405 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 406 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; 407 u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe)); 408 409 if ((val & VIDEO_DIP_ENABLE) == 0) 410 return 0; 411 412 return val & (VIDEO_DIP_ENABLE_AVI | 413 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 414 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 415 } 416 417 static void vlv_write_infoframe(struct intel_encoder *encoder, 418 const struct intel_crtc_state *crtc_state, 419 unsigned int type, 420 const void *frame, ssize_t len) 421 { 422 const u32 *data = frame; 423 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 424 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 425 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe); 426 u32 val = intel_de_read(dev_priv, reg); 427 int i; 428 429 drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), 430 "Writing DIP with CTL reg disabled\n"); 431 432 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ 433 val |= g4x_infoframe_index(type); 434 435 val &= ~g4x_infoframe_enable(type); 436 437 intel_de_write(dev_priv, reg, val); 438 439 for (i = 0; i < len; i += 4) { 440 intel_de_write(dev_priv, 441 VLV_TVIDEO_DIP_DATA(crtc->pipe), *data); 442 data++; 443 } 444 /* Write every possible data byte to force correct ECC calculation. */ 445 for (; i < VIDEO_DIP_DATA_SIZE; i += 4) 446 intel_de_write(dev_priv, 447 VLV_TVIDEO_DIP_DATA(crtc->pipe), 0); 448 449 val |= g4x_infoframe_enable(type); 450 val &= ~VIDEO_DIP_FREQ_MASK; 451 val |= VIDEO_DIP_FREQ_VSYNC; 452 453 intel_de_write(dev_priv, reg, val); 454 intel_de_posting_read(dev_priv, reg); 455 } 456 457 static void vlv_read_infoframe(struct intel_encoder *encoder, 458 const struct intel_crtc_state *crtc_state, 459 unsigned int type, 460 void *frame, ssize_t len) 461 { 462 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 463 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 464 u32 *data = frame; 465 int i; 466 467 intel_de_rmw(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), 468 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type)); 469 470 for (i = 0; i < len; i += 4) 471 *data++ = intel_de_read(dev_priv, 472 VLV_TVIDEO_DIP_DATA(crtc->pipe)); 473 } 474 475 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder, 476 const struct intel_crtc_state *pipe_config) 477 { 478 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 479 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; 480 u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe)); 481 482 if ((val & VIDEO_DIP_ENABLE) == 0) 483 return 0; 484 485 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) 486 return 0; 487 488 return val & (VIDEO_DIP_ENABLE_AVI | 489 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 490 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 491 } 492 493 void hsw_write_infoframe(struct intel_encoder *encoder, 494 const struct intel_crtc_state *crtc_state, 495 unsigned int type, 496 const void *frame, ssize_t len) 497 { 498 const u32 *data = frame; 499 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 500 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 501 i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder); 502 int data_size; 503 int i; 504 u32 val = intel_de_read(dev_priv, ctl_reg); 505 506 data_size = hsw_dip_data_size(dev_priv, type); 507 508 drm_WARN_ON(&dev_priv->drm, len > data_size); 509 510 val &= ~hsw_infoframe_enable(type); 511 intel_de_write(dev_priv, ctl_reg, val); 512 513 for (i = 0; i < len; i += 4) { 514 intel_de_write(dev_priv, 515 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2), 516 *data); 517 data++; 518 } 519 /* Write every possible data byte to force correct ECC calculation. */ 520 for (; i < data_size; i += 4) 521 intel_de_write(dev_priv, 522 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2), 523 0); 524 525 /* Wa_14013475917 */ 526 if (IS_DISPLAY_VER(dev_priv, 13, 14) && crtc_state->has_psr && type == DP_SDP_VSC) 527 return; 528 529 val |= hsw_infoframe_enable(type); 530 intel_de_write(dev_priv, ctl_reg, val); 531 intel_de_posting_read(dev_priv, ctl_reg); 532 } 533 534 void hsw_read_infoframe(struct intel_encoder *encoder, 535 const struct intel_crtc_state *crtc_state, 536 unsigned int type, void *frame, ssize_t len) 537 { 538 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 539 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 540 u32 *data = frame; 541 int i; 542 543 for (i = 0; i < len; i += 4) 544 *data++ = intel_de_read(dev_priv, 545 hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2)); 546 } 547 548 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder, 549 const struct intel_crtc_state *pipe_config) 550 { 551 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 552 u32 val = intel_de_read(dev_priv, 553 HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder)); 554 u32 mask; 555 556 mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW | 557 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | 558 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW); 559 560 if (DISPLAY_VER(dev_priv) >= 10) 561 mask |= VIDEO_DIP_ENABLE_DRM_GLK; 562 563 return val & mask; 564 } 565 566 static const u8 infoframe_type_to_idx[] = { 567 HDMI_PACKET_TYPE_GENERAL_CONTROL, 568 HDMI_PACKET_TYPE_GAMUT_METADATA, 569 DP_SDP_VSC, 570 HDMI_INFOFRAME_TYPE_AVI, 571 HDMI_INFOFRAME_TYPE_SPD, 572 HDMI_INFOFRAME_TYPE_VENDOR, 573 HDMI_INFOFRAME_TYPE_DRM, 574 }; 575 576 u32 intel_hdmi_infoframe_enable(unsigned int type) 577 { 578 int i; 579 580 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) { 581 if (infoframe_type_to_idx[i] == type) 582 return BIT(i); 583 } 584 585 return 0; 586 } 587 588 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder, 589 const struct intel_crtc_state *crtc_state) 590 { 591 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 592 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 593 u32 val, ret = 0; 594 int i; 595 596 val = dig_port->infoframes_enabled(encoder, crtc_state); 597 598 /* map from hardware bits to dip idx */ 599 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) { 600 unsigned int type = infoframe_type_to_idx[i]; 601 602 if (HAS_DDI(dev_priv)) { 603 if (val & hsw_infoframe_enable(type)) 604 ret |= BIT(i); 605 } else { 606 if (val & g4x_infoframe_enable(type)) 607 ret |= BIT(i); 608 } 609 } 610 611 return ret; 612 } 613 614 /* 615 * The data we write to the DIP data buffer registers is 1 byte bigger than the 616 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting 617 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be 618 * used for both technologies. 619 * 620 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0 621 * DW1: DB3 | DB2 | DB1 | DB0 622 * DW2: DB7 | DB6 | DB5 | DB4 623 * DW3: ... 624 * 625 * (HB is Header Byte, DB is Data Byte) 626 * 627 * The hdmi pack() functions don't know about that hardware specific hole so we 628 * trick them by giving an offset into the buffer and moving back the header 629 * bytes by one. 630 */ 631 static void intel_write_infoframe(struct intel_encoder *encoder, 632 const struct intel_crtc_state *crtc_state, 633 enum hdmi_infoframe_type type, 634 const union hdmi_infoframe *frame) 635 { 636 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 637 u8 buffer[VIDEO_DIP_DATA_SIZE]; 638 ssize_t len; 639 640 if ((crtc_state->infoframes.enable & 641 intel_hdmi_infoframe_enable(type)) == 0) 642 return; 643 644 if (drm_WARN_ON(encoder->base.dev, frame->any.type != type)) 645 return; 646 647 /* see comment above for the reason for this offset */ 648 len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1); 649 if (drm_WARN_ON(encoder->base.dev, len < 0)) 650 return; 651 652 /* Insert the 'hole' (see big comment above) at position 3 */ 653 memmove(&buffer[0], &buffer[1], 3); 654 buffer[3] = 0; 655 len++; 656 657 dig_port->write_infoframe(encoder, crtc_state, type, buffer, len); 658 } 659 660 void intel_read_infoframe(struct intel_encoder *encoder, 661 const struct intel_crtc_state *crtc_state, 662 enum hdmi_infoframe_type type, 663 union hdmi_infoframe *frame) 664 { 665 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 666 u8 buffer[VIDEO_DIP_DATA_SIZE]; 667 int ret; 668 669 if ((crtc_state->infoframes.enable & 670 intel_hdmi_infoframe_enable(type)) == 0) 671 return; 672 673 dig_port->read_infoframe(encoder, crtc_state, 674 type, buffer, sizeof(buffer)); 675 676 /* Fill the 'hole' (see big comment above) at position 3 */ 677 memmove(&buffer[1], &buffer[0], 3); 678 679 /* see comment above for the reason for this offset */ 680 ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1); 681 if (ret) { 682 drm_dbg_kms(encoder->base.dev, 683 "Failed to unpack infoframe type 0x%02x\n", type); 684 return; 685 } 686 687 if (frame->any.type != type) 688 drm_dbg_kms(encoder->base.dev, 689 "Found the wrong infoframe type 0x%x (expected 0x%02x)\n", 690 frame->any.type, type); 691 } 692 693 static bool 694 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder, 695 struct intel_crtc_state *crtc_state, 696 struct drm_connector_state *conn_state) 697 { 698 struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi; 699 const struct drm_display_mode *adjusted_mode = 700 &crtc_state->hw.adjusted_mode; 701 struct drm_connector *connector = conn_state->connector; 702 int ret; 703 704 if (!crtc_state->has_infoframe) 705 return true; 706 707 crtc_state->infoframes.enable |= 708 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI); 709 710 ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector, 711 adjusted_mode); 712 if (ret) 713 return false; 714 715 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 716 frame->colorspace = HDMI_COLORSPACE_YUV420; 717 else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) 718 frame->colorspace = HDMI_COLORSPACE_YUV444; 719 else 720 frame->colorspace = HDMI_COLORSPACE_RGB; 721 722 drm_hdmi_avi_infoframe_colorimetry(frame, conn_state); 723 724 /* nonsense combination */ 725 drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range && 726 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); 727 728 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) { 729 drm_hdmi_avi_infoframe_quant_range(frame, connector, 730 adjusted_mode, 731 crtc_state->limited_color_range ? 