xref: /linux/drivers/gpu/drm/i915/display/intel_hdcp.c (revision b61104e7a6349bd2c2b3e2fb3260d87f15eda8f4)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <seanpaul@chromium.org>
8  * Ramalingam C <ramalingam.c@intel.com>
9  */
10 
11 #include <linux/component.h>
12 #include <linux/debugfs.h>
13 #include <linux/i2c.h>
14 #include <linux/iopoll.h>
15 #include <linux/random.h>
16 
17 #include <drm/display/drm_hdcp_helper.h>
18 #include <drm/drm_print.h>
19 #include <drm/intel/i915_component.h>
20 
21 #include "i915_reg.h"
22 #include "intel_connector.h"
23 #include "intel_de.h"
24 #include "intel_display_jiffies.h"
25 #include "intel_display_power.h"
26 #include "intel_display_power_well.h"
27 #include "intel_display_regs.h"
28 #include "intel_display_rpm.h"
29 #include "intel_display_types.h"
30 #include "intel_dp_mst.h"
31 #include "intel_hdcp.h"
32 #include "intel_hdcp_gsc.h"
33 #include "intel_hdcp_gsc_message.h"
34 #include "intel_hdcp_regs.h"
35 #include "intel_hdcp_shim.h"
36 #include "intel_pcode.h"
37 #include "intel_step.h"
38 
39 #define USE_HDCP_GSC(__display)		(DISPLAY_VER(__display) >= 14)
40 
41 #define KEY_LOAD_TRIES	5
42 #define HDCP2_LC_RETRY_CNT			3
43 
44 static void
45 intel_hdcp_adjust_hdcp_line_rekeying(struct intel_encoder *encoder,
46 				     struct intel_hdcp *hdcp,
47 				     bool enable)
48 {
49 	struct intel_display *display = to_intel_display(encoder);
50 	i915_reg_t rekey_reg;
51 	u32 rekey_bit = 0;
52 
53 	/* Here we assume HDMI is in TMDS mode of operation */
54 	if (!intel_encoder_is_hdmi(encoder))
55 		return;
56 
57 	if (DISPLAY_VER(display) >= 30) {
58 		rekey_reg = TRANS_DDI_FUNC_CTL(display, hdcp->cpu_transcoder);
59 		rekey_bit = XE3_TRANS_DDI_HDCP_LINE_REKEY_DISABLE;
60 	} else if (IS_DISPLAY_VERx100_STEP(display, 1401, STEP_B0, STEP_FOREVER) ||
61 		   IS_DISPLAY_VERx100_STEP(display, 2000, STEP_B0, STEP_FOREVER)) {
62 		rekey_reg = TRANS_DDI_FUNC_CTL(display, hdcp->cpu_transcoder);
63 		rekey_bit = TRANS_DDI_HDCP_LINE_REKEY_DISABLE;
64 	} else if (IS_DISPLAY_VERx100_STEP(display, 1400, STEP_D0, STEP_FOREVER)) {
65 		rekey_reg = CHICKEN_TRANS(display, hdcp->cpu_transcoder);
66 		rekey_bit = HDCP_LINE_REKEY_DISABLE;
67 	}
68 
69 	if (rekey_bit)
70 		intel_de_rmw(display, rekey_reg, rekey_bit, enable ? 0 : rekey_bit);
71 }
72 
73 static int intel_conn_to_vcpi(struct intel_atomic_state *state,
74 			      struct intel_connector *connector)
75 {
76 	struct drm_dp_mst_topology_mgr *mgr;
77 	struct drm_dp_mst_atomic_payload *payload;
78 	struct drm_dp_mst_topology_state *mst_state;
79 	int vcpi = 0;
80 
81 	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
82 	if (!connector->mst.port)
83 		return 0;
84 	mgr = connector->mst.port->mgr;
85 
86 	drm_modeset_lock(&mgr->base.lock, state->base.acquire_ctx);
87 	mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
88 	payload = drm_atomic_get_mst_payload_state(mst_state, connector->mst.port);
89 	if (drm_WARN_ON(mgr->dev, !payload))
90 		goto out;
91 
92 	vcpi = payload->vcpi;
93 	if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
94 		vcpi = 0;
95 		goto out;
96 	}
97 out:
98 	return vcpi;
99 }
100 
101 /*
102  * intel_hdcp_required_content_stream selects the most highest common possible HDCP
103  * content_type for all streams in DP MST topology because security f/w doesn't
104  * have any provision to mark content_type for each stream separately, it marks
105  * all available streams with the content_type proivided at the time of port
106  * authentication. This may prohibit the userspace to use type1 content on
107  * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
108  * DP MST topology. Though it is not compulsory, security fw should change its
109  * policy to mark different content_types for different streams.
110  */
111 static int
112 intel_hdcp_required_content_stream(struct intel_atomic_state *state,
113 				   struct intel_digital_port *dig_port)
114 {
115 	struct intel_display *display = to_intel_display(state);
116 	struct drm_connector_list_iter conn_iter;
117 	struct intel_digital_port *conn_dig_port;
118 	struct intel_connector *connector;
119 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
120 	bool enforce_type0 = false;
121 	int k;
122 
123 	if (dig_port->hdcp.auth_status)
124 		return 0;
125 
126 	data->k = 0;
127 
128 	if (!dig_port->hdcp.mst_type1_capable)
129 		enforce_type0 = true;
130 
131 	drm_connector_list_iter_begin(display->drm, &conn_iter);
132 	for_each_intel_connector_iter(connector, &conn_iter) {
133 		if (connector->base.status == connector_status_disconnected)
134 			continue;
135 
136 		if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
137 			continue;
138 
139 		conn_dig_port = intel_attached_dig_port(connector);
140 		if (conn_dig_port != dig_port)
141 			continue;
142 
143 		data->streams[data->k].stream_id =
144 			intel_conn_to_vcpi(state, connector);
145 		data->k++;
146 
147 		/* if there is only one active stream */
148 		if (intel_dp_mst_active_streams(&dig_port->dp) <= 1)
149 			break;
150 	}
151 	drm_connector_list_iter_end(&conn_iter);
152 
153 	if (drm_WARN_ON(display->drm, data->k > INTEL_NUM_PIPES(display) || data->k == 0))
154 		return -EINVAL;
155 
156 	/*
157 	 * Apply common protection level across all streams in DP MST Topology.
158 	 * Use highest supported content type for all streams in DP MST Topology.
159 	 */
160 	for (k = 0; k < data->k; k++)
161 		data->streams[k].stream_type =
162 			enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
163 
164 	return 0;
165 }
166 
167 static int intel_hdcp_prepare_streams(struct intel_atomic_state *state,
168 				      struct intel_connector *connector)
169 {
170 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
171 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
172 	struct intel_hdcp *hdcp = &connector->hdcp;
173 
174 	if (intel_encoder_is_mst(intel_attached_encoder(connector)))
175 		return intel_hdcp_required_content_stream(state, dig_port);
176 
177 	data->k = 1;
178 	data->streams[0].stream_id = 0;
179 	data->streams[0].stream_type = hdcp->content_type;
180 
181 	return 0;
182 }
183 
184 static
185 bool intel_hdcp_is_ksv_valid(u8 *ksv)
186 {
187 	int i, ones = 0;
188 	/* KSV has 20 1's and 20 0's */
189 	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
190 		ones += hweight8(ksv[i]);
191 	if (ones != 20)
192 		return false;
193 
194 	return true;
195 }
196 
197 static
198 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
199 			       const struct intel_hdcp_shim *shim, u8 *bksv)
200 {
201 	struct intel_display *display = to_intel_display(dig_port);
202 	int ret, i, tries = 2;
203 
204 	/* HDCP spec states that we must retry the bksv if it is invalid */
205 	for (i = 0; i < tries; i++) {
206 		ret = shim->read_bksv(dig_port, bksv);
207 		if (ret)
208 			return ret;
209 		if (intel_hdcp_is_ksv_valid(bksv))
210 			break;
211 	}
212 	if (i == tries) {
213 		drm_dbg_kms(display->drm, "Bksv is invalid\n");
214 		return -ENODEV;
215 	}
216 
217 	return 0;
218 }
219 
220 /* Is HDCP1.4 capable on Platform and Sink */
221 static bool intel_hdcp_get_capability(struct intel_connector *connector)
222 {
223 	struct intel_digital_port *dig_port;
224 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
225 	bool capable = false;
226 	u8 bksv[5];
227 
228 	if (!intel_attached_encoder(connector))
229 		return capable;
230 
231 	dig_port = intel_attached_dig_port(connector);
232 
233 	if (!shim)
234 		return capable;
235 
236 	if (shim->hdcp_get_capability) {
237 		shim->hdcp_get_capability(dig_port, &capable);
238 	} else {
239 		if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
240 			capable = true;
241 	}
242 
243 	return capable;
244 }
245 
246 /*
247  * Check if the source has all the building blocks ready to make
248  * HDCP 2.2 work
249  */
250 static bool intel_hdcp2_prerequisite(struct intel_connector *connector)
251 {
252 	struct intel_display *display = to_intel_display(connector);
253 	struct intel_hdcp *hdcp = &connector->hdcp;
254 
255 	/* I915 support for HDCP2.2 */
256 	if (!hdcp->hdcp2_supported)
257 		return false;
258 
259 	/* If MTL+ make sure gsc is loaded and proxy is setup */
260 	if (USE_HDCP_GSC(display)) {
261 		if (!intel_hdcp_gsc_check_status(display->drm))
262 			return false;
263 	}
264 
265 	/* MEI/GSC interface is solid depending on which is used */
266 	mutex_lock(&display->hdcp.hdcp_mutex);
267 	if (!display->hdcp.comp_added || !display->hdcp.arbiter) {
268 		mutex_unlock(&display->hdcp.hdcp_mutex);
269 		return false;
270 	}
271 	mutex_unlock(&display->hdcp.hdcp_mutex);
272 
273 	return true;
274 }
275 
276 /* Is HDCP2.2 capable on Platform and Sink */
277 static bool intel_hdcp2_get_capability(struct intel_connector *connector)
278 {
279 	struct intel_hdcp *hdcp = &connector->hdcp;
280 	bool capable = false;
281 
282 	if (!intel_hdcp2_prerequisite(connector))
283 		return false;
284 
285 	/* Sink's capability for HDCP2.2 */
286 	hdcp->shim->hdcp_2_2_get_capability(connector, &capable);
287 
288 	return capable;
289 }
290 
291 static void intel_hdcp_get_remote_capability(struct intel_connector *connector,
292 					     bool *hdcp_capable,
293 					     bool *hdcp2_capable)
294 {
295 	struct intel_hdcp *hdcp = &connector->hdcp;
296 
297 	if (!hdcp->shim->get_remote_hdcp_capability)
298 		return;
299 
300 	hdcp->shim->get_remote_hdcp_capability(connector, hdcp_capable,
301 					       hdcp2_capable);
302 
303 	if (!intel_hdcp2_prerequisite(connector))
304 		*hdcp2_capable = false;
305 }
306 
307 static bool intel_hdcp_in_use(struct intel_display *display,
308 			      enum transcoder cpu_transcoder, enum port port)
309 {
310 	return intel_de_read(display,
311 			     HDCP_STATUS(display, cpu_transcoder, port)) &
312 		HDCP_STATUS_ENC;
313 }
314 
315 static bool intel_hdcp2_in_use(struct intel_display *display,
316 			       enum transcoder cpu_transcoder, enum port port)
317 {
318 	return intel_de_read(display,
319 			     HDCP2_STATUS(display, cpu_transcoder, port)) &
320 		LINK_ENCRYPTION_STATUS;
321 }
322 
323 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
324 				    const struct intel_hdcp_shim *shim)
325 {
326 	int ret, read_ret;
327 	bool ksv_ready;
328 
329 	/* Poll for ksv list ready (spec says max time allowed is 5s) */
330 	ret = poll_timeout_us(read_ret = shim->read_ksv_ready(dig_port, &ksv_ready),
331 			      read_ret || ksv_ready,
332 			      100 * 1000, 5 * 1000 * 1000, false);
333 	if (ret)
334 		return ret;
335 	if (read_ret)
336 		return read_ret;
337 
338 	return 0;
339 }
340 
341 static bool hdcp_key_loadable(struct intel_display *display)
342 {
343 	enum i915_power_well_id id;
344 	bool enabled = false;
345 
346 	/*
347 	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
348 	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
349 	 */
350 	if (display->platform.haswell || display->platform.broadwell)
351 		id = HSW_DISP_PW_GLOBAL;
352 	else
353 		id = SKL_DISP_PW_1;
354 
355 	/* PG1 (power well #1) needs to be enabled */
356 	with_intel_display_rpm(display)
357 		enabled = intel_display_power_well_is_enabled(display, id);
358 
359 	/*
360 	 * Another req for hdcp key loadability is enabled state of pll for
361 	 * cdclk. Without active crtc we won't land here. So we are assuming that
362 	 * cdclk is already on.
