xref: /linux/drivers/gpu/drm/i915/display/intel_hdmi.c (revision 25489a4f556414445d342951615178368ee45cde)
1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 #include <linux/string_helpers.h>
34 
35 #include <drm/display/drm_hdcp_helper.h>
36 #include <drm/display/drm_hdmi_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_crtc.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_print.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/intel/intel_lpe_audio.h>
44 
45 #include <media/cec-notifier.h>
46 
47 #include "g4x_hdmi.h"
48 #include "i915_reg.h"
49 #include "i915_utils.h"
50 #include "intel_atomic.h"
51 #include "intel_audio.h"
52 #include "intel_connector.h"
53 #include "intel_cx0_phy.h"
54 #include "intel_ddi.h"
55 #include "intel_de.h"
56 #include "intel_display_driver.h"
57 #include "intel_display_types.h"
58 #include "intel_dp.h"
59 #include "intel_gmbus.h"
60 #include "intel_hdcp.h"
61 #include "intel_hdcp_regs.h"
62 #include "intel_hdcp_shim.h"
63 #include "intel_hdmi.h"
64 #include "intel_lspcon.h"
65 #include "intel_panel.h"
66 #include "intel_pfit.h"
67 #include "intel_snps_phy.h"
68 #include "intel_vrr.h"
69 
70 static void
71 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
72 {
73 	struct intel_display *display = to_intel_display(intel_hdmi);
74 	u32 enabled_bits;
75 
76 	enabled_bits = HAS_DDI(display) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
77 
78 	drm_WARN(display->drm,
79 		 intel_de_read(display, intel_hdmi->hdmi_reg) & enabled_bits,
80 		 "HDMI port enabled, expecting disabled\n");
81 }
82 
83 static void
84 assert_hdmi_transcoder_func_disabled(struct intel_display *display,
85 				     enum transcoder cpu_transcoder)
86 {
87 	drm_WARN(display->drm,
88 		 intel_de_read(display, TRANS_DDI_FUNC_CTL(display, cpu_transcoder)) &
89 		 TRANS_DDI_FUNC_ENABLE,
90 		 "HDMI transcoder function enabled, expecting disabled\n");
91 }
92 
93 static u32 g4x_infoframe_index(unsigned int type)
94 {
95 	switch (type) {
96 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
97 		return VIDEO_DIP_SELECT_GAMUT;
98 	case HDMI_INFOFRAME_TYPE_AVI:
99 		return VIDEO_DIP_SELECT_AVI;
100 	case HDMI_INFOFRAME_TYPE_SPD:
101 		return VIDEO_DIP_SELECT_SPD;
102 	case HDMI_INFOFRAME_TYPE_VENDOR:
103 		return VIDEO_DIP_SELECT_VENDOR;
104 	default:
105 		MISSING_CASE(type);
106 		return 0;
107 	}
108 }
109 
110 static u32 g4x_infoframe_enable(unsigned int type)
111 {
112 	switch (type) {
113 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
114 		return VIDEO_DIP_ENABLE_GCP;
115 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
116 		return VIDEO_DIP_ENABLE_GAMUT;
117 	case DP_SDP_VSC:
118 		return 0;
119 	case DP_SDP_ADAPTIVE_SYNC:
120 		return 0;
121 	case HDMI_INFOFRAME_TYPE_AVI:
122 		return VIDEO_DIP_ENABLE_AVI;
123 	case HDMI_INFOFRAME_TYPE_SPD:
124 		return VIDEO_DIP_ENABLE_SPD;
125 	case HDMI_INFOFRAME_TYPE_VENDOR:
126 		return VIDEO_DIP_ENABLE_VENDOR;
127 	case HDMI_INFOFRAME_TYPE_DRM:
128 		return 0;
129 	default:
130 		MISSING_CASE(type);
131 		return 0;
132 	}
133 }
134 
135 static u32 hsw_infoframe_enable(unsigned int type)
136 {
137 	switch (type) {
138 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
139 		return VIDEO_DIP_ENABLE_GCP_HSW;
140 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
141 		return VIDEO_DIP_ENABLE_GMP_HSW;
142 	case DP_SDP_VSC:
143 		return VIDEO_DIP_ENABLE_VSC_HSW;
144 	case DP_SDP_ADAPTIVE_SYNC:
145 		return VIDEO_DIP_ENABLE_AS_ADL;
146 	case DP_SDP_PPS:
147 		return VDIP_ENABLE_PPS;
148 	case HDMI_INFOFRAME_TYPE_AVI:
149 		return VIDEO_DIP_ENABLE_AVI_HSW;
150 	case HDMI_INFOFRAME_TYPE_SPD:
151 		return VIDEO_DIP_ENABLE_SPD_HSW;
152 	case HDMI_INFOFRAME_TYPE_VENDOR:
153 		return VIDEO_DIP_ENABLE_VS_HSW;
154 	case HDMI_INFOFRAME_TYPE_DRM:
155 		return VIDEO_DIP_ENABLE_DRM_GLK;
156 	default:
157 		MISSING_CASE(type);
158 		return 0;
159 	}
160 }
161 
162 static i915_reg_t
163 hsw_dip_data_reg(struct intel_display *display,
164 		 enum transcoder cpu_transcoder,
165 		 unsigned int type,
166 		 int i)
167 {
168 	switch (type) {
169 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
170 		return HSW_TVIDEO_DIP_GMP_DATA(display, cpu_transcoder, i);
171 	case DP_SDP_VSC:
172 		return HSW_TVIDEO_DIP_VSC_DATA(display, cpu_transcoder, i);
173 	case DP_SDP_ADAPTIVE_SYNC:
174 		return ADL_TVIDEO_DIP_AS_SDP_DATA(display, cpu_transcoder, i);
175 	case DP_SDP_PPS:
176 		return ICL_VIDEO_DIP_PPS_DATA(display, cpu_transcoder, i);
177 	case HDMI_INFOFRAME_TYPE_AVI:
178 		return HSW_TVIDEO_DIP_AVI_DATA(display, cpu_transcoder, i);
179 	case HDMI_INFOFRAME_TYPE_SPD:
180 		return HSW_TVIDEO_DIP_SPD_DATA(display, cpu_transcoder, i);
181 	case HDMI_INFOFRAME_TYPE_VENDOR:
182 		return HSW_TVIDEO_DIP_VS_DATA(display, cpu_transcoder, i);
183 	case HDMI_INFOFRAME_TYPE_DRM:
184 		return GLK_TVIDEO_DIP_DRM_DATA(display, cpu_transcoder, i);
185 	default:
186 		MISSING_CASE(type);
187 		return INVALID_MMIO_REG;
188 	}
189 }
190 
191 static int hsw_dip_data_size(struct intel_display *display,
192 			     unsigned int type)
193 {
194 	switch (type) {
195 	case DP_SDP_VSC:
196 		return VIDEO_DIP_VSC_DATA_SIZE;
197 	case DP_SDP_ADAPTIVE_SYNC:
198 		return VIDEO_DIP_ASYNC_DATA_SIZE;
199 	case DP_SDP_PPS:
200 		return VIDEO_DIP_PPS_DATA_SIZE;
201 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
202 		if (DISPLAY_VER(display) >= 11)
203 			return VIDEO_DIP_GMP_DATA_SIZE;
204 		else
205 			return VIDEO_DIP_DATA_SIZE;
206 	default:
207 		return VIDEO_DIP_DATA_SIZE;
208 	}
209 }
210 
211 static void g4x_write_infoframe(struct intel_encoder *encoder,
212 				const struct intel_crtc_state *crtc_state,
213 				unsigned int type,
214 				const void *frame, ssize_t len)
215 {
216 	struct intel_display *display = to_intel_display(encoder);
217 	const u32 *data = frame;
218 	u32 val = intel_de_read(display, VIDEO_DIP_CTL);
219 	int i;
220 
221 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
222 		 "Writing DIP with CTL reg disabled\n");
223 
224 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
225 	val |= g4x_infoframe_index(type);
226 
227 	val &= ~g4x_infoframe_enable(type);
228 
229 	intel_de_write(display, VIDEO_DIP_CTL, val);
230 
231 	for (i = 0; i < len; i += 4) {
232 		intel_de_write(display, VIDEO_DIP_DATA, *data);
233 		data++;
234 	}
235 	/* Write every possible data byte to force correct ECC calculation. */
236 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
237 		intel_de_write(display, VIDEO_DIP_DATA, 0);
238 
239 	val |= g4x_infoframe_enable(type);
240 	val &= ~VIDEO_DIP_FREQ_MASK;
241 	val |= VIDEO_DIP_FREQ_VSYNC;
242 
243 	intel_de_write(display, VIDEO_DIP_CTL, val);
244 	intel_de_posting_read(display, VIDEO_DIP_CTL);
245 }
246 
247 static void g4x_read_infoframe(struct intel_encoder *encoder,
248 			       const struct intel_crtc_state *crtc_state,
249 			       unsigned int type,
250 			       void *frame, ssize_t len)
251 {
252 	struct intel_display *display = to_intel_display(encoder);
253 	u32 *data = frame;
254 	int i;
255 
256 	intel_de_rmw(display, VIDEO_DIP_CTL,
257 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
258 
259 	for (i = 0; i < len; i += 4)
260 		*data++ = intel_de_read(display, VIDEO_DIP_DATA);
261 }
262 
263 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
264 				  const struct intel_crtc_state *pipe_config)
265 {
266 	struct intel_display *display = to_intel_display(encoder);
267 	u32 val = intel_de_read(display, VIDEO_DIP_CTL);
268 
269 	if ((val & VIDEO_DIP_ENABLE) == 0)
270 		return 0;
271 
272 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
273 		return 0;
274 
275 	return val & (VIDEO_DIP_ENABLE_AVI |
276 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
277 }
278 
279 static void ibx_write_infoframe(struct intel_encoder *encoder,
280 				const struct intel_crtc_state *crtc_state,
281 				unsigned int type,
282 				const void *frame, ssize_t len)
283 {
284 	struct intel_display *display = to_intel_display(encoder);
285 	const u32 *data = frame;
286 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
287 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
288 	u32 val = intel_de_read(display, reg);
289 	int i;
290 
291 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
292 		 "Writing DIP with CTL reg disabled\n");
293 
294 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
295 	val |= g4x_infoframe_index(type);
296 
297 	val &= ~g4x_infoframe_enable(type);
298 
299 	intel_de_write(display, reg, val);
300 
301 	for (i = 0; i < len; i += 4) {
302 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
303 			       *data);
304 		data++;
305 	}
306 	/* Write every possible data byte to force correct ECC calculation. */
307 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
308 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
309 
310 	val |= g4x_infoframe_enable(type);
311 	val &= ~VIDEO_DIP_FREQ_MASK;
312 	val |= VIDEO_DIP_FREQ_VSYNC;
313 
314 	intel_de_write(display, reg, val);
315 	intel_de_posting_read(display, reg);
316 }
317 
318 static void ibx_read_infoframe(struct intel_encoder *encoder,
319 			       const struct intel_crtc_state *crtc_state,
320 			       unsigned int type,
321 			       void *frame, ssize_t len)
322 {
323 	struct intel_display *display = to_intel_display(encoder);
324 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
325 	u32 *data = frame;
326 	int i;
327 
328 	intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
329 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
330 
331 	for (i = 0; i < len; i += 4)
332 		*data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
333 }
334 
335 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
336 				  const struct intel_crtc_state *pipe_config)
337 {
338 	struct intel_display *display = to_intel_display(encoder);
339 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
340 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
341 	u32 val = intel_de_read(display, reg);
342 
343 	if ((val & VIDEO_DIP_ENABLE) == 0)
344 		return 0;
345 
346 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
347 		return 0;
348 
349 	return val & (VIDEO_DIP_ENABLE_AVI |
350 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
351 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
352 }
353 
354 static void cpt_write_infoframe(struct intel_encoder *encoder,
355 				const struct intel_crtc_state *crtc_state,
356 				unsigned int type,
357 				const void *frame, ssize_t len)
358 {
359 	struct intel_display *display = to_intel_display(encoder);
360 	const u32 *data = frame;
361 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
362 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
363 	u32 val = intel_de_read(display, reg);
364 	int i;
365 
366 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
367 		 "Writing DIP with CTL reg disabled\n");
368 
369 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
370 	val |= g4x_infoframe_index(type);
371 
372 	/* The DIP control register spec says that we need to update the AVI
373 	 * infoframe without clearing its enable bit */
374 	if (type != HDMI_INFOFRAME_TYPE_AVI)
375 		val &= ~g4x_infoframe_enable(type);
376 
377 	intel_de_write(display, reg, val);
378 
379 	for (i = 0; i < len; i += 4) {
380 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
381 			       *data);
382 		data++;
383 	}
384 	/* Write every possible data byte to force correct ECC calculation. */
385 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
386 		intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
387 
388 	val |= g4x_infoframe_enable(type);
389 	val &= ~VIDEO_DIP_FREQ_MASK;
390 	val |= VIDEO_DIP_FREQ_VSYNC;
391 
392 	intel_de_write(display, reg, val);
393 	intel_de_posting_read(display, reg);
394 }
395 
396 static void cpt_read_infoframe(struct intel_encoder *encoder,
397 			       const struct intel_crtc_state *crtc_state,
398 			       unsigned int type,
399 			       void *frame, ssize_t len)
400 {
401 	struct intel_display *display = to_intel_display(encoder);
402 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
403 	u32 *data = frame;
404 	int i;
405 
406 	intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
407 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
408 
409 	for (i = 0; i < len; i += 4)
410 		*data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
411 }
412 
413 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
414 				  const struct intel_crtc_state *pipe_config)
415 {
416 	struct intel_display *display = to_intel_display(encoder);
417 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
418 	u32 val = intel_de_read(display, TVIDEO_DIP_CTL(pipe));
419 
420 	if ((val & VIDEO_DIP_ENABLE) == 0)
421 		return 0;
422 
423 	return val & (VIDEO_DIP_ENABLE_AVI |
424 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
425 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
426 }
427 
428 static void vlv_write_infoframe(struct intel_encoder *encoder,
429 				const struct intel_crtc_state *crtc_state,
430 				unsigned int type,
431 				const void *frame, ssize_t len)
432 {
433 	struct intel_display *display = to_intel_display(encoder);
434 	const u32 *data = frame;
435 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
436 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
437 	u32 val = intel_de_read(display, reg);
438 	int i;
439 
440 	drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
441 		 "Writing DIP with CTL reg disabled\n");
442 
443 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
444 	val |= g4x_infoframe_index(type);
445 
446 	val &= ~g4x_infoframe_enable(type);
447 
448 	intel_de_write(display, reg, val);
449 
450 	for (i = 0; i < len; i += 4) {
451 		intel_de_write(display,
452 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
453 		data++;
454 	}
455 	/* Write every possible data byte to force correct ECC calculation. */
456 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
457 		intel_de_write(display,
458 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
459 
460 	val |= g4x_infoframe_enable(type);
461 	val &= ~VIDEO_DIP_FREQ_MASK;
462 	val |= VIDEO_DIP_FREQ_VSYNC;
463 
464 	intel_de_write(display, reg, val);
465 	intel_de_posting_read(display, reg);
466 }
467 
468 static void vlv_read_infoframe(struct intel_encoder *encoder,
469 			       const struct intel_crtc_state *crtc_state,
470 			       unsigned int type,
471 			       void *frame, ssize_t len)
472 {
473 	struct intel_display *display = to_intel_display(encoder);
474 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
475 	u32 *data = frame;
476 	int i;
477 
478 	intel_de_rmw(display, VLV_TVIDEO_DIP_CTL(crtc->pipe),
479 		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
480 
481 	for (i = 0; i < len; i += 4)
482 		*data++ = intel_de_read(display,
