1 /* SPDX-License-Identifier: MIT */ 2 /* 3 * Copyright (C) 2017 Google, Inc. 4 * Copyright _ 2017-2019, Intel Corporation. 5 * 6 * Authors: 7 * Sean Paul <seanpaul@chromium.org> 8 * Ramalingam C <ramalingam.c@intel.com> 9 */ 10 11 #include <linux/component.h> 12 #include <linux/i2c.h> 13 #include <linux/random.h> 14 15 #include <drm/display/drm_hdcp_helper.h> 16 #include <drm/i915_component.h> 17 18 #include "i915_drv.h" 19 #include "i915_reg.h" 20 #include "intel_connector.h" 21 #include "intel_de.h" 22 #include "intel_display_power.h" 23 #include "intel_display_power_well.h" 24 #include "intel_display_types.h" 25 #include "intel_hdcp.h" 26 #include "intel_hdcp_gsc.h" 27 #include "intel_hdcp_regs.h" 28 #include "intel_pcode.h" 29 30 #define KEY_LOAD_TRIES 5 31 #define HDCP2_LC_RETRY_CNT 3 32 33 static int intel_conn_to_vcpi(struct drm_atomic_state *state, 34 struct intel_connector *connector) 35 { 36 struct drm_dp_mst_topology_mgr *mgr; 37 struct drm_dp_mst_atomic_payload *payload; 38 struct drm_dp_mst_topology_state *mst_state; 39 int vcpi = 0; 40 41 /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */ 42 if (!connector->port) 43 return 0; 44 mgr = connector->port->mgr; 45 46 drm_modeset_lock(&mgr->base.lock, state->acquire_ctx); 47 mst_state = to_drm_dp_mst_topology_state(mgr->base.state); 48 payload = drm_atomic_get_mst_payload_state(mst_state, connector->port); 49 if (drm_WARN_ON(mgr->dev, !payload)) 50 goto out; 51 52 vcpi = payload->vcpi; 53 if (drm_WARN_ON(mgr->dev, vcpi < 0)) { 54 vcpi = 0; 55 goto out; 56 } 57 out: 58 return vcpi; 59 } 60 61 /* 62 * intel_hdcp_required_content_stream selects the most highest common possible HDCP 63 * content_type for all streams in DP MST topology because security f/w doesn't 64 * have any provision to mark content_type for each stream separately, it marks 65 * all available streams with the content_type proivided at the time of port 66 * authentication. This may prohibit the userspace to use type1 content on 67 * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in 68 * DP MST topology. Though it is not compulsory, security fw should change its 69 * policy to mark different content_types for different streams. 70 */ 71 static void 72 intel_hdcp_required_content_stream(struct intel_digital_port *dig_port) 73 { 74 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 75 bool enforce_type0 = false; 76 int k; 77 78 if (dig_port->hdcp_auth_status) 79 return; 80 81 if (!dig_port->hdcp_mst_type1_capable) 82 enforce_type0 = true; 83 84 /* 85 * Apply common protection level across all streams in DP MST Topology. 86 * Use highest supported content type for all streams in DP MST Topology. 87 */ 88 for (k = 0; k < data->k; k++) 89 data->streams[k].stream_type = 90 enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1; 91 } 92 93 static void intel_hdcp_prepare_streams(struct intel_connector *connector) 94 { 95 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 96 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 97 struct intel_hdcp *hdcp = &connector->hdcp; 98 99 if (!intel_encoder_is_mst(intel_attached_encoder(connector))) { 100 data->streams[0].stream_type = hdcp->content_type; 101 } else { 102 intel_hdcp_required_content_stream(dig_port); 103 } 104 } 105 106 static 107 bool intel_hdcp_is_ksv_valid(u8 *ksv) 108 { 109 int i, ones = 0; 110 /* KSV has 20 1's and 20 0's */ 111 for (i = 0; i < DRM_HDCP_KSV_LEN; i++) 112 ones += hweight8(ksv[i]); 113 if (ones != 20) 114 return false; 115 116 return true; 117 } 118 119 static 120 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port, 121 const struct intel_hdcp_shim *shim, u8 *bksv) 122 { 123 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 124 int ret, i, tries = 2; 125 126 /* HDCP spec states that we must retry the bksv if it is invalid */ 127 for (i = 0; i < tries; i++) { 128 ret = shim->read_bksv(dig_port, bksv); 129 if (ret) 130 return ret; 131 if (intel_hdcp_is_ksv_valid(bksv)) 132 break; 133 } 134 if (i == tries) { 135 drm_dbg_kms(&i915->drm, "Bksv is invalid\n"); 136 return -ENODEV; 137 } 138 139 return 0; 140 } 141 142 /* Is HDCP1.4 capable on Platform and Sink */ 143 bool intel_hdcp_capable(struct intel_connector *connector) 144 { 145 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 146 const struct intel_hdcp_shim *shim = connector->hdcp.shim; 147 bool capable = false; 148 u8 bksv[5]; 149 150 if (!shim) 151 return capable; 152 153 if (shim->hdcp_capable) { 154 shim->hdcp_capable(dig_port, &capable); 155 } else { 156 if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv)) 157 capable = true; 158 } 159 160 return capable; 161 } 162 163 /* Is HDCP2.2 capable on Platform and Sink */ 164 bool intel_hdcp2_capable(struct intel_connector *connector) 165 { 166 struct drm_i915_private *i915 = to_i915(connector->base.dev); 167 struct intel_hdcp *hdcp = &connector->hdcp; 168 bool capable = false; 169 170 /* I915 support for HDCP2.2 */ 171 if (!hdcp->hdcp2_supported) 172 return false; 173 174 /* If MTL+ make sure gsc is loaded and proxy is setup */ 175 if (intel_hdcp_gsc_cs_required(i915)) { 176 if (!intel_hdcp_gsc_check_status(i915)) 177 return false; 178 } 179 180 /* MEI/GSC interface is solid depending on which is used */ 181 mutex_lock(&i915->display.hdcp.hdcp_mutex); 182 if (!i915->display.hdcp.comp_added || !i915->display.hdcp.arbiter) { 183 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 184 return false; 185 } 186 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 187 188 /* Sink's capability for HDCP2.2 */ 189 hdcp->shim->hdcp_2_2_capable(connector, &capable); 190 191 return capable; 192 } 193 194 static bool intel_hdcp_in_use(struct drm_i915_private *i915, 195 enum transcoder cpu_transcoder, enum port port) 196 { 197 return intel_de_read(i915, 198 HDCP_STATUS(i915, cpu_transcoder, port)) & 199 HDCP_STATUS_ENC; 200 } 201 202 static bool intel_hdcp2_in_use(struct drm_i915_private *i915, 203 enum transcoder cpu_transcoder, enum port port) 204 { 205 return intel_de_read(i915, 206 HDCP2_STATUS(i915, cpu_transcoder, port)) & 207 LINK_ENCRYPTION_STATUS; 208 } 209 210 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port, 211 const struct intel_hdcp_shim *shim) 212 { 213 int ret, read_ret; 214 bool ksv_ready; 215 216 /* Poll for ksv list ready (spec says max time allowed is 5s) */ 217 ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port, 218 &ksv_ready), 219 read_ret || ksv_ready, 5 * 1000 * 1000, 1000, 220 100 * 1000); 221 if (ret) 222 return ret; 223 if (read_ret) 224 return read_ret; 225 if (!ksv_ready) 226 return -ETIMEDOUT; 227 228 return 0; 229 } 230 231 static bool hdcp_key_loadable(struct drm_i915_private *i915) 232 { 233 enum i915_power_well_id id; 234 intel_wakeref_t wakeref; 235 bool enabled = false; 236 237 /* 238 * On HSW and BDW, Display HW loads the Key as soon as Display resumes. 