363 	 */
364 
365 	return enabled;
366 }
367 
368 static void intel_hdcp_clear_keys(struct intel_display *display)
369 {
370 	intel_de_write(display, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
371 	intel_de_write(display, HDCP_KEY_STATUS,
372 		       HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
373 }
374 
375 static int intel_hdcp_load_keys(struct intel_display *display)
376 {
377 	int ret;
378 	u32 val;
379 
380 	val = intel_de_read(display, HDCP_KEY_STATUS);
381 	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
382 		return 0;
383 
384 	/*
385 	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
386 	 * out of reset. So if Key is not already loaded, its an error state.
387 	 */
388 	if (display->platform.haswell || display->platform.broadwell)
389 		if (!(intel_de_read(display, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
390 			return -ENXIO;
391 
392 	/*
393 	 * Initiate loading the HDCP key from fuses.
394 	 *
395 	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
396 	 * version 9 platforms (minus BXT) differ in the key load trigger
397 	 * process from other platforms. These platforms use the GT Driver
398 	 * Mailbox interface.
399 	 */
400 	if (DISPLAY_VER(display) == 9 && !display->platform.broxton) {
401 		ret = intel_pcode_write(display->drm, SKL_PCODE_LOAD_HDCP_KEYS, 1);
402 		if (ret) {
403 			drm_err(display->drm,
404 				"Failed to initiate HDCP key load (%d)\n",
405 				ret);
406 			return ret;
407 		}
408 	} else {
409 		intel_de_write(display, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
410 	}
411 
412 	/* Wait for the keys to load (500us) */
413 	ret = intel_de_wait_ms(display, HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE,
414 			       HDCP_KEY_LOAD_DONE, 1, &val);
415 	if (ret)
416 		return ret;
417 	else if (!(val & HDCP_KEY_LOAD_STATUS))
418 		return -ENXIO;
419 
420 	/* Send Aksv over to PCH display for use in authentication */
421 	intel_de_write(display, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
422 
423 	return 0;
424 }
425 
426 /* Returns updated SHA-1 index */
427 static int intel_write_sha_text(struct intel_display *display, u32 sha_text)
428 {
429 	intel_de_write(display, HDCP_SHA_TEXT, sha_text);
430 	if (intel_de_wait_for_set_ms(display, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
431 		drm_err(display->drm, "Timed out waiting for SHA1 ready\n");
432 		return -ETIMEDOUT;
433 	}
434 	return 0;
435 }
436 
437 static
438 u32 intel_hdcp_get_repeater_ctl(struct intel_display *display,
439 				enum transcoder cpu_transcoder, enum port port)
440 {
441 	if (DISPLAY_VER(display) >= 12) {
442 		switch (cpu_transcoder) {
443 		case TRANSCODER_A:
444 			return HDCP_TRANSA_REP_PRESENT |
445 			       HDCP_TRANSA_SHA1_M0;
446 		case TRANSCODER_B:
447 			return HDCP_TRANSB_REP_PRESENT |
448 			       HDCP_TRANSB_SHA1_M0;
449 		case TRANSCODER_C:
450 			return HDCP_TRANSC_REP_PRESENT |
451 			       HDCP_TRANSC_SHA1_M0;
452 		case TRANSCODER_D:
453 			return HDCP_TRANSD_REP_PRESENT |
454 			       HDCP_TRANSD_SHA1_M0;
455 		default:
456 			drm_err(display->drm, "Unknown transcoder %d\n",
457 				cpu_transcoder);
458 			return 0;
459 		}
460 	}
461 
462 	switch (port) {
463 	case PORT_A:
464 		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
465 	case PORT_B:
466 		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
467 	case PORT_C:
468 		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
469 	case PORT_D:
470 		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
471 	case PORT_E:
472 		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
473 	default:
474 		drm_err(display->drm, "Unknown port %d\n", port);
475 		return 0;
476 	}
477 }
478 
479 static
480 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
481 				const struct intel_hdcp_shim *shim,
482 				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
483 {
484 	struct intel_display *display = to_intel_display(connector);
485 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
486 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
487 	enum port port = dig_port->base.port;
488 	u32 vprime, sha_text, sha_leftovers, rep_ctl;
489 	int ret, i, j, sha_idx;
490 
491 	/* Process V' values from the receiver */
492 	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
493 		ret = shim->read_v_prime_part(dig_port, i, &vprime);
494 		if (ret)
495 			return ret;
496 		intel_de_write(display, HDCP_SHA_V_PRIME(i), vprime);
497 	}
498 
499 	/*
500 	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
501 	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
502 	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
503 	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
504 	 * index will keep track of our progress through the 64 bytes as well as
505 	 * helping us work the 40-bit KSVs through our 32-bit register.
506 	 *
507 	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
508 	 */
509 	sha_idx = 0;
510 	sha_text = 0;
511 	sha_leftovers = 0;
512 	rep_ctl = intel_hdcp_get_repeater_ctl(display, cpu_transcoder, port);
513 	intel_de_write(display, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
514 	for (i = 0; i < num_downstream; i++) {
515 		unsigned int sha_empty;
516 		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
517 
518 		/* Fill up the empty slots in sha_text and write it out */
519 		sha_empty = sizeof(sha_text) - sha_leftovers;
520 		for (j = 0; j < sha_empty; j++) {
521 			u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
522 			sha_text |= ksv[j] << off;
523 		}
524 
525 		ret = intel_write_sha_text(display, sha_text);
526 		if (ret < 0)
527 			return ret;
528 
529 		/* Programming guide writes this every 64 bytes */
530 		sha_idx += sizeof(sha_text);
531 		if (!(sha_idx % 64))
532 			intel_de_write(display, HDCP_REP_CTL,
533 				       rep_ctl | HDCP_SHA1_TEXT_32);
534 
535 		/* Store the leftover bytes from the ksv in sha_text */
536 		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
537 		sha_text = 0;
538 		for (j = 0; j < sha_leftovers; j++)
539 			sha_text |= ksv[sha_empty + j] <<
540 					((sizeof(sha_text) - j - 1) * 8);
541 
542 		/*
543 		 * If we still have room in sha_text for more data, continue.
544 		 * Otherwise, write it out immediately.
545 		 */
546 		if (sizeof(sha_text) > sha_leftovers)
547 			continue;
548 
549 		ret = intel_write_sha_text(display, sha_text);
550 		if (ret < 0)
551 			return ret;
552 		sha_leftovers = 0;
553 		sha_text = 0;
554 		sha_idx += sizeof(sha_text);
555 	}
556 
557 	/*
558 	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
559 	 * bytes are leftover from the last ksv, we might be able to fit them
560 	 * all in sha_text (first 2 cases), or we might need to split them up
561 	 * into 2 writes (last 2 cases).
562 	 */
563 	if (sha_leftovers == 0) {
564 		/* Write 16 bits of text, 16 bits of M0 */
565 		intel_de_write(display, HDCP_REP_CTL,
566 			       rep_ctl | HDCP_SHA1_TEXT_16);
567 		ret = intel_write_sha_text(display,
568 					   bstatus[0] << 8 | bstatus[1]);
569 		if (ret < 0)
570 			return ret;
571 		sha_idx += sizeof(sha_text);
572 
573 		/* Write 32 bits of M0 */
574 		intel_de_write(display, HDCP_REP_CTL,
575 			       rep_ctl | HDCP_SHA1_TEXT_0);
576 		ret = intel_write_sha_text(display, 0);
577 		if (ret < 0)
578 			return ret;
579 		sha_idx += sizeof(sha_text);
580 
581 		/* Write 16 bits of M0 */
582 		intel_de_write(display, HDCP_REP_CTL,
583 			       rep_ctl | HDCP_SHA1_TEXT_16);
584 		ret = intel_write_sha_text(display, 0);
585 		if (ret < 0)
586 			return ret;
587 		sha_idx += sizeof(sha_text);
588 
589 	} else if (sha_leftovers == 1) {
590 		/* Write 24 bits of text, 8 bits of M0 */
591 		intel_de_write(display, HDCP_REP_CTL,
592 			       rep_ctl | HDCP_SHA1_TEXT_24);
593 		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
594 		/* Only 24-bits of data, must be in the LSB */
595 		sha_text = (sha_text & 0xffffff00) >> 8;
596 		ret = intel_write_sha_text(display, sha_text);
597 		if (ret < 0)
598 			return ret;
599 		sha_idx += sizeof(sha_text);
600 
601 		/* Write 32 bits of M0 */
602 		intel_de_write(display, HDCP_REP_CTL,
603 			       rep_ctl | HDCP_SHA1_TEXT_0);
604 		ret = intel_write_sha_text(display, 0);
605 		if (ret < 0)
606 			return ret;
607 		sha_idx += sizeof(sha_text);
608 
609 		/* Write 24 bits of M0 */
610 		intel_de_write(display, HDCP_REP_CTL,
611 			       rep_ctl | HDCP_SHA1_TEXT_8);
612 		ret = intel_write_sha_text(display, 0);
613 		if (ret < 0)
614 			return ret;
615 		sha_idx += sizeof(sha_text);
616 
617 	} else if (sha_leftovers == 2) {
618 		/* Write 32 bits of text */
619 		intel_de_write(display, HDCP_REP_CTL,
620 			       rep_ctl | HDCP_SHA1_TEXT_32);
621 		sha_text |= bstatus[0] << 8 | bstatus[1];
622 		ret = intel_write_sha_text(display, sha_text);
623 		if (ret < 0)
624 			return ret;
625 		sha_idx += sizeof(sha_text);
626 
627 		/* Write 64 bits of M0 */
628 		intel_de_write(display, HDCP_REP_CTL,
629 			       rep_ctl | HDCP_SHA1_TEXT_0);
630 		for (i = 0; i < 2; i++) {
631 			ret = intel_write_sha_text(display, 0);
632 			if (ret < 0)
633 				return ret;
634 			sha_idx += sizeof(sha_text);
635 		}
636 
637 		/*
638 		 * Terminate the SHA-1 stream by hand. For the other leftover
639 		 * cases this is appended by the hardware.
640 		 */
641 		intel_de_write(display, HDCP_REP_CTL,
642 			       rep_ctl | HDCP_SHA1_TEXT_32);
643 		sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
644 		ret = intel_write_sha_text(display, sha_text);
645 		if (ret < 0)
646 			return ret;
647 		sha_idx += sizeof(sha_text);
648 	} else if (sha_leftovers == 3) {
649 		/* Write 32 bits of text (filled from LSB) */
650 		intel_de_write(display, HDCP_REP_CTL,
651 			       rep_ctl | HDCP_SHA1_TEXT_32);
652 		sha_text |= bstatus[0];
653 		ret = intel_write_sha_text(display, sha_text);
654 		if (ret < 0)
655 			return ret;
656 		sha_idx += sizeof(sha_text);
657 
658 		/* Write 8 bits of text (filled from LSB), 24 bits of M0 */
659 		intel_de_write(display, HDCP_REP_CTL,
660 			       rep_ctl | HDCP_SHA1_TEXT_8);
661 		ret = intel_write_sha_text(display, bstatus[1]);
662 		if (ret < 0)
663 			return ret;
664 		sha_idx += sizeof(sha_text);
665 
666 		/* Write 32 bits of M0 */
667 		intel_de_write(display, HDCP_REP_CTL,
668 			       rep_ctl | HDCP_SHA1_TEXT_0);
669 		ret = intel_write_sha_text(display, 0);
670 		if (ret < 0)
671 			return ret;
672 		sha_idx += sizeof(sha_text);
673 
674 		/* Write 8 bits of M0 */
675 		intel_de_write(display, HDCP_REP_CTL,
676 			       rep_ctl | HDCP_SHA1_TEXT_24);
677 		ret = intel_write_sha_text(display, 0);
678 		if (ret < 0)
679 			return ret;
680 		sha_idx += sizeof(sha_text);
681 	} else {
682 		drm_dbg_kms(display->drm, "Invalid number of leftovers %d\n",
683 			    sha_leftovers);
684 		return -EINVAL;
685 	}
686 
687 	intel_de_write(display, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
688 	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
689 	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
690 		ret = intel_write_sha_text(display, 0);
691 		if (ret < 0)
692 			return ret;
693 		sha_idx += sizeof(sha_text);
694 	}
695 
696 	/*
697 	 * Last write gets the length of the concatenation in bits. That is:
698 	 *  - 5 bytes per device
699 	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
700 	 */
701 	sha_text = (num_downstream * 5 + 10) * 8;
702 	ret = intel_write_sha_text(display, sha_text);
703 	if (ret < 0)
704 		return ret;
705 
706 	/* Tell the HW we're done with the hash and wait for it to ACK */
707 	intel_de_write(display, HDCP_REP_CTL,
708 		       rep_ctl | HDCP_SHA1_COMPLETE_HASH);
709 	if (intel_de_wait_for_set_ms(display, HDCP_REP_CTL,
710 				     HDCP_SHA1_COMPLETE, 1)) {
711 		drm_err(display->drm, "Timed out waiting for SHA1 complete\n");
712 		return -ETIMEDOUT;
713 	}
714 	if (!(intel_de_read(display, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
715 		drm_dbg_kms(display->drm, "SHA-1 mismatch, HDCP failed\n");
716 		return -ENXIO;
717 	}
718 
719 	return 0;
720 }
721 
722 /* Implements Part 2 of the HDCP authorization procedure */
723 static
724 int intel_hdcp_auth_downstream(struct intel_connector *connector)
725 {
726 	struct intel_display *display = to_intel_display(connector);
727 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
728 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
729 	u8 bstatus[2], num_downstream, *ksv_fifo;
730 	int ret, i, tries = 3;
731 
732 	ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
733 	if (ret) {
734 		drm_dbg_kms(display->drm,
735 			    "KSV list failed to become ready (%d)\n", ret);
736 		return ret;
737 	}
738 
739 	ret = shim->read_bstatus(dig_port, bstatus);
740 	if (ret)
741 		return ret;
742 
743 	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
744 	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
745 		drm_dbg_kms(display->drm, "Max Topology Limit Exceeded\n");
746 		return -EPERM;
747 	}
748 
749 	/*
750 	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
751 	 * the HDCP encryption. That implies that repeater can't have its own
752 	 * display. As there is no consumption of encrypted content in the
753 	 * repeater with 0 downstream devices, we are failing the
754 	 * authentication.