483 				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
484 }
485 
486 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
487 				  const struct intel_crtc_state *pipe_config)
488 {
489 	struct intel_display *display = to_intel_display(encoder);
490 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
491 	u32 val = intel_de_read(display, VLV_TVIDEO_DIP_CTL(pipe));
492 
493 	if ((val & VIDEO_DIP_ENABLE) == 0)
494 		return 0;
495 
496 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
497 		return 0;
498 
499 	return val & (VIDEO_DIP_ENABLE_AVI |
500 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
501 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
502 }
503 
504 void hsw_write_infoframe(struct intel_encoder *encoder,
505 			 const struct intel_crtc_state *crtc_state,
506 			 unsigned int type,
507 			 const void *frame, ssize_t len)
508 {
509 	struct intel_display *display = to_intel_display(encoder);
510 	const u32 *data = frame;
511 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
512 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(display, cpu_transcoder);
513 	int data_size;
514 	int i;
515 	u32 val = intel_de_read(display, ctl_reg);
516 
517 	data_size = hsw_dip_data_size(display, type);
518 
519 	drm_WARN_ON(display->drm, len > data_size);
520 
521 	val &= ~hsw_infoframe_enable(type);
522 	intel_de_write(display, ctl_reg, val);
523 
524 	for (i = 0; i < len; i += 4) {
525 		intel_de_write(display,
526 			       hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
527 			       *data);
528 		data++;
529 	}
530 	/* Write every possible data byte to force correct ECC calculation. */
531 	for (; i < data_size; i += 4)
532 		intel_de_write(display,
533 			       hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
534 			       0);
535 
536 	/* Wa_14013475917 */
537 	if (!(IS_DISPLAY_VER(display, 13, 14) && crtc_state->has_psr &&
538 	      !crtc_state->has_panel_replay && type == DP_SDP_VSC))
539 		val |= hsw_infoframe_enable(type);
540 
541 	if (type == DP_SDP_VSC)
542 		val |= VSC_DIP_HW_DATA_SW_HEA;
543 
544 	intel_de_write(display, ctl_reg, val);
545 	intel_de_posting_read(display, ctl_reg);
546 }
547 
548 void hsw_read_infoframe(struct intel_encoder *encoder,
549 			const struct intel_crtc_state *crtc_state,
550 			unsigned int type, void *frame, ssize_t len)
551 {
552 	struct intel_display *display = to_intel_display(encoder);
553 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
554 	u32 *data = frame;
555 	int i;
556 
557 	for (i = 0; i < len; i += 4)
558 		*data++ = intel_de_read(display,
559 					hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2));
560 }
561 
562 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
563 				  const struct intel_crtc_state *pipe_config)
564 {
565 	struct intel_display *display = to_intel_display(encoder);
566 	u32 val = intel_de_read(display,
567 				HSW_TVIDEO_DIP_CTL(display, pipe_config->cpu_transcoder));
568 	u32 mask;
569 
570 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
571 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
572 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
573 
574 	if (DISPLAY_VER(display) >= 10)
575 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
576 
577 	if (HAS_AS_SDP(display))
578 		mask |= VIDEO_DIP_ENABLE_AS_ADL;
579 
580 	return val & mask;
581 }
582 
583 static const u8 infoframe_type_to_idx[] = {
584 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
585 	HDMI_PACKET_TYPE_GAMUT_METADATA,
586 	DP_SDP_VSC,
587 	DP_SDP_ADAPTIVE_SYNC,
588 	HDMI_INFOFRAME_TYPE_AVI,
589 	HDMI_INFOFRAME_TYPE_SPD,
590 	HDMI_INFOFRAME_TYPE_VENDOR,
591 	HDMI_INFOFRAME_TYPE_DRM,
592 };
593 
594 u32 intel_hdmi_infoframe_enable(unsigned int type)
595 {
596 	int i;
597 
598 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
599 		if (infoframe_type_to_idx[i] == type)
600 			return BIT(i);
601 	}
602 
603 	return 0;
604 }
605 
606 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
607 				  const struct intel_crtc_state *crtc_state)
608 {
609 	struct intel_display *display = to_intel_display(encoder);
610 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
611 	u32 val, ret = 0;
612 	int i;
613 
614 	val = dig_port->infoframes_enabled(encoder, crtc_state);
615 
616 	/* map from hardware bits to dip idx */
617 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
618 		unsigned int type = infoframe_type_to_idx[i];
619 
620 		if (HAS_DDI(display)) {
621 			if (val & hsw_infoframe_enable(type))
622 				ret |= BIT(i);
623 		} else {
624 			if (val & g4x_infoframe_enable(type))
625 				ret |= BIT(i);
626 		}
627 	}
628 
629 	return ret;
630 }
631 
632 /*
633  * The data we write to the DIP data buffer registers is 1 byte bigger than the
634  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
635  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
636  * used for both technologies.
637  *
638  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
639  * DW1:       DB3       | DB2 | DB1 | DB0
640  * DW2:       DB7       | DB6 | DB5 | DB4
641  * DW3: ...
642  *
643  * (HB is Header Byte, DB is Data Byte)
644  *
645  * The hdmi pack() functions don't know about that hardware specific hole so we
646  * trick them by giving an offset into the buffer and moving back the header
647  * bytes by one.
648  */
649 static void intel_write_infoframe(struct intel_encoder *encoder,
650 				  const struct intel_crtc_state *crtc_state,
651 				  enum hdmi_infoframe_type type,
652 				  const union hdmi_infoframe *frame)
653 {
654 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
655 	u8 buffer[VIDEO_DIP_DATA_SIZE];
656 	ssize_t len;
657 
658 	if ((crtc_state->infoframes.enable &
659 	     intel_hdmi_infoframe_enable(type)) == 0)
660 		return;
661 
662 	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
663 		return;
664 
665 	/* see comment above for the reason for this offset */
666 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
667 	if (drm_WARN_ON(encoder->base.dev, len < 0))
668 		return;
669 
670 	/* Insert the 'hole' (see big comment above) at position 3 */
671 	memmove(&buffer[0], &buffer[1], 3);
672 	buffer[3] = 0;
673 	len++;
674 
675 	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
676 }
677 
678 void intel_read_infoframe(struct intel_encoder *encoder,
679 			  const struct intel_crtc_state *crtc_state,
680 			  enum hdmi_infoframe_type type,
681 			  union hdmi_infoframe *frame)
682 {
683 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
684 	u8 buffer[VIDEO_DIP_DATA_SIZE];
685 	int ret;
686 
687 	if ((crtc_state->infoframes.enable &
688 	     intel_hdmi_infoframe_enable(type)) == 0)
689 		return;
690 
691 	dig_port->read_infoframe(encoder, crtc_state,
692 				       type, buffer, sizeof(buffer));
693 
694 	/* Fill the 'hole' (see big comment above) at position 3 */
695 	memmove(&buffer[1], &buffer[0], 3);
696 
697 	/* see comment above for the reason for this offset */
698 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
699 	if (ret) {
700 		drm_dbg_kms(encoder->base.dev,
701 			    "Failed to unpack infoframe type 0x%02x\n", type);
702 		return;
703 	}
704 
705 	if (frame->any.type != type)
706 		drm_dbg_kms(encoder->base.dev,
707 			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
708 			    frame->any.type, type);
709 }
710 
711 static bool
712 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
713 				 struct intel_crtc_state *crtc_state,
714 				 struct drm_connector_state *conn_state)
715 {
716 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
717 	const struct drm_display_mode *adjusted_mode =
718 		&crtc_state->hw.adjusted_mode;
719 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
720 	int ret;
721 
722 	if (!crtc_state->has_infoframe)
723 		return true;
724 
725 	crtc_state->infoframes.enable |=
726 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
727 
728 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, &connector->base,
729 						       adjusted_mode);
730 	if (ret)
731 		return false;
732 
733 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
734 		frame->colorspace = HDMI_COLORSPACE_YUV420;
735 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
736 		frame->colorspace = HDMI_COLORSPACE_YUV444;
737 	else
738 		frame->colorspace = HDMI_COLORSPACE_RGB;
739 
740 	drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
741 
742 	/* nonsense combination */
743 	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
744 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
745 
746 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
747 		drm_hdmi_avi_infoframe_quant_range(frame, &connector->base,
748 						   adjusted_mode,
749 						   crtc_state->limited_color_range ?
750 						   HDMI_QUANTIZATION_RANGE_LIMITED :
751 						   HDMI_QUANTIZATION_RANGE_FULL);
752 	} else {
753 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
754 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
755 	}
756 
757 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
758 
759 	/* TODO: handle pixel repetition for YCBCR420 outputs */
760 
761 	ret = hdmi_avi_infoframe_check(frame);
762 	if (drm_WARN_ON(encoder->base.dev, ret))
763 		return false;
764 
765 	return true;
766 }
767 
768 static bool
769 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
770 				 struct intel_crtc_state *crtc_state,
771 				 struct drm_connector_state *conn_state)
772 {
773 	struct intel_display *display = to_intel_display(crtc_state);
774 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
775 	int ret;
776 
777 	if (!crtc_state->has_infoframe)
778 		return true;
779 
780 	crtc_state->infoframes.enable |=
781 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
782 
783 	if (display->platform.dgfx)
784 		ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx");
785 	else
786 		ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
787 
788 	if (drm_WARN_ON(encoder->base.dev, ret))
789 		return false;
790 
791 	frame->sdi = HDMI_SPD_SDI_PC;
792 
793 	ret = hdmi_spd_infoframe_check(frame);
794 	if (drm_WARN_ON(encoder->base.dev, ret))
795 		return false;
796 
797 	return true;
798 }
799 
800 static bool
801 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
802 				  struct intel_crtc_state *crtc_state,
803 				  struct drm_connector_state *conn_state)
804 {
805 	struct hdmi_vendor_infoframe *frame =
806 		&crtc_state->infoframes.hdmi.vendor.hdmi;
807 	const struct drm_display_info *info =
808 		&conn_state->connector->display_info;
809 	int ret;
810 
811 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
812 		return true;
813 
814 	crtc_state->infoframes.enable |=
815 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
816 
817 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
818 							  conn_state->connector,
819 							  &crtc_state->hw.adjusted_mode);
820 	if (drm_WARN_ON(encoder->base.dev, ret))
821 		return false;
822 
823 	ret = hdmi_vendor_infoframe_check(frame);
824 	if (drm_WARN_ON(encoder->base.dev, ret))
825 		return false;
826 
827 	return true;
828 }
829 
830 static bool
831 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
832 				 struct intel_crtc_state *crtc_state,
833 				 struct drm_connector_state *conn_state)
834 {
835 	struct intel_display *display = to_intel_display(encoder);
836 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
837 	int ret;
838 
839 	if (DISPLAY_VER(display) < 10)
840 		return true;
841 
842 	if (!crtc_state->has_infoframe)
843 		return true;
844 
845 	if (!conn_state->hdr_output_metadata)
846 		return true;
847 
848 	crtc_state->infoframes.enable |=
849 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
850 
851 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
852 	if (ret < 0) {
853 		drm_dbg_kms(display->drm,
854 			    "couldn't set HDR metadata in infoframe\n");
855 		return false;
856 	}
857 
858 	ret = hdmi_drm_infoframe_check(frame);
859 	if (drm_WARN_ON(display->drm, ret))
860 		return false;
861 
862 	return true;
863 }
864 
865 static void g4x_set_infoframes(struct intel_encoder *encoder,
866 			       bool enable,
867 			       const struct intel_crtc_state *crtc_state,
868 			       const struct drm_connector_state *conn_state)
869 {
870 	struct intel_display *display = to_intel_display(encoder);
871 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
872 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
873 	i915_reg_t reg = VIDEO_DIP_CTL;
874 	u32 val = intel_de_read(display, reg);
875 	u32 port = VIDEO_DIP_PORT(encoder->port);
876 
877 	assert_hdmi_port_disabled(intel_hdmi);
878 
879 	/* If the registers were not initialized yet, they might be zeroes,
880 	 * which means we're selecting the AVI DIP and we're setting its
881 	 * frequency to once. This seems to really confuse the HW and make
882 	 * things stop working (the register spec says the AVI always needs to
883 	 * be sent every VSync). So here we avoid writing to the register more
884 	 * than we need and also explicitly select the AVI DIP and explicitly
885 	 * set its frequency to every VSync. Avoiding to write it twice seems to
886 	 * be enough to solve the problem, but being defensive shouldn't hurt us
887 	 * either. */
888 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
889 
890 	if (!enable) {
891 		if (!(val & VIDEO_DIP_ENABLE))
892 			return;
893 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
894 			drm_dbg_kms(display->drm,
895 				    "video DIP still enabled on port %c\n",
896 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
897 			return;
898 		}
899 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
900 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
901 		intel_de_write(display, reg, val);
902 		intel_de_posting_read(display, reg);
903 		return;
904 	}
905 
906 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
907 		if (val & VIDEO_DIP_ENABLE) {
908 			drm_dbg_kms(display->drm,
909 				    "video DIP already enabled on port %c\n",
910 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
911 			return;
912 		}
913 		val &= ~VIDEO_DIP_PORT_MASK;
914 		val |= port;
915 	}
916 
917 	val |= VIDEO_DIP_ENABLE;
918 	val &= ~(VIDEO_DIP_ENABLE_AVI |
919 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
920 
921 	intel_de_write(display, reg, val);
922 	intel_de_posting_read(display, reg);
923 
924 	intel_write_infoframe(encoder, crtc_state,
925 			      HDMI_INFOFRAME_TYPE_AVI,
926 			      &crtc_state->infoframes.avi);
927 	intel_write_infoframe(encoder, crtc_state,
928 			      HDMI_INFOFRAME_TYPE_SPD,
929 			      &crtc_state->infoframes.spd);
930 	intel_write_infoframe(encoder, crtc_state,
931 			      HDMI_INFOFRAME_TYPE_VENDOR,
932 			      &crtc_state->infoframes.hdmi);
933 }
934 
935 /*
936  * Determine if default_phase=1 can be indicated in the GCP infoframe.