732 HDMI_QUANTIZATION_RANGE_LIMITED : 733 HDMI_QUANTIZATION_RANGE_FULL); 734 } else { 735 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT; 736 frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED; 737 } 738 739 drm_hdmi_avi_infoframe_content_type(frame, conn_state); 740 741 /* TODO: handle pixel repetition for YCBCR420 outputs */ 742 743 ret = hdmi_avi_infoframe_check(frame); 744 if (drm_WARN_ON(encoder->base.dev, ret)) 745 return false; 746 747 return true; 748 } 749 750 static bool 751 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder, 752 struct intel_crtc_state *crtc_state, 753 struct drm_connector_state *conn_state) 754 { 755 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 756 struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd; 757 int ret; 758 759 if (!crtc_state->has_infoframe) 760 return true; 761 762 crtc_state->infoframes.enable |= 763 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD); 764 765 if (IS_DGFX(i915)) 766 ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx"); 767 else 768 ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx"); 769 770 if (drm_WARN_ON(encoder->base.dev, ret)) 771 return false; 772 773 frame->sdi = HDMI_SPD_SDI_PC; 774 775 ret = hdmi_spd_infoframe_check(frame); 776 if (drm_WARN_ON(encoder->base.dev, ret)) 777 return false; 778 779 return true; 780 } 781 782 static bool 783 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder, 784 struct intel_crtc_state *crtc_state, 785 struct drm_connector_state *conn_state) 786 { 787 struct hdmi_vendor_infoframe *frame = 788 &crtc_state->infoframes.hdmi.vendor.hdmi; 789 const struct drm_display_info *info = 790 &conn_state->connector->display_info; 791 int ret; 792 793 if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe) 794 return true; 795 796 crtc_state->infoframes.enable |= 797 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR); 798 799 ret = drm_hdmi_vendor_infoframe_from_display_mode(frame, 800 conn_state->connector, 801 &crtc_state->hw.adjusted_mode); 802 if (drm_WARN_ON(encoder->base.dev, ret)) 803 return false; 804 805 ret = hdmi_vendor_infoframe_check(frame); 806 if (drm_WARN_ON(encoder->base.dev, ret)) 807 return false; 808 809 return true; 810 } 811 812 static bool 813 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder, 814 struct intel_crtc_state *crtc_state, 815 struct drm_connector_state *conn_state) 816 { 817 struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm; 818 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 819 int ret; 820 821 if (DISPLAY_VER(dev_priv) < 10) 822 return true; 823 824 if (!crtc_state->has_infoframe) 825 return true; 826 827 if (!conn_state->hdr_output_metadata) 828 return true; 829 830 crtc_state->infoframes.enable |= 831 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM); 832 833 ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state); 834 if (ret < 0) { 835 drm_dbg_kms(&dev_priv->drm, 836 "couldn't set HDR metadata in infoframe\n"); 837 return false; 838 } 839 840 ret = hdmi_drm_infoframe_check(frame); 841 if (drm_WARN_ON(&dev_priv->drm, ret)) 842 return false; 843 844 return true; 845 } 846 847 static void g4x_set_infoframes(struct intel_encoder *encoder, 848 bool enable, 849 const struct intel_crtc_state *crtc_state, 850 const struct drm_connector_state *conn_state) 851 { 852 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 853 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 854 struct intel_hdmi *intel_hdmi = &dig_port->hdmi; 855 i915_reg_t reg = VIDEO_DIP_CTL; 856 u32 val = intel_de_read(dev_priv, reg); 857 u32 port = VIDEO_DIP_PORT(encoder->port); 858 859 assert_hdmi_port_disabled(intel_hdmi); 860 861 /* If the registers were not initialized yet, they might be zeroes, 862 * which means we're selecting the AVI DIP and we're setting its 863 * frequency to once. This seems to really confuse the HW and make 864 * things stop working (the register spec says the AVI always needs to 865 * be sent every VSync). So here we avoid writing to the register more 866 * than we need and also explicitly select the AVI DIP and explicitly 867 * set its frequency to every VSync. Avoiding to write it twice seems to 868 * be enough to solve the problem, but being defensive shouldn't hurt us 869 * either. */ 870 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 871 872 if (!enable) { 873 if (!(val & VIDEO_DIP_ENABLE)) 874 return; 875 if (port != (val & VIDEO_DIP_PORT_MASK)) { 876 drm_dbg_kms(&dev_priv->drm, 877 "video DIP still enabled on port %c\n", 878 (val & VIDEO_DIP_PORT_MASK) >> 29); 879 return; 880 } 881 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 882 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); 883 intel_de_write(dev_priv, reg, val); 884 intel_de_posting_read(dev_priv, reg); 885 return; 886 } 887 888 if (port != (val & VIDEO_DIP_PORT_MASK)) { 889 if (val & VIDEO_DIP_ENABLE) { 890 drm_dbg_kms(&dev_priv->drm, 891 "video DIP already enabled on port %c\n", 892 (val & VIDEO_DIP_PORT_MASK) >> 29); 893 return; 894 } 895 val &= ~VIDEO_DIP_PORT_MASK; 896 val |= port; 897 } 898 899 val |= VIDEO_DIP_ENABLE; 900 val &= ~(VIDEO_DIP_ENABLE_AVI | 901 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); 902 903 intel_de_write(dev_priv, reg, val); 904 intel_de_posting_read(dev_priv, reg); 905 906 intel_write_infoframe(encoder, crtc_state, 907 HDMI_INFOFRAME_TYPE_AVI, 908 &crtc_state->infoframes.avi); 909 intel_write_infoframe(encoder, crtc_state, 910 HDMI_INFOFRAME_TYPE_SPD, 911 &crtc_state->infoframes.spd); 912 intel_write_infoframe(encoder, crtc_state, 913 HDMI_INFOFRAME_TYPE_VENDOR, 914 &crtc_state->infoframes.hdmi); 915 } 916 917 /* 918 * Determine if default_phase=1 can be indicated in the GCP infoframe. 919 * 920 * From HDMI specification 1.4a: 921 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0 922 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0 923 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase 924 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing 925 * phase of 0 926 */ 927 static bool gcp_default_phase_possible(int pipe_bpp, 928 const struct drm_display_mode *mode) 929 { 930 unsigned int pixels_per_group; 931 932 switch (pipe_bpp) { 933 case 30: 934 /* 4 pixels in 5 clocks */ 935 pixels_per_group = 4; 936 break; 937 case 36: 938 /* 2 pixels in 3 clocks */ 939 pixels_per_group = 2; 940 break; 941 case 48: 942 /* 1 pixel in 2 clocks */ 943 pixels_per_group = 1; 944 break; 945 default: 946 /* phase information not relevant for 8bpc */ 947 return false; 948 } 949 950 return mode->crtc_hdisplay % pixels_per_group == 0 && 951 mode->crtc_htotal % pixels_per_group == 0 && 952 mode->crtc_hblank_start % pixels_per_group == 0 && 953 mode->crtc_hblank_end % pixels_per_group == 0 && 954 mode->crtc_hsync_start % pixels_per_group == 0 && 955 mode->crtc_hsync_end % pixels_per_group == 0 && 956 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 || 957 mode->crtc_htotal/2 % pixels_per_group == 0); 958 } 959 960 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder, 961 const struct intel_crtc_state *crtc_state, 962 const struct drm_connector_state *conn_state) 963 { 964 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 965 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 966 i915_reg_t reg; 967 968 if ((crtc_state->infoframes.enable & 969 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0) 970 return false; 971 972 if (HAS_DDI(dev_priv)) 973 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder); 974 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 975 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe); 976 else if (HAS_PCH_SPLIT(dev_priv)) 977 reg = TVIDEO_DIP_GCP(crtc->pipe); 978 else 979 return false; 980 981 intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp); 982 983 return true; 984 } 985 986 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder, 987 struct intel_crtc_state *crtc_state) 988 { 989 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 990 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 991 i915_reg_t reg; 992 993 if ((crtc_state->infoframes.enable & 994 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0) 995 return; 996 997 if (HAS_DDI(dev_priv)) 998 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder); 999 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1000 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe); 1001 else if (HAS_PCH_SPLIT(dev_priv)) 1002 reg = TVIDEO_DIP_GCP(crtc->pipe); 1003 else 1004 return; 1005 1006 crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg); 1007 } 1008 1009 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder, 1010 struct intel_crtc_state *crtc_state, 1011 struct drm_connector_state *conn_state) 1012 { 1013 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1014 1015 if (IS_G4X(dev_priv) || !crtc_state->has_infoframe) 1016 return; 1017 1018 crtc_state->infoframes.enable |= 1019 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL); 1020 1021 /* Indicate color indication for deep color mode */ 1022 if (crtc_state->pipe_bpp > 24) 1023 crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION; 1024 1025 /* Enable default_phase whenever the display mode is suitably aligned */ 1026 if (gcp_default_phase_possible(crtc_state->pipe_bpp, 1027 &crtc_state->hw.adjusted_mode)) 1028 crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE; 1029 } 1030 1031 static void ibx_set_infoframes(struct intel_encoder *encoder, 1032 bool enable, 1033 const struct intel_crtc_state *crtc_state, 1034 const struct drm_connector_state *conn_state) 1035 { 1036 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1037 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1038 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1039 struct intel_hdmi *intel_hdmi = &dig_port->hdmi; 1040 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); 1041 u32 val = intel_de_read(dev_priv, reg); 1042 u32 port = VIDEO_DIP_PORT(encoder->port); 1043 1044 assert_hdmi_port_disabled(intel_hdmi); 1045 1046 /* See the big comment in g4x_set_infoframes() */ 1047 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 1048 1049 if (!enable) { 1050 if (!(val & VIDEO_DIP_ENABLE)) 1051 return; 1052 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 1053 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1054 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1055 intel_de_write(dev_priv, reg, val); 1056 intel_de_posting_read(dev_priv, reg); 1057 return; 1058 } 1059 1060 if (port != (val & VIDEO_DIP_PORT_MASK)) { 1061 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE, 1062 "DIP already enabled on port %c\n", 1063 (val & VIDEO_DIP_PORT_MASK) >> 29); 1064 val &= ~VIDEO_DIP_PORT_MASK; 1065 val |= port; 1066 } 1067 1068 val |= VIDEO_DIP_ENABLE; 1069 val &= ~(VIDEO_DIP_ENABLE_AVI | 1070 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1071 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1072 1073 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1074 val |= VIDEO_DIP_ENABLE_GCP; 1075 1076 intel_de_write(dev_priv, reg, val); 1077 intel_de_posting_read(dev_priv, reg); 1078 1079 intel_write_infoframe(encoder, crtc_state, 1080 HDMI_INFOFRAME_TYPE_AVI, 1081 &crtc_state->infoframes.avi); 1082 intel_write_infoframe(encoder, crtc_state, 1083 HDMI_INFOFRAME_TYPE_SPD, 1084 &crtc_state->infoframes.spd); 1085 intel_write_infoframe(encoder, crtc_state, 1086 HDMI_INFOFRAME_TYPE_VENDOR, 1087 &crtc_state->infoframes.hdmi); 1088 } 1089 1090 static void cpt_set_infoframes(struct intel_encoder *encoder, 1091 bool enable, 1092 const struct intel_crtc_state *crtc_state, 1093 const struct drm_connector_state *conn_state) 1094 { 1095 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1096 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1097 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1098 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); 1099 u32 val = intel_de_read(dev_priv, reg); 1100 1101 assert_hdmi_port_disabled(intel_hdmi); 1102 1103 /* See the big comment in g4x_set_infoframes() */ 1104 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 1105 1106 if (!enable) { 1107 if (!