755 	 */
756 	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
757 	if (num_downstream == 0) {
758 		drm_dbg_kms(display->drm,
759 			    "Repeater with zero downstream devices\n");
760 		return -EINVAL;
761 	}
762 
763 	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
764 	if (!ksv_fifo) {
765 		drm_dbg_kms(display->drm, "Out of mem: ksv_fifo\n");
766 		return -ENOMEM;
767 	}
768 
769 	ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
770 	if (ret)
771 		goto err;
772 
773 	if (drm_hdcp_check_ksvs_revoked(display->drm, ksv_fifo,
774 					num_downstream) > 0) {
775 		drm_err(display->drm, "Revoked Ksv(s) in ksv_fifo\n");
776 		ret = -EPERM;
777 		goto err;
778 	}
779 
780 	/*
781 	 * When V prime mismatches, DP Spec mandates re-read of
782 	 * V prime atleast twice.
783 	 */
784 	for (i = 0; i < tries; i++) {
785 		ret = intel_hdcp_validate_v_prime(connector, shim,
786 						  ksv_fifo, num_downstream,
787 						  bstatus);
788 		if (!ret)
789 			break;
790 	}
791 
792 	if (i == tries) {
793 		drm_dbg_kms(display->drm,
794 			    "V Prime validation failed.(%d)\n", ret);
795 		goto err;
796 	}
797 
798 	drm_dbg_kms(display->drm, "HDCP is enabled (%d downstream devices)\n",
799 		    num_downstream);
800 	ret = 0;
801 err:
802 	kfree(ksv_fifo);
803 	return ret;
804 }
805 
806 /* Implements Part 1 of the HDCP authorization procedure */
807 static int intel_hdcp_auth(struct intel_connector *connector)
808 {
809 	struct intel_display *display = to_intel_display(connector);
810 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
811 	struct intel_hdcp *hdcp = &connector->hdcp;
812 	const struct intel_hdcp_shim *shim = hdcp->shim;
813 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
814 	enum port port = dig_port->base.port;
815 	unsigned long r0_prime_gen_start;
816 	int ret, i, tries = 2;
817 	u32 val;
818 	union {
819 		u32 reg[2];
820 		u8 shim[DRM_HDCP_AN_LEN];
821 	} an;
822 	union {
823 		u32 reg[2];
824 		u8 shim[DRM_HDCP_KSV_LEN];
825 	} bksv;
826 	union {
827 		u32 reg;
828 		u8 shim[DRM_HDCP_RI_LEN];
829 	} ri;
830 	bool repeater_present, hdcp_capable;
831 
832 	/*
833 	 * Detects whether the display is HDCP capable. Although we check for
834 	 * valid Bksv below, the HDCP over DP spec requires that we check
835 	 * whether the display supports HDCP before we write An. For HDMI
836 	 * displays, this is not necessary.
837 	 */
838 	if (shim->hdcp_get_capability) {
839 		ret = shim->hdcp_get_capability(dig_port, &hdcp_capable);
840 		if (ret)
841 			return ret;
842 		if (!hdcp_capable) {
843 			drm_dbg_kms(display->drm,
844 				    "Panel is not HDCP capable\n");
845 			return -EINVAL;
846 		}
847 	}
848 
849 	/* Initialize An with 2 random values and acquire it */
850 	for (i = 0; i < 2; i++)
851 		intel_de_write(display,
852 			       HDCP_ANINIT(display, cpu_transcoder, port),
853 			       get_random_u32());
854 	intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port),
855 		       HDCP_CONF_CAPTURE_AN);
856 
857 	/* Wait for An to be acquired */
858 	if (intel_de_wait_for_set_ms(display,
859 				     HDCP_STATUS(display, cpu_transcoder, port),
860 				     HDCP_STATUS_AN_READY, 1)) {
861 		drm_err(display->drm, "Timed out waiting for An\n");
862 		return -ETIMEDOUT;
863 	}
864 
865 	an.reg[0] = intel_de_read(display,
866 				  HDCP_ANLO(display, cpu_transcoder, port));
867 	an.reg[1] = intel_de_read(display,
868 				  HDCP_ANHI(display, cpu_transcoder, port));
869 	ret = shim->write_an_aksv(dig_port, an.shim);
870 	if (ret)
871 		return ret;
872 
873 	r0_prime_gen_start = jiffies;
874 
875 	memset(&bksv, 0, sizeof(bksv));
876 
877 	ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
878 	if (ret < 0)
879 		return ret;
880 
881 	if (drm_hdcp_check_ksvs_revoked(display->drm, bksv.shim, 1) > 0) {
882 		drm_err(display->drm, "BKSV is revoked\n");
883 		return -EPERM;
884 	}
885 
886 	intel_de_write(display, HDCP_BKSVLO(display, cpu_transcoder, port),
887 		       bksv.reg[0]);
888 	intel_de_write(display, HDCP_BKSVHI(display, cpu_transcoder, port),
889 		       bksv.reg[1]);
890 
891 	ret = shim->repeater_present(dig_port, &repeater_present);
892 	if (ret)
893 		return ret;
894 	if (repeater_present)
895 		intel_de_write(display, HDCP_REP_CTL,
896 			       intel_hdcp_get_repeater_ctl(display, cpu_transcoder, port));
897 
898 	ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
899 	if (ret)
900 		return ret;
901 
902 	intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port),
903 		       HDCP_CONF_AUTH_AND_ENC);
904 
905 	/* Wait for R0 ready */
906 	ret = poll_timeout_us(val = intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)),
907 			      val & (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC),
908 			      100, 1000, false);
909 	if (ret) {
910 		drm_err(display->drm, "Timed out waiting for R0 ready\n");
911 		return -ETIMEDOUT;
912 	}
913 
914 	/*
915 	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
916 	 * some monitors can take longer than this. We'll set the timeout at
917 	 * 300ms just to be sure.
918 	 *
919 	 * On DP, there's an R0_READY bit available but no such bit
920 	 * exists on HDMI. Since the upper-bound is the same, we'll just do
921 	 * the stupid thing instead of polling on one and not the other.
922 	 */
923 	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
924 
925 	tries = 3;
926 
927 	/*
928 	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
929 	 * of R0 mismatch.
930 	 */
931 	for (i = 0; i < tries; i++) {
932 		ri.reg = 0;
933 		ret = shim->read_ri_prime(dig_port, ri.shim);
934 		if (ret)
935 			return ret;
936 		intel_de_write(display,
937 			       HDCP_RPRIME(display, cpu_transcoder, port),
938 			       ri.reg);
939 
940 		/* Wait for Ri prime match */
941 		ret = poll_timeout_us(val = intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)),
942 				      val & (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC),
943 				      100, 1000, false);
944 		if (!ret)
945 			break;
946 	}
947 
948 	if (i == tries) {
949 		drm_dbg_kms(display->drm,
950 			    "Timed out waiting for Ri prime match (%x)\n", val);
951 		return -ETIMEDOUT;
952 	}
953 
954 	/* Wait for encryption confirmation */
955 	if (intel_de_wait_for_set_ms(display,
956 				     HDCP_STATUS(display, cpu_transcoder, port),
957 				     HDCP_STATUS_ENC,
958 				     HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
959 		drm_err(display->drm, "Timed out waiting for encryption\n");
960 		return -ETIMEDOUT;
961 	}
962 
963 	/* DP MST Auth Part 1 Step 2.a and Step 2.b */
964 	if (shim->stream_encryption) {
965 		ret = shim->stream_encryption(connector, true);
966 		if (ret) {
967 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 1.4 stream enc\n",
968 				connector->base.base.id, connector->base.name);
969 			return ret;
970 		}
971 		drm_dbg_kms(display->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
972 			    transcoder_name(hdcp->stream_transcoder));
973 	}
974 
975 	if (repeater_present)
976 		return intel_hdcp_auth_downstream(connector);
977 
978 	drm_dbg_kms(display->drm, "HDCP is enabled (no repeater present)\n");
979 	return 0;
980 }
981 
982 static int _intel_hdcp_disable(struct intel_connector *connector)
983 {
984 	struct intel_display *display = to_intel_display(connector);
985 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
986 	struct intel_hdcp *hdcp = &connector->hdcp;
987 	enum port port = dig_port->base.port;
988 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
989 	u32 repeater_ctl;
990 	int ret;
991 
992 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP is being disabled...\n",
993 		    connector->base.base.id, connector->base.name);
994 
995 	if (hdcp->shim->stream_encryption) {
996 		ret = hdcp->shim->stream_encryption(connector, false);
997 		if (ret) {
998 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 1.4 stream enc\n",
999 				connector->base.base.id, connector->base.name);
1000 			return ret;
1001 		}
1002 		drm_dbg_kms(display->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
1003 			    transcoder_name(hdcp->stream_transcoder));
1004 		/*
1005 		 * If there are other connectors on this port using HDCP,
1006 		 * don't disable it until it disabled HDCP encryption for
1007 		 * all connectors in MST topology.