937  *
938  * From HDMI specification 1.4a:
939  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
940  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
941  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
942  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
943  *   phase of 0
944  */
945 static bool gcp_default_phase_possible(int pipe_bpp,
946 				       const struct drm_display_mode *mode)
947 {
948 	unsigned int pixels_per_group;
949 
950 	switch (pipe_bpp) {
951 	case 30:
952 		/* 4 pixels in 5 clocks */
953 		pixels_per_group = 4;
954 		break;
955 	case 36:
956 		/* 2 pixels in 3 clocks */
957 		pixels_per_group = 2;
958 		break;
959 	case 48:
960 		/* 1 pixel in 2 clocks */
961 		pixels_per_group = 1;
962 		break;
963 	default:
964 		/* phase information not relevant for 8bpc */
965 		return false;
966 	}
967 
968 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
969 		mode->crtc_htotal % pixels_per_group == 0 &&
970 		mode->crtc_hblank_start % pixels_per_group == 0 &&
971 		mode->crtc_hblank_end % pixels_per_group == 0 &&
972 		mode->crtc_hsync_start % pixels_per_group == 0 &&
973 		mode->crtc_hsync_end % pixels_per_group == 0 &&
974 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
975 		 mode->crtc_htotal/2 % pixels_per_group == 0);
976 }
977 
978 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
979 					 const struct intel_crtc_state *crtc_state,
980 					 const struct drm_connector_state *conn_state)
981 {
982 	struct intel_display *display = to_intel_display(encoder);
983 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
984 	i915_reg_t reg;
985 
986 	if ((crtc_state->infoframes.enable &
987 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
988 		return false;
989 
990 	if (HAS_DDI(display))
991 		reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
992 	else if (display->platform.valleyview || display->platform.cherryview)
993 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
994 	else if (HAS_PCH_SPLIT(display))
995 		reg = TVIDEO_DIP_GCP(crtc->pipe);
996 	else
997 		return false;
998 
999 	intel_de_write(display, reg, crtc_state->infoframes.gcp);
1000 
1001 	return true;
1002 }
1003 
1004 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
1005 				   struct intel_crtc_state *crtc_state)
1006 {
1007 	struct intel_display *display = to_intel_display(encoder);
1008 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1009 	i915_reg_t reg;
1010 
1011 	if ((crtc_state->infoframes.enable &
1012 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1013 		return;
1014 
1015 	if (HAS_DDI(display))
1016 		reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
1017 	else if (display->platform.valleyview || display->platform.cherryview)
1018 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1019 	else if (HAS_PCH_SPLIT(display))
1020 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1021 	else
1022 		return;
1023 
1024 	crtc_state->infoframes.gcp = intel_de_read(display, reg);
1025 }
1026 
1027 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1028 					     struct intel_crtc_state *crtc_state,
1029 					     struct drm_connector_state *conn_state)
1030 {
1031 	struct intel_display *display = to_intel_display(encoder);
1032 
1033 	if (display->platform.g4x || !crtc_state->has_infoframe)
1034 		return;
1035 
1036 	crtc_state->infoframes.enable |=
1037 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1038 
1039 	/* Indicate color indication for deep color mode */
1040 	if (crtc_state->pipe_bpp > 24)
1041 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1042 
1043 	/* Enable default_phase whenever the display mode is suitably aligned */
1044 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1045 				       &crtc_state->hw.adjusted_mode))
1046 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1047 }
1048 
1049 static void ibx_set_infoframes(struct intel_encoder *encoder,
1050 			       bool enable,
1051 			       const struct intel_crtc_state *crtc_state,
1052 			       const struct drm_connector_state *conn_state)
1053 {
1054 	struct intel_display *display = to_intel_display(encoder);
1055 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1056 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1057 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1058 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1059 	u32 val = intel_de_read(display, reg);
1060 	u32 port = VIDEO_DIP_PORT(encoder->port);
1061 
1062 	assert_hdmi_port_disabled(intel_hdmi);
1063 
1064 	/* See the big comment in g4x_set_infoframes() */
1065 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1066 
1067 	if (!enable) {
1068 		if (!(val & VIDEO_DIP_ENABLE))
1069 			return;
1070 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1071 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1072 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1073 		intel_de_write(display, reg, val);
1074 		intel_de_posting_read(display, reg);
1075 		return;
1076 	}
1077 
1078 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1079 		drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1080 			 "DIP already enabled on port %c\n",
1081 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1082 		val &= ~VIDEO_DIP_PORT_MASK;
1083 		val |= port;
1084 	}
1085 
1086 	val |= VIDEO_DIP_ENABLE;
1087 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1088 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1089 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1090 
1091 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1092 		val |= VIDEO_DIP_ENABLE_GCP;
1093 
1094 	intel_de_write(display, reg, val);
1095 	intel_de_posting_read(display, reg);
1096 
1097 	intel_write_infoframe(encoder, crtc_state,
1098 			      HDMI_INFOFRAME_TYPE_AVI,
1099 			      &crtc_state->infoframes.avi);
1100 	intel_write_infoframe(encoder, crtc_state,
1101 			      HDMI_INFOFRAME_TYPE_SPD,
1102 			      &crtc_state->infoframes.spd);
1103 	intel_write_infoframe(encoder, crtc_state,
1104 			      HDMI_INFOFRAME_TYPE_VENDOR,
1105 			      &crtc_state->infoframes.hdmi);
1106 }
1107 
1108 static void cpt_set_infoframes(struct intel_encoder *encoder,
1109 			       bool enable,
1110 			       const struct intel_crtc_state *crtc_state,
1111 			       const struct drm_connector_state *conn_state)
1112 {
1113 	struct intel_display *display = to_intel_display(encoder);
1114 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1115 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1116 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1117 	u32 val = intel_de_read(display, reg);
1118 
1119 	assert_hdmi_port_disabled(intel_hdmi);
1120 
1121 	/* See the big comment in g4x_set_infoframes() */
1122 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1123 
1124 	if (!enable) {
1125 		if (!(val & VIDEO_DIP_ENABLE))
1126 			return;
1127 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1128 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1129 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1130 		intel_de_write(display, reg, val);
1131 		intel_de_posting_read(display, reg);
1132 		return;
1133 	}
1134 
1135 	/* Set both together, unset both together: see the spec. */
1136 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1137 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1138 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1139 
1140 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1141 		val |= VIDEO_DIP_ENABLE_GCP;
1142 
1143 	intel_de_write(display, reg, val);
1144 	intel_de_posting_read(display, reg);
1145 
1146 	intel_write_infoframe(encoder, crtc_state,
1147 			      HDMI_INFOFRAME_TYPE_AVI,
1148 			      &crtc_state->infoframes.avi);
1149 	intel_write_infoframe(encoder, crtc_state,
1150 			      HDMI_INFOFRAME_TYPE_SPD,
1151 			      &crtc_state->infoframes.spd);
1152 	intel_write_infoframe(encoder, crtc_state,
1153 			      HDMI_INFOFRAME_TYPE_VENDOR,
1154 			      &crtc_state->infoframes.hdmi);
1155 }
1156 
1157 static void vlv_set_infoframes(struct intel_encoder *encoder,
1158 			       bool enable,
1159 			       const struct intel_crtc_state *crtc_state,
1160 			       const struct drm_connector_state *conn_state)
1161 {
1162 	struct intel_display *display = to_intel_display(encoder);
1163 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1164 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1165 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1166 	u32 val = intel_de_read(display, reg);
1167 	u32 port = VIDEO_DIP_PORT(encoder->port);
1168 
1169 	assert_hdmi_port_disabled(intel_hdmi);
1170 
1171 	/* See the big comment in g4x_set_infoframes() */
1172 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1173 
1174 	if (!enable) {
1175 		if (!(val & VIDEO_DIP_ENABLE))
1176 			return;
1177 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1178 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1179 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1180 		intel_de_write(display, reg, val);
1181 		intel_de_posting_read(display, reg);
1182 		return;
1183 	}
1184 
1185 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1186 		drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1187 			 "DIP already enabled on port %c\n",
1188 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1189 		val &= ~VIDEO_DIP_PORT_MASK;
1190 		val |= port;
1191 	}
1192 
1193 	val |= VIDEO_DIP_ENABLE;
1194 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1195 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1196 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1197 
1198 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1199 		val |= VIDEO_DIP_ENABLE_GCP;
1200 
1201 	intel_de_write(display, reg, val);
1202 	intel_de_posting_read(display, reg);
1203 
1204 	intel_write_infoframe(encoder, crtc_state,
1205 			      HDMI_INFOFRAME_TYPE_AVI,
1206 			      &crtc_state->infoframes.avi);
1207 	intel_write_infoframe(encoder, crtc_state,
1208 			      HDMI_INFOFRAME_TYPE_SPD,
1209 			      &crtc_state->infoframes.spd);
1210 	intel_write_infoframe(encoder, crtc_state,
1211 			      HDMI_INFOFRAME_TYPE_VENDOR,
1212 			      &crtc_state->infoframes.hdmi);
1213 }
1214 
1215 void intel_hdmi_fastset_infoframes(struct intel_encoder *encoder,
1216 				   const struct intel_crtc_state *crtc_state,
1217 				   const struct drm_connector_state *conn_state)
1218 {
1219 	struct intel_display *display = to_intel_display(encoder);
1220 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display,
1221 					    crtc_state->cpu_transcoder);
1222 	u32 val = intel_de_read(display, reg);
1223 
1224 	if ((crtc_state->infoframes.enable &
1225 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) == 0 &&
1226 			(val & VIDEO_DIP_ENABLE_DRM_GLK) == 0)
1227 		return;
1228 
1229 	val &= ~(VIDEO_DIP_ENABLE_DRM_GLK);
1230 
1231 	intel_de_write(display, reg, val);
1232 	intel_de_posting_read(display, reg);
1233 
1234 	intel_write_infoframe(encoder, crtc_state,
1235 			      HDMI_INFOFRAME_TYPE_DRM,
1236 			      &crtc_state->infoframes.drm);
1237 }
1238 
1239 static void hsw_set_infoframes(struct intel_encoder *encoder,
1240 			       bool enable,
1241 			       const struct intel_crtc_state *crtc_state,
1242 			       const struct drm_connector_state *conn_state)
1243 {
1244 	struct intel_display *display = to_intel_display(encoder);
1245 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display,
1246 					    crtc_state->cpu_transcoder);
1247 	u32 val = intel_de_read(display, reg);
1248 
1249 	assert_hdmi_transcoder_func_disabled(display,
1250 					     crtc_state->cpu_transcoder);
1251 
1252 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1253 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1254 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1255 		 VIDEO_DIP_ENABLE_DRM_GLK | VIDEO_DIP_ENABLE_AS_ADL);
1256 
1257 	if (!enable) {
1258 		intel_de_write(display, reg, val);
1259 		intel_de_posting_read(display, reg);
1260 		return;
1261 	}
1262 
1263 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1264 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1265 
1266 	intel_de_write(display, reg, val);
1267 	intel_de_posting_read(display, reg);
1268 
1269 	intel_write_infoframe(encoder, crtc_state,
1270 			      HDMI_INFOFRAME_TYPE_AVI,
1271 			      &crtc_state->infoframes.avi);
1272 	intel_write_infoframe(encoder, crtc_state,
1273 			      HDMI_INFOFRAME_TYPE_SPD,
1274 			      &crtc_state->infoframes.spd);
1275 	intel_write_infoframe(encoder, crtc_state,
1276 			      HDMI_INFOFRAME_TYPE_VENDOR,
1277 			      &crtc_state->infoframes.hdmi);
1278 	intel_write_infoframe(encoder, crtc_state,
1279 			      HDMI_INFOFRAME_TYPE_DRM,
1280 			      &crtc_state->infoframes.drm);
1281 }
1282 
1283 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1284 {
1285 	struct intel_display *display = to_intel_display(hdmi);
1286 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1287 
1288 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1289 		return;
1290 
1291 	drm_dbg_kms(display->drm, "%s DP dual mode adaptor TMDS output\n",
1292 		    enable ? "Enabling" : "Disabling");
1293 
1294 	drm_dp_dual_mode_set_tmds_output(display->drm,
1295 					 hdmi->dp_dual_mode.type, ddc, enable);
1296 }
1297 
1298 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1299 				unsigned int offset, void *buffer, size_t size)
1300 {
1301 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1302 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1303 	int ret;