(val & VIDEO_DIP_ENABLE)) 1108 return; 1109 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 1110 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1111 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1112 intel_de_write(dev_priv, reg, val); 1113 intel_de_posting_read(dev_priv, reg); 1114 return; 1115 } 1116 1117 /* Set both together, unset both together: see the spec. */ 1118 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI; 1119 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1120 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1121 1122 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1123 val |= VIDEO_DIP_ENABLE_GCP; 1124 1125 intel_de_write(dev_priv, reg, val); 1126 intel_de_posting_read(dev_priv, reg); 1127 1128 intel_write_infoframe(encoder, crtc_state, 1129 HDMI_INFOFRAME_TYPE_AVI, 1130 &crtc_state->infoframes.avi); 1131 intel_write_infoframe(encoder, crtc_state, 1132 HDMI_INFOFRAME_TYPE_SPD, 1133 &crtc_state->infoframes.spd); 1134 intel_write_infoframe(encoder, crtc_state, 1135 HDMI_INFOFRAME_TYPE_VENDOR, 1136 &crtc_state->infoframes.hdmi); 1137 } 1138 1139 static void vlv_set_infoframes(struct intel_encoder *encoder, 1140 bool enable, 1141 const struct intel_crtc_state *crtc_state, 1142 const struct drm_connector_state *conn_state) 1143 { 1144 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1145 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1146 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 1147 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe); 1148 u32 val = intel_de_read(dev_priv, reg); 1149 u32 port = VIDEO_DIP_PORT(encoder->port); 1150 1151 assert_hdmi_port_disabled(intel_hdmi); 1152 1153 /* See the big comment in g4x_set_infoframes() */ 1154 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; 1155 1156 if (!enable) { 1157 if (!(val & VIDEO_DIP_ENABLE)) 1158 return; 1159 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | 1160 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1161 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1162 intel_de_write(dev_priv, reg, val); 1163 intel_de_posting_read(dev_priv, reg); 1164 return; 1165 } 1166 1167 if (port != (val & VIDEO_DIP_PORT_MASK)) { 1168 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE, 1169 "DIP already enabled on port %c\n", 1170 (val & VIDEO_DIP_PORT_MASK) >> 29); 1171 val &= ~VIDEO_DIP_PORT_MASK; 1172 val |= port; 1173 } 1174 1175 val |= VIDEO_DIP_ENABLE; 1176 val &= ~(VIDEO_DIP_ENABLE_AVI | 1177 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | 1178 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); 1179 1180 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1181 val |= VIDEO_DIP_ENABLE_GCP; 1182 1183 intel_de_write(dev_priv, reg, val); 1184 intel_de_posting_read(dev_priv, reg); 1185 1186 intel_write_infoframe(encoder, crtc_state, 1187 HDMI_INFOFRAME_TYPE_AVI, 1188 &crtc_state->infoframes.avi); 1189 intel_write_infoframe(encoder, crtc_state, 1190 HDMI_INFOFRAME_TYPE_SPD, 1191 &crtc_state->infoframes.spd); 1192 intel_write_infoframe(encoder, crtc_state, 1193 HDMI_INFOFRAME_TYPE_VENDOR, 1194 &crtc_state->infoframes.hdmi); 1195 } 1196 1197 static void hsw_set_infoframes(struct intel_encoder *encoder, 1198 bool enable, 1199 const struct intel_crtc_state *crtc_state, 1200 const struct drm_connector_state *conn_state) 1201 { 1202 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1203 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder); 1204 u32 val = intel_de_read(dev_priv, reg); 1205 1206 assert_hdmi_transcoder_func_disabled(dev_priv, 1207 crtc_state->cpu_transcoder); 1208 1209 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW | 1210 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | 1211 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW | 1212 VIDEO_DIP_ENABLE_DRM_GLK); 1213 1214 if (!enable) { 1215 intel_de_write(dev_priv, reg, val); 1216 intel_de_posting_read(dev_priv, reg); 1217 return; 1218 } 1219 1220 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) 1221 val |= VIDEO_DIP_ENABLE_GCP_HSW; 1222 1223 intel_de_write(dev_priv, reg, val); 1224 intel_de_posting_read(dev_priv, reg); 1225 1226 intel_write_infoframe(encoder, crtc_state, 1227 HDMI_INFOFRAME_TYPE_AVI, 1228 &crtc_state->infoframes.avi); 1229 intel_write_infoframe(encoder, crtc_state, 1230 HDMI_INFOFRAME_TYPE_SPD, 1231 &crtc_state->infoframes.spd); 1232 intel_write_infoframe(encoder, crtc_state, 1233 HDMI_INFOFRAME_TYPE_VENDOR, 1234 &crtc_state->infoframes.hdmi); 1235 intel_write_infoframe(encoder, crtc_state, 1236 HDMI_INFOFRAME_TYPE_DRM, 1237 &crtc_state->infoframes.drm); 1238 } 1239 1240 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable) 1241 { 1242 struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi); 1243 struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc; 1244 1245 if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI) 1246 return; 1247 1248 drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n", 1249 enable ? "Enabling" : "Disabling"); 1250 1251 drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, 1252 hdmi->dp_dual_mode.type, ddc, enable); 1253 } 1254 1255 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port, 1256 unsigned int offset, void *buffer, size_t size) 1257 { 1258 struct intel_hdmi *hdmi = &dig_port->hdmi; 1259 struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc; 1260 int ret; 1261 u8 start = offset & 0xff; 1262 struct i2c_msg msgs[] = { 1263 { 1264 .addr = DRM_HDCP_DDC_ADDR, 1265 .flags = 0, 1266 .len = 1, 1267 .buf = &start, 1268 }, 1269 { 1270 .addr = DRM_HDCP_DDC_ADDR, 1271 .flags = I2C_M_RD, 1272 .len = size, 1273 .buf = buffer 1274 } 1275 }; 1276 ret = i2c_transfer(ddc, msgs, ARRAY_SIZE(msgs)); 1277 if (ret == ARRAY_SIZE(msgs)) 1278 return 0; 1279 return ret >= 0 ? -EIO : ret; 1280 } 1281 1282 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port, 1283 unsigned int offset, void *buffer, size_t size) 1284 { 1285 struct intel_hdmi *hdmi = &dig_port->hdmi; 1286 struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc; 1287 int ret; 1288 u8 *write_buf; 1289 struct i2c_msg msg; 1290 1291 write_buf = kzalloc(size + 1, GFP_KERNEL); 1292 if (!write_buf) 1293 return -ENOMEM; 1294 1295 write_buf[0] = offset & 0xff; 1296 memcpy(&write_buf[1], buffer, size); 1297 1298 msg.addr = DRM_HDCP_DDC_ADDR; 1299 msg.flags = 0, 1300 msg.len = size + 1, 1301 msg.buf = write_buf; 1302 1303 ret = i2c_transfer(ddc, &msg, 1); 1304 if (ret == 1) 1305 ret = 0; 1306 else if (ret >= 0) 1307 ret = -EIO; 1308 1309 kfree(write_buf); 1310 return ret; 1311 } 1312 1313 static 1314 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port, 1315 u8 *an) 1316 { 1317 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1318 struct intel_hdmi *hdmi = &dig_port->hdmi; 1319 struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc; 1320 int ret; 1321 1322 ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an, 1323 DRM_HDCP_AN_LEN); 1324 if (ret) { 1325 drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n", 1326 ret); 1327 return ret; 1328 } 1329 1330 ret = intel_gmbus_output_aksv(ddc); 1331 if (ret < 0) { 1332 drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret); 1333 return ret; 1334 } 1335 return 0; 1336 } 1337 1338 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port, 1339 u8 *bksv) 1340 { 1341 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1342 1343 int ret; 1344 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv, 1345 DRM_HDCP_KSV_LEN); 1346 if (ret) 1347 drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n", 1348 ret); 1349 return ret; 1350 } 1351 1352 static 1353 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port, 1354 u8 *bstatus) 1355 { 1356 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1357 1358 int ret; 1359 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS, 1360 bstatus, DRM_HDCP_BSTATUS_LEN); 1361 if (ret) 1362 drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n", 1363 ret); 1364 return ret; 1365 } 1366 1367 static 1368 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port, 1369 bool *repeater_present) 1370 { 1371 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1372 int ret; 1373 u8 val; 1374 1375 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1); 1376 if (ret) { 1377 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n", 1378 ret); 1379 return ret; 1380 } 1381 *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT; 1382 return 0; 1383 } 1384 1385 static 1386 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port, 1387 u8 *ri_prime) 1388 { 1389 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1390 1391 int ret; 1392 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME, 1393 ri_prime, DRM_HDCP_RI_LEN); 1394 if (ret) 1395 drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n", 1396 ret); 1397 return ret; 1398 } 1399 1400 static 1401 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port, 1402 bool *ksv_ready) 1403 { 1404 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1405 int ret; 1406 u8 val; 1407 1408 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1); 1409 if (ret) { 1410 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n", 1411 ret); 1412 return ret; 1413 } 1414 *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY; 1415 return 0; 1416 } 1417 1418 static 1419 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port, 1420 int num_downstream, u8 *ksv_fifo) 1421 { 1422 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1423 int ret; 1424 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO, 1425 ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN); 1426 if (ret) { 1427 drm_dbg_kms(&i915->drm, 1428 "Read ksv fifo over DDC failed (%d)\n", ret); 1429 return ret; 1430 } 1431 return 0; 1432 } 1433 1434 static 1435 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port, 1436 int i, u32 *part) 1437 { 1438 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1439 int ret; 1440 1441 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 1442 return -EINVAL; 1443 1444 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i), 1445 part, DRM_HDCP_V_PRIME_PART_LEN); 1446 if (ret) 1447 drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n", 1448 i, ret); 1449 return ret; 1450 } 1451 1452 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector, 1453 enum transcoder cpu_transcoder) 1454 { 1455 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1456 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1457 struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc); 1458 u32 scanline; 1459 int ret; 1460 1461 for (;;) { 1462 scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe)); 1463 if (scanline > 100 && scanline < 200) 1464 break; 1465 usleep_range(25, 50); 1466 } 1467 1468 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder, 1469 false, TRANS_DDI_HDCP_SIGNALLING); 1470 if (ret) { 1471 drm_err(&dev_priv->drm, 1472 "Disable HDCP signalling failed (%d)\n", ret); 1473 return ret; 1474 } 1475 1476 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder, 1477 true, TRANS_DDI_HDCP_SIGNALLING); 1478 if (ret) { 1479 drm_err(&dev_priv->drm, 1480 "Enable HDCP signalling failed (%d)\n", ret); 1481 return ret; 1482 } 1483 1484 return 0; 1485 } 1486 1487 static 1488 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port, 1489 enum transcoder cpu_transcoder, 1490 bool enable) 1491 { 1492 struct intel_hdmi *hdmi = &dig_port->hdmi; 1493 struct intel_connector *connector = hdmi->attached_connector; 1494 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 1495 int ret; 1496 1497 if (!enable) 1498 usleep_range(6, 60); /* Bspec says >= 6us */ 1499 1500 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, 1501 cpu_transcoder, enable, 1502 TRANS_DDI_HDCP_SIGNALLING); 1503 if (ret) { 1504 drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n", 1505 enable ? "Enable" : "Disable", ret); 1506 return ret; 1507 } 1508 1509 /* 1510 * WA: To fix incorrect positioning of the window of 1511 * opportunity and enc_en signalling in KABYLAKE. 