1008 		 */
1009 		if (dig_port->hdcp.num_streams > 0)
1010 			return 0;
1011 	}
1012 
1013 	hdcp->hdcp_encrypted = false;
1014 	intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port), 0);
1015 	if (intel_de_wait_for_clear_ms(display,
1016 				       HDCP_STATUS(display, cpu_transcoder, port),
1017 				       ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
1018 		drm_err(display->drm,
1019 			"Failed to disable HDCP, timeout clearing status\n");
1020 		return -ETIMEDOUT;
1021 	}
1022 
1023 	repeater_ctl = intel_hdcp_get_repeater_ctl(display, cpu_transcoder,
1024 						   port);
1025 	intel_de_rmw(display, HDCP_REP_CTL, repeater_ctl, 0);
1026 
1027 	ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
1028 	if (ret) {
1029 		drm_err(display->drm, "Failed to disable HDCP signalling\n");
1030 		return ret;
1031 	}
1032 
1033 	drm_dbg_kms(display->drm, "HDCP is disabled\n");
1034 	return 0;
1035 }
1036 
1037 static int intel_hdcp1_enable(struct intel_connector *connector)
1038 {
1039 	struct intel_display *display = to_intel_display(connector);
1040 	struct intel_hdcp *hdcp = &connector->hdcp;
1041 	int i, ret, tries = 3;
1042 
1043 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP is being enabled...\n",
1044 		    connector->base.base.id, connector->base.name);
1045 
1046 	if (!hdcp_key_loadable(display)) {
1047 		drm_err(display->drm, "HDCP key Load is not possible\n");
1048 		return -ENXIO;
1049 	}
1050 
1051 	for (i = 0; i < KEY_LOAD_TRIES; i++) {
1052 		ret = intel_hdcp_load_keys(display);
1053 		if (!ret)
1054 			break;
1055 		intel_hdcp_clear_keys(display);
1056 	}
1057 	if (ret) {
1058 		drm_err(display->drm, "Could not load HDCP keys, (%d)\n",
1059 			ret);
1060 		return ret;
1061 	}
1062 
1063 	intel_hdcp_adjust_hdcp_line_rekeying(connector->encoder, hdcp, true);
1064 
1065 	/* Incase of authentication failures, HDCP spec expects reauth. */
1066 	for (i = 0; i < tries; i++) {
1067 		ret = intel_hdcp_auth(connector);
1068 		if (!ret) {
1069 			hdcp->hdcp_encrypted = true;
1070 			return 0;
1071 		}
1072 
1073 		drm_dbg_kms(display->drm, "HDCP Auth failure (%d)\n", ret);
1074 
1075 		/* Ensuring HDCP encryption and signalling are stopped. */
1076 		_intel_hdcp_disable(connector);
1077 	}
1078 
1079 	drm_dbg_kms(display->drm,
1080 		    "HDCP authentication failed (%d tries/%d)\n", tries, ret);
1081 	return ret;
1082 }
1083 
1084 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
1085 {
1086 	return container_of(hdcp, struct intel_connector, hdcp);
1087 }
1088 
1089 static void intel_hdcp_update_value(struct intel_connector *connector,
1090 				    u64 value, bool update_property)
1091 {
1092 	struct intel_display *display = to_intel_display(connector);
1093 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1094 	struct intel_hdcp *hdcp = &connector->hdcp;
1095 
1096 	drm_WARN_ON(display->drm, !mutex_is_locked(&hdcp->mutex));
1097 
1098 	if (hdcp->value == value)
1099 		return;
1100 
1101 	drm_WARN_ON(display->drm, !mutex_is_locked(&dig_port->hdcp.mutex));
1102 
1103 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1104 		if (!drm_WARN_ON(display->drm, dig_port->hdcp.num_streams == 0))
1105 			dig_port->hdcp.num_streams--;
1106 	} else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1107 		dig_port->hdcp.num_streams++;
1108 	}
1109 
1110 	hdcp->value = value;
1111 	if (update_property) {
1112 		drm_connector_get(&connector->base);
1113 		if (!queue_work(display->wq.unordered, &hdcp->prop_work))
1114 			drm_connector_put(&connector->base);
1115 	}
1116 }
1117 
1118 /* Implements Part 3 of the HDCP authorization procedure */
1119 static int intel_hdcp_check_link(struct intel_connector *connector)
1120 {
1121 	struct intel_display *display = to_intel_display(connector);
1122 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1123 	struct intel_hdcp *hdcp = &connector->hdcp;
1124 	enum port port = dig_port->base.port;
1125 	enum transcoder cpu_transcoder;
1126 	int ret = 0;
1127 
1128 	mutex_lock(&hdcp->mutex);
1129 	mutex_lock(&dig_port->hdcp.mutex);
1130 
1131 	cpu_transcoder = hdcp->cpu_transcoder;
1132 
1133 	/* Check_link valid only when HDCP1.4 is enabled */
1134 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1135 	    !hdcp->hdcp_encrypted) {
1136 		ret = -EINVAL;
1137 		goto out;
1138 	}
1139 
1140 	if (drm_WARN_ON(display->drm,
1141 			!intel_hdcp_in_use(display, cpu_transcoder, port))) {
1142 		drm_err(display->drm,
1143 			"[CONNECTOR:%d:%s] HDCP link stopped encryption,%x\n",
1144 			connector->base.base.id, connector->base.name,
1145 			intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)));
1146 		ret = -ENXIO;
1147 		intel_hdcp_update_value(connector,
1148 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1149 					true);
1150 		goto out;
1151 	}
1152 
1153 	if (hdcp->shim->check_link(dig_port, connector)) {
1154 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1155 			intel_hdcp_update_value(connector,
1156 				DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1157 		}
1158 		goto out;
1159 	}
1160 
1161 	drm_dbg_kms(display->drm,
1162 		    "[CONNECTOR:%d:%s] HDCP link failed, retrying authentication\n",
1163 		    connector->base.base.id, connector->base.name);
1164 
1165 	ret = _intel_hdcp_disable(connector);
1166 	if (ret) {
1167 		drm_err(display->drm, "Failed to disable hdcp (%d)\n", ret);
1168 		intel_hdcp_update_value(connector,
1169 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1170 					true);
1171 		goto out;
1172 	}
1173 
1174 	ret = intel_hdcp1_enable(connector);
1175 	if (ret) {
1176 		drm_err(display->drm, "Failed to enable hdcp (%d)\n", ret);
1177 		intel_hdcp_update_value(connector,
1178 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1179 					true);
1180 		goto out;
1181 	}
1182 
1183 out:
1184 	mutex_unlock(&dig_port->hdcp.mutex);
1185 	mutex_unlock(&hdcp->mutex);
1186 	return ret;
1187 }
1188 
1189 static void intel_hdcp_prop_work(struct work_struct *work)
1190 {
1191 	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1192 					       prop_work);
1193 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1194 	struct intel_display *display = to_intel_display(connector);
1195 
1196 	drm_modeset_lock(&display->drm->mode_config.connection_mutex, NULL);
1197 	mutex_lock(&hdcp->mutex);
1198 
1199 	/*
1200 	 * This worker is only used to flip between ENABLED/DESIRED. Either of
1201 	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1202 	 * we're running just after hdcp has been disabled, so just exit
1203 	 */
1204 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1205 		drm_hdcp_update_content_protection(&connector->base,
1206 						   hdcp->value);
1207 
1208 	mutex_unlock(&hdcp->mutex);
1209 	drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
1210 
1211 	drm_connector_put(&connector->base);
1212 }
1213 
1214 bool is_hdcp_supported(struct intel_display *display, enum port port)
1215 {
1216 	return DISPLAY_RUNTIME_INFO(display)->has_hdcp &&
1217 		(DISPLAY_VER(display) >= 12 || port < PORT_E);
1218 }
1219 
1220 static int
1221 hdcp2_prepare_ake_init(struct intel_connector *connector,
1222 		       struct hdcp2_ake_init *ake_data)
1223 {
1224 	struct intel_display *display = to_intel_display(connector);
1225 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1226 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1227 	struct i915_hdcp_arbiter *arbiter;
1228 	int ret;
1229 
1230 	mutex_lock(&display->hdcp.hdcp_mutex);
1231 	arbiter = display->hdcp.arbiter;
1232 
1233 	if (!arbiter || !arbiter->ops) {
1234 		mutex_unlock(&display->hdcp.hdcp_mutex);
1235 		return -EINVAL;
1236 	}
1237 
1238 	ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data);
1239 	if (ret)
1240 		drm_dbg_kms(display->drm, "Prepare_ake_init failed. %d\n",
1241 			    ret);
1242 	mutex_unlock(&display->hdcp.hdcp_mutex);
1243 
1244 	return ret;
1245 }
1246 
1247 static int
1248 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1249 				struct hdcp2_ake_send_cert *rx_cert,
1250 				bool *paired,
1251 				struct hdcp2_ake_no_stored_km *ek_pub_km,
1252 				size_t *msg_sz)
1253 {
1254 	struct intel_display *display = to_intel_display(connector);
1255 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1256 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1257 	struct i915_hdcp_arbiter *arbiter;
1258 	int ret;
1259 
1260 	mutex_lock(&display->hdcp.hdcp_mutex);
1261 	arbiter = display->hdcp.arbiter;
1262 
1263 	if (!arbiter || !arbiter->ops) {
1264 		mutex_unlock(&display->hdcp.hdcp_mutex);
1265 		return -EINVAL;
1266 	}
1267 
1268 	ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data,
1269 							 rx_cert, paired,
1270 							 ek_pub_km, msg_sz);
1271 	if (ret < 0)
1272 		drm_dbg_kms(display->drm, "Verify rx_cert failed. %d\n",
1273 			    ret);
1274 	mutex_unlock(&display->hdcp.hdcp_mutex);
1275 
1276 	return ret;
1277 }
1278 
1279 static int hdcp2_verify_hprime(struct intel_connector *connector,
1280 			       struct hdcp2_ake_send_hprime *rx_hprime)
1281 {
1282 	struct intel_display *display = to_intel_display(connector);
1283 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1284 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1285 	struct i915_hdcp_arbiter *arbiter;
1286 	int ret;
1287 
1288 	mutex_lock(&display->hdcp.hdcp_mutex);
1289 	arbiter = display->hdcp.arbiter;
1290 
1291 	if (!arbiter || !arbiter->ops) {
1292 		mutex_unlock(&display->hdcp.hdcp_mutex);
1293 		return -EINVAL;
1294 	}
1295 
1296 	ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime);
1297 	if (ret < 0)
1298 		drm_dbg_kms(display->drm, "Verify hprime failed. %d\n", ret);
1299 	mutex_unlock(&display->hdcp.hdcp_mutex);
1300 
1301 	return ret;
1302 }
1303 
1304 static int
1305 hdcp2_store_pairing_info(struct intel_connector *connector,
1306 			 struct hdcp2_ake_send_pairing_info *pairing_info)
1307 {
1308 	struct intel_display *display = to_intel_display(connector);
1309 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1310 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1311 	struct i915_hdcp_arbiter *arbiter;
1312 	int ret;
1313 
1314 	mutex_lock(&display->hdcp.hdcp_mutex);
1315 	arbiter = display->hdcp.arbiter;
1316 
1317 	if (!arbiter || !arbiter->ops) {
1318 		mutex_unlock(&display->hdcp.hdcp_mutex);
1319 		return -EINVAL;
1320 	}
1321 
1322 	ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info);
1323 	if (ret < 0)
1324 		drm_dbg_kms(display->drm, "Store pairing info failed. %d\n",
1325 			    ret);
1326 	mutex_unlock(&display->hdcp.hdcp_mutex);
1327 
1328 	return ret;
1329 }
1330 
1331 static int
1332 hdcp2_prepare_lc_init(struct intel_connector *connector,
1333 		      struct hdcp2_lc_init *lc_init)
1334 {
1335 	struct intel_display *display = to_intel_display(connector);
1336 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1337 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1338 	struct i915_hdcp_arbiter *arbiter;
1339 	int ret;
1340 
1341 	mutex_lock(&display->hdcp.hdcp_mutex);
1342 	arbiter = display->hdcp.arbiter;
1343 
1344 	if (!arbiter || !arbiter->ops) {
1345 		mutex_unlock(&display->hdcp.hdcp_mutex);
1346 		return -EINVAL;
1347 	}
1348 
1349 	ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init);
1350 	if (ret < 0)
1351 		drm_dbg_kms(display->drm, "Prepare lc_init failed. %d\n",
1352 			    ret);
1353 	mutex_unlock(&display->hdcp.hdcp_mutex);
1354 
1355 	return ret;
1356 }
1357 
1358 static int
1359 hdcp2_verify_lprime(struct intel_connector *connector,
1360 		    struct hdcp2_lc_send_lprime *rx_lprime)
1361 {
1362 	struct intel_display *display = to_intel_display(connector);
1363 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1364 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1365 	struct i915_hdcp_arbiter *arbiter;
1366 	int ret;
1367 
1368 	mutex_lock(&display->hdcp.hdcp_mutex);
1369 	arbiter = display->hdcp.arbiter;
1370 
1371 	if (!arbiter || !arbiter->ops) {
1372 		mutex_unlock(&display->hdcp.hdcp_mutex);
1373 		return -EINVAL;
1374 	}
1375 
1376 	ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime);
1377 	if (ret < 0)
1378 		drm_dbg_kms(display->drm, "Verify L_Prime failed. %d\n",
1379 			    ret);
1380 	mutex_unlock(&display->hdcp.hdcp_mutex);
1381 
1382 	return ret;
1383 }
1384 
1385 static int hdcp2_prepare_skey(struct intel_connector *connector,
1386 			      struct hdcp2_ske_send_eks *ske_data)
1387 {
1388 	struct intel_display *display = to_intel_display(connector);
1389 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1390 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1391 	struct i915_hdcp_arbiter *arbiter;
1392 	int ret;
1393 
1394 	mutex_lock(&display->hdcp.hdcp_mutex);
1395 	arbiter = display->hdcp.arbiter;
1396 
1397 	if (!arbiter || !arbiter->ops) {
1398 		mutex_unlock(&display->hdcp.hdcp_mutex);