1304 	u8 start = offset & 0xff;
1305 	struct i2c_msg msgs[] = {
1306 		{
1307 			.addr = DRM_HDCP_DDC_ADDR,
1308 			.flags = 0,
1309 			.len = 1,
1310 			.buf = &start,
1311 		},
1312 		{
1313 			.addr = DRM_HDCP_DDC_ADDR,
1314 			.flags = I2C_M_RD,
1315 			.len = size,
1316 			.buf = buffer
1317 		}
1318 	};
1319 	ret = i2c_transfer(ddc, msgs, ARRAY_SIZE(msgs));
1320 	if (ret == ARRAY_SIZE(msgs))
1321 		return 0;
1322 	return ret >= 0 ? -EIO : ret;
1323 }
1324 
1325 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1326 				 unsigned int offset, void *buffer, size_t size)
1327 {
1328 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1329 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1330 	int ret;
1331 	u8 *write_buf;
1332 	struct i2c_msg msg;
1333 
1334 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1335 	if (!write_buf)
1336 		return -ENOMEM;
1337 
1338 	write_buf[0] = offset & 0xff;
1339 	memcpy(&write_buf[1], buffer, size);
1340 
1341 	msg.addr = DRM_HDCP_DDC_ADDR;
1342 	msg.flags = 0;
1343 	msg.len = size + 1;
1344 	msg.buf = write_buf;
1345 
1346 	ret = i2c_transfer(ddc, &msg, 1);
1347 	if (ret == 1)
1348 		ret = 0;
1349 	else if (ret >= 0)
1350 		ret = -EIO;
1351 
1352 	kfree(write_buf);
1353 	return ret;
1354 }
1355 
1356 static
1357 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1358 				  u8 *an)
1359 {
1360 	struct intel_display *display = to_intel_display(dig_port);
1361 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1362 	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1363 	int ret;
1364 
1365 	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1366 				    DRM_HDCP_AN_LEN);
1367 	if (ret) {
1368 		drm_dbg_kms(display->drm, "Write An over DDC failed (%d)\n",
1369 			    ret);
1370 		return ret;
1371 	}
1372 
1373 	ret = intel_gmbus_output_aksv(ddc);
1374 	if (ret < 0) {
1375 		drm_dbg_kms(display->drm, "Failed to output aksv (%d)\n", ret);
1376 		return ret;
1377 	}
1378 	return 0;
1379 }
1380 
1381 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1382 				     u8 *bksv)
1383 {
1384 	struct intel_display *display = to_intel_display(dig_port);
1385 
1386 	int ret;
1387 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1388 				   DRM_HDCP_KSV_LEN);
1389 	if (ret)
1390 		drm_dbg_kms(display->drm, "Read Bksv over DDC failed (%d)\n",
1391 			    ret);
1392 	return ret;
1393 }
1394 
1395 static
1396 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1397 				 u8 *bstatus)
1398 {
1399 	struct intel_display *display = to_intel_display(dig_port);
1400 
1401 	int ret;
1402 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1403 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1404 	if (ret)
1405 		drm_dbg_kms(display->drm,
1406 			    "Read bstatus over DDC failed (%d)\n",
1407 			    ret);
1408 	return ret;
1409 }
1410 
1411 static
1412 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1413 				     bool *repeater_present)
1414 {
1415 	struct intel_display *display = to_intel_display(dig_port);
1416 	int ret;
1417 	u8 val;
1418 
1419 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1420 	if (ret) {
1421 		drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1422 			    ret);
1423 		return ret;
1424 	}
1425 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1426 	return 0;
1427 }
1428 
1429 static
1430 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1431 				  u8 *ri_prime)
1432 {
1433 	struct intel_display *display = to_intel_display(dig_port);
1434 
1435 	int ret;
1436 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1437 				   ri_prime, DRM_HDCP_RI_LEN);
1438 	if (ret)
1439 		drm_dbg_kms(display->drm, "Read Ri' over DDC failed (%d)\n",
1440 			    ret);
1441 	return ret;
1442 }
1443 
1444 static
1445 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1446 				   bool *ksv_ready)
1447 {
1448 	struct intel_display *display = to_intel_display(dig_port);
1449 	int ret;
1450 	u8 val;
1451 
1452 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1453 	if (ret) {
1454 		drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1455 			    ret);
1456 		return ret;
1457 	}
1458 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1459 	return 0;
1460 }
1461 
1462 static
1463 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1464 				  int num_downstream, u8 *ksv_fifo)
1465 {
1466 	struct intel_display *display = to_intel_display(dig_port);
1467 	int ret;
1468 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1469 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1470 	if (ret) {
1471 		drm_dbg_kms(display->drm,
1472 			    "Read ksv fifo over DDC failed (%d)\n", ret);
1473 		return ret;
1474 	}
1475 	return 0;
1476 }
1477 
1478 static
1479 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1480 				      int i, u32 *part)
1481 {
1482 	struct intel_display *display = to_intel_display(dig_port);
1483 	int ret;
1484 
1485 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1486 		return -EINVAL;
1487 
1488 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1489 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1490 	if (ret)
1491 		drm_dbg_kms(display->drm,
1492 			    "Read V'[%d] over DDC failed (%d)\n",
1493 			    i, ret);
1494 	return ret;
1495 }
1496 
1497 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1498 					   enum transcoder cpu_transcoder)
1499 {
1500 	struct intel_display *display = to_intel_display(connector);
1501 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1502 	struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1503 	u32 scanline;
1504 	int ret;
1505 
1506 	for (;;) {
1507 		scanline = intel_de_read(display,
1508 					 PIPEDSL(display, crtc->pipe));
1509 		if (scanline > 100 && scanline < 200)
1510 			break;
1511 		usleep_range(25, 50);
1512 	}
1513 
1514 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1515 					 false, TRANS_DDI_HDCP_SIGNALLING);
1516 	if (ret) {
1517 		drm_err(display->drm,
1518 			"Disable HDCP signalling failed (%d)\n", ret);
1519 		return ret;
1520 	}
1521 
1522 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1523 					 true, TRANS_DDI_HDCP_SIGNALLING);
1524 	if (ret) {
1525 		drm_err(display->drm,
1526 			"Enable HDCP signalling failed (%d)\n", ret);
1527 		return ret;
1528 	}
1529 
1530 	return 0;
1531 }
1532 
1533 static
1534 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1535 				      enum transcoder cpu_transcoder,
1536 				      bool enable)
1537 {
1538 	struct intel_display *display = to_intel_display(dig_port);
1539 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1540 	struct intel_connector *connector = hdmi->attached_connector;
1541 	int ret;
1542 
1543 	if (!enable)
1544 		usleep_range(6, 60); /* Bspec says >= 6us */
1545 
1546 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1547 					 cpu_transcoder, enable,
1548 					 TRANS_DDI_HDCP_SIGNALLING);
1549 	if (ret) {
1550 		drm_err(display->drm, "%s HDCP signalling failed (%d)\n",
1551 			enable ? "Enable" : "Disable", ret);
1552 		return ret;
1553 	}
1554 
1555 	/*
1556 	 * WA: To fix incorrect positioning of the window of
1557 	 * opportunity and enc_en signalling in KABYLAKE.
1558 	 */
1559 	if (display->platform.kabylake && enable)
1560 		return kbl_repositioning_enc_en_signal(connector,
1561 						       cpu_transcoder);
1562 
1563 	return 0;
1564 }
1565 
1566 static
1567 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1568 				     struct intel_connector *connector)
1569 {
1570 	struct intel_display *display = to_intel_display(dig_port);
1571 	enum port port = dig_port->base.port;
1572 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1573 	int ret;
1574 	union {
1575 		u32 reg;
1576 		u8 shim[DRM_HDCP_RI_LEN];
1577 	} ri;
1578 
1579 	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1580 	if (ret)
1581 		return false;
1582 
1583 	intel_de_write(display, HDCP_RPRIME(display, cpu_transcoder, port), ri.reg);
1584 
1585 	/* Wait for Ri prime match */
1586 	if (wait_for((intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)) &
1587 		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1588 		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1589 		drm_dbg_kms(display->drm, "Ri' mismatch detected (%x)\n",
1590 			    intel_de_read(display, HDCP_STATUS(display, cpu_transcoder,
1591 							       port)));
1592 		return false;
1593 	}
1594 	return true;
1595 }
1596 
1597 static
1598 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1599 				struct intel_connector *connector)
1600 {
1601 	int retry;
1602 
1603 	for (retry = 0; retry < 3; retry++)
1604 		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1605 			return true;
1606 
1607 	return false;
1608 }
1609 
1610 struct hdcp2_hdmi_msg_timeout {
1611 	u8 msg_id;
1612 	u16 timeout;
1613 };
1614 
1615 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1616 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1617 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1618 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1619 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1620 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1621 };
1622 
1623 static
1624 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1625 				    u8 *rx_status)
1626 {
1627 	return intel_hdmi_hdcp_read(dig_port,
1628 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1629 				    rx_status,
1630 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1631 }
1632 
1633 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1634 {
1635 	int i;
1636 
1637 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1638 		if (is_paired)
1639 			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1640 		else
1641 			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1642 	}
1643 
1644 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1645 		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1646 			return hdcp2_msg_timeout[i].timeout;
1647 	}
1648 
1649 	return -EINVAL;
1650 }
1651 
1652 static int
1653 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1654 			      u8 msg_id, bool *msg_ready,
1655 			      ssize_t *msg_sz)
1656 {
1657 	struct intel_display *display = to_intel_display(dig_port);
1658 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1659 	int ret;
1660 
1661 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1662 	if (ret < 0) {
1663 		drm_dbg_kms(display->drm, "rx_status read failed. Err %d\n",
1664 			    ret);
1665 		return ret;
1666 	}
1667 
1668 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1669 		  rx_status[0]);
1670 
1671 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1672 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1673 			     *msg_sz);
1674 	else
1675 		*msg_ready = *msg_sz;
1676 
1677 	return 0;
1678 }
1679 
1680 static ssize_t
1681 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1682 			      u8 msg_id, bool paired)
1683 {
1684 	struct intel_display *display = to_intel_display(dig_port);
1685 	bool msg_ready = false;
1686 	int timeout, ret;
1687 	ssize_t msg_sz = 0;
1688 
1689 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1690 	if (timeout < 0)
1691 		return timeout;
1692 
1693 	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1694 							     msg_id, &msg_ready,
1695 							     &msg_sz),
1696 			 !ret && msg_ready && msg_sz, timeout * 1000,
1697 			 1000, 5 * 1000);
1698 	if (ret)
1699 		drm_dbg_kms(display->drm,
1700 			    "msg_id: %d, ret: %d, timeout: %d\n",
1701 			    msg_id, ret, timeout);
1702 
1703 	return ret ? ret : msg_sz;
1704 }
1705 
1706 static
1707 int intel_hdmi_hdcp2_write_msg(struct intel_connector *connector,
1708 			       void *buf, size_t size)
1709 {
1710 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1711 	unsigned int offset;
1712 
1713 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1714 	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1715 }
1716 
1717 static
1718 int intel_hdmi_hdcp2_read_msg(struct intel_connector *connector,
1719 			      u8 msg_id, void *buf, size_t size)
1720 {
1721 	struct intel_display *display = to_intel_display(connector);
1722 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1723 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1724 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1725 	unsigned int offset;
1726 	ssize_t ret;
1727 
1728 	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1729 					    hdcp->is_paired);
1730 	if (ret < 0)
1731 		return ret;
1732 
1733 	/*
1734 	 * Available msg size should be equal to or lesser than the
1735 	 * available buffer.
1736 	 */
1737 	if (ret > size) {
1738 		drm_dbg_kms(display->drm,
1739 			    "msg_sz(%zd) is more than exp size(%zu)\n",
1740 			    ret, size);
1741 		return -EINVAL;
1742 	}
1743 
1744 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1745 	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1746 	if (ret)
1747 		drm_dbg_kms(display->drm, "Failed to read msg_id: %d(%zd)\n",
1748 			    msg_id, ret);
1749 
1750 	return ret;
1751 }
1752 
1753 static
1754 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1755 				struct intel_connector *connector)
1756 {
1757 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1758 	int ret;
1759 
1760 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1761 	if (ret)
1762 		return ret;
1763 
1764 	/*
1765 	 * Re-auth request and Link Integrity Failures are represented by
1766 	 * same bit. i.e reauth_req.