1512 */ 1513 if (IS_KABYLAKE(dev_priv) && enable) 1514 return kbl_repositioning_enc_en_signal(connector, 1515 cpu_transcoder); 1516 1517 return 0; 1518 } 1519 1520 static 1521 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port, 1522 struct intel_connector *connector) 1523 { 1524 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1525 enum port port = dig_port->base.port; 1526 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder; 1527 int ret; 1528 union { 1529 u32 reg; 1530 u8 shim[DRM_HDCP_RI_LEN]; 1531 } ri; 1532 1533 ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim); 1534 if (ret) 1535 return false; 1536 1537 intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg); 1538 1539 /* Wait for Ri prime match */ 1540 if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) & 1541 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) == 1542 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) { 1543 drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n", 1544 intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, 1545 port))); 1546 return false; 1547 } 1548 return true; 1549 } 1550 1551 static 1552 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port, 1553 struct intel_connector *connector) 1554 { 1555 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1556 int retry; 1557 1558 for (retry = 0; retry < 3; retry++) 1559 if (intel_hdmi_hdcp_check_link_once(dig_port, connector)) 1560 return true; 1561 1562 drm_err(&i915->drm, "Link check failed\n"); 1563 return false; 1564 } 1565 1566 struct hdcp2_hdmi_msg_timeout { 1567 u8 msg_id; 1568 u16 timeout; 1569 }; 1570 1571 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = { 1572 { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, }, 1573 { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, }, 1574 { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, }, 1575 { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, }, 1576 { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, }, 1577 }; 1578 1579 static 1580 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port, 1581 u8 *rx_status) 1582 { 1583 return intel_hdmi_hdcp_read(dig_port, 1584 HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET, 1585 rx_status, 1586 HDCP_2_2_HDMI_RXSTATUS_LEN); 1587 } 1588 1589 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired) 1590 { 1591 int i; 1592 1593 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) { 1594 if (is_paired) 1595 return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS; 1596 else 1597 return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS; 1598 } 1599 1600 for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) { 1601 if (hdcp2_msg_timeout[i].msg_id == msg_id) 1602 return hdcp2_msg_timeout[i].timeout; 1603 } 1604 1605 return -EINVAL; 1606 } 1607 1608 static int 1609 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port, 1610 u8 msg_id, bool *msg_ready, 1611 ssize_t *msg_sz) 1612 { 1613 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1614 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN]; 1615 int ret; 1616 1617 ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status); 1618 if (ret < 0) { 1619 drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n", 1620 ret); 1621 return ret; 1622 } 1623 1624 *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) | 1625 rx_status[0]); 1626 1627 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) 1628 *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) && 1629 *msg_sz); 1630 else 1631 *msg_ready = *msg_sz; 1632 1633 return 0; 1634 } 1635 1636 static ssize_t 1637 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port, 1638 u8 msg_id, bool paired) 1639 { 1640 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1641 bool msg_ready = false; 1642 int timeout, ret; 1643 ssize_t msg_sz = 0; 1644 1645 timeout = get_hdcp2_msg_timeout(msg_id, paired); 1646 if (timeout < 0) 1647 return timeout; 1648 1649 ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port, 1650 msg_id, &msg_ready, 1651 &msg_sz), 1652 !ret && msg_ready && msg_sz, timeout * 1000, 1653 1000, 5 * 1000); 1654 if (ret) 1655 drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n", 1656 msg_id, ret, timeout); 1657 1658 return ret ? ret : msg_sz; 1659 } 1660 1661 static 1662 int intel_hdmi_hdcp2_write_msg(struct intel_connector *connector, 1663 void *buf, size_t size) 1664 { 1665 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1666 unsigned int offset; 1667 1668 offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET; 1669 return intel_hdmi_hdcp_write(dig_port, offset, buf, size); 1670 } 1671 1672 static 1673 int intel_hdmi_hdcp2_read_msg(struct intel_connector *connector, 1674 u8 msg_id, void *buf, size_t size) 1675 { 1676 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1677 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 1678 struct intel_hdmi *hdmi = &dig_port->hdmi; 1679 struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp; 1680 unsigned int offset; 1681 ssize_t ret; 1682 1683 ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id, 1684 hdcp->is_paired); 1685 if (ret < 0) 1686 return ret; 1687 1688 /* 1689 * Available msg size should be equal to or lesser than the 1690 * available buffer. 1691 */ 1692 if (ret > size) { 1693 drm_dbg_kms(&i915->drm, 1694 "msg_sz(%zd) is more than exp size(%zu)\n", 1695 ret, size); 1696 return -EINVAL; 1697 } 1698 1699 offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET; 1700 ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret); 1701 if (ret) 1702 drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n", 1703 msg_id, ret); 1704 1705 return ret; 1706 } 1707 1708 static 1709 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port, 1710 struct intel_connector *connector) 1711 { 1712 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN]; 1713 int ret; 1714 1715 ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status); 1716 if (ret) 1717 return ret; 1718 1719 /* 1720 * Re-auth request and Link Integrity Failures are represented by 1721 * same bit. i.e reauth_req. 1722 */ 1723 if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1])) 1724 ret = HDCP_REAUTH_REQUEST; 1725 else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1])) 1726 ret = HDCP_TOPOLOGY_CHANGE; 1727 1728 return ret; 1729 } 1730 1731 static 1732 int intel_hdmi_hdcp2_capable(struct intel_connector *connector, 1733 bool *capable) 1734 { 1735 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1736 u8 hdcp2_version; 1737 int ret; 1738 1739 *capable = false; 1740 ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET, 1741 &hdcp2_version, sizeof(hdcp2_version)); 1742 if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK) 1743 *capable = true; 1744 1745 return ret; 1746 } 1747 1748 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = { 1749 .write_an_aksv = intel_hdmi_hdcp_write_an_aksv, 1750 .read_bksv = intel_hdmi_hdcp_read_bksv, 1751 .read_bstatus = intel_hdmi_hdcp_read_bstatus, 1752 .repeater_present = intel_hdmi_hdcp_repeater_present, 1753 .read_ri_prime = intel_hdmi_hdcp_read_ri_prime, 1754 .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready, 1755 .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo, 1756 .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part, 1757 .toggle_signalling = intel_hdmi_hdcp_toggle_signalling, 1758 .check_link = intel_hdmi_hdcp_check_link, 1759 .write_2_2_msg = intel_hdmi_hdcp2_write_msg, 1760 .read_2_2_msg = intel_hdmi_hdcp2_read_msg, 1761 .check_2_2_link = intel_hdmi_hdcp2_check_link, 1762 .hdcp_2_2_capable = intel_hdmi_hdcp2_capable, 1763 .protocol = HDCP_PROTOCOL_HDMI, 1764 }; 1765 1766 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder) 1767 { 1768 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1769 int max_tmds_clock, vbt_max_tmds_clock; 1770 1771 if (DISPLAY_VER(dev_priv) >= 10) 1772 max_tmds_clock = 594000; 1773 else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) 1774 max_tmds_clock = 300000; 1775 else if (DISPLAY_VER(dev_priv) >= 5) 1776 max_tmds_clock = 225000; 1777 else 1778 max_tmds_clock = 165000; 1779 1780 vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata); 1781 if (vbt_max_tmds_clock) 1782 max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock); 1783 1784 return max_tmds_clock; 1785 } 1786 1787 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi, 1788 const struct drm_connector_state *conn_state) 1789 { 1790 struct intel_connector *connector = hdmi->attached_connector; 1791 1792 return connector->base.display_info.is_hdmi && 1793 READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI; 1794 } 1795 1796 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state) 1797 { 1798 return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420; 1799 } 1800 1801 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, 1802 bool respect_downstream_limits, 1803 bool has_hdmi_sink) 1804 { 1805 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base; 1806 int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder); 1807 1808 if (respect_downstream_limits) { 1809 struct intel_connector *connector = hdmi->attached_connector; 1810 const struct drm_display_info *info = &connector->base.display_info; 1811 1812 if (hdmi->dp_dual_mode.max_tmds_clock) 1813 max_tmds_clock = min(max_tmds_clock, 1814 hdmi->dp_dual_mode.max_tmds_clock); 1815 1816 if (info->max_tmds_clock) 1817 max_tmds_clock = min(max_tmds_clock, 1818 info->max_tmds_clock); 1819 else if (!has_hdmi_sink) 1820 max_tmds_clock = min(max_tmds_clock, 165000); 1821 } 1822 1823 return max_tmds_clock; 1824 } 1825 1826 static enum drm_mode_status 1827 hdmi_port_clock_valid(struct intel_hdmi *hdmi, 1828 int clock, bool respect_downstream_limits, 1829 bool has_hdmi_sink) 1830 { 1831 struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi); 1832 enum phy phy = intel_port_to_phy(dev_priv, hdmi_to_dig_port(hdmi)->base.port); 1833 1834 if (clock < 25000) 1835 return MODE_CLOCK_LOW; 1836 if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits, 1837 has_hdmi_sink)) 1838 return MODE_CLOCK_HIGH; 1839 1840 /* GLK DPLL can't generate 446-480 MHz */ 1841 if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000) 1842 return MODE_CLOCK_RANGE; 1843 1844 /* BXT/GLK DPLL can't generate 223-240 MHz */ 1845 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && 1846 clock > 223333 && clock < 240000) 1847 return MODE_CLOCK_RANGE; 1848 1849 /* CHV DPLL can't generate 216-240 MHz */ 1850 if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000) 1851 return MODE_CLOCK_RANGE; 1852 1853 /* ICL+ combo PHY PLL can't generate 500-533.2 MHz */ 1854 if (intel_phy_is_combo(dev_priv, phy) && clock > 500000 && clock < 533200) 1855 return MODE_CLOCK_RANGE; 1856 1857 /* ICL+ TC PHY PLL can't generate 500-532.8 MHz */ 1858 if (intel_phy_is_tc(dev_priv, phy) && clock > 500000 && clock < 532800) 1859 return MODE_CLOCK_RANGE; 1860 1861 /* 1862 * SNPS PHYs' MPLLB table-based programming can only handle a fixed 1863 * set of link rates. 1864 * 1865 * FIXME: We will hopefully get an algorithmic way of programming 1866 * the MPLLB for HDMI in the future. 