1399 		return -EINVAL;
1400 	}
1401 
1402 	ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data);
1403 	if (ret < 0)
1404 		drm_dbg_kms(display->drm, "Get session key failed. %d\n",
1405 			    ret);
1406 	mutex_unlock(&display->hdcp.hdcp_mutex);
1407 
1408 	return ret;
1409 }
1410 
1411 static int
1412 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1413 				      struct hdcp2_rep_send_receiverid_list
1414 								*rep_topology,
1415 				      struct hdcp2_rep_send_ack *rep_send_ack)
1416 {
1417 	struct intel_display *display = to_intel_display(connector);
1418 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1419 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1420 	struct i915_hdcp_arbiter *arbiter;
1421 	int ret;
1422 
1423 	mutex_lock(&display->hdcp.hdcp_mutex);
1424 	arbiter = display->hdcp.arbiter;
1425 
1426 	if (!arbiter || !arbiter->ops) {
1427 		mutex_unlock(&display->hdcp.hdcp_mutex);
1428 		return -EINVAL;
1429 	}
1430 
1431 	ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev,
1432 							    data,
1433 							    rep_topology,
1434 							    rep_send_ack);
1435 	if (ret < 0)
1436 		drm_dbg_kms(display->drm,
1437 			    "Verify rep topology failed. %d\n", ret);
1438 	mutex_unlock(&display->hdcp.hdcp_mutex);
1439 
1440 	return ret;
1441 }
1442 
1443 static int
1444 hdcp2_verify_mprime(struct intel_connector *connector,
1445 		    struct hdcp2_rep_stream_ready *stream_ready)
1446 {
1447 	struct intel_display *display = to_intel_display(connector);
1448 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1449 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1450 	struct i915_hdcp_arbiter *arbiter;
1451 	int ret;
1452 
1453 	mutex_lock(&display->hdcp.hdcp_mutex);
1454 	arbiter = display->hdcp.arbiter;
1455 
1456 	if (!arbiter || !arbiter->ops) {
1457 		mutex_unlock(&display->hdcp.hdcp_mutex);
1458 		return -EINVAL;
1459 	}
1460 
1461 	ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready);
1462 	if (ret < 0)
1463 		drm_dbg_kms(display->drm, "Verify mprime failed. %d\n", ret);
1464 	mutex_unlock(&display->hdcp.hdcp_mutex);
1465 
1466 	return ret;
1467 }
1468 
1469 static int hdcp2_authenticate_port(struct intel_connector *connector)
1470 {
1471 	struct intel_display *display = to_intel_display(connector);
1472 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1473 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1474 	struct i915_hdcp_arbiter *arbiter;
1475 	int ret;
1476 
1477 	mutex_lock(&display->hdcp.hdcp_mutex);
1478 	arbiter = display->hdcp.arbiter;
1479 
1480 	if (!arbiter || !arbiter->ops) {
1481 		mutex_unlock(&display->hdcp.hdcp_mutex);
1482 		return -EINVAL;
1483 	}
1484 
1485 	ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data);
1486 	if (ret < 0)
1487 		drm_dbg_kms(display->drm, "Enable hdcp auth failed. %d\n",
1488 			    ret);
1489 	mutex_unlock(&display->hdcp.hdcp_mutex);
1490 
1491 	return ret;
1492 }
1493 
1494 static int hdcp2_close_session(struct intel_connector *connector)
1495 {
1496 	struct intel_display *display = to_intel_display(connector);
1497 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1498 	struct i915_hdcp_arbiter *arbiter;
1499 	int ret;
1500 
1501 	mutex_lock(&display->hdcp.hdcp_mutex);
1502 	arbiter = display->hdcp.arbiter;
1503 
1504 	if (!arbiter || !arbiter->ops) {
1505 		mutex_unlock(&display->hdcp.hdcp_mutex);
1506 		return -EINVAL;
1507 	}
1508 
1509 	ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev,
1510 					     &dig_port->hdcp.port_data);
1511 	mutex_unlock(&display->hdcp.hdcp_mutex);
1512 
1513 	return ret;
1514 }
1515 
1516 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1517 {
1518 	return hdcp2_close_session(connector);
1519 }
1520 
1521 /* Authentication flow starts from here */
1522 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1523 {
1524 	struct intel_display *display = to_intel_display(connector);
1525 	struct intel_digital_port *dig_port =
1526 		intel_attached_dig_port(connector);
1527 	struct intel_hdcp *hdcp = &connector->hdcp;
1528 	union {
1529 		struct hdcp2_ake_init ake_init;
1530 		struct hdcp2_ake_send_cert send_cert;
1531 		struct hdcp2_ake_no_stored_km no_stored_km;
1532 		struct hdcp2_ake_send_hprime send_hprime;
1533 		struct hdcp2_ake_send_pairing_info pairing_info;
1534 	} msgs;
1535 	const struct intel_hdcp_shim *shim = hdcp->shim;
1536 	size_t size;
1537 	int ret, i, max_retries;
1538 
1539 	/* Init for seq_num */
1540 	hdcp->seq_num_v = 0;
1541 	hdcp->seq_num_m = 0;
1542 
1543 	if (intel_encoder_is_dp(&dig_port->base) ||
1544 	    intel_encoder_is_mst(&dig_port->base))
1545 		max_retries = 10;
1546 	else
1547 		max_retries = 1;
1548 
1549 	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1550 	if (ret < 0)
1551 		return ret;
1552 
1553 	/*
1554 	 * Retry the first read and write to downstream at least 10 times
1555 	 * with a 50ms delay if not hdcp2 capable for DP/DPMST encoders
1556 	 * (dock decides to stop advertising hdcp2 capability for some reason).
1557 	 * The reason being that during suspend resume dock usually keeps the
1558 	 * HDCP2 registers inaccessible causing AUX error. This wouldn't be a
1559 	 * big problem if the userspace just kept retrying with some delay while
1560 	 * it continues to play low value content but most userspace applications
1561 	 * end up throwing an error when it receives one from KMD. This makes
1562 	 * sure we give the dock and the sink devices to complete its power cycle
1563 	 * and then try HDCP authentication. The values of 10 and delay of 50ms
1564 	 * was decided based on multiple trial and errors.
1565 	 */
1566 	for (i = 0; i < max_retries; i++) {
1567 		if (!intel_hdcp2_get_capability(connector)) {
1568 			msleep(50);
1569 			continue;
1570 		}
1571 
1572 		ret = shim->write_2_2_msg(connector, &msgs.ake_init,
1573 					  sizeof(msgs.ake_init));
1574 		if (ret < 0)
1575 			continue;
1576 
1577 		ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_CERT,
1578 					 &msgs.send_cert, sizeof(msgs.send_cert));
1579 		if (ret > 0)
1580 			break;
1581 	}
1582 
1583 	if (ret < 0)
1584 		return ret;
1585 
1586 	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1587 		drm_dbg_kms(display->drm, "cert.rx_caps dont claim HDCP2.2\n");
1588 		return -EINVAL;
1589 	}
1590 
1591 	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1592 
1593 	if (drm_hdcp_check_ksvs_revoked(display->drm,
1594 					msgs.send_cert.cert_rx.receiver_id,
1595 					1) > 0) {
1596 		drm_err(display->drm, "Receiver ID is revoked\n");
1597 		return -EPERM;
1598 	}
1599 
1600 	/*
1601 	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1602 	 * stored also.
1603 	 */
1604 	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1605 					      &hdcp->is_paired,
1606 					      &msgs.no_stored_km, &size);
1607 	if (ret < 0)
1608 		return ret;
1609 
1610 	ret = shim->write_2_2_msg(connector, &msgs.no_stored_km, size);
1611 	if (ret < 0)
1612 		return ret;
1613 
1614 	ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_HPRIME,
1615 				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1616 	if (ret < 0)
1617 		return ret;
1618 
1619 	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1620 	if (ret < 0)
1621 		return ret;
1622 
1623 	if (!hdcp->is_paired) {
1624 		/* Pairing is required */
1625 		ret = shim->read_2_2_msg(connector,
1626 					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1627 					 &msgs.pairing_info,
1628 					 sizeof(msgs.pairing_info));
1629 		if (ret < 0)
1630 			return ret;
1631 
1632 		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1633 		if (ret < 0)
1634 			return ret;
1635 		hdcp->is_paired = true;
1636 	}
1637 
1638 	return 0;
1639 }
1640 
1641 static int hdcp2_locality_check(struct intel_connector *connector)
1642 {
1643 	struct intel_hdcp *hdcp = &connector->hdcp;
1644 	union {
1645 		struct hdcp2_lc_init lc_init;
1646 		struct hdcp2_lc_send_lprime send_lprime;
1647 	} msgs;
1648 	const struct intel_hdcp_shim *shim = hdcp->shim;
1649 	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1650 
1651 	for (i = 0; i < tries; i++) {
1652 		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1653 		if (ret < 0)
1654 			continue;
1655 
1656 		ret = shim->write_2_2_msg(connector, &msgs.lc_init,
1657 				      sizeof(msgs.lc_init));
1658 		if (ret < 0)
1659 			continue;
1660 
1661 		ret = shim->read_2_2_msg(connector,
1662 					 HDCP_2_2_LC_SEND_LPRIME,
1663 					 &msgs.send_lprime,
1664 					 sizeof(msgs.send_lprime));
1665 		if (ret < 0)
1666 			continue;
1667 
1668 		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1669 		if (!ret)
1670 			break;
1671 	}
1672 
1673 	return ret;
1674 }
1675 
1676 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1677 {
1678 	struct intel_hdcp *hdcp = &connector->hdcp;
1679 	struct hdcp2_ske_send_eks send_eks;
1680 	int ret;
1681 
1682 	ret = hdcp2_prepare_skey(connector, &send_eks);
1683 	if (ret < 0)
1684 		return ret;
1685 
1686 	ret = hdcp->shim->write_2_2_msg(connector, &send_eks,
1687 					sizeof(send_eks));
1688 	if (ret < 0)
1689 		return ret;
1690 
1691 	return 0;
1692 }
1693 
1694 static
1695 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1696 {
1697 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1698 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1699 	struct intel_hdcp *hdcp = &connector->hdcp;
1700 	union {
1701 		struct hdcp2_rep_stream_manage stream_manage;
1702 		struct hdcp2_rep_stream_ready stream_ready;
1703 	} msgs;
1704 	const struct intel_hdcp_shim *shim = hdcp->shim;
1705 	int ret, streams_size_delta, i;
1706 
1707 	if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1708 		return -ERANGE;
1709 
1710 	/* Prepare RepeaterAuth_Stream_Manage msg */
1711 	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1712 	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1713 
1714 	msgs.stream_manage.k = cpu_to_be16(data->k);
1715 
1716 	for (i = 0; i < data->k; i++) {
1717 		msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1718 		msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1719 	}
1720 
1721 	streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1722 				sizeof(struct hdcp2_streamid_type);
1723 	/* Send it to Repeater */
1724 	ret = shim->write_2_2_msg(connector, &msgs.stream_manage,
1725 				  sizeof(msgs.stream_manage) - streams_size_delta);
1726 	if (ret < 0)
1727 		goto out;
1728 
1729 	ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_STREAM_READY,
1730 				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1731 	if (ret < 0)
1732 		goto out;
1733 
1734 	data->seq_num_m = hdcp->seq_num_m;
1735 
1736 	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1737 
1738 out:
1739 	hdcp->seq_num_m++;
1740 
1741 	return ret;
1742 }
1743 
1744 static
1745 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1746 {
1747 	struct intel_display *display = to_intel_display(connector);
1748 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1749 	struct intel_hdcp *hdcp = &connector->hdcp;
1750 	union {
1751 		struct hdcp2_rep_send_receiverid_list recvid_list;
1752 		struct hdcp2_rep_send_ack rep_ack;
1753 	} msgs;
1754 	const struct intel_hdcp_shim *shim = hdcp->shim;
1755 	u32 seq_num_v, device_cnt;
1756 	u8 *rx_info;
1757 	int ret;
1758 
1759 	ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_SEND_RECVID_LIST,
1760 				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1761 	if (ret < 0)
1762 		return ret;
1763 
1764 	rx_info = msgs.recvid_list.rx_info;
1765 
1766 	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1767 	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1768 		drm_dbg_kms(display->drm, "Topology Max Size Exceeded\n");
1769 		return -EINVAL;
1770 	}
1771 
1772 	/*
1773 	 * MST topology is not Type 1 capable if it contains a downstream
1774 	 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1775 	 */
1776 	dig_port->hdcp.mst_type1_capable =
1777 		!HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1778 		!HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1779 
1780 	if (!dig_port->hdcp.mst_type1_capable && hdcp->content_type) {
1781 		drm_dbg_kms(display->drm,
1782 			    "HDCP1.x or 2.0 Legacy Device Downstream\n");
1783 		return -EINVAL;
1784 	}
1785 
1786 	/* Converting and Storing the seq_num_v to local variable as DWORD */
1787 	seq_num_v =
1788 		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1789 
1790 	if (!hdcp->hdcp2_encrypted && seq_num_v) {
1791 		drm_dbg_kms(display->drm,
1792 			    "Non zero Seq_num_v at first RecvId_List msg\n");
1793 		return -EINVAL;
1794 	}
1795 
1796 	if (seq_num_v < hdcp->seq_num_v) {
1797 		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1798 		drm_dbg_kms(display->drm, "Seq_num_v roll over.\n");
1799 		return -EINVAL;
1800 	}
1801 