239 * On all BXT+, SW can load the keys only when the PW#1 is turned on. 240 */ 241 if (IS_HASWELL(i915) || IS_BROADWELL(i915)) 242 id = HSW_DISP_PW_GLOBAL; 243 else 244 id = SKL_DISP_PW_1; 245 246 /* PG1 (power well #1) needs to be enabled */ 247 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 248 enabled = intel_display_power_well_is_enabled(i915, id); 249 250 /* 251 * Another req for hdcp key loadability is enabled state of pll for 252 * cdclk. Without active crtc we wont land here. So we are assuming that 253 * cdclk is already on. 254 */ 255 256 return enabled; 257 } 258 259 static void intel_hdcp_clear_keys(struct drm_i915_private *i915) 260 { 261 intel_de_write(i915, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER); 262 intel_de_write(i915, HDCP_KEY_STATUS, 263 HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE); 264 } 265 266 static int intel_hdcp_load_keys(struct drm_i915_private *i915) 267 { 268 int ret; 269 u32 val; 270 271 val = intel_de_read(i915, HDCP_KEY_STATUS); 272 if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS)) 273 return 0; 274 275 /* 276 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes 277 * out of reset. So if Key is not already loaded, its an error state. 278 */ 279 if (IS_HASWELL(i915) || IS_BROADWELL(i915)) 280 if (!(intel_de_read(i915, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE)) 281 return -ENXIO; 282 283 /* 284 * Initiate loading the HDCP key from fuses. 285 * 286 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display 287 * version 9 platforms (minus BXT) differ in the key load trigger 288 * process from other platforms. These platforms use the GT Driver 289 * Mailbox interface. 290 */ 291 if (DISPLAY_VER(i915) == 9 && !IS_BROXTON(i915)) { 292 ret = snb_pcode_write(&i915->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1); 293 if (ret) { 294 drm_err(&i915->drm, 295 "Failed to initiate HDCP key load (%d)\n", 296 ret); 297 return ret; 298 } 299 } else { 300 intel_de_write(i915, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER); 301 } 302 303 /* Wait for the keys to load (500us) */ 304 ret = __intel_wait_for_register(&i915->uncore, HDCP_KEY_STATUS, 305 HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE, 306 10, 1, &val); 307 if (ret) 308 return ret; 309 else if (!(val & HDCP_KEY_LOAD_STATUS)) 310 return -ENXIO; 311 312 /* Send Aksv over to PCH display for use in authentication */ 313 intel_de_write(i915, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER); 314 315 return 0; 316 } 317 318 /* Returns updated SHA-1 index */ 319 static int intel_write_sha_text(struct drm_i915_private *i915, u32 sha_text) 320 { 321 intel_de_write(i915, HDCP_SHA_TEXT, sha_text); 322 if (intel_de_wait_for_set(i915, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) { 323 drm_err(&i915->drm, "Timed out waiting for SHA1 ready\n"); 324 return -ETIMEDOUT; 325 } 326 return 0; 327 } 328 329 static 330 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *i915, 331 enum transcoder cpu_transcoder, enum port port) 332 { 333 if (DISPLAY_VER(i915) >= 12) { 334 switch (cpu_transcoder) { 335 case TRANSCODER_A: 336 return HDCP_TRANSA_REP_PRESENT | 337 HDCP_TRANSA_SHA1_M0; 338 case TRANSCODER_B: 339 return HDCP_TRANSB_REP_PRESENT | 340 HDCP_TRANSB_SHA1_M0; 341 case TRANSCODER_C: 342 return HDCP_TRANSC_REP_PRESENT | 343 HDCP_TRANSC_SHA1_M0; 344 case TRANSCODER_D: 345 return HDCP_TRANSD_REP_PRESENT | 346 HDCP_TRANSD_SHA1_M0; 347 default: 348 drm_err(&i915->drm, "Unknown transcoder %d\n", 349 cpu_transcoder); 350 return -EINVAL; 351 } 352 } 353 354 switch (port) { 355 case PORT_A: 356 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0; 357 case PORT_B: 358 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0; 359 case PORT_C: 360 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0; 361 case PORT_D: 362 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0; 363 case PORT_E: 364 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0; 365 default: 366 drm_err(&i915->drm, "Unknown port %d\n", port); 367 return -EINVAL; 368 } 369 } 370 371 static 372 int intel_hdcp_validate_v_prime(struct intel_connector *connector, 373 const struct intel_hdcp_shim *shim, 374 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus) 375 { 376 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 377 struct drm_i915_private *i915 = to_i915(connector->base.dev); 378 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder; 379 enum port port = dig_port->base.port; 380 u32 vprime, sha_text, sha_leftovers, rep_ctl; 381 int ret, i, j, sha_idx; 382 383 /* Process V' values from the receiver */ 384 for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) { 385 ret = shim->read_v_prime_part(dig_port, i, &vprime); 386 if (ret) 387 return ret; 388 intel_de_write(i915, HDCP_SHA_V_PRIME(i), vprime); 389 } 390 391 /* 392 * We need to write the concatenation of all device KSVs, BINFO (DP) || 393 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte 394 * stream is written via the HDCP_SHA_TEXT register in 32-bit 395 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This 396 * index will keep track of our progress through the 64 bytes as well as 397 * helping us work the 40-bit KSVs through our 32-bit register. 398 * 399 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian 400 */ 401 sha_idx = 0; 402 sha_text = 0; 403 sha_leftovers = 0; 404 rep_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port); 405 intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); 406 for (i = 0; i < num_downstream; i++) { 407 unsigned int sha_empty; 408 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN]; 409 410 /* Fill up the empty slots in sha_text and write it out */ 411 sha_empty = sizeof(sha_text) - sha_leftovers; 412 for (j = 0; j < sha_empty; j++) { 413 u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8); 414 sha_text |= ksv[j] << off; 415 } 416 417 ret = intel_write_sha_text(i915, sha_text); 418 if (ret < 0) 419 return ret; 420 421 /* Programming guide writes this every 64 bytes */ 422 sha_idx += sizeof(sha_text); 423 if (!(sha_idx % 64)) 424 intel_de_write(i915, HDCP_REP_CTL, 425 rep_ctl | HDCP_SHA1_TEXT_32); 426 427 /* Store the leftover bytes from the ksv in sha_text */ 428 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty; 429 sha_text = 0; 430 for (j = 0; j < sha_leftovers; j++) 431 sha_text |= ksv[sha_empty + j] << 432 ((sizeof(sha_text) - j - 1) * 8); 433 434 /* 435 * If we still have room in sha_text for more data, continue. 436 * Otherwise, write it out immediately. 437 */ 438 if (sizeof(sha_text) > sha_leftovers) 439 continue; 440 441 ret = intel_write_sha_text(i915, sha_text); 442 if (ret < 0) 443 return ret; 444 sha_leftovers = 0; 445 sha_text = 0; 446 sha_idx += sizeof(sha_text); 447 } 448 449 /* 450 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many 451 * bytes are leftover from the last ksv, we might be able to fit them 452 * all in sha_text (first 2 cases), or we might need to split them up 453 * into 2 writes (last 2 cases). 