1867 */ 1868 if (DISPLAY_VER(dev_priv) >= 14) 1869 return intel_cx0_phy_check_hdmi_link_rate(hdmi, clock); 1870 else if (IS_DG2(dev_priv)) 1871 return intel_snps_phy_check_hdmi_link_rate(clock); 1872 1873 return MODE_OK; 1874 } 1875 1876 int intel_hdmi_tmds_clock(int clock, int bpc, 1877 enum intel_output_format sink_format) 1878 { 1879 /* YCBCR420 TMDS rate requirement is half the pixel clock */ 1880 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1881 clock /= 2; 1882 1883 /* 1884 * Need to adjust the port link by: 1885 * 1.5x for 12bpc 1886 * 1.25x for 10bpc 1887 */ 1888 return DIV_ROUND_CLOSEST(clock * bpc, 8); 1889 } 1890 1891 static bool intel_hdmi_source_bpc_possible(struct drm_i915_private *i915, int bpc) 1892 { 1893 switch (bpc) { 1894 case 12: 1895 return !HAS_GMCH(i915); 1896 case 10: 1897 return DISPLAY_VER(i915) >= 11; 1898 case 8: 1899 return true; 1900 default: 1901 MISSING_CASE(bpc); 1902 return false; 1903 } 1904 } 1905 1906 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector, 1907 int bpc, bool has_hdmi_sink, 1908 enum intel_output_format sink_format) 1909 { 1910 const struct drm_display_info *info = &connector->display_info; 1911 const struct drm_hdmi_info *hdmi = &info->hdmi; 1912 1913 switch (bpc) { 1914 case 12: 1915 if (!has_hdmi_sink) 1916 return false; 1917 1918 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1919 return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36; 1920 else 1921 return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36; 1922 case 10: 1923 if (!has_hdmi_sink) 1924 return false; 1925 1926 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420) 1927 return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30; 1928 else 1929 return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30; 1930 case 8: 1931 return true; 1932 default: 1933 MISSING_CASE(bpc); 1934 return false; 1935 } 1936 } 1937 1938 static enum drm_mode_status 1939 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock, 1940 bool has_hdmi_sink, 1941 enum intel_output_format sink_format) 1942 { 1943 struct drm_i915_private *i915 = to_i915(connector->dev); 1944 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); 1945 enum drm_mode_status status = MODE_OK; 1946 int bpc; 1947 1948 /* 1949 * Try all color depths since valid port clock range 1950 * can have holes. Any mode that can be used with at 1951 * least one color depth is accepted. 1952 */ 1953 for (bpc = 12; bpc >= 8; bpc -= 2) { 1954 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format); 1955 1956 if (!intel_hdmi_source_bpc_possible(i915, bpc)) 1957 continue; 1958 1959 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, sink_format)) 1960 continue; 1961 1962 status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink); 1963 if (status == MODE_OK) 1964 return MODE_OK; 1965 } 1966 1967 /* can never happen */ 1968 drm_WARN_ON(&i915->drm, status == MODE_OK); 1969 1970 return status; 1971 } 1972 1973 static enum drm_mode_status 1974 intel_hdmi_mode_valid(struct drm_connector *connector, 1975 struct drm_display_mode *mode) 1976 { 1977 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); 1978 struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi); 1979 enum drm_mode_status status; 1980 int clock = mode->clock; 1981 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq; 1982 bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state); 1983 bool ycbcr_420_only; 1984 enum intel_output_format sink_format; 1985 1986 status = intel_cpu_transcoder_mode_valid(dev_priv, mode); 1987 if (status != MODE_OK) 1988 return status; 1989 1990 if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING) 1991 clock *= 2; 1992 1993 if (clock > max_dotclk) 1994 return MODE_CLOCK_HIGH; 1995 1996 if (mode->flags & DRM_MODE_FLAG_DBLCLK) { 1997 if (!has_hdmi_sink) 1998 return MODE_CLOCK_LOW; 1999 clock *= 2; 2000 } 2001 2002 /* 2003 * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be 2004 * enumerated only if FRL is supported. Current platforms do not support 2005 * FRL so prune the higher resolution modes that require doctclock more 2006 * than 600MHz. 2007 */ 2008 if (clock > 600000) 2009 return MODE_CLOCK_HIGH; 2010 2011 ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode); 2012 2013 if (ycbcr_420_only) 2014 sink_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2015 else 2016 sink_format = INTEL_OUTPUT_FORMAT_RGB; 2017 2018 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format); 2019 if (status != MODE_OK) { 2020 if (ycbcr_420_only || 2021 !connector->ycbcr_420_allowed || 2022 !drm_mode_is_420_also(&connector->display_info, mode)) 2023 return status; 2024 2025 sink_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2026 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format); 2027 if (status != MODE_OK) 2028 return status; 2029 } 2030 2031 return intel_mode_valid_max_plane_size(dev_priv, mode, false); 2032 } 2033 2034 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, 2035 int bpc, bool has_hdmi_sink) 2036 { 2037 struct drm_atomic_state *state = crtc_state->uapi.state; 2038 struct drm_connector_state *connector_state; 2039 struct drm_connector *connector; 2040 int i; 2041 2042 for_each_new_connector_in_state(state, connector, connector_state, i) { 2043 if (connector_state->crtc != crtc_state->uapi.crtc) 2044 continue; 2045 2046 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, 2047 crtc_state->sink_format)) 2048 return false; 2049 } 2050 2051 return true; 2052 } 2053 2054 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc) 2055 { 2056 struct drm_i915_private *dev_priv = 2057 to_i915(crtc_state->uapi.crtc->dev); 2058 const struct drm_display_mode *adjusted_mode = 2059 &crtc_state->hw.adjusted_mode; 2060 2061 if (!intel_hdmi_source_bpc_possible(dev_priv, bpc)) 2062 return false; 2063 2064 /* Display Wa_1405510057:icl,ehl */ 2065 if (intel_hdmi_is_ycbcr420(crtc_state) && 2066 bpc == 10 && DISPLAY_VER(dev_priv) == 11 && 2067 (adjusted_mode->crtc_hblank_end - 2068 adjusted_mode->crtc_hblank_start) % 8 == 2) 2069 return false; 2070 2071 return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink); 2072 } 2073 2074 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder, 2075 struct intel_crtc_state *crtc_state, 2076 int clock, bool respect_downstream_limits) 2077 { 2078 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2079 int bpc; 2080 2081 /* 2082 * pipe_bpp could already be below 8bpc due to FDI 2083 * bandwidth constraints. HDMI minimum is 8bpc however. 2084 */ 2085 bpc = max(crtc_state->pipe_bpp / 3, 8); 2086 2087 /* 2088 * We will never exceed downstream TMDS clock limits while 2089 * attempting deep color. If the user insists on forcing an 2090 * out of spec mode they will have to be satisfied with 8bpc. 2091 */ 2092 if (!respect_downstream_limits) 2093 bpc = 8; 2094 2095 for (; bpc >= 8; bpc -= 2) { 2096 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, 2097 crtc_state->sink_format); 2098 2099 if (hdmi_bpc_possible(crtc_state, bpc) && 2100 hdmi_port_clock_valid(intel_hdmi, tmds_clock, 2101 respect_downstream_limits, 2102 crtc_state->has_hdmi_sink) == MODE_OK) 2103 return bpc; 2104 } 2105 2106 return -EINVAL; 2107 } 2108 2109 static int intel_hdmi_compute_clock(struct intel_encoder *encoder, 2110 struct intel_crtc_state *crtc_state, 2111 bool respect_downstream_limits) 2112 { 2113 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2114 const struct drm_display_mode *adjusted_mode = 2115 &crtc_state->hw.adjusted_mode; 2116 int bpc, clock = adjusted_mode->crtc_clock; 2117 2118 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2119 clock *= 2; 2120 2121 bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock, 2122 respect_downstream_limits); 2123 if (bpc < 0) 2124 return bpc; 2125 2126 crtc_state->port_clock = 2127 intel_hdmi_tmds_clock(clock, bpc, crtc_state->sink_format); 2128 2129 /* 2130 * pipe_bpp could already be below 8bpc due to 2131 * FDI bandwidth constraints. We shouldn't bump it 2132 * back up to the HDMI minimum 8bpc in that case. 2133 */ 2134 crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3); 2135 2136 drm_dbg_kms(&i915->drm, 2137 "picking %d bpc for HDMI output (pipe bpp: %d)\n", 2138 bpc, crtc_state->pipe_bpp); 2139 2140 return 0; 2141 } 2142 2143 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state, 2144 const struct drm_connector_state *conn_state) 2145 { 2146 const struct intel_digital_connector_state *intel_conn_state = 2147 to_intel_digital_connector_state(conn_state); 2148 const struct drm_display_mode *adjusted_mode = 2149 &crtc_state->hw.adjusted_mode; 2150 2151 /* 2152 * Our YCbCr output is always limited range. 2153 * crtc_state->limited_color_range only applies to RGB, 2154 * and it must never be set for YCbCr or we risk setting 2155 * some conflicting bits in TRANSCONF which will mess up 2156 * the colors on the monitor. 2157 */ 2158 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2159 return false; 2160 2161 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2162 /* See CEA-861-E - 5.1 Default Encoding Parameters */ 2163 return crtc_state->has_hdmi_sink && 2164 drm_default_rgb_quant_range(adjusted_mode) == 2165 HDMI_QUANTIZATION_RANGE_LIMITED; 2166 } else { 2167 return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED; 2168 } 2169 } 2170 2171 static bool intel_hdmi_has_audio(struct intel_encoder *encoder, 2172 const struct intel_crtc_state *crtc_state, 2173 const struct drm_connector_state *conn_state) 2174 { 2175 struct drm_connector *connector = conn_state->connector; 2176 const struct intel_digital_connector_state *intel_conn_state = 2177 to_intel_digital_connector_state(conn_state); 2178 2179 if (!crtc_state->has_hdmi_sink) 2180 return false; 2181 2182 if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2183 return connector->display_info.has_audio; 2184 else 2185 return intel_conn_state->force_audio == HDMI_AUDIO_ON; 2186 } 2187 2188 static enum intel_output_format 2189 intel_hdmi_sink_format(const struct intel_crtc_state *crtc_state, 2190 struct intel_connector *connector, 2191 bool ycbcr_420_output) 2192 { 2193 if (!crtc_state->has_hdmi_sink) 2194 return INTEL_OUTPUT_FORMAT_RGB; 2195 2196 if (connector->base.ycbcr_420_allowed && ycbcr_420_output) 2197 return INTEL_OUTPUT_FORMAT_YCBCR420; 2198 else 2199 return INTEL_OUTPUT_FORMAT_RGB; 2200 } 2201 2202 static enum intel_output_format 2203 intel_hdmi_output_format(const struct intel_crtc_state *crtc_state) 2204 { 2205 return crtc_state->sink_format; 2206 } 2207 2208 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder, 2209 struct intel_crtc_state *crtc_state, 2210 const struct drm_connector_state *conn_state, 2211 bool respect_downstream_limits) 2212 { 2213 struct intel_connector *connector = to_intel_connector(conn_state->connector); 2214 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 2215 const struct drm_display_info *info = &connector->base.display_info; 2216 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2217 bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode); 2218 int ret; 2219 2220 crtc_state->sink_format = 2221 intel_hdmi_sink_format(crtc_state, connector, ycbcr_420_only); 2222 2223 if (ycbcr_420_only && crtc_state->sink_format != INTEL_OUTPUT_FORMAT_YCBCR420) { 2224 drm_dbg_kms(&i915->drm, 2225 "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n"); 2226 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB; 2227 } 2228 2229 crtc_state->output_format = intel_hdmi_output_format(crtc_state); 2230 ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits); 2231 if (ret) { 2232 if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 || 2233 !crtc_state->has_hdmi_sink || 2234 !connector->base.ycbcr_420_allowed || 2235 !drm_mode_is_420_also(info, adjusted_mode)) 2236 return ret; 2237 2238 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2239 crtc_state->output_format = intel_hdmi_output_format(crtc_state); 2240 ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits); 2241 } 2242 2243 return ret; 2244 } 2245 2246 static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state) 2247 { 2248 return crtc_state->uapi.encoder_mask && 2249 !is_power_of_2(crtc_state->uapi.encoder_mask); 2250 } 2251 2252 static bool source_supports_scrambling(struct intel_encoder *encoder) 2253 { 2254 /* 2255 * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and 2256 * scrambling is supported. 