1802 	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1803 		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1804 	if (drm_hdcp_check_ksvs_revoked(display->drm,
1805 					msgs.recvid_list.receiver_ids,
1806 					device_cnt) > 0) {
1807 		drm_err(display->drm, "Revoked receiver ID(s) is in list\n");
1808 		return -EPERM;
1809 	}
1810 
1811 	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1812 						    &msgs.recvid_list,
1813 						    &msgs.rep_ack);
1814 	if (ret < 0)
1815 		return ret;
1816 
1817 	hdcp->seq_num_v = seq_num_v;
1818 	ret = shim->write_2_2_msg(connector, &msgs.rep_ack,
1819 				  sizeof(msgs.rep_ack));
1820 	if (ret < 0)
1821 		return ret;
1822 
1823 	return 0;
1824 }
1825 
1826 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1827 {
1828 	struct intel_display *display = to_intel_display(connector);
1829 	struct intel_hdcp *hdcp = &connector->hdcp;
1830 	const struct intel_hdcp_shim *shim = hdcp->shim;
1831 	int ret;
1832 
1833 	ret = hdcp2_authentication_key_exchange(connector);
1834 	if (ret < 0) {
1835 		drm_dbg_kms(display->drm, "AKE Failed. Err : %d\n", ret);
1836 		return ret;
1837 	}
1838 
1839 	ret = hdcp2_locality_check(connector);
1840 	if (ret < 0) {
1841 		drm_dbg_kms(display->drm,
1842 			    "Locality Check failed. Err : %d\n", ret);
1843 		return ret;
1844 	}
1845 
1846 	ret = hdcp2_session_key_exchange(connector);
1847 	if (ret < 0) {
1848 		drm_dbg_kms(display->drm, "SKE Failed. Err : %d\n", ret);
1849 		return ret;
1850 	}
1851 
1852 	if (shim->config_stream_type) {
1853 		ret = shim->config_stream_type(connector,
1854 					       hdcp->is_repeater,
1855 					       hdcp->content_type);
1856 		if (ret < 0)
1857 			return ret;
1858 	}
1859 
1860 	if (hdcp->is_repeater) {
1861 		ret = hdcp2_authenticate_repeater_topology(connector);
1862 		if (ret < 0) {
1863 			drm_dbg_kms(display->drm,
1864 				    "Repeater Auth Failed. Err: %d\n", ret);
1865 			return ret;
1866 		}
1867 	}
1868 
1869 	return ret;
1870 }
1871 
1872 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1873 {
1874 	struct intel_display *display = to_intel_display(connector);
1875 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1876 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1877 	struct intel_hdcp *hdcp = &connector->hdcp;
1878 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1879 	enum port port = dig_port->base.port;
1880 	int ret = 0;
1881 
1882 	if (!(intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1883 			    LINK_ENCRYPTION_STATUS)) {
1884 		drm_err(display->drm, "[CONNECTOR:%d:%s] HDCP 2.2 Link is not encrypted\n",
1885 			connector->base.base.id, connector->base.name);
1886 		ret = -EPERM;
1887 		goto link_recover;
1888 	}
1889 
1890 	if (hdcp->shim->stream_2_2_encryption) {
1891 		ret = hdcp->shim->stream_2_2_encryption(connector, true);
1892 		if (ret) {
1893 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 2.2 stream enc\n",
1894 				connector->base.base.id, connector->base.name);
1895 			return ret;
1896 		}
1897 		drm_dbg_kms(display->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1898 			    transcoder_name(hdcp->stream_transcoder));
1899 	}
1900 
1901 	return 0;
1902 
1903 link_recover:
1904 	if (hdcp2_deauthenticate_port(connector) < 0)
1905 		drm_dbg_kms(display->drm, "Port deauth failed.\n");
1906 
1907 	dig_port->hdcp.auth_status = false;
1908 	data->k = 0;
1909 
1910 	return ret;
1911 }
1912 
1913 static int hdcp2_enable_encryption(struct intel_connector *connector)
1914 {
1915 	struct intel_display *display = to_intel_display(connector);
1916 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1917 	struct intel_hdcp *hdcp = &connector->hdcp;
1918 	enum port port = dig_port->base.port;
1919 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1920 	int ret;
1921 
1922 	drm_WARN_ON(display->drm,
1923 		    intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1924 		    LINK_ENCRYPTION_STATUS);
1925 	if (hdcp->shim->toggle_signalling) {
1926 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1927 						    true);
1928 		if (ret) {
1929 			drm_err(display->drm,
1930 				"Failed to enable HDCP signalling. %d\n",
1931 				ret);
1932 			return ret;
1933 		}
1934 	}
1935 
1936 	if (intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1937 	    LINK_AUTH_STATUS)
1938 		/* Link is Authenticated. Now set for Encryption */
1939 		intel_de_rmw(display, HDCP2_CTL(display, cpu_transcoder, port),
1940 			     0, CTL_LINK_ENCRYPTION_REQ);
1941 
1942 	ret = intel_de_wait_for_set_ms(display,
1943 				       HDCP2_STATUS(display, cpu_transcoder, port),
1944 				       LINK_ENCRYPTION_STATUS,
1945 				       HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1946 	dig_port->hdcp.auth_status = true;
1947 
1948 	return ret;
1949 }
1950 
1951 static int hdcp2_disable_encryption(struct intel_connector *connector)
1952 {
1953 	struct intel_display *display = to_intel_display(connector);
1954 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1955 	struct intel_hdcp *hdcp = &connector->hdcp;
1956 	enum port port = dig_port->base.port;
1957 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1958 	int ret;
1959 
1960 	drm_WARN_ON(display->drm,
1961 		    !(intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1962 				    LINK_ENCRYPTION_STATUS));
1963 
1964 	intel_de_rmw(display, HDCP2_CTL(display, cpu_transcoder, port),
1965 		     CTL_LINK_ENCRYPTION_REQ, 0);
1966 
1967 	ret = intel_de_wait_for_clear_ms(display,
1968 					 HDCP2_STATUS(display, cpu_transcoder, port),
1969 					 LINK_ENCRYPTION_STATUS,
1970 					 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1971 	if (ret == -ETIMEDOUT)
1972 		drm_dbg_kms(display->drm, "Disable Encryption Timedout");
1973 
1974 	if (hdcp->shim->toggle_signalling) {
1975 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1976 						    false);
1977 		if (ret) {
1978 			drm_err(display->drm,
1979 				"Failed to disable HDCP signalling. %d\n",
1980 				ret);
1981 			return ret;
1982 		}
1983 	}
1984 
1985 	return ret;
1986 }
1987 
1988 static int
1989 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1990 {
1991 	struct intel_display *display = to_intel_display(connector);
1992 	int i, tries = 3, ret;
1993 
1994 	if (!connector->hdcp.is_repeater)
1995 		return 0;
1996 
1997 	for (i = 0; i < tries; i++) {
1998 		ret = _hdcp2_propagate_stream_management_info(connector);
1999 		if (!ret)
2000 			break;
2001 
2002 		/* Lets restart the auth incase of seq_num_m roll over */
2003 		if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
2004 			drm_dbg_kms(display->drm,
2005 				    "seq_num_m roll over.(%d)\n", ret);
2006 			break;
2007 		}
2008 
2009 		drm_dbg_kms(display->drm,
2010 			    "HDCP2 stream management %d of %d Failed.(%d)\n",
2011 			    i + 1, tries, ret);
2012 	}
2013 
2014 	return ret;
2015 }
2016 
2017 static int hdcp2_authenticate_and_encrypt(struct intel_atomic_state *state,
2018 					  struct intel_connector *connector)
2019 {
2020 	struct intel_display *display = to_intel_display(connector);
2021 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2022 	int ret = 0, i, tries = 3;
2023 
2024 	for (i = 0; i < tries && !dig_port->hdcp.auth_status; i++) {
2025 		ret = hdcp2_authenticate_sink(connector);
2026 		if (!ret) {
2027 			ret = intel_hdcp_prepare_streams(state, connector);
2028 			if (ret) {
2029 				drm_dbg_kms(display->drm,
2030 					    "Prepare stream failed.(%d)\n",
2031 					    ret);
2032 				break;
2033 			}
2034 
2035 			ret = hdcp2_propagate_stream_management_info(connector);
2036 			if (ret) {
2037 				drm_dbg_kms(display->drm,
2038 					    "Stream management failed.(%d)\n",
2039 					    ret);
2040 				break;
2041 			}
2042 
2043 			ret = hdcp2_authenticate_port(connector);
2044 			if (!ret)
2045 				break;
2046 			drm_dbg_kms(display->drm, "HDCP2 port auth failed.(%d)\n",
2047 				    ret);
2048 		}
2049 
2050 		/* Clearing the mei hdcp session */
2051 		drm_dbg_kms(display->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
2052 			    i + 1, tries, ret);
2053 		if (hdcp2_deauthenticate_port(connector) < 0)
2054 			drm_dbg_kms(display->drm, "Port deauth failed.\n");
2055 	}
2056 
2057 	if (!ret && !dig_port->hdcp.auth_status) {
2058 		/*
2059 		 * Ensuring the required 200mSec min time interval between
2060 		 * Session Key Exchange and encryption.
2061 		 */
2062 		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
2063 		ret = hdcp2_enable_encryption(connector);
2064 		if (ret < 0) {
2065 			drm_dbg_kms(display->drm,
2066 				    "Encryption Enable Failed.(%d)\n", ret);
2067 			if (hdcp2_deauthenticate_port(connector) < 0)
2068 				drm_dbg_kms(display->drm, "Port deauth failed.\n");
2069 		}
2070 	}
2071 
2072 	if (!ret)
2073 		ret = hdcp2_enable_stream_encryption(connector);
2074 
2075 	return ret;
2076 }
2077 
2078 static int _intel_hdcp2_enable(struct intel_atomic_state *state,
2079 			       struct intel_connector *connector)
2080 {
2081 	struct intel_display *display = to_intel_display(connector);
2082 	struct intel_hdcp *hdcp = &connector->hdcp;
2083 	int ret;
2084 
2085 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being enabled. Type: %d\n",
2086 		    connector->base.base.id, connector->base.name,
2087 		    hdcp->content_type);
2088 
2089 	intel_hdcp_adjust_hdcp_line_rekeying(connector->encoder, hdcp, false);
2090 
2091 	ret = hdcp2_authenticate_and_encrypt(state, connector);
2092 	if (ret) {
2093 		drm_dbg_kms(display->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
2094 			    hdcp->content_type, ret);
2095 		return ret;
2096 	}
2097 
2098 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is enabled. Type %d\n",
2099 		    connector->base.base.id, connector->base.name,
2100 		    hdcp->content_type);
2101 
2102 	hdcp->hdcp2_encrypted = true;
2103 	return 0;
2104 }
2105 
2106 static int
2107 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
2108 {
2109 	struct intel_display *display = to_intel_display(connector);
2110 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2111 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
2112 	struct intel_hdcp *hdcp = &connector->hdcp;
2113 	int ret;
2114 
2115 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being Disabled\n",
2116 		    connector->base.base.id, connector->base.name);
2117 
2118 	if (hdcp->shim->stream_2_2_encryption) {
2119 		ret = hdcp->shim->stream_2_2_encryption(connector, false);
2120 		if (ret) {
2121 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 2.2 stream enc\n",
2122 				connector->base.base.id, connector->base.name);
2123 			return ret;
2124 		}
2125 		drm_dbg_kms(display->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
2126 			    transcoder_name(hdcp->stream_transcoder));
2127 
2128 		if (dig_port->hdcp.num_streams > 0 && !hdcp2_link_recovery)
2129 			return 0;
2130 	}
2131 
2132 	ret = hdcp2_disable_encryption(connector);
2133 
2134 	if (hdcp2_deauthenticate_port(connector) < 0)
2135 		drm_dbg_kms(display->drm, "Port deauth failed.\n");
2136 
2137 	connector->hdcp.hdcp2_encrypted = false;
2138 	dig_port->hdcp.auth_status = false;
2139 	data->k = 0;
2140 
2141 	return ret;
2142 }
2143 
2144 /* Implements the Link Integrity Check for HDCP2.2 */
2145 static int intel_hdcp2_check_link(struct intel_connector *connector)
2146 {
2147 	struct intel_display *display = to_intel_display(connector);
2148 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2149 	struct intel_hdcp *hdcp = &connector->hdcp;
2150 	enum port port = dig_port->base.port;
2151 	enum transcoder cpu_transcoder;
2152 	int ret = 0;
2153 
2154 	mutex_lock(&hdcp->mutex);
2155 	mutex_lock(&dig_port->hdcp.mutex);
2156 	cpu_transcoder = hdcp->cpu_transcoder;
2157 
2158 	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2159 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2160 	    !hdcp->hdcp2_encrypted) {
2161 		ret = -EINVAL;
2162 		goto out;
2163 	}
2164 
2165 	if (drm_WARN_ON(display->drm,
2166 			!intel_hdcp2_in_use(display, cpu_transcoder, port))) {
2167 		drm_err(display->drm,
2168 			"HDCP2.2 link stopped the encryption, %x\n",
2169 			intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)));
2170 		ret = -ENXIO;
2171 		_intel_hdcp2_disable(connector, true);
2172 		intel_hdcp_update_value(connector,
2173 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2174 					true);
2175 		goto out;
2176 	}
2177 
2178 	ret = hdcp->shim->check_2_2_link(dig_port, connector);
2179 	if (ret == HDCP_LINK_PROTECTED) {
2180 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2181 			intel_hdcp_update_value(connector,
2182 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2183 					true);
2184 		}
2185 		goto out;
2186 	}
2187 
2188 	if (ret == HDCP_TOPOLOGY_CHANGE) {
2189 		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2190 			goto out;