454 */ 455 if (sha_leftovers == 0) { 456 /* Write 16 bits of text, 16 bits of M0 */ 457 intel_de_write(i915, HDCP_REP_CTL, 458 rep_ctl | HDCP_SHA1_TEXT_16); 459 ret = intel_write_sha_text(i915, 460 bstatus[0] << 8 | bstatus[1]); 461 if (ret < 0) 462 return ret; 463 sha_idx += sizeof(sha_text); 464 465 /* Write 32 bits of M0 */ 466 intel_de_write(i915, HDCP_REP_CTL, 467 rep_ctl | HDCP_SHA1_TEXT_0); 468 ret = intel_write_sha_text(i915, 0); 469 if (ret < 0) 470 return ret; 471 sha_idx += sizeof(sha_text); 472 473 /* Write 16 bits of M0 */ 474 intel_de_write(i915, HDCP_REP_CTL, 475 rep_ctl | HDCP_SHA1_TEXT_16); 476 ret = intel_write_sha_text(i915, 0); 477 if (ret < 0) 478 return ret; 479 sha_idx += sizeof(sha_text); 480 481 } else if (sha_leftovers == 1) { 482 /* Write 24 bits of text, 8 bits of M0 */ 483 intel_de_write(i915, HDCP_REP_CTL, 484 rep_ctl | HDCP_SHA1_TEXT_24); 485 sha_text |= bstatus[0] << 16 | bstatus[1] << 8; 486 /* Only 24-bits of data, must be in the LSB */ 487 sha_text = (sha_text & 0xffffff00) >> 8; 488 ret = intel_write_sha_text(i915, sha_text); 489 if (ret < 0) 490 return ret; 491 sha_idx += sizeof(sha_text); 492 493 /* Write 32 bits of M0 */ 494 intel_de_write(i915, HDCP_REP_CTL, 495 rep_ctl | HDCP_SHA1_TEXT_0); 496 ret = intel_write_sha_text(i915, 0); 497 if (ret < 0) 498 return ret; 499 sha_idx += sizeof(sha_text); 500 501 /* Write 24 bits of M0 */ 502 intel_de_write(i915, HDCP_REP_CTL, 503 rep_ctl | HDCP_SHA1_TEXT_8); 504 ret = intel_write_sha_text(i915, 0); 505 if (ret < 0) 506 return ret; 507 sha_idx += sizeof(sha_text); 508 509 } else if (sha_leftovers == 2) { 510 /* Write 32 bits of text */ 511 intel_de_write(i915, HDCP_REP_CTL, 512 rep_ctl | HDCP_SHA1_TEXT_32); 513 sha_text |= bstatus[0] << 8 | bstatus[1]; 514 ret = intel_write_sha_text(i915, sha_text); 515 if (ret < 0) 516 return ret; 517 sha_idx += sizeof(sha_text); 518 519 /* Write 64 bits of M0 */ 520 intel_de_write(i915, HDCP_REP_CTL, 521 rep_ctl | HDCP_SHA1_TEXT_0); 522 for (i = 0; i < 2; i++) { 523 ret = intel_write_sha_text(i915, 0); 524 if (ret < 0) 525 return ret; 526 sha_idx += sizeof(sha_text); 527 } 528 529 /* 530 * Terminate the SHA-1 stream by hand. For the other leftover 531 * cases this is appended by the hardware. 532 */ 533 intel_de_write(i915, HDCP_REP_CTL, 534 rep_ctl | HDCP_SHA1_TEXT_32); 535 sha_text = DRM_HDCP_SHA1_TERMINATOR << 24; 536 ret = intel_write_sha_text(i915, sha_text); 537 if (ret < 0) 538 return ret; 539 sha_idx += sizeof(sha_text); 540 } else if (sha_leftovers == 3) { 541 /* Write 32 bits of text (filled from LSB) */ 542 intel_de_write(i915, HDCP_REP_CTL, 543 rep_ctl | HDCP_SHA1_TEXT_32); 544 sha_text |= bstatus[0]; 545 ret = intel_write_sha_text(i915, sha_text); 546 if (ret < 0) 547 return ret; 548 sha_idx += sizeof(sha_text); 549 550 /* Write 8 bits of text (filled from LSB), 24 bits of M0 */ 551 intel_de_write(i915, HDCP_REP_CTL, 552 rep_ctl | HDCP_SHA1_TEXT_8); 553 ret = intel_write_sha_text(i915, bstatus[1]); 554 if (ret < 0) 555 return ret; 556 sha_idx += sizeof(sha_text); 557 558 /* Write 32 bits of M0 */ 559 intel_de_write(i915, HDCP_REP_CTL, 560 rep_ctl | HDCP_SHA1_TEXT_0); 561 ret = intel_write_sha_text(i915, 0); 562 if (ret < 0) 563 return ret; 564 sha_idx += sizeof(sha_text); 565 566 /* Write 8 bits of M0 */ 567 intel_de_write(i915, HDCP_REP_CTL, 568 rep_ctl | HDCP_SHA1_TEXT_24); 569 ret = intel_write_sha_text(i915, 0); 570 if (ret < 0) 571 return ret; 572 sha_idx += sizeof(sha_text); 573 } else { 574 drm_dbg_kms(&i915->drm, "Invalid number of leftovers %d\n", 575 sha_leftovers); 576 return -EINVAL; 577 } 578 579 intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); 580 /* Fill up to 64-4 bytes with zeros (leave the last write for length) */ 581 while ((sha_idx % 64) < (64 - sizeof(sha_text))) { 582 ret = intel_write_sha_text(i915, 0); 583 if (ret < 0) 584 return ret; 585 sha_idx += sizeof(sha_text); 586 } 587 588 /* 589 * Last write gets the length of the concatenation in bits. That is: 590 * - 5 bytes per device 591 * - 10 bytes for BINFO/BSTATUS(2), M0(8) 592 */ 593 sha_text = (num_downstream * 5 + 10) * 8; 594 ret = intel_write_sha_text(i915, sha_text); 595 if (ret < 0) 596 return ret; 597 598 /* Tell the HW we're done with the hash and wait for it to ACK */ 599 intel_de_write(i915, HDCP_REP_CTL, 600 rep_ctl | HDCP_SHA1_COMPLETE_HASH); 601 if (intel_de_wait_for_set(i915, HDCP_REP_CTL, 602 HDCP_SHA1_COMPLETE, 1)) { 603 drm_err(&i915->drm, "Timed out waiting for SHA1 complete\n"); 604 return -ETIMEDOUT; 605 } 606 if (!(intel_de_read(i915, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) { 607 drm_dbg_kms(&i915->drm, "SHA-1 mismatch, HDCP failed\n"); 608 return -ENXIO; 609 } 610 611 return 0; 612 } 613 614 /* Implements Part 2 of the HDCP authorization procedure */ 615 static 616 int intel_hdcp_auth_downstream(struct intel_connector *connector) 617 { 618 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 619 struct drm_i915_private *i915 = to_i915(connector->base.dev); 620 const struct intel_hdcp_shim *shim = connector->hdcp.shim; 621 u8 bstatus[2], num_downstream, *ksv_fifo; 622 int ret, i, tries = 3; 623 624 ret = intel_hdcp_poll_ksv_fifo(dig_port, shim); 625 if (ret) { 626 drm_dbg_kms(&i915->drm, 627 "KSV list failed to become ready (%d)\n", ret); 628 return ret; 629 } 630 631 ret = shim->read_bstatus(dig_port, bstatus); 632 if (ret) 633 return ret; 634 635 if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) || 636 DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) { 637 drm_dbg_kms(&i915->drm, "Max Topology Limit Exceeded\n"); 638 return -EPERM; 639 } 640 641 /* 642 * When repeater reports 0 device count, HDCP1.4 spec allows disabling 643 * the HDCP encryption. That implies that repeater can't have its own 644 * display. As there is no consumption of encrypted content in the 645 * repeater with 0 downstream devices, we are failing the 646 * authentication. 647 */ 648 num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]); 649 if (num_downstream == 0) { 650 drm_dbg_kms(&i915->drm, 651 "Repeater with zero downstream devices\n"); 652 return -EINVAL; 653 } 654 655 ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL); 656 if (!ksv_fifo) { 657 drm_dbg_kms(&i915->drm, "Out of mem: ksv_fifo\n"); 658 return -ENOMEM; 659 } 660 661 ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo); 662 if (ret) 663 goto err; 664 665 if (drm_hdcp_check_ksvs_revoked(&i915->drm, ksv_fifo, 666 num_downstream) > 0) { 667 drm_err(&i915->drm, "Revoked Ksv(s) in ksv_fifo\n"); 668 ret = -EPERM; 669 goto err; 670 } 671 672 /* 673 * When V prime mismatches, DP Spec mandates re-read of 674 * V prime atleast twice. 675 */ 676 for (i = 0; i < tries; i++) { 677 ret = intel_hdcp_validate_v_prime(connector, shim, 678 ksv_fifo, num_downstream, 679 bstatus); 680 if (!ret) 681 break; 682 } 683 684 if (i == tries) { 685 drm_dbg_kms(&i915->drm, 686 "V Prime validation failed.