2257 * But there seem to be cases where certain platforms that support 2258 * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is 2259 * capped by VBT to less than 340MHz. 2260 * 2261 * In such cases when an HDMI2.0 sink is connected, it creates a 2262 * problem : the platform and the sink both support scrambling but the 2263 * HDMI 1.4 retimer chip doesn't. 2264 * 2265 * So go for scrambling, based on the max tmds clock taking into account, 2266 * restrictions coming from VBT. 2267 */ 2268 return intel_hdmi_source_max_tmds_clock(encoder) > 340000; 2269 } 2270 2271 bool intel_hdmi_compute_has_hdmi_sink(struct intel_encoder *encoder, 2272 const struct intel_crtc_state *crtc_state, 2273 const struct drm_connector_state *conn_state) 2274 { 2275 struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder); 2276 2277 return intel_has_hdmi_sink(hdmi, conn_state) && 2278 !intel_hdmi_is_cloned(crtc_state); 2279 } 2280 2281 int intel_hdmi_compute_config(struct intel_encoder *encoder, 2282 struct intel_crtc_state *pipe_config, 2283 struct drm_connector_state *conn_state) 2284 { 2285 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2286 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2287 struct drm_connector *connector = conn_state->connector; 2288 struct drm_scdc *scdc = &connector->display_info.hdmi.scdc; 2289 int ret; 2290 2291 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2292 return -EINVAL; 2293 2294 if (!connector->interlace_allowed && 2295 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 2296 return -EINVAL; 2297 2298 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2299 2300 if (pipe_config->has_hdmi_sink) 2301 pipe_config->has_infoframe = true; 2302 2303 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2304 pipe_config->pixel_multiplier = 2; 2305 2306 pipe_config->has_audio = 2307 intel_hdmi_has_audio(encoder, pipe_config, conn_state) && 2308 intel_audio_compute_config(encoder, pipe_config, conn_state); 2309 2310 /* 2311 * Try to respect downstream TMDS clock limits first, if 2312 * that fails assume the user might know something we don't. 2313 */ 2314 ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true); 2315 if (ret) 2316 ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false); 2317 if (ret) { 2318 drm_dbg_kms(&dev_priv->drm, 2319 "unsupported HDMI clock (%d kHz), rejecting mode\n", 2320 pipe_config->hw.adjusted_mode.crtc_clock); 2321 return ret; 2322 } 2323 2324 if (intel_hdmi_is_ycbcr420(pipe_config)) { 2325 ret = intel_panel_fitting(pipe_config, conn_state); 2326 if (ret) 2327 return ret; 2328 } 2329 2330 pipe_config->limited_color_range = 2331 intel_hdmi_limited_color_range(pipe_config, conn_state); 2332 2333 if (conn_state->picture_aspect_ratio) 2334 adjusted_mode->picture_aspect_ratio = 2335 conn_state->picture_aspect_ratio; 2336 2337 pipe_config->lane_count = 4; 2338 2339 if (scdc->scrambling.supported && source_supports_scrambling(encoder)) { 2340 if (scdc->scrambling.low_rates) 2341 pipe_config->hdmi_scrambling = true; 2342 2343 if (pipe_config->port_clock > 340000) { 2344 pipe_config->hdmi_scrambling = true; 2345 pipe_config->hdmi_high_tmds_clock_ratio = true; 2346 } 2347 } 2348 2349 intel_hdmi_compute_gcp_infoframe(encoder, pipe_config, 2350 conn_state); 2351 2352 if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) { 2353 drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n"); 2354 return -EINVAL; 2355 } 2356 2357 if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) { 2358 drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n"); 2359 return -EINVAL; 2360 } 2361 2362 if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) { 2363 drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n"); 2364 return -EINVAL; 2365 } 2366 2367 if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) { 2368 drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n"); 2369 return -EINVAL; 2370 } 2371 2372 return 0; 2373 } 2374 2375 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder) 2376 { 2377 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); 2378 2379 /* 2380 * Give a hand to buggy BIOSen which forget to turn 2381 * the TMDS output buffers back on after a reboot. 2382 */ 2383 intel_dp_dual_mode_set_tmds_output(intel_hdmi, true); 2384 } 2385 2386 static void 2387 intel_hdmi_unset_edid(struct drm_connector *connector) 2388 { 2389 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2390 2391 intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE; 2392 intel_hdmi->dp_dual_mode.max_tmds_clock = 0; 2393 2394 drm_edid_free(to_intel_connector(connector)->detect_edid); 2395 to_intel_connector(connector)->detect_edid = NULL; 2396 } 2397 2398 static void 2399 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector) 2400 { 2401 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2402 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2403 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base; 2404 struct i2c_adapter *ddc = connector->ddc; 2405 enum drm_dp_dual_mode_type type; 2406 2407 type = drm_dp_dual_mode_detect(&dev_priv->drm, ddc); 2408 2409 /* 2410 * Type 1 DVI adaptors are not required to implement any 2411 * registers, so we can't always detect their presence. 2412 * Ideally we should be able to check the state of the 2413 * CONFIG1 pin, but no such luck on our hardware. 2414 * 2415 * The only method left to us is to check the VBT to see 2416 * if the port is a dual mode capable DP port. 2417 */ 2418 if (type == DRM_DP_DUAL_MODE_UNKNOWN) { 2419 if (!connector->force && 2420 intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) { 2421 drm_dbg_kms(&dev_priv->drm, 2422 "Assuming DP dual mode adaptor presence based on VBT\n"); 2423 type = DRM_DP_DUAL_MODE_TYPE1_DVI; 2424 } else { 2425 type = DRM_DP_DUAL_MODE_NONE; 2426 } 2427 } 2428 2429 if (type == DRM_DP_DUAL_MODE_NONE) 2430 return; 2431 2432 hdmi->dp_dual_mode.type = type; 2433 hdmi->dp_dual_mode.max_tmds_clock = 2434 drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, ddc); 2435 2436 drm_dbg_kms(&dev_priv->drm, 2437 "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n", 2438 drm_dp_get_dual_mode_type_name(type), 2439 hdmi->dp_dual_mode.max_tmds_clock); 2440 2441 /* Older VBTs are often buggy and can't be trusted :( Play it safe. */ 2442 if ((DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) && 2443 !intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) { 2444 drm_dbg_kms(&dev_priv->drm, 2445 "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n"); 2446 hdmi->dp_dual_mode.max_tmds_clock = 0; 2447 } 2448 } 2449 2450 static bool 2451 intel_hdmi_set_edid(struct drm_connector *connector) 2452 { 2453 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2454 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2455 struct i2c_adapter *ddc = connector->ddc; 2456 intel_wakeref_t wakeref; 2457 const struct drm_edid *drm_edid; 2458 bool connected = false; 2459 2460 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); 2461 2462 drm_edid = drm_edid_read_ddc(connector, ddc); 2463 2464 if (!drm_edid && !intel_gmbus_is_forced_bit(ddc)) { 2465 drm_dbg_kms(&dev_priv->drm, 2466 "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n"); 2467 intel_gmbus_force_bit(ddc, true); 2468 drm_edid = drm_edid_read_ddc(connector, ddc); 2469 intel_gmbus_force_bit(ddc, false); 2470 } 2471 2472 /* Below we depend on display info having been updated */ 2473 drm_edid_connector_update(connector, drm_edid); 2474 2475 to_intel_connector(connector)->detect_edid = drm_edid; 2476 2477 if (drm_edid_is_digital(drm_edid)) { 2478 intel_hdmi_dp_dual_mode_detect(connector); 2479 2480 connected = true; 2481 } 2482 2483 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); 2484 2485 cec_notifier_set_phys_addr(intel_hdmi->cec_notifier, 2486 connector->display_info.source_physical_address); 2487 2488 return connected; 2489 } 2490 2491 static enum drm_connector_status 2492 intel_hdmi_detect(struct drm_connector *connector, bool force) 2493 { 2494 enum drm_connector_status status = connector_status_disconnected; 2495 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2496 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); 2497 struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base; 2498 intel_wakeref_t wakeref; 2499 2500 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", 2501 connector->base.id, connector->name); 2502 2503 if (!intel_display_device_enabled(dev_priv)) 2504 return connector_status_disconnected; 2505 2506 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); 2507 2508 if (DISPLAY_VER(dev_priv) >= 11 && 2509 !intel_digital_port_connected(encoder)) 2510 goto out; 2511 2512 intel_hdmi_unset_edid(connector); 2513 2514 if (intel_hdmi_set_edid(connector)) 2515 status = connector_status_connected; 2516 2517 out: 2518 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); 2519 2520 if (status != connector_status_connected) 2521 cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier); 2522 2523 return status; 2524 } 2525 2526 static void 2527 intel_hdmi_force(struct drm_connector *connector) 2528 { 2529 struct drm_i915_private *i915 = to_i915(connector->dev); 2530 2531 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", 2532 connector->base.id, connector->name); 2533 2534 intel_hdmi_unset_edid(connector); 2535 2536 if (connector->status != connector_status_connected) 2537 return; 2538 2539 intel_hdmi_set_edid(connector); 2540 } 2541 2542 static int intel_hdmi_get_modes(struct drm_connector *connector) 2543 { 2544 /* drm_edid_connector_update() done in ->detect() or ->force() */ 2545 return drm_edid_connector_add_modes(connector); 2546 } 2547 2548 static int 2549 intel_hdmi_connector_register(struct drm_connector *connector) 2550 { 2551 int ret; 2552 2553 ret = intel_connector_register(connector); 2554 if (ret) 2555 return ret; 2556 2557 return ret; 2558 } 2559 2560 static void intel_hdmi_connector_unregister(struct drm_connector *connector) 2561 { 2562 struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier; 2563 2564 cec_notifier_conn_unregister(n); 2565 2566 intel_connector_unregister(connector); 2567 } 2568 2569 static const struct drm_connector_funcs intel_hdmi_connector_funcs = { 2570 .detect = intel_hdmi_detect, 2571 .force = intel_hdmi_force, 2572 .fill_modes = drm_helper_probe_single_connector_modes, 2573 .atomic_get_property = intel_digital_connector_atomic_get_property, 2574 .atomic_set_property = intel_digital_connector_atomic_set_property, 2575 .late_register = intel_hdmi_connector_register, 2576 .early_unregister = intel_hdmi_connector_unregister, 2577 .destroy = intel_connector_destroy, 2578 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 2579 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 2580 }; 2581 2582 static int intel_hdmi_connector_atomic_check(struct drm_connector *connector, 2583 struct drm_atomic_state *state) 2584 { 2585 struct drm_i915_private *i915 = to_i915(state->dev); 2586 2587 if (HAS_DDI(i915)) 2588 return intel_digital_connector_atomic_check(connector, state); 2589 else 2590 return g4x_hdmi_connector_atomic_check(connector, state); 2591 } 2592 2593 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = { 2594 .get_modes = intel_hdmi_get_modes, 2595 .mode_valid = intel_hdmi_mode_valid, 2596 .atomic_check = intel_hdmi_connector_atomic_check, 2597 }; 2598 2599 static void 2600 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector) 2601 { 2602 struct drm_i915_private *dev_priv = to_i915(connector->dev); 2603 2604 intel_attach_force_audio_property(connector); 2605 intel_attach_broadcast_rgb_property(connector); 2606 intel_attach_aspect_ratio_property(connector); 2607 2608 intel_attach_hdmi_colorspace_property(connector); 2609 drm_connector_attach_content_type_property(connector); 2610 2611 if (DISPLAY_VER(dev_priv) >= 10) 2612 drm_connector_attach_hdr_output_metadata_property(connector); 2613 2614 if (!HAS_GMCH(dev_priv)) 2615 drm_connector_attach_max_bpc_property(connector, 8, 12); 2616 } 2617 2618 /* 2619 * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup 2620 * @encoder: intel_encoder 2621 * @connector: drm_connector 2622 * @high_tmds_clock_ratio = bool to indicate if the function needs to set 2623 * or reset the high tmds clock ratio for scrambling 2624 * @scrambling: bool to Indicate if the function needs to set or reset 2625 * sink scrambling 2626 * 2627 * This function handles scrambling on HDMI 2.0 capable sinks. 