2191 
2192 		drm_dbg_kms(display->drm,
2193 			    "HDCP2.2 Downstream topology change\n");
2194 
2195 		ret = hdcp2_authenticate_repeater_topology(connector);
2196 		if (!ret) {
2197 			intel_hdcp_update_value(connector,
2198 						DRM_MODE_CONTENT_PROTECTION_ENABLED,
2199 						true);
2200 			goto out;
2201 		}
2202 
2203 		drm_dbg_kms(display->drm,
2204 			    "[CONNECTOR:%d:%s] Repeater topology auth failed.(%d)\n",
2205 			    connector->base.base.id, connector->base.name,
2206 			    ret);
2207 	} else {
2208 		drm_dbg_kms(display->drm,
2209 			    "[CONNECTOR:%d:%s] HDCP2.2 link failed, retrying auth\n",
2210 			    connector->base.base.id, connector->base.name);
2211 	}
2212 
2213 	ret = _intel_hdcp2_disable(connector, true);
2214 	if (ret) {
2215 		drm_err(display->drm,
2216 			"[CONNECTOR:%d:%s] Failed to disable hdcp2.2 (%d)\n",
2217 			connector->base.base.id, connector->base.name, ret);
2218 		intel_hdcp_update_value(connector,
2219 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2220 		goto out;
2221 	}
2222 
2223 	intel_hdcp_update_value(connector,
2224 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2225 out:
2226 	mutex_unlock(&dig_port->hdcp.mutex);
2227 	mutex_unlock(&hdcp->mutex);
2228 	return ret;
2229 }
2230 
2231 static void intel_hdcp_check_work(struct work_struct *work)
2232 {
2233 	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2234 					       struct intel_hdcp,
2235 					       check_work);
2236 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2237 	struct intel_display *display = to_intel_display(connector);
2238 
2239 	if (drm_connector_is_unregistered(&connector->base))
2240 		return;
2241 
2242 	if (!intel_hdcp2_check_link(connector))
2243 		queue_delayed_work(display->wq.unordered, &hdcp->check_work,
2244 				   DRM_HDCP2_CHECK_PERIOD_MS);
2245 	else if (!intel_hdcp_check_link(connector))
2246 		queue_delayed_work(display->wq.unordered, &hdcp->check_work,
2247 				   DRM_HDCP_CHECK_PERIOD_MS);
2248 }
2249 
2250 static int i915_hdcp_component_bind(struct device *drv_kdev,
2251 				    struct device *mei_kdev, void *data)
2252 {
2253 	struct intel_display *display = to_intel_display(drv_kdev);
2254 
2255 	drm_dbg(display->drm, "I915 HDCP comp bind\n");
2256 	mutex_lock(&display->hdcp.hdcp_mutex);
2257 	display->hdcp.arbiter = (struct i915_hdcp_arbiter *)data;
2258 	display->hdcp.arbiter->hdcp_dev = mei_kdev;
2259 	mutex_unlock(&display->hdcp.hdcp_mutex);
2260 
2261 	return 0;
2262 }
2263 
2264 static void i915_hdcp_component_unbind(struct device *drv_kdev,
2265 				       struct device *mei_kdev, void *data)
2266 {
2267 	struct intel_display *display = to_intel_display(drv_kdev);
2268 
2269 	drm_dbg(display->drm, "I915 HDCP comp unbind\n");
2270 	mutex_lock(&display->hdcp.hdcp_mutex);
2271 	display->hdcp.arbiter = NULL;
2272 	mutex_unlock(&display->hdcp.hdcp_mutex);
2273 }
2274 
2275 static const struct component_ops i915_hdcp_ops = {
2276 	.bind   = i915_hdcp_component_bind,
2277 	.unbind = i915_hdcp_component_unbind,
2278 };
2279 
2280 static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port)
2281 {
2282 	switch (port) {
2283 	case PORT_A:
2284 		return HDCP_DDI_A;
2285 	case PORT_B ... PORT_F:
2286 		return (enum hdcp_ddi)port;
2287 	default:
2288 		return HDCP_DDI_INVALID_PORT;
2289 	}
2290 }
2291 
2292 static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)
2293 {
2294 	switch (cpu_transcoder) {
2295 	case TRANSCODER_A ... TRANSCODER_D:
2296 		return (enum hdcp_transcoder)(cpu_transcoder | 0x10);
2297 	default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2298 		return HDCP_INVALID_TRANSCODER;
2299 	}
2300 }
2301 
2302 static int initialize_hdcp_port_data(struct intel_connector *connector,
2303 				     struct intel_digital_port *dig_port,
2304 				     const struct intel_hdcp_shim *shim)
2305 {
2306 	struct intel_display *display = to_intel_display(connector);
2307 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
2308 	enum port port = dig_port->base.port;
2309 
2310 	if (DISPLAY_VER(display) < 12)
2311 		data->hdcp_ddi = intel_get_hdcp_ddi_index(port);
2312 	else
2313 		/*
2314 		 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled
2315 		 * with zero(INVALID PORT index).
2316 		 */
2317 		data->hdcp_ddi = HDCP_DDI_INVALID_PORT;
2318 
2319 	/*
2320 	 * As associated transcoder is set and modified at modeset, here hdcp_transcoder
2321 	 * is initialized to zero (invalid transcoder index). This will be
2322 	 * retained for <Gen12 forever.
2323 	 */
2324 	data->hdcp_transcoder = HDCP_INVALID_TRANSCODER;
2325 
2326 	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2327 	data->protocol = (u8)shim->protocol;
2328 
2329 	if (!data->streams)
2330 		data->streams = kcalloc(INTEL_NUM_PIPES(display),
2331 					sizeof(struct hdcp2_streamid_type),
2332 					GFP_KERNEL);
2333 	if (!data->streams) {
2334 		drm_err(display->drm, "Out of Memory\n");
2335 		return -ENOMEM;
2336 	}
2337 
2338 	return 0;
2339 }
2340 
2341 static bool is_hdcp2_supported(struct intel_display *display)
2342 {
2343 	if (USE_HDCP_GSC(display))
2344 		return true;
2345 
2346 	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2347 		return false;
2348 
2349 	return DISPLAY_VER(display) >= 10 ||
2350 		display->platform.kabylake ||
2351 		display->platform.coffeelake ||
2352 		display->platform.cometlake;
2353 }
2354 
2355 void intel_hdcp_component_init(struct intel_display *display)
2356 {
2357 	int ret;
2358 
2359 	if (!is_hdcp2_supported(display))
2360 		return;
2361 
2362 	mutex_lock(&display->hdcp.hdcp_mutex);
2363 	drm_WARN_ON(display->drm, display->hdcp.comp_added);
2364 
2365 	display->hdcp.comp_added = true;
2366 	mutex_unlock(&display->hdcp.hdcp_mutex);
2367 	if (USE_HDCP_GSC(display))
2368 		ret = intel_hdcp_gsc_init(display);
2369 	else
2370 		ret = component_add_typed(display->drm->dev, &i915_hdcp_ops,
2371 					  I915_COMPONENT_HDCP);
2372 
2373 	if (ret < 0) {
2374 		drm_dbg_kms(display->drm, "Failed at fw component add(%d)\n",
2375 			    ret);
2376 		mutex_lock(&display->hdcp.hdcp_mutex);
2377 		display->hdcp.comp_added = false;
2378 		mutex_unlock(&display->hdcp.hdcp_mutex);
2379 		return;
2380 	}
2381 }
2382 
2383 static void intel_hdcp2_init(struct intel_connector *connector,
2384 			     struct intel_digital_port *dig_port,
2385 			     const struct intel_hdcp_shim *shim)
2386 {
2387 	struct intel_display *display = to_intel_display(connector);
2388 	struct intel_hdcp *hdcp = &connector->hdcp;
2389 	int ret;
2390 
2391 	ret = initialize_hdcp_port_data(connector, dig_port, shim);
2392 	if (ret) {
2393 		drm_dbg_kms(display->drm, "Mei hdcp data init failed\n");
2394 		return;
2395 	}
2396 
2397 	hdcp->hdcp2_supported = true;
2398 }
2399 
2400 int intel_hdcp_init(struct intel_connector *connector,
2401 		    struct intel_digital_port *dig_port,
2402 		    const struct intel_hdcp_shim *shim)
2403 {
2404 	struct intel_display *display = to_intel_display(connector);
2405 	struct intel_hdcp *hdcp = &connector->hdcp;
2406 	int ret;
2407 
2408 	if (!shim)
2409 		return -EINVAL;
2410 
2411 	if (is_hdcp2_supported(display))
2412 		intel_hdcp2_init(connector, dig_port, shim);
2413 
2414 	ret = drm_connector_attach_content_protection_property(&connector->base,
2415 							       hdcp->hdcp2_supported);
2416 	if (ret) {
2417 		hdcp->hdcp2_supported = false;
2418 		kfree(dig_port->hdcp.port_data.streams);
2419 		return ret;
2420 	}
2421 
2422 	hdcp->shim = shim;
2423 	mutex_init(&hdcp->mutex);
2424 	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2425 	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2426 	init_waitqueue_head(&hdcp->cp_irq_queue);
2427 
2428 	return 0;
2429 }
2430 
2431 static int _intel_hdcp_enable(struct intel_atomic_state *state,
2432 			      struct intel_encoder *encoder,
2433 			      const struct intel_crtc_state *pipe_config,
2434 			      const struct drm_connector_state *conn_state)
2435 {
2436 	struct intel_display *display = to_intel_display(encoder);
2437 	struct intel_connector *connector =
2438 		to_intel_connector(conn_state->connector);
2439 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2440 	struct intel_hdcp *hdcp = &connector->hdcp;
2441 	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2442 	int ret = -EINVAL;
2443 
2444 	if (!hdcp->shim)
2445 		return -ENOENT;
2446 
2447 	mutex_lock(&hdcp->mutex);
2448 	mutex_lock(&dig_port->hdcp.mutex);
2449 	drm_WARN_ON(display->drm,
2450 		    hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2451 	hdcp->content_type = (u8)conn_state->hdcp_content_type;
2452 
2453 	if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2454 		hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2455 		hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2456 	} else {
2457 		hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2458 		hdcp->stream_transcoder = INVALID_TRANSCODER;
2459 	}
2460 
2461 	if (DISPLAY_VER(display) >= 12)
2462 		dig_port->hdcp.port_data.hdcp_transcoder =
2463 			intel_get_hdcp_transcoder(hdcp->cpu_transcoder);
2464 
2465 	/*
2466 	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2467 	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2468 	 */
2469 	if (!hdcp->force_hdcp14 && intel_hdcp2_get_capability(connector)) {
2470 		ret = _intel_hdcp2_enable(state, connector);
2471 		if (!ret)
2472 			check_link_interval =
2473 				DRM_HDCP2_CHECK_PERIOD_MS;
2474 	}
2475 
2476 	if (hdcp->force_hdcp14)
2477 		drm_dbg_kms(display->drm, "Forcing HDCP 1.4\n");
2478 
2479 	/*
2480 	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2481 	 * be attempted.
2482 	 */
2483 	if (ret && intel_hdcp_get_capability(connector) &&
2484 	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2485 		ret = intel_hdcp1_enable(connector);
2486 	}
2487 
2488 	if (!ret) {
2489 		queue_delayed_work(display->wq.unordered, &hdcp->check_work,
2490 				   check_link_interval);
2491 		intel_hdcp_update_value(connector,
2492 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2493 					true);
2494 	}
2495 
2496 	mutex_unlock(&dig_port->hdcp.mutex);
2497 	mutex_unlock(&hdcp->mutex);
2498 	return ret;
2499 }
2500 
2501 void intel_hdcp_enable(struct intel_atomic_state *state,
2502 		       struct intel_encoder *encoder,
2503 		       const struct intel_crtc_state *crtc_state,
2504 		       const struct drm_connector_state *conn_state)
2505 {
2506 	struct intel_connector *connector =
2507 		to_intel_connector(conn_state->connector);
2508 	struct intel_hdcp *hdcp = &connector->hdcp;
2509 
2510 	/*
2511 	 * Enable hdcp if it's desired or if userspace is enabled and
2512 	 * driver set its state to undesired
2513 	 */
2514 	if (conn_state->content_protection ==
2515 	    DRM_MODE_CONTENT_PROTECTION_DESIRED ||
2516 	    (conn_state->content_protection ==
2517 	    DRM_MODE_CONTENT_PROTECTION_ENABLED && hdcp->value ==
2518 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2519 		_intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2520 }
2521 
2522 int intel_hdcp_disable(struct intel_connector *connector)
2523 {
2524 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2525 	struct intel_hdcp *hdcp = &connector->hdcp;
2526 	int ret = 0;
2527 
2528 	if (!hdcp->shim)
2529 		return -ENOENT;
2530 
2531 	mutex_lock(&hdcp->mutex);
2532 	mutex_lock(&dig_port->hdcp.mutex);
2533 
2534 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2535 		goto out;
2536 
2537 	intel_hdcp_update_value(connector,
2538 				DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2539 	if (hdcp->hdcp2_encrypted)
2540 		ret = _intel_hdcp2_disable(connector, false);
2541 	else if (hdcp->hdcp_encrypted)
2542 		ret = _intel_hdcp_disable(connector);
2543 
2544 out:
2545 	mutex_unlock(&dig_port->hdcp.mutex);
2546 	mutex_unlock(&hdcp->mutex);
2547 	cancel_delayed_work_sync(&hdcp->check_work);
2548 	return ret;
2549 }
2550 
2551 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2552 			    struct intel_encoder *encoder,
2553 			    const struct intel_crtc_state *crtc_state,
2554 			    const struct drm_connector_state *conn_state)
2555 {
2556 	struct intel_connector *connector =
2557 				to_intel_connector(conn_state->connector);
2558 	struct intel_hdcp *hdcp = &connector->hdcp;
2559 	bool content_protection_type_changed, desired_and_not_enabled = false;
2560 	struct intel_display *display = to_intel_display(connector);
2561 
2562 	if (!connector->hdcp.shim)
2563 		return;
2564 
2565 	content_protection_type_changed =
2566 		(conn_state->hdcp_content_type != hdcp->content_type &&
2567 		 conn_state->content_protection !=
2568 		 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2569 
2570 	/*
2571 	 * During the HDCP encryption session if Type change is requested,
2572 	 * disable the HDCP and re-enable it with new TYPE value.