(%d)\n", ret); 687 goto err; 688 } 689 690 drm_dbg_kms(&i915->drm, "HDCP is enabled (%d downstream devices)\n", 691 num_downstream); 692 ret = 0; 693 err: 694 kfree(ksv_fifo); 695 return ret; 696 } 697 698 /* Implements Part 1 of the HDCP authorization procedure */ 699 static int intel_hdcp_auth(struct intel_connector *connector) 700 { 701 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 702 struct drm_i915_private *i915 = to_i915(connector->base.dev); 703 struct intel_hdcp *hdcp = &connector->hdcp; 704 const struct intel_hdcp_shim *shim = hdcp->shim; 705 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder; 706 enum port port = dig_port->base.port; 707 unsigned long r0_prime_gen_start; 708 int ret, i, tries = 2; 709 union { 710 u32 reg[2]; 711 u8 shim[DRM_HDCP_AN_LEN]; 712 } an; 713 union { 714 u32 reg[2]; 715 u8 shim[DRM_HDCP_KSV_LEN]; 716 } bksv; 717 union { 718 u32 reg; 719 u8 shim[DRM_HDCP_RI_LEN]; 720 } ri; 721 bool repeater_present, hdcp_capable; 722 723 /* 724 * Detects whether the display is HDCP capable. Although we check for 725 * valid Bksv below, the HDCP over DP spec requires that we check 726 * whether the display supports HDCP before we write An. For HDMI 727 * displays, this is not necessary. 728 */ 729 if (shim->hdcp_capable) { 730 ret = shim->hdcp_capable(dig_port, &hdcp_capable); 731 if (ret) 732 return ret; 733 if (!hdcp_capable) { 734 drm_dbg_kms(&i915->drm, 735 "Panel is not HDCP capable\n"); 736 return -EINVAL; 737 } 738 } 739 740 /* Initialize An with 2 random values and acquire it */ 741 for (i = 0; i < 2; i++) 742 intel_de_write(i915, 743 HDCP_ANINIT(i915, cpu_transcoder, port), 744 get_random_u32()); 745 intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port), 746 HDCP_CONF_CAPTURE_AN); 747 748 /* Wait for An to be acquired */ 749 if (intel_de_wait_for_set(i915, 750 HDCP_STATUS(i915, cpu_transcoder, port), 751 HDCP_STATUS_AN_READY, 1)) { 752 drm_err(&i915->drm, "Timed out waiting for An\n"); 753 return -ETIMEDOUT; 754 } 755 756 an.reg[0] = intel_de_read(i915, 757 HDCP_ANLO(i915, cpu_transcoder, port)); 758 an.reg[1] = intel_de_read(i915, 759 HDCP_ANHI(i915, cpu_transcoder, port)); 760 ret = shim->write_an_aksv(dig_port, an.shim); 761 if (ret) 762 return ret; 763 764 r0_prime_gen_start = jiffies; 765 766 memset(&bksv, 0, sizeof(bksv)); 767 768 ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim); 769 if (ret < 0) 770 return ret; 771 772 if (drm_hdcp_check_ksvs_revoked(&i915->drm, bksv.shim, 1) > 0) { 773 drm_err(&i915->drm, "BKSV is revoked\n"); 774 return -EPERM; 775 } 776 777 intel_de_write(i915, HDCP_BKSVLO(i915, cpu_transcoder, port), 778 bksv.reg[0]); 779 intel_de_write(i915, HDCP_BKSVHI(i915, cpu_transcoder, port), 780 bksv.reg[1]); 781 782 ret = shim->repeater_present(dig_port, &repeater_present); 783 if (ret) 784 return ret; 785 if (repeater_present) 786 intel_de_write(i915, HDCP_REP_CTL, 787 intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port)); 788 789 ret = shim->toggle_signalling(dig_port, cpu_transcoder, true); 790 if (ret) 791 return ret; 792 793 intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port), 794 HDCP_CONF_AUTH_AND_ENC); 795 796 /* Wait for R0 ready */ 797 if (wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) & 798 (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) { 799 drm_err(&i915->drm, "Timed out waiting for R0 ready\n"); 800 return -ETIMEDOUT; 801 } 802 803 /* 804 * Wait for R0' to become available. The spec says 100ms from Aksv, but 805 * some monitors can take longer than this. We'll set the timeout at 806 * 300ms just to be sure. 807 * 808 * On DP, there's an R0_READY bit available but no such bit 809 * exists on HDMI. Since the upper-bound is the same, we'll just do 810 * the stupid thing instead of polling on one and not the other. 811 */ 812 wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300); 813 814 tries = 3; 815 816 /* 817 * DP HDCP Spec mandates the two more reattempt to read R0, incase 818 * of R0 mismatch. 819 */ 820 for (i = 0; i < tries; i++) { 821 ri.reg = 0; 822 ret = shim->read_ri_prime(dig_port, ri.shim); 823 if (ret) 824 return ret; 825 intel_de_write(i915, 826 HDCP_RPRIME(i915, cpu_transcoder, port), 827 ri.reg); 828 829 /* Wait for Ri prime match */ 830 if (!wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) & 831 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) 832 break; 833 } 834 835 if (i == tries) { 836 drm_dbg_kms(&i915->drm, 837 "Timed out waiting for Ri prime match (%x)\n", 838 intel_de_read(i915, 839 HDCP_STATUS(i915, cpu_transcoder, port))); 840 return -ETIMEDOUT; 841 } 842 843 /* Wait for encryption confirmation */ 844 if (intel_de_wait_for_set(i915, 845 HDCP_STATUS(i915, cpu_transcoder, port), 846 HDCP_STATUS_ENC, 847 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) { 848 drm_err(&i915->drm, "Timed out waiting for encryption\n"); 849 return -ETIMEDOUT; 850 } 851 852 /* DP MST Auth Part 1 Step 2.a and Step 2.b */ 853 if (shim->stream_encryption) { 854 ret = shim->stream_encryption(connector, true); 855 if (ret) { 856 drm_err(&i915->drm, "[%s:%d] Failed to enable HDCP 1.4 stream enc\n", 857 connector->base.name, connector->base.base.id); 858 return ret; 859 } 860 drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encrypted\n", 861 transcoder_name(hdcp->stream_transcoder)); 862 } 863 864 if (repeater_present) 865 return intel_hdcp_auth_downstream(connector); 866 867 drm_dbg_kms(&i915->drm, "HDCP is enabled (no repeater present)\n"); 868 return 0; 869 } 870 871 static int _intel_hdcp_disable(struct intel_connector *connector) 872 { 873 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 874 struct drm_i915_private *i915 = to_i915(connector->base.dev); 875 struct intel_hdcp *hdcp = &connector->hdcp; 876 enum port port = dig_port->base.port; 877 enum transcoder cpu_transcoder = hdcp->cpu_transcoder; 878 u32 repeater_ctl; 879 int ret; 880 881 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP is being disabled...\n", 882 connector->base.name, connector->base.base.id); 883 884 if (hdcp->shim->stream_encryption) { 885 ret = hdcp->shim->stream_encryption(connector, false); 886 if (ret) { 887 drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 1.4 stream enc\n", 888 connector->base.name, connector->base.base.id); 889 return ret; 890 } 891 drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n", 892 transcoder_name(hdcp->stream_transcoder)); 893 /* 894 * If there are other connectors on this port using HDCP, 895 * don't disable it until it disabled HDCP encryption for 896 * all connectors in MST topology. 897 */ 898 if (dig_port->num_hdcp_streams > 0) 899 return 0; 900 } 901 902 hdcp->hdcp_encrypted = false; 903 intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port), 0); 904 if (intel_de_wait_for_clear(i915, 905 HDCP_STATUS(i915, cpu_transcoder, port), 906 ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) { 907 drm_err(&i915->drm, 908 "Failed to disable HDCP, timeout clearing status\n"); 909 return -ETIMEDOUT; 910 } 911 912 repeater_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, 913 port); 914 intel_de_rmw(i915, HDCP_REP_CTL, repeater_ctl, 0); 915 916 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false); 917 if (ret) { 918 drm_err(&i915->drm, "Failed to disable HDCP signalling\n"); 919 return ret; 920 } 921 922 drm_dbg_kms(&i915->drm, "HDCP is disabled\n"); 923 return 0; 924 } 925 926 static int _intel_hdcp_enable(struct intel_connector *connector) 927 { 928 struct drm_i915_private *i915 = to_i915(connector->base.dev); 929 struct intel_hdcp *hdcp = &connector->hdcp; 930 int i, ret, tries = 3; 931 932 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP is being enabled...