2628 * If required clock rate is > 340 Mhz && scrambling is supported by sink 2629 * it enables scrambling. This should be called before enabling the HDMI 2630 * 2.0 port, as the sink can choose to disable the scrambling if it doesn't 2631 * detect a scrambled clock within 100 ms. 2632 * 2633 * Returns: 2634 * True on success, false on failure. 2635 */ 2636 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder, 2637 struct drm_connector *connector, 2638 bool high_tmds_clock_ratio, 2639 bool scrambling) 2640 { 2641 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2642 struct drm_scrambling *sink_scrambling = 2643 &connector->display_info.hdmi.scdc.scrambling; 2644 2645 if (!sink_scrambling->supported) 2646 return true; 2647 2648 drm_dbg_kms(&dev_priv->drm, 2649 "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n", 2650 connector->base.id, connector->name, 2651 str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10); 2652 2653 /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */ 2654 return drm_scdc_set_high_tmds_clock_ratio(connector, high_tmds_clock_ratio) && 2655 drm_scdc_set_scrambling(connector, scrambling); 2656 } 2657 2658 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2659 { 2660 u8 ddc_pin; 2661 2662 switch (port) { 2663 case PORT_B: 2664 ddc_pin = GMBUS_PIN_DPB; 2665 break; 2666 case PORT_C: 2667 ddc_pin = GMBUS_PIN_DPC; 2668 break; 2669 case PORT_D: 2670 ddc_pin = GMBUS_PIN_DPD_CHV; 2671 break; 2672 default: 2673 MISSING_CASE(port); 2674 ddc_pin = GMBUS_PIN_DPB; 2675 break; 2676 } 2677 return ddc_pin; 2678 } 2679 2680 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2681 { 2682 u8 ddc_pin; 2683 2684 switch (port) { 2685 case PORT_B: 2686 ddc_pin = GMBUS_PIN_1_BXT; 2687 break; 2688 case PORT_C: 2689 ddc_pin = GMBUS_PIN_2_BXT; 2690 break; 2691 default: 2692 MISSING_CASE(port); 2693 ddc_pin = GMBUS_PIN_1_BXT; 2694 break; 2695 } 2696 return ddc_pin; 2697 } 2698 2699 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv, 2700 enum port port) 2701 { 2702 u8 ddc_pin; 2703 2704 switch (port) { 2705 case PORT_B: 2706 ddc_pin = GMBUS_PIN_1_BXT; 2707 break; 2708 case PORT_C: 2709 ddc_pin = GMBUS_PIN_2_BXT; 2710 break; 2711 case PORT_D: 2712 ddc_pin = GMBUS_PIN_4_CNP; 2713 break; 2714 case PORT_F: 2715 ddc_pin = GMBUS_PIN_3_BXT; 2716 break; 2717 default: 2718 MISSING_CASE(port); 2719 ddc_pin = GMBUS_PIN_1_BXT; 2720 break; 2721 } 2722 return ddc_pin; 2723 } 2724 2725 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2726 { 2727 enum phy phy = intel_port_to_phy(dev_priv, port); 2728 2729 if (intel_phy_is_combo(dev_priv, phy)) 2730 return GMBUS_PIN_1_BXT + port; 2731 else if (intel_phy_is_tc(dev_priv, phy)) 2732 return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port); 2733 2734 drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port)); 2735 return GMBUS_PIN_2_BXT; 2736 } 2737 2738 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2739 { 2740 enum phy phy = intel_port_to_phy(dev_priv, port); 2741 u8 ddc_pin; 2742 2743 switch (phy) { 2744 case PHY_A: 2745 ddc_pin = GMBUS_PIN_1_BXT; 2746 break; 2747 case PHY_B: 2748 ddc_pin = GMBUS_PIN_2_BXT; 2749 break; 2750 case PHY_C: 2751 ddc_pin = GMBUS_PIN_9_TC1_ICP; 2752 break; 2753 default: 2754 MISSING_CASE(phy); 2755 ddc_pin = GMBUS_PIN_1_BXT; 2756 break; 2757 } 2758 return ddc_pin; 2759 } 2760 2761 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2762 { 2763 enum phy phy = intel_port_to_phy(dev_priv, port); 2764 2765 WARN_ON(port == PORT_C); 2766 2767 /* 2768 * Pin mapping for RKL depends on which PCH is present. With TGP, the 2769 * final two outputs use type-c pins, even though they're actually 2770 * combo outputs. With CMP, the traditional DDI A-D pins are used for 2771 * all outputs. 2772 */ 2773 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C) 2774 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C; 2775 2776 return GMBUS_PIN_1_BXT + phy; 2777 } 2778 2779 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port) 2780 { 2781 enum phy phy = intel_port_to_phy(i915, port); 2782 2783 drm_WARN_ON(&i915->drm, port == PORT_A); 2784 2785 /* 2786 * Pin mapping for GEN9 BC depends on which PCH is present. With TGP, 2787 * final two outputs use type-c pins, even though they're actually 2788 * combo outputs. With CMP, the traditional DDI A-D pins are used for 2789 * all outputs. 2790 */ 2791 if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C) 2792 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C; 2793 2794 return GMBUS_PIN_1_BXT + phy; 2795 } 2796 2797 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2798 { 2799 return intel_port_to_phy(dev_priv, port) + 1; 2800 } 2801 2802 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) 2803 { 2804 enum phy phy = intel_port_to_phy(dev_priv, port); 2805 2806 WARN_ON(port == PORT_B || port == PORT_C); 2807 2808 /* 2809 * Pin mapping for ADL-S requires TC pins for all combo phy outputs 2810 * except first combo output. 2811 */ 2812 if (phy == PHY_A) 2813 return GMBUS_PIN_1_BXT; 2814 2815 return GMBUS_PIN_9_TC1_ICP + phy - PHY_B; 2816 } 2817 2818 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv, 2819 enum port port) 2820 { 2821 u8 ddc_pin; 2822 2823 switch (port) { 2824 case PORT_B: 2825 ddc_pin = GMBUS_PIN_DPB; 2826 break; 2827 case PORT_C: 2828 ddc_pin = GMBUS_PIN_DPC; 2829 break; 2830 case PORT_D: 2831 ddc_pin = GMBUS_PIN_DPD; 2832 break; 2833 default: 2834 MISSING_CASE(port); 2835 ddc_pin = GMBUS_PIN_DPB; 2836 break; 2837 } 2838 return ddc_pin; 2839 } 2840 2841 static u8 intel_hdmi_default_ddc_pin(struct intel_encoder *encoder) 2842 { 2843 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2844 enum port port = encoder->port; 2845 u8 ddc_pin; 2846 2847 if (IS_ALDERLAKE_S(dev_priv)) 2848 ddc_pin = adls_port_to_ddc_pin(dev_priv, port); 2849 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1) 2850 ddc_pin = dg1_port_to_ddc_pin(dev_priv, port); 2851 else if (IS_ROCKETLAKE(dev_priv)) 2852 ddc_pin = rkl_port_to_ddc_pin(dev_priv, port); 2853 else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv)) 2854 ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port); 2855 else if ((IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) && 2856 HAS_PCH_TGP(dev_priv)) 2857 ddc_pin = mcc_port_to_ddc_pin(dev_priv, port); 2858 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 2859 ddc_pin = icl_port_to_ddc_pin(dev_priv, port); 2860 else if (HAS_PCH_CNP(dev_priv)) 2861 ddc_pin = cnp_port_to_ddc_pin(dev_priv, port); 2862 else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) 2863 ddc_pin = bxt_port_to_ddc_pin(dev_priv, port); 2864 else if (IS_CHERRYVIEW(dev_priv)) 2865 ddc_pin = chv_port_to_ddc_pin(dev_priv, port); 2866 else 2867 ddc_pin = g4x_port_to_ddc_pin(dev_priv, port); 2868 2869 return ddc_pin; 2870 } 2871 2872 static struct intel_encoder * 2873 get_encoder_by_ddc_pin(struct intel_encoder *encoder, u8 ddc_pin) 2874 { 2875 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2876 struct intel_encoder *other; 2877 2878 for_each_intel_encoder(&i915->drm, other) { 2879 struct intel_connector *connector; 2880 2881 if (other == encoder) 2882 continue; 2883 2884 if (!intel_encoder_is_dig_port(other)) 2885 continue; 2886 2887 connector = enc_to_dig_port(other)->hdmi.attached_connector; 2888 2889 if (connector && connector->base.ddc == intel_gmbus_get_adapter(i915, ddc_pin)) 2890 return other; 2891 } 2892 2893 return NULL; 2894 } 2895 2896 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder) 2897 { 2898 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2899 struct intel_encoder *other; 2900 const char *source; 2901 u8 ddc_pin; 2902 2903 ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata); 2904 source = "VBT"; 2905 2906 if (!ddc_pin) { 2907 ddc_pin = intel_hdmi_default_ddc_pin(encoder); 2908 source = "platform default"; 2909 } 2910 2911 if (!intel_gmbus_is_valid_pin(i915, ddc_pin)) { 2912 drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Invalid DDC pin %d\n", 2913 encoder->base.base.id, encoder->base.name, ddc_pin); 2914 return 0; 2915 } 2916 2917 other = get_encoder_by_ddc_pin(encoder, ddc_pin); 2918 if (other) { 2919 drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] DDC pin %d already claimed by [ENCODER:%d:%s]\n", 2920 encoder->base.base.id, encoder->base.name, ddc_pin, 2921 other->base.base.id, other->base.name); 2922 return 0; 2923 } 2924 2925 drm_dbg_kms(&i915->drm, 2926 "[ENCODER:%d:%s] Using DDC pin 0x%x (%s)\n", 2927 encoder->base.base.id, encoder->base.name, 2928 ddc_pin, source); 2929 2930 return ddc_pin; 2931 } 2932 2933 void intel_infoframe_init(struct intel_digital_port *dig_port) 2934 { 2935 struct drm_i915_private *dev_priv = 2936 to_i915(dig_port->base.base.dev); 2937 2938 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 2939 dig_port->write_infoframe = vlv_write_infoframe; 2940 dig_port->read_infoframe = vlv_read_infoframe; 2941 dig_port->set_infoframes = vlv_set_infoframes; 2942 dig_port->infoframes_enabled = vlv_infoframes_enabled; 2943 } else if (IS_G4X(dev_priv)) { 2944 dig_port->write_infoframe = g4x_write_infoframe; 2945 dig_port->read_infoframe = g4x_read_infoframe; 2946 dig_port->set_infoframes = g4x_set_infoframes; 2947 dig_port->infoframes_enabled = g4x_infoframes_enabled; 2948 } else if (HAS_DDI(dev_priv)) { 2949 if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) { 2950 dig_port->write_infoframe = lspcon_write_infoframe; 2951 dig_port->read_infoframe = lspcon_read_infoframe; 2952 dig_port->set_infoframes = lspcon_set_infoframes; 2953 dig_port->infoframes_enabled = lspcon_infoframes_enabled; 2954 } else { 2955 dig_port->write_infoframe = hsw_write_infoframe; 2956 dig_port->read_infoframe = hsw_read_infoframe; 2957 dig_port->set_infoframes = hsw_set_infoframes; 2958 dig_port->infoframes_enabled = hsw_infoframes_enabled; 2959 } 2960 } else if (HAS_PCH_IBX(dev_priv)) { 2961 dig_port->write_infoframe = ibx_write_infoframe; 2962 dig_port->read_infoframe = ibx_read_infoframe; 2963 