1767 	 */
1768 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1769 		ret = HDCP_REAUTH_REQUEST;
1770 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1771 		ret = HDCP_TOPOLOGY_CHANGE;
1772 
1773 	return ret;
1774 }
1775 
1776 static
1777 int intel_hdmi_hdcp2_get_capability(struct intel_connector *connector,
1778 				    bool *capable)
1779 {
1780 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1781 	u8 hdcp2_version;
1782 	int ret;
1783 
1784 	*capable = false;
1785 	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1786 				   &hdcp2_version, sizeof(hdcp2_version));
1787 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1788 		*capable = true;
1789 
1790 	return ret;
1791 }
1792 
1793 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1794 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1795 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1796 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1797 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1798 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1799 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1800 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1801 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1802 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1803 	.check_link = intel_hdmi_hdcp_check_link,
1804 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1805 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1806 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1807 	.hdcp_2_2_get_capability = intel_hdmi_hdcp2_get_capability,
1808 	.protocol = HDCP_PROTOCOL_HDMI,
1809 };
1810 
1811 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1812 {
1813 	struct intel_display *display = to_intel_display(encoder);
1814 	int max_tmds_clock, vbt_max_tmds_clock;
1815 
1816 	if (DISPLAY_VER(display) >= 13 || display->platform.alderlake_s)
1817 		max_tmds_clock = 600000;
1818 	else if (DISPLAY_VER(display) >= 10)
1819 		max_tmds_clock = 594000;
1820 	else if (DISPLAY_VER(display) >= 8 || display->platform.haswell)
1821 		max_tmds_clock = 300000;
1822 	else if (DISPLAY_VER(display) >= 5)
1823 		max_tmds_clock = 225000;
1824 	else
1825 		max_tmds_clock = 165000;
1826 
1827 	vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata);
1828 	if (vbt_max_tmds_clock)
1829 		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1830 
1831 	return max_tmds_clock;
1832 }
1833 
1834 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1835 				const struct drm_connector_state *conn_state)
1836 {
1837 	struct intel_connector *connector = hdmi->attached_connector;
1838 
1839 	return connector->base.display_info.is_hdmi &&
1840 		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1841 }
1842 
1843 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1844 {
1845 	return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1846 }
1847 
1848 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1849 				 bool respect_downstream_limits,
1850 				 bool has_hdmi_sink)
1851 {
1852 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1853 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1854 
1855 	if (respect_downstream_limits) {
1856 		struct intel_connector *connector = hdmi->attached_connector;
1857 		const struct drm_display_info *info = &connector->base.display_info;
1858 
1859 		if (hdmi->dp_dual_mode.max_tmds_clock)
1860 			max_tmds_clock = min(max_tmds_clock,
1861 					     hdmi->dp_dual_mode.max_tmds_clock);
1862 
1863 		if (info->max_tmds_clock)
1864 			max_tmds_clock = min(max_tmds_clock,
1865 					     info->max_tmds_clock);
1866 		else if (!has_hdmi_sink)
1867 			max_tmds_clock = min(max_tmds_clock, 165000);
1868 	}
1869 
1870 	return max_tmds_clock;
1871 }
1872 
1873 static enum drm_mode_status
1874 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1875 		      int clock, bool respect_downstream_limits,
1876 		      bool has_hdmi_sink)
1877 {
1878 	struct intel_display *display = to_intel_display(hdmi);
1879 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1880 
1881 	if (clock < 25000)
1882 		return MODE_CLOCK_LOW;
1883 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1884 					  has_hdmi_sink))
1885 		return MODE_CLOCK_HIGH;
1886 
1887 	/* GLK DPLL can't generate 446-480 MHz */
1888 	if (display->platform.geminilake && clock > 446666 && clock < 480000)
1889 		return MODE_CLOCK_RANGE;
1890 
1891 	/* BXT/GLK DPLL can't generate 223-240 MHz */
1892 	if ((display->platform.geminilake || display->platform.broxton) &&
1893 	    clock > 223333 && clock < 240000)
1894 		return MODE_CLOCK_RANGE;
1895 
1896 	/* CHV DPLL can't generate 216-240 MHz */
1897 	if (display->platform.cherryview && clock > 216000 && clock < 240000)
1898 		return MODE_CLOCK_RANGE;
1899 
1900 	/* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1901 	if (intel_encoder_is_combo(encoder) && clock > 500000 && clock < 533200)
1902 		return MODE_CLOCK_RANGE;
1903 
1904 	/* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1905 	if (intel_encoder_is_tc(encoder) && clock > 500000 && clock < 532800)
1906 		return MODE_CLOCK_RANGE;
1907 
1908 	return MODE_OK;
1909 }
1910 
1911 int intel_hdmi_tmds_clock(int clock, int bpc,
1912 			  enum intel_output_format sink_format)
1913 {
1914 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
1915 	if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1916 		clock /= 2;
1917 
1918 	/*
1919 	 * Need to adjust the port link by:
1920 	 *  1.5x for 12bpc
1921 	 *  1.25x for 10bpc
1922 	 */
1923 	return DIV_ROUND_CLOSEST(clock * bpc, 8);
1924 }
1925 
1926 static bool intel_hdmi_source_bpc_possible(struct intel_display *display, int bpc)
1927 {
1928 	switch (bpc) {
1929 	case 12:
1930 		return !HAS_GMCH(display);
1931 	case 10:
1932 		return DISPLAY_VER(display) >= 11;
1933 	case 8:
1934 		return true;
1935 	default:
1936 		MISSING_CASE(bpc);
1937 		return false;
1938 	}
1939 }
1940 
1941 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *_connector,
1942 					 int bpc, bool has_hdmi_sink,
1943 					 enum intel_output_format sink_format)
1944 {
1945 	struct intel_connector *connector = to_intel_connector(_connector);
1946 	const struct drm_display_info *info = &connector->base.display_info;
1947 	const struct drm_hdmi_info *hdmi = &info->hdmi;
1948 
1949 	switch (bpc) {
1950 	case 12:
1951 		if (!has_hdmi_sink)
1952 			return false;
1953 
1954 		if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1955 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1956 		else
1957 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1958 	case 10:
1959 		if (!has_hdmi_sink)
1960 			return false;
1961 
1962 		if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1963 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1964 		else
1965 			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1966 	case 8:
1967 		return true;
1968 	default:
1969 		MISSING_CASE(bpc);
1970 		return false;
1971 	}
1972 }
1973 
1974 static enum drm_mode_status
1975 intel_hdmi_mode_clock_valid(struct drm_connector *_connector, int clock,
1976 			    bool has_hdmi_sink,
1977 			    enum intel_output_format sink_format)
1978 {
1979 	struct intel_connector *connector = to_intel_connector(_connector);
1980 	struct intel_display *display = to_intel_display(connector);
1981 	struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
1982 	enum drm_mode_status status = MODE_OK;
1983 	int bpc;
1984 
1985 	/*
1986 	 * Try all color depths since valid port clock range
1987 	 * can have holes. Any mode that can be used with at
1988 	 * least one color depth is accepted.
1989 	 */
1990 	for (bpc = 12; bpc >= 8; bpc -= 2) {
1991 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format);
1992 
1993 		if (!intel_hdmi_source_bpc_possible(display, bpc))
1994 			continue;
1995 
1996 		if (!intel_hdmi_sink_bpc_possible(&connector->base, bpc, has_hdmi_sink,
1997 						  sink_format))
1998 			continue;
1999 
2000 		status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
2001 		if (status == MODE_OK)
2002 			return MODE_OK;
2003 	}
2004 
2005 	/* can never happen */
2006 	drm_WARN_ON(display->drm, status == MODE_OK);
2007 
2008 	return status;
2009 }
2010 
2011 static enum drm_mode_status
2012 intel_hdmi_mode_valid(struct drm_connector *_connector,
2013 		      const struct drm_display_mode *mode)
2014 {
2015 	struct intel_connector *connector = to_intel_connector(_connector);
2016 	struct intel_display *display = to_intel_display(connector);
2017 	struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
2018 	enum drm_mode_status status;
2019 	int clock = mode->clock;
2020 	int max_dotclk = display->cdclk.max_dotclk_freq;
2021 	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->base.state);
2022 	bool ycbcr_420_only;
2023 	enum intel_output_format sink_format;
2024 
2025 	status = intel_cpu_transcoder_mode_valid(display, mode);
2026 	if (status != MODE_OK)
2027 		return status;
2028 
2029 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
2030 		clock *= 2;
2031 
2032 	if (clock > max_dotclk)
2033 		return MODE_CLOCK_HIGH;
2034 
2035 	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
2036 		if (!has_hdmi_sink)
2037 			return MODE_CLOCK_LOW;
2038 		clock *= 2;
2039 	}
2040 
2041 	/*
2042 	 * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
2043 	 * enumerated only if FRL is supported. Current platforms do not support
2044 	 * FRL so prune the higher resolution modes that require doctclock more
2045 	 * than 600MHz.
2046 	 */
2047 	if (clock > 600000)
2048 		return MODE_CLOCK_HIGH;
2049 
2050 	ycbcr_420_only = drm_mode_is_420_only(&connector->base.display_info, mode);
2051 
2052 	if (ycbcr_420_only)
2053 		sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2054 	else
2055 		sink_format = INTEL_OUTPUT_FORMAT_RGB;
2056 
2057 	status = intel_hdmi_mode_clock_valid(&connector->base, clock, has_hdmi_sink, sink_format);
2058 	if (status != MODE_OK) {
2059 		if (ycbcr_420_only ||
2060 		    !connector->base.ycbcr_420_allowed ||
2061 		    !drm_mode_is_420_also(&connector->base.display_info, mode))
2062 			return status;
2063 
2064 		sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2065 		status = intel_hdmi_mode_clock_valid(&connector->base, clock, has_hdmi_sink,
2066 						     sink_format);
2067 		if (status != MODE_OK)
2068 			return status;
2069 	}
2070 
2071 	return intel_mode_valid_max_plane_size(display, mode, 1);
2072 }
2073 
2074 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2075 			     int bpc, bool has_hdmi_sink)
2076 {
2077 	struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
2078 	struct intel_digital_connector_state *connector_state;
2079 	struct intel_connector *connector;
2080 	int i;
2081 
2082 	for_each_new_intel_connector_in_state(state, connector, connector_state, i) {
2083 		if (connector_state->base.crtc != crtc_state->uapi.crtc)
2084 			continue;
2085 
2086 		if (!intel_hdmi_sink_bpc_possible(&connector->base, bpc, has_hdmi_sink,
2087 						  crtc_state->sink_format))
2088 			return false;
2089 	}
2090 
2091 	return true;
2092 }
2093 
2094 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
2095 {
2096 	struct intel_display *display = to_intel_display(crtc_state);
2097 	const struct drm_display_mode *adjusted_mode =
2098 		&crtc_state->hw.adjusted_mode;
2099 
2100 	if (!intel_hdmi_source_bpc_possible(display, bpc))
2101 		return false;
2102 
2103 	/* Display Wa_1405510057:icl,ehl */
2104 	if (intel_hdmi_is_ycbcr420(crtc_state) &&
2105 	    bpc == 10 && DISPLAY_VER(display) == 11 &&
2106 	    (adjusted_mode->crtc_hblank_end -
2107 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2108 		return false;
2109 
2110 	return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink);
2111 }
2112 
2113 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2114 				  struct intel_crtc_state *crtc_state,
2115 				  int clock, bool respect_downstream_limits)
2116 {
2117 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2118 	int bpc;
2119 
2120 	/*
2121 	 * pipe_bpp could already be below 8bpc due to FDI
2122 	 * bandwidth constraints. HDMI minimum is 8bpc however.
2123 	 */
2124 	bpc = max(crtc_state->pipe_bpp / 3, 8);
2125 
2126 	/*
2127 	 * We will never exceed downstream TMDS clock limits while
2128 	 * attempting deep color. If the user insists on forcing an
2129 	 * out of spec mode they will have to be satisfied with 8bpc.
2130 	 */
2131 	if (!respect_downstream_limits)
2132 		bpc = 8;
2133 
2134 	for (; bpc >= 8; bpc -= 2) {
2135 		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc,
2136 						       crtc_state->sink_format);
2137 
2138 		if (hdmi_bpc_possible(crtc_state, bpc) &&
2139 		    hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2140 					  respect_downstream_limits,
2141 					  crtc_state->has_hdmi_sink) == MODE_OK)
2142 			return bpc;
2143 	}
2144 
2145 	return -EINVAL;
2146 }
2147 
2148 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2149 				    struct intel_crtc_state *crtc_state,
2150 				    bool respect_downstream_limits)
2151 {
2152 	struct intel_display *display = to_intel_display(encoder);
2153 	const struct drm_display_mode *adjusted_mode =
2154 		&crtc_state->hw.adjusted_mode;
2155 	int bpc, clock = adjusted_mode->crtc_clock;
2156 
2157 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2158 		clock *= 2;
2159 
2160 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2161 				     respect_downstream_limits);
2162 	if (bpc < 0)
2163 		return bpc;
2164 
2165 	crtc_state->port_clock =
2166 		intel_hdmi_tmds_clock(clock, bpc, crtc_state->sink_format);
2167 
2168 	/*
2169 	 * pipe_bpp could already be below 8bpc due to
2170 	 * FDI bandwidth constraints. We shouldn't bump it
2171 	 * back up to the HDMI minimum 8bpc in that case.