\n", 933 connector->base.name, connector->base.base.id); 934 935 if (!hdcp_key_loadable(i915)) { 936 drm_err(&i915->drm, "HDCP key Load is not possible\n"); 937 return -ENXIO; 938 } 939 940 for (i = 0; i < KEY_LOAD_TRIES; i++) { 941 ret = intel_hdcp_load_keys(i915); 942 if (!ret) 943 break; 944 intel_hdcp_clear_keys(i915); 945 } 946 if (ret) { 947 drm_err(&i915->drm, "Could not load HDCP keys, (%d)\n", 948 ret); 949 return ret; 950 } 951 952 /* Incase of authentication failures, HDCP spec expects reauth. */ 953 for (i = 0; i < tries; i++) { 954 ret = intel_hdcp_auth(connector); 955 if (!ret) { 956 hdcp->hdcp_encrypted = true; 957 return 0; 958 } 959 960 drm_dbg_kms(&i915->drm, "HDCP Auth failure (%d)\n", ret); 961 962 /* Ensuring HDCP encryption and signalling are stopped. */ 963 _intel_hdcp_disable(connector); 964 } 965 966 drm_dbg_kms(&i915->drm, 967 "HDCP authentication failed (%d tries/%d)\n", tries, ret); 968 return ret; 969 } 970 971 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp) 972 { 973 return container_of(hdcp, struct intel_connector, hdcp); 974 } 975 976 static void intel_hdcp_update_value(struct intel_connector *connector, 977 u64 value, bool update_property) 978 { 979 struct drm_device *dev = connector->base.dev; 980 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 981 struct intel_hdcp *hdcp = &connector->hdcp; 982 struct drm_i915_private *i915 = to_i915(connector->base.dev); 983 984 drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex)); 985 986 if (hdcp->value == value) 987 return; 988 989 drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex)); 990 991 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) { 992 if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0)) 993 dig_port->num_hdcp_streams--; 994 } else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) { 995 dig_port->num_hdcp_streams++; 996 } 997 998 hdcp->value = value; 999 if (update_property) { 1000 drm_connector_get(&connector->base); 1001 queue_work(i915->unordered_wq, &hdcp->prop_work); 1002 } 1003 } 1004 1005 /* Implements Part 3 of the HDCP authorization procedure */ 1006 static int intel_hdcp_check_link(struct intel_connector *connector) 1007 { 1008 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1009 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1010 struct intel_hdcp *hdcp = &connector->hdcp; 1011 enum port port = dig_port->base.port; 1012 enum transcoder cpu_transcoder; 1013 int ret = 0; 1014 1015 mutex_lock(&hdcp->mutex); 1016 mutex_lock(&dig_port->hdcp_mutex); 1017 1018 cpu_transcoder = hdcp->cpu_transcoder; 1019 1020 /* Check_link valid only when HDCP1.4 is enabled */ 1021 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED || 1022 !hdcp->hdcp_encrypted) { 1023 ret = -EINVAL; 1024 goto out; 1025 } 1026 1027 if (drm_WARN_ON(&i915->drm, 1028 !intel_hdcp_in_use(i915, cpu_transcoder, port))) { 1029 drm_err(&i915->drm, 1030 "%s:%d HDCP link stopped encryption,%x\n", 1031 connector->base.name, connector->base.base.id, 1032 intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port))); 1033 ret = -ENXIO; 1034 intel_hdcp_update_value(connector, 1035 DRM_MODE_CONTENT_PROTECTION_DESIRED, 1036 true); 1037 goto out; 1038 } 1039 1040 if (hdcp->shim->check_link(dig_port, connector)) { 1041 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { 1042 intel_hdcp_update_value(connector, 1043 DRM_MODE_CONTENT_PROTECTION_ENABLED, true); 1044 } 1045 goto out; 1046 } 1047 1048 drm_dbg_kms(&i915->drm, 1049 "[%s:%d] HDCP link failed, retrying authentication\n", 1050 connector->base.name, connector->base.base.id); 1051 1052 ret = _intel_hdcp_disable(connector); 1053 if (ret) { 1054 drm_err(&i915->drm, "Failed to disable hdcp (%d)\n", ret); 1055 intel_hdcp_update_value(connector, 1056 DRM_MODE_CONTENT_PROTECTION_DESIRED, 1057 true); 1058 goto out; 1059 } 1060 1061 ret = _intel_hdcp_enable(connector); 1062 if (ret) { 1063 drm_err(&i915->drm, "Failed to enable hdcp (%d)\n", ret); 1064 intel_hdcp_update_value(connector, 1065 DRM_MODE_CONTENT_PROTECTION_DESIRED, 1066 true); 1067 goto out; 1068 } 1069 1070 out: 1071 mutex_unlock(&dig_port->hdcp_mutex); 1072 mutex_unlock(&hdcp->mutex); 1073 return ret; 1074 } 1075 1076 static void intel_hdcp_prop_work(struct work_struct *work) 1077 { 1078 struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp, 1079 prop_work); 1080 struct intel_connector *connector = intel_hdcp_to_connector(hdcp); 1081 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1082 1083 drm_modeset_lock(&i915->drm.mode_config.connection_mutex, NULL); 1084 mutex_lock(&hdcp->mutex); 1085 1086 /* 1087 * This worker is only used to flip between ENABLED/DESIRED. Either of 1088 * those to UNDESIRED is handled by core. If value == UNDESIRED, 1089 * we're running just after hdcp has been disabled, so just exit 1090 */ 1091 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) 1092 drm_hdcp_update_content_protection(&connector->base, 1093 hdcp->value); 1094 1095 mutex_unlock(&hdcp->mutex); 1096 drm_modeset_unlock(&i915->drm.mode_config.connection_mutex); 1097 1098 drm_connector_put(&connector->base); 1099 } 1100 1101 bool is_hdcp_supported(struct drm_i915_private *i915, enum port port) 1102 { 1103 return DISPLAY_RUNTIME_INFO(i915)->has_hdcp && 1104 (DISPLAY_VER(i915) >= 12 || port < PORT_E); 1105 } 1106 1107 static int 1108 hdcp2_prepare_ake_init(struct intel_connector *connector, 1109 struct hdcp2_ake_init *ake_data) 1110 { 1111 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1112 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1113 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1114 struct i915_hdcp_arbiter *arbiter; 1115 int ret; 1116 1117 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1118 arbiter = i915->display.hdcp.arbiter; 1119 1120 if (!arbiter || !arbiter->ops) { 1121 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1122 return -EINVAL; 1123 } 1124 1125 ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data); 1126 if (ret) 1127 drm_dbg_kms(&i915->drm, "Prepare_ake_init failed. %d\n", 1128 ret); 1129 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1130 1131 return ret; 1132 } 1133 1134 static int 1135 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector, 1136 struct hdcp2_ake_send_cert *rx_cert, 1137 bool *paired, 1138 struct hdcp2_ake_no_stored_km *ek_pub_km, 1139 size_t *msg_sz) 1140 { 1141 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1142 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1143 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1144 struct i915_hdcp_arbiter *arbiter; 