2573 	 */
2574 	if (conn_state->content_protection ==
2575 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2576 	    content_protection_type_changed)
2577 		intel_hdcp_disable(connector);
2578 
2579 	/*
2580 	 * Mark the hdcp state as DESIRED after the hdcp disable of type
2581 	 * change procedure.
2582 	 */
2583 	if (content_protection_type_changed) {
2584 		mutex_lock(&hdcp->mutex);
2585 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2586 		drm_connector_get(&connector->base);
2587 		if (!queue_work(display->wq.unordered, &hdcp->prop_work))
2588 			drm_connector_put(&connector->base);
2589 		mutex_unlock(&hdcp->mutex);
2590 	}
2591 
2592 	if (conn_state->content_protection ==
2593 	    DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2594 		mutex_lock(&hdcp->mutex);
2595 		/* Avoid enabling hdcp, if it already ENABLED */
2596 		desired_and_not_enabled =
2597 			hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2598 		mutex_unlock(&hdcp->mutex);
2599 		/*
2600 		 * If HDCP already ENABLED and CP property is DESIRED, schedule
2601 		 * prop_work to update correct CP property to user space.
2602 		 */
2603 		if (!desired_and_not_enabled && !content_protection_type_changed) {
2604 			drm_connector_get(&connector->base);
2605 			if (!queue_work(display->wq.unordered, &hdcp->prop_work))
2606 				drm_connector_put(&connector->base);
2607 
2608 		}
2609 	}
2610 
2611 	if (desired_and_not_enabled || content_protection_type_changed)
2612 		_intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2613 }
2614 
2615 void intel_hdcp_cancel_works(struct intel_connector *connector)
2616 {
2617 	if (!connector->hdcp.shim)
2618 		return;
2619 
2620 	cancel_delayed_work_sync(&connector->hdcp.check_work);
2621 	cancel_work_sync(&connector->hdcp.prop_work);
2622 }
2623 
2624 void intel_hdcp_component_fini(struct intel_display *display)
2625 {
2626 	mutex_lock(&display->hdcp.hdcp_mutex);
2627 	if (!display->hdcp.comp_added) {
2628 		mutex_unlock(&display->hdcp.hdcp_mutex);
2629 		return;
2630 	}
2631 
2632 	display->hdcp.comp_added = false;
2633 	mutex_unlock(&display->hdcp.hdcp_mutex);
2634 
2635 	if (USE_HDCP_GSC(display))
2636 		intel_hdcp_gsc_fini(display);
2637 	else
2638 		component_del(display->drm->dev, &i915_hdcp_ops);
2639 }
2640 
2641 void intel_hdcp_cleanup(struct intel_connector *connector)
2642 {
2643 	struct intel_hdcp *hdcp = &connector->hdcp;
2644 
2645 	if (!hdcp->shim)
2646 		return;
2647 
2648 	/*
2649 	 * If the connector is registered, it's possible userspace could kick
2650 	 * off another HDCP enable, which would re-spawn the workers.
2651 	 */
2652 	drm_WARN_ON(connector->base.dev,
2653 		connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2654 
2655 	/*
2656 	 * Now that the connector is not registered, check_work won't be run,
2657 	 * but cancel any outstanding instances of it
2658 	 */
2659 	cancel_delayed_work_sync(&hdcp->check_work);
2660 
2661 	/*
2662 	 * We don't cancel prop_work in the same way as check_work since it
2663 	 * requires connection_mutex which could be held while calling this
2664 	 * function. Instead, we rely on the connector references grabbed before
2665 	 * scheduling prop_work to ensure the connector is alive when prop_work
2666 	 * is run. So if we're in the destroy path (which is where this
2667 	 * function should be called), we're "guaranteed" that prop_work is not
2668 	 * active (tl;dr This Should Never Happen).
2669 	 */
2670 	drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2671 
2672 	mutex_lock(&hdcp->mutex);
2673 	hdcp->shim = NULL;
2674 	mutex_unlock(&hdcp->mutex);
2675 }
2676 
2677 void intel_hdcp_atomic_check(struct drm_connector *connector,
2678 			     struct drm_connector_state *old_state,
2679 			     struct drm_connector_state *new_state)
2680 {
2681 	u64 old_cp = old_state->content_protection;
2682 	u64 new_cp = new_state->content_protection;
2683 	struct drm_crtc_state *crtc_state;
2684 
2685 	if (!new_state->crtc) {
2686 		/*
2687 		 * If the connector is being disabled with CP enabled, mark it
2688 		 * desired so it's re-enabled when the connector is brought back
2689 		 */
2690 		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2691 			new_state->content_protection =
2692 				DRM_MODE_CONTENT_PROTECTION_DESIRED;
2693 		return;
2694 	}
2695 
2696 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2697 						   new_state->crtc);
2698 	/*
2699 	 * Fix the HDCP uapi content protection state in case of modeset.
2700 	 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2701 	 * need to be sent if there is transition from ENABLED->DESIRED.
2702 	 */
2703 	if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2704 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2705 	    new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2706 		new_state->content_protection =
2707 			DRM_MODE_CONTENT_PROTECTION_DESIRED;
2708 
2709 	/*
2710 	 * Nothing to do if the state didn't change, or HDCP was activated since
2711 	 * the last commit. And also no change in hdcp content type.
2712 	 */
2713 	if (old_cp == new_cp ||
2714 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2715 	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2716 		if (old_state->hdcp_content_type ==
2717 				new_state->hdcp_content_type)
2718 			return;
2719 	}
2720 
2721 	crtc_state->mode_changed = true;
2722 }
2723 
2724 /* Handles the CP_IRQ raised from the DP HDCP sink */
2725 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2726 {
2727 	struct intel_hdcp *hdcp = &connector->hdcp;
2728 	struct intel_display *display = to_intel_display(connector);
2729 
2730 	if (!hdcp->shim)
2731 		return;
2732 
2733 	atomic_inc(&connector->hdcp.cp_irq_count);
2734 	wake_up_all(&connector->hdcp.cp_irq_queue);
2735 
2736 	queue_delayed_work(display->wq.unordered, &hdcp->check_work, 0);
2737 }
2738 
2739 static void __intel_hdcp_info(struct seq_file *m, struct intel_connector *connector,
2740 			      bool remote_req)
2741 {
2742 	bool hdcp_cap = false, hdcp2_cap = false;
2743 
2744 	if (!connector->hdcp.shim) {
2745 		seq_puts(m, "No Connector Support");
2746 		goto out;
2747 	}
2748 
2749 	if (remote_req) {
2750 		intel_hdcp_get_remote_capability(connector, &hdcp_cap, &hdcp2_cap);
2751 	} else {
2752 		hdcp_cap = intel_hdcp_get_capability(connector);
2753 		hdcp2_cap = intel_hdcp2_get_capability(connector);
2754 	}
2755 
2756 	if (hdcp_cap)
2757 		seq_puts(m, "HDCP1.4 ");
2758 	if (hdcp2_cap)
2759 		seq_puts(m, "HDCP2.2 ");
2760 
2761 	if (!hdcp_cap && !hdcp2_cap)
2762 		seq_puts(m, "None");
2763 
2764 out:
2765 	seq_puts(m, "\n");
2766 }
2767 
2768 void intel_hdcp_info(struct seq_file *m, struct intel_connector *connector)
2769 {
2770 	seq_puts(m, "\tHDCP version: ");
2771 	if (connector->mst.dp) {
2772 		__intel_hdcp_info(m, connector, true);
2773 		seq_puts(m, "\tMST Hub HDCP version: ");
2774 	}
2775 	__intel_hdcp_info(m, connector, false);
2776 }
2777 
2778 static int intel_hdcp_sink_capability_show(struct seq_file *m, void *data)
2779 {
2780 	struct intel_connector *connector = m->private;
2781 	struct intel_display *display = to_intel_display(connector);
2782 	int ret;
2783 
2784 	ret = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
2785 	if (ret)
2786 		return ret;
2787 
2788 	if (!connector->base.encoder ||
2789 	    connector->base.status != connector_status_connected) {
2790 		ret = -ENODEV;
2791 		goto out;
2792 	}
2793 
2794 	seq_printf(m, "%s:%d HDCP version: ", connector->base.name,
2795 		   connector->base.base.id);
2796 	__intel_hdcp_info(m, connector, false);
2797 
2798 out:
2799 	drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
2800 
2801 	return ret;
2802 }
2803 DEFINE_SHOW_ATTRIBUTE(intel_hdcp_sink_capability);
2804 
2805 static ssize_t intel_hdcp_force_14_write(struct file *file,
2806 					 const char __user *ubuf,
2807 					 size_t len, loff_t *offp)
2808 {
2809 	struct seq_file *m = file->private_data;
2810 	struct intel_connector *connector = m->private;
2811 	struct intel_hdcp *hdcp = &connector->hdcp;
2812 	bool force_hdcp14 = false;
2813 	int ret;
2814 
2815 	if (len == 0)
2816 		return 0;
2817 
2818 	ret = kstrtobool_from_user(ubuf, len, &force_hdcp14);
2819 	if (ret < 0)
2820 		return ret;
2821 
2822 	hdcp->force_hdcp14 = force_hdcp14;
2823 	*offp += len;
2824 
2825 	return len;
2826 }
2827 
2828 static int intel_hdcp_force_14_show(struct seq_file *m, void *data)
2829 {
2830 	struct intel_connector *connector = m->private;
2831 	struct intel_display *display = to_intel_display(connector);
2832 	struct intel_encoder *encoder = intel_attached_encoder(connector);
2833 	struct intel_hdcp *hdcp = &connector->hdcp;
2834 	struct drm_crtc *crtc;
2835 	int ret;
2836 
2837 	if (!encoder)
2838 		return -ENODEV;
2839 
2840 	ret = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
2841 	if (ret)
2842 		return ret;
2843 
2844 	crtc = connector->base.state->crtc;
2845 	if (connector->base.status != connector_status_connected || !crtc) {
2846 		ret = -ENODEV;
2847 		goto out;
2848 	}
2849 
2850 	seq_printf(m, "%s\n",
2851 		   str_yes_no(hdcp->force_hdcp14));
2852 out:
2853 	drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
2854 
2855 	return ret;
2856 }
2857 
2858 static int intel_hdcp_force_14_open(struct inode *inode,
2859 				    struct file *file)
2860 {
2861 	return single_open(file, intel_hdcp_force_14_show,
2862 			   inode->i_private);
2863 }
2864 
2865 static const struct file_operations intel_hdcp_force_14_fops = {
2866 	.owner = THIS_MODULE,
2867 	.open = intel_hdcp_force_14_open,
2868 	.read = seq_read,
2869 	.llseek = seq_lseek,
2870 	.release = single_release,
2871 	.write = intel_hdcp_force_14_write
2872 };
2873 
2874 void intel_hdcp_connector_debugfs_add(struct intel_connector *connector)
2875 {
2876 	struct dentry *root = connector->base.debugfs_entry;
2877 	int connector_type = connector->base.connector_type;
2878 
2879 	if (connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
2880 	    connector_type == DRM_MODE_CONNECTOR_HDMIA ||
2881 	    connector_type == DRM_MODE_CONNECTOR_HDMIB) {
2882 		debugfs_create_file("i915_hdcp_sink_capability", 0444, root,
2883 				    connector, &intel_hdcp_sink_capability_fops);
2884 		debugfs_create_file("i915_force_hdcp14", 0644, root,
2885 				    connector, &intel_hdcp_force_14_fops);
2886 	}
2887 }
2888