2172 	 */
2173 	crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
2174 
2175 	drm_dbg_kms(display->drm,
2176 		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2177 		    bpc, crtc_state->pipe_bpp);
2178 
2179 	return 0;
2180 }
2181 
2182 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2183 				    const struct drm_connector_state *conn_state)
2184 {
2185 	const struct intel_digital_connector_state *intel_conn_state =
2186 		to_intel_digital_connector_state(conn_state);
2187 	const struct drm_display_mode *adjusted_mode =
2188 		&crtc_state->hw.adjusted_mode;
2189 
2190 	/*
2191 	 * Our YCbCr output is always limited range.
2192 	 * crtc_state->limited_color_range only applies to RGB,
2193 	 * and it must never be set for YCbCr or we risk setting
2194 	 * some conflicting bits in TRANSCONF which will mess up
2195 	 * the colors on the monitor.
2196 	 */
2197 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2198 		return false;
2199 
2200 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2201 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2202 		return crtc_state->has_hdmi_sink &&
2203 			drm_default_rgb_quant_range(adjusted_mode) ==
2204 			HDMI_QUANTIZATION_RANGE_LIMITED;
2205 	} else {
2206 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2207 	}
2208 }
2209 
2210 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2211 				 const struct intel_crtc_state *crtc_state,
2212 				 const struct drm_connector_state *conn_state)
2213 {
2214 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
2215 	const struct intel_digital_connector_state *intel_conn_state =
2216 		to_intel_digital_connector_state(conn_state);
2217 
2218 	if (!crtc_state->has_hdmi_sink)
2219 		return false;
2220 
2221 	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2222 		return connector->base.display_info.has_audio;
2223 	else
2224 		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2225 }
2226 
2227 static enum intel_output_format
2228 intel_hdmi_sink_format(const struct intel_crtc_state *crtc_state,
2229 		       struct intel_connector *connector,
2230 		       bool ycbcr_420_output)
2231 {
2232 	if (!crtc_state->has_hdmi_sink)
2233 		return INTEL_OUTPUT_FORMAT_RGB;
2234 
2235 	if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2236 		return INTEL_OUTPUT_FORMAT_YCBCR420;
2237 	else
2238 		return INTEL_OUTPUT_FORMAT_RGB;
2239 }
2240 
2241 static enum intel_output_format
2242 intel_hdmi_output_format(const struct intel_crtc_state *crtc_state)
2243 {
2244 	return crtc_state->sink_format;
2245 }
2246 
2247 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2248 					    struct intel_crtc_state *crtc_state,
2249 					    const struct drm_connector_state *conn_state,
2250 					    bool respect_downstream_limits)
2251 {
2252 	struct intel_display *display = to_intel_display(encoder);
2253 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
2254 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2255 	const struct drm_display_info *info = &connector->base.display_info;
2256 	bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2257 	int ret;
2258 
2259 	crtc_state->sink_format =
2260 		intel_hdmi_sink_format(crtc_state, connector, ycbcr_420_only);
2261 
2262 	if (ycbcr_420_only && crtc_state->sink_format != INTEL_OUTPUT_FORMAT_YCBCR420) {
2263 		drm_dbg_kms(display->drm,
2264 			    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2265 		crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB;
2266 	}
2267 
2268 	crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2269 	ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2270 	if (ret) {
2271 		if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
2272 		    !crtc_state->has_hdmi_sink ||
2273 		    !connector->base.ycbcr_420_allowed ||
2274 		    !drm_mode_is_420_also(info, adjusted_mode))
2275 			return ret;
2276 
2277 		crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2278 		crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2279 		ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2280 	}
2281 
2282 	return ret;
2283 }
2284 
2285 static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state)
2286 {
2287 	return crtc_state->uapi.encoder_mask &&
2288 		!is_power_of_2(crtc_state->uapi.encoder_mask);
2289 }
2290 
2291 static bool source_supports_scrambling(struct intel_encoder *encoder)
2292 {
2293 	/*
2294 	 * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and
2295 	 * scrambling is supported.
2296 	 * But there seem to be cases where certain platforms that support
2297 	 * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is
2298 	 * capped by VBT to less than 340MHz.
2299 	 *
2300 	 * In such cases when an HDMI2.0 sink is connected, it creates a
2301 	 * problem : the platform and the sink both support scrambling but the
2302 	 * HDMI 1.4 retimer chip doesn't.
2303 	 *
2304 	 * So go for scrambling, based on the max tmds clock taking into account,
2305 	 * restrictions coming from VBT.
2306 	 */
2307 	return intel_hdmi_source_max_tmds_clock(encoder) > 340000;
2308 }
2309 
2310 bool intel_hdmi_compute_has_hdmi_sink(struct intel_encoder *encoder,
2311 				      const struct intel_crtc_state *crtc_state,
2312 				      const struct drm_connector_state *conn_state)
2313 {
2314 	struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder);
2315 
2316 	return intel_has_hdmi_sink(hdmi, conn_state) &&
2317 		!intel_hdmi_is_cloned(crtc_state);
2318 }
2319 
2320 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2321 			      struct intel_crtc_state *pipe_config,
2322 			      struct drm_connector_state *conn_state)
2323 {
2324 	struct intel_display *display = to_intel_display(encoder);
2325 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2326 	struct intel_connector *connector = to_intel_connector(conn_state->connector);
2327 	struct drm_scdc *scdc = &connector->base.display_info.hdmi.scdc;
2328 	int ret;
2329 
2330 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2331 		return -EINVAL;
2332 
2333 	if (!connector->base.interlace_allowed &&
2334 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2335 		return -EINVAL;
2336 
2337 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2338 
2339 	if (pipe_config->has_hdmi_sink)
2340 		pipe_config->has_infoframe = true;
2341 
2342 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2343 		pipe_config->pixel_multiplier = 2;
2344 
2345 	pipe_config->has_audio =
2346 		intel_hdmi_has_audio(encoder, pipe_config, conn_state) &&
2347 		intel_audio_compute_config(encoder, pipe_config, conn_state);
2348 
2349 	/*
2350 	 * Try to respect downstream TMDS clock limits first, if
2351 	 * that fails assume the user might know something we don't.
2352 	 */
2353 	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2354 	if (ret)
2355 		ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2356 	if (ret) {
2357 		drm_dbg_kms(display->drm,
2358 			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2359 			    pipe_config->hw.adjusted_mode.crtc_clock);
2360 		return ret;
2361 	}
2362 
2363 	if (intel_hdmi_is_ycbcr420(pipe_config)) {
2364 		ret = intel_pfit_compute_config(pipe_config, conn_state);
2365 		if (ret)
2366 			return ret;
2367 	}
2368 
2369 	pipe_config->limited_color_range =
2370 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2371 
2372 	if (conn_state->picture_aspect_ratio)
2373 		adjusted_mode->picture_aspect_ratio =
2374 			conn_state->picture_aspect_ratio;
2375 
2376 	pipe_config->lane_count = 4;
2377 
2378 	if (scdc->scrambling.supported && source_supports_scrambling(encoder)) {
2379 		if (scdc->scrambling.low_rates)
2380 			pipe_config->hdmi_scrambling = true;
2381 
2382 		if (pipe_config->port_clock > 340000) {
2383 			pipe_config->hdmi_scrambling = true;
2384 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2385 		}
2386 	}
2387 
2388 	intel_vrr_compute_config(pipe_config, conn_state);
2389 
2390 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2391 					 conn_state);
2392 
2393 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2394 		drm_dbg_kms(display->drm, "bad AVI infoframe\n");
2395 		return -EINVAL;
2396 	}
2397 
2398 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2399 		drm_dbg_kms(display->drm, "bad SPD infoframe\n");
2400 		return -EINVAL;
2401 	}
2402 
2403 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2404 		drm_dbg_kms(display->drm, "bad HDMI infoframe\n");
2405 		return -EINVAL;
2406 	}
2407 
2408 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2409 		drm_dbg_kms(display->drm, "bad DRM infoframe\n");
2410 		return -EINVAL;
2411 	}
2412 
2413 	return 0;
2414 }
2415 
2416 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2417 {
2418 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2419 
2420 	/*
2421 	 * Give a hand to buggy BIOSen which forget to turn
2422 	 * the TMDS output buffers back on after a reboot.
2423 	 */
2424 	intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2425 }
2426 
2427 static void
2428 intel_hdmi_unset_edid(struct drm_connector *_connector)
2429 {
2430 	struct intel_connector *connector = to_intel_connector(_connector);
2431 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
2432 
2433 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2434 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2435 
2436 	drm_edid_free(connector->detect_edid);
2437 	connector->detect_edid = NULL;
2438 }
2439 
2440 static void
2441 intel_hdmi_dp_dual_mode_detect(struct drm_connector *_connector)
2442 {
2443 	struct intel_connector *connector = to_intel_connector(_connector);
2444 	struct intel_display *display = to_intel_display(connector);
2445 	struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
2446 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
2447 	struct i2c_adapter *ddc = connector->base.ddc;
2448 	enum drm_dp_dual_mode_type type;
2449 
2450 	type = drm_dp_dual_mode_detect(display->drm, ddc);
2451 
2452 	/*
2453 	 * Type 1 DVI adaptors are not required to implement any
2454 	 * registers, so we can't always detect their presence.
2455 	 * Ideally we should be able to check the state of the
2456 	 * CONFIG1 pin, but no such luck on our hardware.
2457 	 *
2458 	 * The only method left to us is to check the VBT to see
2459 	 * if the port is a dual mode capable DP port.
2460 	 */
2461 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2462 		if (!connector->base.force &&
2463 		    intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2464 			drm_dbg_kms(display->drm,
2465 				    "Assuming DP dual mode adaptor presence based on VBT\n");
2466 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2467 		} else {
2468 			type = DRM_DP_DUAL_MODE_NONE;
2469 		}
2470 	}
2471 
2472 	if (type == DRM_DP_DUAL_MODE_NONE)
2473 		return;
2474 
2475 	hdmi->dp_dual_mode.type = type;
2476 	hdmi->dp_dual_mode.max_tmds_clock =
2477 		drm_dp_dual_mode_max_tmds_clock(display->drm, type, ddc);
2478 
2479 	drm_dbg_kms(display->drm,
2480 		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2481 		    drm_dp_get_dual_mode_type_name(type),
2482 		    hdmi->dp_dual_mode.max_tmds_clock);
2483 
2484 	/* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2485 	if ((DISPLAY_VER(display) >= 8 || display->platform.haswell) &&
2486 	    !intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2487 		drm_dbg_kms(display->drm,
2488 			    "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2489 		hdmi->dp_dual_mode.max_tmds_clock = 0;
2490 	}
2491 }
2492 
2493 static bool
2494 intel_hdmi_set_edid(struct drm_connector *_connector)
2495 {
2496 	struct intel_connector *connector = to_intel_connector(_connector);
2497 	struct intel_display *display = to_intel_display(connector);
2498 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
2499 	struct i2c_adapter *ddc = connector->base.ddc;
2500 	intel_wakeref_t wakeref;
2501 	const struct drm_edid *drm_edid;
2502 	bool connected = false;
2503 
2504 	wakeref = intel_display_power_get(display, POWER_DOMAIN_GMBUS);
2505 
2506 	drm_edid = drm_edid_read_ddc(&connector->base, ddc);
2507 
2508 	if (!drm_edid && !intel_gmbus_is_forced_bit(ddc)) {
2509 		drm_dbg_kms(display->drm,
2510 			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2511 		intel_gmbus_force_bit(ddc, true);
2512 		drm_edid = drm_edid_read_ddc(&connector->base, ddc);
2513 		intel_gmbus_force_bit(ddc, false);
2514 	}
2515 
2516 	/* Below we depend on display info having been updated */
2517 	drm_edid_connector_update(&connector->base, drm_edid);
2518 
2519 	connector->detect_edid = drm_edid;
2520 
2521 	if (drm_edid_is_digital(drm_edid)) {
2522 		intel_hdmi_dp_dual_mode_detect(&connector->base);
2523 
2524 		connected = true;
2525 	}
2526 
2527 	intel_display_power_put(display, POWER_DOMAIN_GMBUS, wakeref);
2528 
2529 	cec_notifier_set_phys_addr(intel_hdmi->cec_notifier,
2530 				   connector->base.display_info.source_physical_address);
2531 
2532 	return connected;
2533 }
2534 
2535 static enum drm_connector_status
2536 intel_hdmi_detect(struct drm_connector *_connector, bool force)
2537 {
2538 	struct intel_connector *connector = to_intel_connector(_connector);
2539 	struct intel_display *display = to_intel_display(connector);
2540 	enum drm_connector_status status = connector_status_disconnected;
2541 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
2542 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2543 	intel_wakeref_t wakeref;
2544 
2545 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2546 		    connector->base.base.id, connector->base.name);
2547 
2548 	if (!intel_display_device_enabled(display))
2549 		return connector_status_disconnected;
2550 
2551 	if (!intel_display_driver_check_access(display))
2552 		return connector->base.status;
2553 
2554 	wakeref = intel_display_power_get(display, POWER_DOMAIN_GMBUS);
2555 
2556 	if (DISPLAY_VER(display) >= 11 &&
2557 	    !intel_digital_port_connected(encoder))
2558 		goto out;
2559 
2560 	intel_hdmi_unset_edid(&connector->base);
2561 
2562 	if (intel_hdmi_set_edid(&connector->base))
2563 		status = connector_status_connected;
2564 
2565 out:
2566 	intel_display_power_put(display, POWER_DOMAIN_GMBUS, wakeref);
2567 
2568 	if (status != connector_status_connected)
2569 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2570 
2571 	return status;
2572 }
2573 
2574 static void
2575 intel_hdmi_force(struct drm_connector *_connector)
2576 {
2577 	struct intel_connector *connector = to_intel_connector(_connector);
2578 	struct intel_display *display = to_intel_display(connector);
2579 
2580 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2581 		    connector->base.base.id, connector->base.name);
2582 
2583 	if (!intel_display_driver_check_access(display))
2584 		return;
2585 
2586 	intel_hdmi_unset_edid(&connector->base);
2587 
2588 	if (connector->base.status != connector_status_connected)
2589 		return;
2590 
2591 	intel_hdmi_set_edid(&connector->base);
2592 }
2593 
2594 static int intel_hdmi_get_modes(struct drm_connector *_connector)
2595 {
2596 	struct intel_connector *connector = to_intel_connector(_connector);
2597 
2598 	/* drm_edid_connector_update() done in ->detect() or ->force() */
2599 	return drm_edid_connector_add_modes(&connector->base);
2600 }
2601 
2602 static int
2603 intel_hdmi_connector_register(struct drm_connector *_connector)
2604 {
2605 	struct intel_connector *connector = to_intel_connector(_connector);
2606 	int ret;
2607 
2608 	ret = intel_connector_register(&connector->base);
2609 	if (ret)
2610 		return ret;
2611 
2612 	return ret;
2613 }
2614 
2615 static void intel_hdmi_connector_unregister(struct drm_connector *_connector)
2616 {
2617 	struct intel_connector *connector = to_intel_connector(_connector);
2618 	struct cec_notifier *n = intel_attached_hdmi(connector)->cec_notifier;
2619 
2620 	cec_notifier_conn_unregister(n);
2621 
2622 	intel_connector_unregister(&connector->base);
2623 }
2624 
2625 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2626 	.detect = intel_hdmi_detect,
2627 	.force = intel_hdmi_force,
2628 	.fill_modes = drm_helper_probe_single_connector_modes,
2629 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2630 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2631 	.late_register = intel_hdmi_connector_register,
2632 	.early_unregister = intel_hdmi_connector_unregister,
2633 	.destroy = intel_connector_destroy,
2634 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2635 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2636 };
2637 
2638 static int intel_hdmi_connector_atomic_check(struct drm_connector *_connector,
2639 					     struct drm_atomic_state *state)
2640 {
2641 	struct intel_connector *connector = to_intel_connector(_connector);
2642 	struct intel_display *display = to_intel_display(connector);
2643 
2644 	if (HAS_DDI(display))
2645 		return intel_digital_connector_atomic_check(&connector->base, state);
2646 	else
2647 		return g4x_hdmi_connector_atomic_check(&connector->base, state);
2648 }
2649 
2650 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2651 	.get_modes = intel_hdmi_get_modes,
2652 	.mode_valid = intel_hdmi_mode_valid,
2653 	.atomic_check = intel_hdmi_connector_atomic_check,
2654 };
2655 
2656 static void
2657 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *_connector)
2658 {
2659 	struct intel_connector *connector = to_intel_connector(_connector);
2660 	struct intel_display *display = to_intel_display(intel_hdmi);
2661 
2662 	intel_attach_force_audio_property(&connector->base);
2663 	intel_attach_broadcast_rgb_property(&connector->base);
2664 	intel_attach_aspect_ratio_property(&connector->base);
2665 
2666 	intel_attach_hdmi_colorspace_property(&connector->base);
2667 	drm_connector_attach_content_type_property(&connector->base);
2668 
2669 	if (DISPLAY_VER(display) >= 10)
2670 		drm_connector_attach_hdr_output_metadata_property(&connector->base);
2671 
2672 	if (!HAS_GMCH(display))
2673 		drm_connector_attach_max_bpc_property(&connector->base, 8, 12);
2674 }
2675 
2676 /*
2677  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2678  * @encoder: intel_encoder
2679  * @connector: drm_connector
2680  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2681  *  or reset the high tmds clock ratio for scrambling
2682  * @scrambling: bool to Indicate if the function needs to set or reset
2683  *  sink scrambling
2684  *
2685  * This function handles scrambling on HDMI 2.0 capable sinks.