1145 int ret; 1146 1147 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1148 arbiter = i915->display.hdcp.arbiter; 1149 1150 if (!arbiter || !arbiter->ops) { 1151 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1152 return -EINVAL; 1153 } 1154 1155 ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data, 1156 rx_cert, paired, 1157 ek_pub_km, msg_sz); 1158 if (ret < 0) 1159 drm_dbg_kms(&i915->drm, "Verify rx_cert failed. %d\n", 1160 ret); 1161 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1162 1163 return ret; 1164 } 1165 1166 static int hdcp2_verify_hprime(struct intel_connector *connector, 1167 struct hdcp2_ake_send_hprime *rx_hprime) 1168 { 1169 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1170 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1171 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1172 struct i915_hdcp_arbiter *arbiter; 1173 int ret; 1174 1175 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1176 arbiter = i915->display.hdcp.arbiter; 1177 1178 if (!arbiter || !arbiter->ops) { 1179 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1180 return -EINVAL; 1181 } 1182 1183 ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime); 1184 if (ret < 0) 1185 drm_dbg_kms(&i915->drm, "Verify hprime failed. %d\n", ret); 1186 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1187 1188 return ret; 1189 } 1190 1191 static int 1192 hdcp2_store_pairing_info(struct intel_connector *connector, 1193 struct hdcp2_ake_send_pairing_info *pairing_info) 1194 { 1195 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1196 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1197 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1198 struct i915_hdcp_arbiter *arbiter; 1199 int ret; 1200 1201 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1202 arbiter = i915->display.hdcp.arbiter; 1203 1204 if (!arbiter || !arbiter->ops) { 1205 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1206 return -EINVAL; 1207 } 1208 1209 ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info); 1210 if (ret < 0) 1211 drm_dbg_kms(&i915->drm, "Store pairing info failed. %d\n", 1212 ret); 1213 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1214 1215 return ret; 1216 } 1217 1218 static int 1219 hdcp2_prepare_lc_init(struct intel_connector *connector, 1220 struct hdcp2_lc_init *lc_init) 1221 { 1222 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1223 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1224 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1225 struct i915_hdcp_arbiter *arbiter; 1226 int ret; 1227 1228 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1229 arbiter = i915->display.hdcp.arbiter; 1230 1231 if (!arbiter || !arbiter->ops) { 1232 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1233 return -EINVAL; 1234 } 1235 1236 ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init); 1237 if (ret < 0) 1238 drm_dbg_kms(&i915->drm, "Prepare lc_init failed. %d\n", 1239 ret); 1240 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1241 1242 return ret; 1243 } 1244 1245 static int 1246 hdcp2_verify_lprime(struct intel_connector *connector, 1247 struct hdcp2_lc_send_lprime *rx_lprime) 1248 { 1249 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1250 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1251 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1252 struct i915_hdcp_arbiter *arbiter; 1253 int ret; 1254 1255 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1256 arbiter = i915->display.hdcp.arbiter; 1257 1258 if (!arbiter || !arbiter->ops) { 1259 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1260 return -EINVAL; 1261 } 1262 1263 ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime); 1264 if (ret < 0) 1265 drm_dbg_kms(&i915->drm, "Verify L_Prime failed. %d\n", 1266 ret); 1267 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1268 1269 return ret; 1270 } 1271 1272 static int hdcp2_prepare_skey(struct intel_connector *connector, 1273 struct hdcp2_ske_send_eks *ske_data) 1274 { 1275 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1276 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1277 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1278 struct i915_hdcp_arbiter *arbiter; 1279 int ret; 1280 1281 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1282 arbiter = i915->display.hdcp.arbiter; 1283 1284 if (!arbiter || !arbiter->ops) { 1285 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1286 return -EINVAL; 1287 } 1288 1289 ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data); 1290 if (ret < 0) 1291 drm_dbg_kms(&i915->drm, "Get session key failed. %d\n", 1292 ret); 1293 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1294 1295 return ret; 1296 } 1297 1298 static int 1299 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector, 1300 struct hdcp2_rep_send_receiverid_list 1301 *rep_topology, 1302 struct hdcp2_rep_send_ack *rep_send_ack) 1303 { 1304 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1305 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1306 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1307 struct i915_hdcp_arbiter *arbiter; 1308 int ret; 1309 1310 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1311 arbiter = i915->display.hdcp.arbiter; 1312 1313 if (!arbiter || !arbiter->ops) { 1314 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1315 return -EINVAL; 1316 } 1317 1318 ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev, 1319 data, 1320 rep_topology, 1321 rep_send_ack); 1322 if (ret < 0) 1323 drm_dbg_kms(&i915->drm, 1324 "Verify rep topology failed. %d\n", ret); 1325 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1326 1327 return ret; 1328 } 1329 1330 static int 1331 hdcp2_verify_mprime(struct intel_connector *connector, 1332 struct hdcp2_rep_stream_ready *stream_ready) 1333 { 1334 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1335 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1336 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1337 struct i915_hdcp_arbiter *arbiter; 1338 int ret; 1339 1340 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1341 arbiter = i915->display.hdcp.arbiter; 1342 1343 if (!arbiter || !arbiter->ops) { 1344 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1345 return -EINVAL; 1346 } 1347 1348 ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready); 1349 if (ret < 0) 1350 drm_dbg_kms(&i915->drm, "Verify mprime failed. %d\n", ret); 1351 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1352 1353 return ret; 1354 } 1355 1356 static int hdcp2_authenticate_port(struct intel_connector *connector) 1357 { 1358 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1359 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1360 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1361 struct i915_hdcp_arbiter *arbiter; 1362 int ret; 1363 1364 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1365 arbiter = i915->display.hdcp.arbiter; 1366 1367 if (!arbiter || !arbiter->ops) { 1368 