dig_port->set_infoframes = ibx_set_infoframes; 2964 dig_port->infoframes_enabled = ibx_infoframes_enabled; 2965 } else { 2966 dig_port->write_infoframe = cpt_write_infoframe; 2967 dig_port->read_infoframe = cpt_read_infoframe; 2968 dig_port->set_infoframes = cpt_set_infoframes; 2969 dig_port->infoframes_enabled = cpt_infoframes_enabled; 2970 } 2971 } 2972 2973 void intel_hdmi_init_connector(struct intel_digital_port *dig_port, 2974 struct intel_connector *intel_connector) 2975 { 2976 struct drm_connector *connector = &intel_connector->base; 2977 struct intel_hdmi *intel_hdmi = &dig_port->hdmi; 2978 struct intel_encoder *intel_encoder = &dig_port->base; 2979 struct drm_device *dev = intel_encoder->base.dev; 2980 struct drm_i915_private *dev_priv = to_i915(dev); 2981 enum port port = intel_encoder->port; 2982 struct cec_connector_info conn_info; 2983 u8 ddc_pin; 2984 2985 drm_dbg_kms(&dev_priv->drm, 2986 "Adding HDMI connector on [ENCODER:%d:%s]\n", 2987 intel_encoder->base.base.id, intel_encoder->base.name); 2988 2989 if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A)) 2990 return; 2991 2992 if (drm_WARN(dev, dig_port->max_lanes < 4, 2993 "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n", 2994 dig_port->max_lanes, intel_encoder->base.base.id, 2995 intel_encoder->base.name)) 2996 return; 2997 2998 ddc_pin = intel_hdmi_ddc_pin(intel_encoder); 2999 if (!ddc_pin) 3000 return; 3001 3002 drm_connector_init_with_ddc(dev, connector, 3003 &intel_hdmi_connector_funcs, 3004 DRM_MODE_CONNECTOR_HDMIA, 3005 intel_gmbus_get_adapter(dev_priv, ddc_pin)); 3006 3007 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs); 3008 3009 if (DISPLAY_VER(dev_priv) < 12) 3010 connector->interlace_allowed = true; 3011 3012 connector->stereo_allowed = true; 3013 3014 if (DISPLAY_VER(dev_priv) >= 10) 3015 connector->ycbcr_420_allowed = true; 3016 3017 intel_connector->polled = DRM_CONNECTOR_POLL_HPD; 3018 3019 if (HAS_DDI(dev_priv)) 3020 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 3021 else 3022 intel_connector->get_hw_state = intel_connector_get_hw_state; 3023 3024 intel_hdmi_add_properties(intel_hdmi, connector); 3025 3026 intel_connector_attach_encoder(intel_connector, intel_encoder); 3027 intel_hdmi->attached_connector = intel_connector; 3028 3029 if (is_hdcp_supported(dev_priv, port)) { 3030 int ret = intel_hdcp_init(intel_connector, dig_port, 3031 &intel_hdmi_hdcp_shim); 3032 if (ret) 3033 drm_dbg_kms(&dev_priv->drm, 3034 "HDCP init failed, skipping.\n"); 3035 } 3036 3037 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 3038 * 0xd. Failure to do so will result in spurious interrupts being 3039 * generated on the port when a cable is not attached. 3040 */ 3041 if (IS_G45(dev_priv)) { 3042 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA); 3043 intel_de_write(dev_priv, PEG_BAND_GAP_DATA, 3044 (temp & ~0xf) | 0xd); 3045 } 3046 3047 cec_fill_conn_info_from_drm(&conn_info, connector); 3048 3049 intel_hdmi->cec_notifier = 3050 cec_notifier_conn_register(dev->dev, port_identifier(port), 3051 &conn_info); 3052 if (!intel_hdmi->cec_notifier) 3053 drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n"); 3054 } 3055 3056 /* 3057 * intel_hdmi_dsc_get_slice_height - get the dsc slice_height 3058 * @vactive: Vactive of a display mode 3059 * 3060 * @return: appropriate dsc slice height for a given mode. 3061 */ 3062 int intel_hdmi_dsc_get_slice_height(int vactive) 3063 { 3064 int slice_height; 3065 3066 /* 3067 * Slice Height determination : HDMI2.1 Section 7.7.5.2 3068 * Select smallest slice height >=96, that results in a valid PPS and 3069 * requires minimum padding lines required for final slice. 3070 * 3071 * Assumption : Vactive is even. 3072 */ 3073 for (slice_height = 96; slice_height <= vactive; slice_height += 2) 3074 if (vactive % slice_height == 0) 3075 return slice_height; 3076 3077 return 0; 3078 } 3079 3080 /* 3081 * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder 3082 * and dsc decoder capabilities 3083 * 3084 * @crtc_state: intel crtc_state 3085 * @src_max_slices: maximum slices supported by the DSC encoder 3086 * @src_max_slice_width: maximum slice width supported by DSC encoder 3087 * @hdmi_max_slices: maximum slices supported by sink DSC decoder 3088 * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink 3089 * 3090 * @return: num of dsc slices that can be supported by the dsc encoder 3091 * and decoder. 3092 */ 3093 int 3094 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state, 3095 int src_max_slices, int src_max_slice_width, 3096 int hdmi_max_slices, int hdmi_throughput) 3097 { 3098 /* Pixel rates in KPixels/sec */ 3099 #define HDMI_DSC_PEAK_PIXEL_RATE 2720000 3100 /* 3101 * Rates at which the source and sink are required to process pixels in each 3102 * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz. 3103 */ 3104 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0 340000 3105 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1 400000 3106 3107 /* Spec limits the slice width to 2720 pixels */ 3108 #define MAX_HDMI_SLICE_WIDTH 2720 3109 int kslice_adjust; 3110 int adjusted_clk_khz; 3111 int min_slices; 3112 int target_slices; 3113 int max_throughput; /* max clock freq. in khz per slice */ 3114 int max_slice_width; 3115 int slice_width; 3116 int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock; 3117 3118 if (!hdmi_throughput) 3119 return 0; 3120 3121 /* 3122 * Slice Width determination : HDMI2.1 Section 7.7.5.1 3123 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as 3124 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later 3125 * dividing adjusted clock value by 10. 3126 */ 3127 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 || 3128 crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 3129 kslice_adjust = 10; 3130 else 3131 kslice_adjust = 5; 3132 3133 /* 3134 * As per spec, the rate at which the source and the sink process 3135 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz. 3136 * This depends upon the pixel clock rate and output formats 3137 * (kslice adjust). 3138 * If pixel clock * kslice adjust >= 2720MHz slices can be processed 3139 * at max 340MHz, otherwise they can be processed at max 400MHz. 3140 */ 3141 3142 adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10); 3143 3144 if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE) 3145 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0; 3146 else 3147 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1; 3148 3149 /* 3150 * Taking into account the sink's capability for maximum 3151 * clock per slice (in MHz) as read from HF-VSDB. 3152 */ 3153 max_throughput = min(max_throughput, hdmi_throughput * 1000); 3154 3155 min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput); 3156 max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width); 3157 3158 /* 3159 * Keep on increasing the num of slices/line, starting from min_slices 3160 * per line till we get such a number, for which the slice_width is 3161 * just less than max_slice_width. The slices/line selected should be 3162 * less than or equal to the max horizontal slices that the combination 3163 * of PCON encoder and HDMI decoder can support. 3164 */ 3165 slice_width = max_slice_width; 3166 3167 do { 3168 if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1) 3169 target_slices = 1; 3170 else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2) 3171 target_slices = 2; 3172 else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4) 3173 target_slices = 4; 3174 else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8) 3175 target_slices = 8; 3176 else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12) 3177 target_slices = 12; 3178 else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16) 3179 target_slices = 16; 3180 else 3181 return 0; 3182 3183 slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices); 3184 if (slice_width >= max_slice_width) 3185 min_slices = target_slices + 1; 3186 } while (slice_width >= max_slice_width); 3187 3188 return target_slices; 3189 } 3190 3191 /* 3192 * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on 3193 * source and sink capabilities. 3194 * 3195 * @src_fraction_bpp: fractional bpp supported by the source 3196 * @slice_width: dsc slice width supported by the source and sink 3197 * @num_slices: num of slices supported by the source and sink 3198 * @output_format: video output format 3199 * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting 3200 * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink 3201 * 3202 * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel 3203 */ 3204 int 3205 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices, 3206 int output_format, bool hdmi_all_bpp, 3207 int hdmi_max_chunk_bytes) 3208 { 3209 int max_dsc_bpp, min_dsc_bpp; 3210 int target_bytes; 3211 bool bpp_found = false; 3212 int bpp_decrement_x16; 3213 int bpp_target; 3214 int bpp_target_x16; 3215 3216 /* 3217 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec 3218 * Start with the max bpp and keep on decrementing with 3219 * fractional bpp, if supported by PCON DSC encoder 3220 * 3221 * for each bpp we check if no of bytes can be supported by HDMI sink 3222 */ 3223 3224 /* Assuming: bpc as 8*/ 3225 if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) { 3226 min_dsc_bpp = 6; 3227 max_dsc_bpp = 3 * 4; /* 3*bpc/2 */ 3228 } else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 || 3229 output_format == INTEL_OUTPUT_FORMAT_RGB) { 3230 min_dsc_bpp = 8; 3231 max_dsc_bpp = 3 * 8; /* 3*bpc */ 3232 } else { 3233 /* Assuming 4:2:2 encoding */ 3234 min_dsc_bpp = 7; 3235 max_dsc_bpp = 2 * 8; /* 2*bpc */ 3236 } 3237 3238 /* 3239 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink 3240 * Section 7.7.34 : Source shall not enable compressed Video 3241 * Transport with bpp_target settings above 12 bpp unless 3242 * DSC_all_bpp is set to 1. 3243 */ 3244 if (!hdmi_all_bpp) 3245 max_dsc_bpp = min(max_dsc_bpp, 12); 3246 3247 /* 3248 * The Sink has a limit of compressed data in bytes for a scanline, 3249 * as described in max_chunk_bytes field in HFVSDB block of edid. 3250 * The no. of bytes depend on the target bits per pixel that the 3251 * source configures. So we start with the max_bpp and calculate 3252 * the target_chunk_bytes. We keep on decrementing the target_bpp, 3253 * till we get the target_chunk_bytes just less than what the sink's 3254 * max_chunk_bytes, or else till we reach the min_dsc_bpp. 3255 * 3256 * The decrement is according to the fractional support from PCON DSC 3257 * encoder. For fractional BPP we use bpp_target as a multiple of 16. 3258 * 3259 * bpp_target_x16 = bpp_target * 16 3260 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps 3261 * {1/16, 1/8, 1/4, 1/2, 1} respectively. 3262 */ 3263 3264 bpp_target = max_dsc_bpp; 3265 3266 /* src does not support fractional bpp implies decrement by 16 for bppx16 */ 3267 if (!src_fractional_bpp) 3268 src_fractional_bpp = 1; 3269 bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp); 3270 bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16; 3271 3272 while (bpp_target_x16 > (min_dsc_bpp * 16)) { 3273 int bpp; 3274 3275 bpp = DIV_ROUND_UP(bpp_target_x16, 16); 3276 target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8); 3277 if (target_bytes <= hdmi_max_chunk_bytes) { 3278 bpp_found = true; 3279 break; 3280 } 3281 bpp_target_x16 -= bpp_decrement_x16; 3282 } 3283 if (bpp_found) 3284 return bpp_target_x16; 3285 3286 return 0; 3287 } 3288