2686  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2687  * it enables scrambling. This should be called before enabling the HDMI
2688  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2689  * detect a scrambled clock within 100 ms.
2690  *
2691  * Returns:
2692  * True on success, false on failure.
2693  */
2694 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2695 				       struct drm_connector *_connector,
2696 				       bool high_tmds_clock_ratio,
2697 				       bool scrambling)
2698 {
2699 	struct intel_connector *connector = to_intel_connector(_connector);
2700 	struct intel_display *display = to_intel_display(encoder);
2701 	struct drm_scrambling *sink_scrambling =
2702 		&connector->base.display_info.hdmi.scdc.scrambling;
2703 
2704 	if (!sink_scrambling->supported)
2705 		return true;
2706 
2707 	drm_dbg_kms(display->drm,
2708 		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2709 		    connector->base.base.id, connector->base.name,
2710 		    str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2711 
2712 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2713 	return drm_scdc_set_high_tmds_clock_ratio(&connector->base, high_tmds_clock_ratio) &&
2714 		drm_scdc_set_scrambling(&connector->base, scrambling);
2715 }
2716 
2717 static u8 chv_encoder_to_ddc_pin(struct intel_encoder *encoder)
2718 {
2719 	enum port port = encoder->port;
2720 	u8 ddc_pin;
2721 
2722 	switch (port) {
2723 	case PORT_B:
2724 		ddc_pin = GMBUS_PIN_DPB;
2725 		break;
2726 	case PORT_C:
2727 		ddc_pin = GMBUS_PIN_DPC;
2728 		break;
2729 	case PORT_D:
2730 		ddc_pin = GMBUS_PIN_DPD_CHV;
2731 		break;
2732 	default:
2733 		MISSING_CASE(port);
2734 		ddc_pin = GMBUS_PIN_DPB;
2735 		break;
2736 	}
2737 	return ddc_pin;
2738 }
2739 
2740 static u8 bxt_encoder_to_ddc_pin(struct intel_encoder *encoder)
2741 {
2742 	enum port port = encoder->port;
2743 	u8 ddc_pin;
2744 
2745 	switch (port) {
2746 	case PORT_B:
2747 		ddc_pin = GMBUS_PIN_1_BXT;
2748 		break;
2749 	case PORT_C:
2750 		ddc_pin = GMBUS_PIN_2_BXT;
2751 		break;
2752 	default:
2753 		MISSING_CASE(port);
2754 		ddc_pin = GMBUS_PIN_1_BXT;
2755 		break;
2756 	}
2757 	return ddc_pin;
2758 }
2759 
2760 static u8 cnp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2761 {
2762 	enum port port = encoder->port;
2763 	u8 ddc_pin;
2764 
2765 	switch (port) {
2766 	case PORT_B:
2767 		ddc_pin = GMBUS_PIN_1_BXT;
2768 		break;
2769 	case PORT_C:
2770 		ddc_pin = GMBUS_PIN_2_BXT;
2771 		break;
2772 	case PORT_D:
2773 		ddc_pin = GMBUS_PIN_4_CNP;
2774 		break;
2775 	case PORT_F:
2776 		ddc_pin = GMBUS_PIN_3_BXT;
2777 		break;
2778 	default:
2779 		MISSING_CASE(port);
2780 		ddc_pin = GMBUS_PIN_1_BXT;
2781 		break;
2782 	}
2783 	return ddc_pin;
2784 }
2785 
2786 static u8 icl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2787 {
2788 	struct intel_display *display = to_intel_display(encoder);
2789 	enum port port = encoder->port;
2790 
2791 	if (intel_encoder_is_combo(encoder))
2792 		return GMBUS_PIN_1_BXT + port;
2793 	else if (intel_encoder_is_tc(encoder))
2794 		return GMBUS_PIN_9_TC1_ICP + intel_encoder_to_tc(encoder);
2795 
2796 	drm_WARN(display->drm, 1, "Unknown port:%c\n", port_name(port));
2797 	return GMBUS_PIN_2_BXT;
2798 }
2799 
2800 static u8 mcc_encoder_to_ddc_pin(struct intel_encoder *encoder)
2801 {
2802 	enum phy phy = intel_encoder_to_phy(encoder);
2803 	u8 ddc_pin;
2804 
2805 	switch (phy) {
2806 	case PHY_A:
2807 		ddc_pin = GMBUS_PIN_1_BXT;
2808 		break;
2809 	case PHY_B:
2810 		ddc_pin = GMBUS_PIN_2_BXT;
2811 		break;
2812 	case PHY_C:
2813 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2814 		break;
2815 	default:
2816 		MISSING_CASE(phy);
2817 		ddc_pin = GMBUS_PIN_1_BXT;
2818 		break;
2819 	}
2820 	return ddc_pin;
2821 }
2822 
2823 static u8 rkl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2824 {
2825 	struct intel_display *display = to_intel_display(encoder);
2826 	enum phy phy = intel_encoder_to_phy(encoder);
2827 
2828 	WARN_ON(encoder->port == PORT_C);
2829 
2830 	/*
2831 	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2832 	 * final two outputs use type-c pins, even though they're actually
2833 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2834 	 * all outputs.
2835 	 */
2836 	if (INTEL_PCH_TYPE(display) >= PCH_TGP && phy >= PHY_C)
2837 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2838 
2839 	return GMBUS_PIN_1_BXT + phy;
2840 }
2841 
2842 static u8 gen9bc_tgp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2843 {
2844 	struct intel_display *display = to_intel_display(encoder);
2845 	enum phy phy = intel_encoder_to_phy(encoder);
2846 
2847 	drm_WARN_ON(display->drm, encoder->port == PORT_A);
2848 
2849 	/*
2850 	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2851 	 * final two outputs use type-c pins, even though they're actually
2852 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2853 	 * all outputs.
2854 	 */
2855 	if (INTEL_PCH_TYPE(display) >= PCH_TGP && phy >= PHY_C)
2856 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2857 
2858 	return GMBUS_PIN_1_BXT + phy;
2859 }
2860 
2861 static u8 dg1_encoder_to_ddc_pin(struct intel_encoder *encoder)
2862 {
2863 	return intel_encoder_to_phy(encoder) + 1;
2864 }
2865 
2866 static u8 adls_encoder_to_ddc_pin(struct intel_encoder *encoder)
2867 {
2868 	enum phy phy = intel_encoder_to_phy(encoder);
2869 
2870 	WARN_ON(encoder->port == PORT_B || encoder->port == PORT_C);
2871 
2872 	/*
2873 	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2874 	 * except first combo output.
2875 	 */
2876 	if (phy == PHY_A)
2877 		return GMBUS_PIN_1_BXT;
2878 
2879 	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2880 }
2881 
2882 static u8 g4x_encoder_to_ddc_pin(struct intel_encoder *encoder)
2883 {
2884 	enum port port = encoder->port;
2885 	u8 ddc_pin;
2886 
2887 	switch (port) {
2888 	case PORT_B:
2889 		ddc_pin = GMBUS_PIN_DPB;
2890 		break;
2891 	case PORT_C:
2892 		ddc_pin = GMBUS_PIN_DPC;
2893 		break;
2894 	case PORT_D:
2895 		ddc_pin = GMBUS_PIN_DPD;
2896 		break;
2897 	default:
2898 		MISSING_CASE(port);
2899 		ddc_pin = GMBUS_PIN_DPB;
2900 		break;
2901 	}
2902 	return ddc_pin;
2903 }
2904 
2905 static u8 intel_hdmi_default_ddc_pin(struct intel_encoder *encoder)
2906 {
2907 	struct intel_display *display = to_intel_display(encoder);
2908 	u8 ddc_pin;
2909 
2910 	if (display->platform.alderlake_s)
2911 		ddc_pin = adls_encoder_to_ddc_pin(encoder);
2912 	else if (INTEL_PCH_TYPE(display) >= PCH_DG1)
2913 		ddc_pin = dg1_encoder_to_ddc_pin(encoder);
2914 	else if (display->platform.rocketlake)
2915 		ddc_pin = rkl_encoder_to_ddc_pin(encoder);
2916 	else if (DISPLAY_VER(display) == 9 && HAS_PCH_TGP(display))
2917 		ddc_pin = gen9bc_tgp_encoder_to_ddc_pin(encoder);
2918 	else if ((display->platform.jasperlake || display->platform.elkhartlake) &&
2919 		 HAS_PCH_TGP(display))
2920 		ddc_pin = mcc_encoder_to_ddc_pin(encoder);
2921 	else if (INTEL_PCH_TYPE(display) >= PCH_ICP)
2922 		ddc_pin = icl_encoder_to_ddc_pin(encoder);
2923 	else if (HAS_PCH_CNP(display))
2924 		ddc_pin = cnp_encoder_to_ddc_pin(encoder);
2925 	else if (display->platform.geminilake || display->platform.broxton)
2926 		ddc_pin = bxt_encoder_to_ddc_pin(encoder);
2927 	else if (display->platform.cherryview)
2928 		ddc_pin = chv_encoder_to_ddc_pin(encoder);
2929 	else
2930 		ddc_pin = g4x_encoder_to_ddc_pin(encoder);
2931 
2932 	return ddc_pin;
2933 }
2934 
2935 static struct intel_encoder *
2936 get_encoder_by_ddc_pin(struct intel_encoder *encoder, u8 ddc_pin)
2937 {
2938 	struct intel_display *display = to_intel_display(encoder);
2939 	struct intel_encoder *other;
2940 
2941 	for_each_intel_encoder(display->drm, other) {
2942 		struct intel_connector *connector;
2943 
2944 		if (other == encoder)
2945 			continue;
2946 
2947 		if (!intel_encoder_is_dig_port(other))
2948 			continue;
2949 
2950 		connector = enc_to_dig_port(other)->hdmi.attached_connector;
2951 
2952 		if (connector && connector->base.ddc == intel_gmbus_get_adapter(display, ddc_pin))
2953 			return other;
2954 	}
2955 
2956 	return NULL;
2957 }
2958 
2959 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2960 {
2961 	struct intel_display *display = to_intel_display(encoder);
2962 	struct intel_encoder *other;
2963 	const char *source;
2964 	u8 ddc_pin;
2965 
2966 	ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata);
2967 	source = "VBT";
2968 
2969 	if (!ddc_pin) {
2970 		ddc_pin = intel_hdmi_default_ddc_pin(encoder);
2971 		source = "platform default";
2972 	}
2973 
2974 	if (!intel_gmbus_is_valid_pin(display, ddc_pin)) {
2975 		drm_dbg_kms(display->drm,
2976 			    "[ENCODER:%d:%s] Invalid DDC pin %d\n",
2977 			    encoder->base.base.id, encoder->base.name, ddc_pin);
2978 		return 0;
2979 	}
2980 
2981 	other = get_encoder_by_ddc_pin(encoder, ddc_pin);
2982 	if (other) {
2983 		drm_dbg_kms(display->drm,
2984 			    "[ENCODER:%d:%s] DDC pin %d already claimed by [ENCODER:%d:%s]\n",
2985 			    encoder->base.base.id, encoder->base.name, ddc_pin,
2986 			    other->base.base.id, other->base.name);
2987 		return 0;
2988 	}
2989 
2990 	drm_dbg_kms(display->drm,
2991 		    "[ENCODER:%d:%s] Using DDC pin 0x%x (%s)\n",
2992 		    encoder->base.base.id, encoder->base.name,
2993 		    ddc_pin, source);
2994 
2995 	return ddc_pin;
2996 }
2997 
2998 void intel_infoframe_init(struct intel_digital_port *dig_port)
2999 {
3000 	struct intel_display *display = to_intel_display(dig_port);
3001 
3002 	if (display->platform.valleyview || display->platform.cherryview) {
3003 		dig_port->write_infoframe = vlv_write_infoframe;
3004 		dig_port->read_infoframe = vlv_read_infoframe;
3005 		dig_port->set_infoframes = vlv_set_infoframes;
3006 		dig_port->infoframes_enabled = vlv_infoframes_enabled;
3007 	} else if (display->platform.g4x) {
3008 		dig_port->write_infoframe = g4x_write_infoframe;
3009 		dig_port->read_infoframe = g4x_read_infoframe;
3010 		dig_port->set_infoframes = g4x_set_infoframes;
3011 		dig_port->infoframes_enabled = g4x_infoframes_enabled;
3012 	} else if (HAS_DDI(display)) {
3013 		if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) {
3014 			dig_port->write_infoframe = lspcon_write_infoframe;
3015 			dig_port->read_infoframe = lspcon_read_infoframe;
3016 			dig_port->set_infoframes = lspcon_set_infoframes;
3017 			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
3018 		} else {
3019 			dig_port->write_infoframe = hsw_write_infoframe;
3020 			dig_port->read_infoframe = hsw_read_infoframe;
3021 			dig_port->set_infoframes = hsw_set_infoframes;
3022 			dig_port->infoframes_enabled = hsw_infoframes_enabled;
3023 		}
3024 	} else if (HAS_PCH_IBX(display)) {
3025 		dig_port->write_infoframe = ibx_write_infoframe;
3026 		dig_port->read_infoframe = ibx_read_infoframe;
3027 		dig_port->set_infoframes = ibx_set_infoframes;
3028 		dig_port->infoframes_enabled = ibx_infoframes_enabled;
3029 	} else {
3030 		dig_port->write_infoframe = cpt_write_infoframe;
3031 		dig_port->read_infoframe = cpt_read_infoframe;
3032 		dig_port->set_infoframes = cpt_set_infoframes;
3033 		dig_port->infoframes_enabled = cpt_infoframes_enabled;
3034 	}
3035 }
3036 
3037 bool intel_hdmi_init_connector(struct intel_digital_port *dig_port,
3038 			       struct intel_connector *intel_connector)
3039 {
3040 	struct intel_display *display = to_intel_display(dig_port);
3041 	struct drm_connector *connector = &intel_connector->base;
3042 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
3043 	struct intel_encoder *intel_encoder = &dig_port->base;
3044 	struct drm_device *dev = intel_encoder->base.dev;
3045 	enum port port = intel_encoder->port;
3046 	struct cec_connector_info conn_info;
3047 	u8 ddc_pin;
3048 
3049 	drm_dbg_kms(display->drm,
3050 		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
3051 		    intel_encoder->base.base.id, intel_encoder->base.name);
3052 
3053 	if (DISPLAY_VER(display) < 12 && drm_WARN_ON(dev, port == PORT_A))
3054 		return false;
3055 
3056 	if (drm_WARN(dev, dig_port->max_lanes < 4,
3057 		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
3058 		     dig_port->max_lanes, intel_encoder->base.base.id,
3059 		     intel_encoder->base.name))
3060 		return false;
3061 
3062 	ddc_pin = intel_hdmi_ddc_pin(intel_encoder);
3063 	if (!ddc_pin)
3064 		return false;
3065 
3066 	drm_connector_init_with_ddc(dev, connector,
3067 				    &intel_hdmi_connector_funcs,
3068 				    DRM_MODE_CONNECTOR_HDMIA,
3069 				    intel_gmbus_get_adapter(display, ddc_pin));
3070 
3071 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
3072 
3073 	if (DISPLAY_VER(display) < 12)
3074 		connector->interlace_allowed = true;
3075 
3076 	connector->stereo_allowed = true;
3077 
3078 	if (DISPLAY_VER(display) >= 10)
3079 		connector->ycbcr_420_allowed = true;
3080 
3081 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
3082 	intel_connector->base.polled = intel_connector->polled;
3083 
3084 	if (HAS_DDI(display))
3085 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3086 	else
3087 		intel_connector->get_hw_state = intel_connector_get_hw_state;
3088 
3089 	intel_hdmi_add_properties(intel_hdmi, connector);
3090 
3091 	intel_connector_attach_encoder(intel_connector, intel_encoder);
3092 	intel_hdmi->attached_connector = intel_connector;
3093 
3094 	if (is_hdcp_supported(display, port)) {
3095 		int ret = intel_hdcp_init(intel_connector, dig_port,
3096 					  &intel_hdmi_hdcp_shim);
3097 		if (ret)
3098 			drm_dbg_kms(display->drm,
3099 				    "HDCP init failed, skipping.\n");
3100 	}
3101 
3102 	cec_fill_conn_info_from_drm(&conn_info, connector);
3103 
3104 	intel_hdmi->cec_notifier =
3105 		cec_notifier_conn_register(dev->dev, port_identifier(port),
3106 					   &conn_info);
3107 	if (!intel_hdmi->cec_notifier)
3108 		drm_dbg_kms(display->drm, "CEC notifier get failed\n");
3109 
3110 	return true;
3111 }
3112 
3113 /*
3114  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
3115  * @vactive: Vactive of a display mode
3116  *
3117  * @return: appropriate dsc slice height for a given mode.
3118  */
3119 int intel_hdmi_dsc_get_slice_height(int vactive)
3120 {
3121 	int slice_height;
3122 
3123 	/*
3124 	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
3125 	 * Select smallest slice height >=96, that results in a valid PPS and
3126 	 * requires minimum padding lines required for final slice.
3127 	 *
3128 	 * Assumption : Vactive is even.
3129 	 */
3130 	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3131 		if (vactive % slice_height == 0)
3132 			return slice_height;
3133 
3134 	return 0;
3135 }
3136 
3137 /*
3138  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3139  * and dsc decoder capabilities
3140  *
3141  * @crtc_state: intel crtc_state
3142  * @src_max_slices: maximum slices supported by the DSC encoder
3143  * @src_max_slice_width: maximum slice width supported by DSC encoder
3144  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3145  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3146  *
3147  * @return: num of dsc slices that can be supported by the dsc encoder
3148  * and decoder.
3149  */
3150 int
3151 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3152 			      int src_max_slices, int src_max_slice_width,
3153 			      int hdmi_max_slices, int hdmi_throughput)
3154 {
3155 /* Pixel rates in KPixels/sec */
3156 #define HDMI_DSC_PEAK_PIXEL_RATE		2720000
3157 /*
3158  * Rates at which the source and sink are required to process pixels in each
3159  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3160  */
3161 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
3162 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
3163 
3164 /* Spec limits the slice width to 2720 pixels */
3165 #define MAX_HDMI_SLICE_WIDTH			2720
3166 	int kslice_adjust;
3167 	int adjusted_clk_khz;
3168 	int min_slices;
3169 	int target_slices;
3170 	int max_throughput; /* max clock freq. in khz per slice */
3171 	int max_slice_width;
3172 	int slice_width;
3173 	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3174 
3175 	if (!hdmi_throughput)
3176 		return 0;
3177 
3178 	/*
3179 	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3180 	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3181 	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3182 	 * dividing adjusted clock value by 10.
3183 	 */
3184 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3185 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3186 		kslice_adjust = 10;
3187 	else
3188 		kslice_adjust = 5;
3189 
3190 	/*
3191 	 * As per spec, the rate at which the source and the sink process
3192 	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3193 	 * This depends upon the pixel clock rate and output formats
3194 	 * (kslice adjust).
3195 	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3196 	 * at max 340MHz, otherwise they can be processed at max 400MHz.
3197 	 */
3198 
3199 	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3200 
3201 	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3202 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3203 	else
3204 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3205 
3206 	/*
3207 	 * Taking into account the sink's capability for maximum
3208 	 * clock per slice (in MHz) as read from HF-VSDB.
3209 	 */
3210 	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3211 
3212 	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3213 	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3214 
3215 	/*
3216 	 * Keep on increasing the num of slices/line, starting from min_slices
3217 	 * per line till we get such a number, for which the slice_width is
3218 	 * just less than max_slice_width. The slices/line selected should be
3219 	 * less than or equal to the max horizontal slices that the combination
3220 	 * of PCON encoder and HDMI decoder can support.
3221 	 */
3222 	slice_width = max_slice_width;
3223 
3224 	do {
3225 		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3226 			target_slices = 1;
3227 		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3228 			target_slices = 2;
3229 		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3230 			target_slices = 4;
3231 		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3232 			target_slices = 8;
3233 		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3234 			target_slices = 12;
3235 		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3236 			target_slices = 16;
3237 		else
3238 			return 0;
3239 
3240 		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3241 		if (slice_width >= max_slice_width)
3242 			min_slices = target_slices + 1;
3243 	} while (slice_width >= max_slice_width);
3244 
3245 	return target_slices;
3246 }
3247 
3248 /*
3249  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3250  * source and sink capabilities.
3251  *
3252  * @src_fraction_bpp: fractional bpp supported by the source
3253  * @slice_width: dsc slice width supported by the source and sink
3254  * @num_slices: num of slices supported by the source and sink
3255  * @output_format: video output format
3256  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3257  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3258  *
3259  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3260  */
3261 int
3262 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3263 		       int output_format, bool hdmi_all_bpp,
3264 		       int hdmi_max_chunk_bytes)
3265 {
3266 	int max_dsc_bpp, min_dsc_bpp;
3267 	int target_bytes;
3268 	bool bpp_found = false;
3269 	int bpp_decrement_x16;
3270 	int bpp_target;
3271 	int bpp_target_x16;
3272 
3273 	/*
3274 	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3275 	 * Start with the max bpp and keep on decrementing with
3276 	 * fractional bpp, if supported by PCON DSC encoder
3277 	 *
3278 	 * for each bpp we check if no of bytes can be supported by HDMI sink
3279 	 */
3280 
3281 	/* Assuming: bpc as 8*/
3282 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3283 		min_dsc_bpp = 6;
3284 		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3285 	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3286 		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3287 		min_dsc_bpp = 8;
3288 		max_dsc_bpp = 3 * 8; /* 3*bpc */
3289 	} else {
3290 		/* Assuming 4:2:2 encoding */
3291 		min_dsc_bpp = 7;
3292 		max_dsc_bpp = 2 * 8; /* 2*bpc */
3293 	}
3294 
3295 	/*
3296 	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3297 	 * Section 7.7.34 : Source shall not enable compressed Video
3298 	 * Transport with bpp_target settings above 12 bpp unless
3299 	 * DSC_all_bpp is set to 1.
3300 	 */
3301 	if (!hdmi_all_bpp)
3302 		max_dsc_bpp = min(max_dsc_bpp, 12);
3303 
3304 	/*
3305 	 * The Sink has a limit of compressed data in bytes for a scanline,
3306 	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3307 	 * The no. of bytes depend on the target bits per pixel that the
3308 	 * source configures. So we start with the max_bpp and calculate
3309 	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3310 	 * till we get the target_chunk_bytes just less than what the sink's
3311 	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3312 	 *
3313 	 * The decrement is according to the fractional support from PCON DSC
3314 	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3315 	 *
3316 	 * bpp_target_x16 = bpp_target * 16
3317 	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3318 	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3319 	 */
3320 
3321 	bpp_target = max_dsc_bpp;
3322 
3323 	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3324 	if (!src_fractional_bpp)
3325 		src_fractional_bpp = 1;
3326 	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3327 	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3328 
3329 	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3330 		int bpp;
3331 
3332 		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3333 		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3334 		if (target_bytes <= hdmi_max_chunk_bytes) {
3335 			bpp_found = true;
3336 			break;
3337 		}
3338 		bpp_target_x16 -= bpp_decrement_x16;
3339 	}
3340 	if (bpp_found)
3341 		return bpp_target_x16;
3342 
3343 	return 0;
3344 }
3345