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1369 return -EINVAL; 1370 } 1371 1372 ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data); 1373 if (ret < 0) 1374 drm_dbg_kms(&i915->drm, "Enable hdcp auth failed. %d\n", 1375 ret); 1376 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1377 1378 return ret; 1379 } 1380 1381 static int hdcp2_close_session(struct intel_connector *connector) 1382 { 1383 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1384 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1385 struct i915_hdcp_arbiter *arbiter; 1386 int ret; 1387 1388 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1389 arbiter = i915->display.hdcp.arbiter; 1390 1391 if (!arbiter || !arbiter->ops) { 1392 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1393 return -EINVAL; 1394 } 1395 1396 ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev, 1397 &dig_port->hdcp_port_data); 1398 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1399 1400 return ret; 1401 } 1402 1403 static int hdcp2_deauthenticate_port(struct intel_connector *connector) 1404 { 1405 return hdcp2_close_session(connector); 1406 } 1407 1408 /* Authentication flow starts from here */ 1409 static int hdcp2_authentication_key_exchange(struct intel_connector *connector) 1410 { 1411 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1412 struct intel_hdcp *hdcp = &connector->hdcp; 1413 union { 1414 struct hdcp2_ake_init ake_init; 1415 struct hdcp2_ake_send_cert send_cert; 1416 struct hdcp2_ake_no_stored_km no_stored_km; 1417 struct hdcp2_ake_send_hprime send_hprime; 1418 struct hdcp2_ake_send_pairing_info pairing_info; 1419 } msgs; 1420 const struct intel_hdcp_shim *shim = hdcp->shim; 1421 size_t size; 1422 int ret; 1423 1424 /* Init for seq_num */ 1425 hdcp->seq_num_v = 0; 1426 hdcp->seq_num_m = 0; 1427 1428 ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init); 1429 if (ret < 0) 1430 return ret; 1431 1432 ret = shim->write_2_2_msg(connector, &msgs.ake_init, 1433 sizeof(msgs.ake_init)); 1434 if (ret < 0) 1435 return ret; 1436 1437 ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_CERT, 1438 &msgs.send_cert, sizeof(msgs.send_cert)); 1439 if (ret < 0) 1440 return ret; 1441 1442 if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) { 1443 drm_dbg_kms(&i915->drm, "cert.rx_caps dont claim HDCP2.2\n"); 1444 return -EINVAL; 1445 } 1446 1447 hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]); 1448 1449 if (drm_hdcp_check_ksvs_revoked(&i915->drm, 1450 msgs.send_cert.cert_rx.receiver_id, 1451 1) > 0) { 1452 drm_err(&i915->drm, "Receiver ID is revoked\n"); 1453 return -EPERM; 1454 } 1455 1456 /* 1457 * Here msgs.no_stored_km will hold msgs corresponding to the km 1458 * stored also. 1459 */ 1460 ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert, 1461 &hdcp->is_paired, 1462 &msgs.no_stored_km, &size); 1463 if (ret < 0) 1464 return ret; 1465 1466 ret = shim->write_2_2_msg(connector, &msgs.no_stored_km, size); 1467 if (ret < 0) 1468 return ret; 1469 1470 ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_HPRIME, 1471 &msgs.send_hprime, sizeof(msgs.send_hprime)); 1472 if (ret < 0) 1473 return ret; 1474 1475 ret = hdcp2_verify_hprime(connector, &msgs.send_hprime); 1476 if (ret < 0) 1477 return ret; 1478 1479 if (!hdcp->is_paired) { 1480 /* Pairing is required */ 1481 ret = shim->read_2_2_msg(connector, 1482 HDCP_2_2_AKE_SEND_PAIRING_INFO, 1483 &msgs.pairing_info, 1484 sizeof(msgs.pairing_info)); 1485 if (ret < 0) 1486 return ret; 1487 1488 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info); 1489 if (ret < 0) 1490 return ret; 1491 hdcp->is_paired = true; 1492 } 1493 1494 return 0; 1495 } 1496 1497 static int hdcp2_locality_check(struct intel_connector *connector) 1498 { 1499 struct intel_hdcp *hdcp = &connector->hdcp; 1500 union { 1501 struct hdcp2_lc_init lc_init; 1502 struct hdcp2_lc_send_lprime send_lprime; 1503 } msgs; 1504 const struct intel_hdcp_shim *shim = hdcp->shim; 1505 int tries = HDCP2_LC_RETRY_CNT, ret, i; 1506 1507 for (i = 0; i < tries; i++) { 1508 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init); 1509 if (ret < 0) 1510 continue; 1511 1512 ret = shim->write_2_2_msg(connector, &msgs.lc_init, 1513 sizeof(msgs.lc_init)); 1514 if (ret < 0) 1515 continue; 1516 1517 ret = shim->read_2_2_msg(connector, 1518 HDCP_2_2_LC_SEND_LPRIME, 1519 &msgs.send_lprime, 1520 sizeof(msgs.send_lprime)); 1521 if (ret < 0) 1522 continue; 1523 1524 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime); 1525 if (!ret) 1526 break; 1527 } 1528 1529 return ret; 1530 } 1531 1532 static int hdcp2_session_key_exchange(struct intel_connector *connector) 1533 { 1534 struct intel_hdcp *hdcp = &connector->hdcp; 1535 struct hdcp2_ske_send_eks send_eks; 1536 int ret; 1537 1538 ret = hdcp2_prepare_skey(connector, &send_eks); 1539 if (ret < 0) 1540 return ret; 1541 1542 ret = hdcp->shim->write_2_2_msg(connector, &send_eks, 1543 sizeof(send_eks)); 1544 if (ret < 0) 1545 return ret; 1546 1547 return 0; 1548 } 1549 1550 static 1551 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector) 1552 { 1553 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1554 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1555 struct intel_hdcp *hdcp = &connector->hdcp; 1556 union { 1557 struct hdcp2_rep_stream_manage stream_manage; 1558 struct hdcp2_rep_stream_ready stream_ready; 1559 } msgs; 1560 const struct intel_hdcp_shim *shim = hdcp->shim; 1561 int ret, streams_size_delta, i; 1562 1563 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) 1564 return -ERANGE; 1565 1566 /* Prepare RepeaterAuth_Stream_Manage msg */ 1567 msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE; 1568 drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m); 1569 1570 msgs.stream_manage.k = cpu_to_be16(data->k); 1571 1572 for (i = 0; i < data->k; i++) { 1573 msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id; 1574 msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type; 1575 } 1576 1577 streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) * 1578 sizeof(struct hdcp2_streamid_type); 1579 /* Send it to Repeater */ 1580 ret = shim->write_2_2_msg(connector, &msgs.stream_manage, 1581 sizeof(msgs.stream_manage) - streams_size_delta); 1582 if (ret < 0) 1583 goto out; 1584 1585 ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_STREAM_READY, 1586 &msgs.stream_ready, sizeof(msgs.stream_ready)); 1587 if (ret < 0) 1588 goto out; 1589 1590 data->seq_num_m = hdcp->seq_num_m; 1591 1592 ret = hdcp2_verify_mprime(connector, &msgs.stream_ready); 1593 1594 out: 1595 hdcp->seq_num_m++; 1596 1597 return ret; 1598 } 1599 1600 static 1601 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector) 1602 { 1603 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1604 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1605 struct intel_hdcp *hdcp = &connector->hdcp; 1606 union { 1607 struct hdcp2_rep_send_receiverid_list recvid_list; 1608 struct hdcp2_rep_send_ack rep_ack; 1609 } msgs; 1610 const struct intel_hdcp_shim *shim = hdcp->shim; 1611 u32 seq_num_v, device_cnt; 1612 u8 *rx_info; 1613 int ret; 1614 1615 ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_SEND_RECVID_LIST, 1616 &msgs.recvid_list, sizeof(msgs.recvid_list)); 1617 if (ret < 0) 1618 return ret; 1619 1620 rx_info = msgs.recvid_list.rx_info; 1621 1622 if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) || 1623 HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) { 1624 drm_dbg_kms(&i915->drm, "Topology Max Size Exceeded\n"); 1625 return -EINVAL; 1626 } 1627 1628 /* 1629 * MST topology is not Type 1 capable if it contains a downstream 1630 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant. 1631 */ 1632 dig_port->hdcp_mst_type1_capable = 1633 !HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) && 1634 !HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]); 1635 1636 /* Converting and Storing the seq_num_v to local variable as DWORD */ 1637 seq_num_v = 1638 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v); 1639 1640 if (!hdcp->hdcp2_encrypted && seq_num_v) { 1641 drm_dbg_kms(&i915->drm, 1642 "Non zero Seq_num_v at first RecvId_List msg\n"); 1643 return -EINVAL; 1644 } 1645 1646 if (seq_num_v < hdcp->seq_num_v) { 1647 /* Roll over of the seq_num_v from repeater. Reauthenticate. */ 1648 drm_dbg_kms(&i915->drm, "Seq_num_v roll over.\n"); 1649 return -EINVAL; 1650 } 1651 1652 device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | 1653 HDCP_2_2_DEV_COUNT_LO(rx_info[1])); 1654 if (drm_hdcp_check_ksvs_revoked(&i915->drm, 1655 msgs.recvid_list.receiver_ids, 1656 device_cnt) > 0) { 1657 drm_err(&i915->drm, "Revoked receiver ID(s) is in list\n"); 1658 return -EPERM; 1659 } 1660 1661 ret = hdcp2_verify_rep_topology_prepare_ack(connector, 1662 &msgs.recvid_list, 1663 &msgs.rep_ack); 1664 if (ret < 0) 1665 return ret; 1666 1667 hdcp->seq_num_v = seq_num_v; 1668 ret = shim->write_2_2_msg(connector, &msgs.rep_ack, 1669 sizeof(msgs.rep_ack)); 1670 if (ret < 0) 1671 return ret; 1672 1673 return 0; 1674 } 1675 1676 static int hdcp2_authenticate_sink(struct intel_connector *connector) 1677 { 1678 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1679 struct intel_hdcp *hdcp = &connector->hdcp; 1680 const struct intel_hdcp_shim *shim = hdcp->shim; 1681 int ret; 1682 1683 ret = hdcp2_authentication_key_exchange(connector); 1684 if (ret < 0) { 1685 drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret); 1686 return ret; 1687 } 1688 1689 ret = hdcp2_locality_check(connector); 1690 if (ret < 0) { 1691 drm_dbg_kms(&i915->drm, 1692 "Locality Check failed. Err : %d\n", ret); 1693 return ret; 1694 } 1695 1696 ret = hdcp2_session_key_exchange(connector); 1697 if (ret < 0) { 1698 drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret); 1699 return ret; 1700 } 1701 1702 if (shim->config_stream_type) { 1703 ret = shim->config_stream_type(connector, 1704 hdcp->is_repeater, 1705 hdcp->content_type); 1706 if (ret < 0) 1707 return ret; 1708 } 1709 1710 if (hdcp->is_repeater) { 1711 ret = hdcp2_authenticate_repeater_topology(connector); 1712 if (ret < 0) { 1713 drm_dbg_kms(&i915->drm, 1714 "Repeater Auth Failed. Err: %d\n", ret); 1715 return ret; 1716 } 1717 } 1718 1719 return ret; 1720 } 1721 1722 static int hdcp2_enable_stream_encryption(struct intel_connector *connector) 1723 { 1724 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1725 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1726 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1727 struct intel_hdcp *hdcp = &connector->hdcp; 1728 enum transcoder cpu_transcoder = hdcp->cpu_transcoder; 1729 enum port port = dig_port->base.port; 1730 int ret = 0; 1731 1732 if (!(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) & 1733 LINK_ENCRYPTION_STATUS)) { 1734 drm_err(&i915->drm, "[%s:%d] HDCP 2.2 Link is not encrypted\n", 1735 connector->base.name, connector->base.base.id); 1736 ret = -EPERM; 1737 goto link_recover; 1738 } 1739 1740 if (hdcp->shim->stream_2_2_encryption) { 1741 ret = hdcp->shim->stream_2_2_encryption(connector, true); 1742 if (ret) { 1743 drm_err(&i915->drm, "[%s:%d] Failed to enable HDCP 2.2 stream enc\n", 1744 connector->base.name, connector->base.base.id); 1745 return ret; 1746 } 1747 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encrypted\n", 1748 transcoder_name(hdcp->stream_transcoder)); 1749 } 1750 1751 return 0; 1752 1753 link_recover: 1754 if (hdcp2_deauthenticate_port(connector) < 0) 1755 drm_dbg_kms(&i915->drm, "Port deauth failed.\n"); 1756 1757 dig_port->hdcp_auth_status = false; 1758 data->k = 0; 1759 1760 return ret; 1761 } 1762 1763 static int hdcp2_enable_encryption(struct intel_connector *connector) 1764 { 1765 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1766 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1767 struct intel_hdcp *hdcp = &connector->hdcp; 1768 enum port port = dig_port->base.port; 1769 enum transcoder cpu_transcoder = hdcp->cpu_transcoder; 1770 int ret; 1771 1772 drm_WARN_ON(&i915->drm, 1773 intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) & 1774 LINK_ENCRYPTION_STATUS); 1775 if (hdcp->shim->toggle_signalling) { 1776 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, 1777 true); 1778 if (ret) { 1779 drm_err(&i915->drm, 1780 "Failed to enable HDCP signalling. %d\n", 1781 ret); 1782 return ret; 1783 } 1784 } 1785 1786 if (intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) & 1787 LINK_AUTH_STATUS) 1788 /* Link is Authenticated. Now set for Encryption */ 1789 intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port), 1790 0, CTL_LINK_ENCRYPTION_REQ); 1791 1792 ret = intel_de_wait_for_set(i915, 1793 HDCP2_STATUS(i915, cpu_transcoder, 1794 port), 1795 LINK_ENCRYPTION_STATUS, 1796 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS); 1797 dig_port->hdcp_auth_status = true; 1798 1799 return ret; 1800 } 1801 1802 static int hdcp2_disable_encryption(struct intel_connector *connector) 1803 { 1804 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1805 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1806 struct intel_hdcp *hdcp = &connector->hdcp; 1807 enum port port = dig_port->base.port; 1808 enum transcoder cpu_transcoder = hdcp->cpu_transcoder; 1809 int ret; 1810 1811 drm_WARN_ON(&i915->drm, !(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) & 1812 LINK_ENCRYPTION_STATUS)); 1813 1814 intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port), 1815 CTL_LINK_ENCRYPTION_REQ, 0); 1816 1817 ret = intel_de_wait_for_clear(i915, 1818 HDCP2_STATUS(i915, cpu_transcoder, 1819 port), 1820 LINK_ENCRYPTION_STATUS, 1821 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS); 1822 if (ret == -ETIMEDOUT) 1823 drm_dbg_kms(&i915->drm, "Disable Encryption Timedout"); 1824 1825 if (hdcp->shim->toggle_signalling) { 1826 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, 1827 false); 1828 if (ret) { 1829 drm_err(&i915->drm, 1830 "Failed to disable HDCP signalling. %d\n", 1831 ret); 1832 return ret; 1833 } 1834 } 1835 1836 return ret; 1837 } 1838 1839 static int 1840 hdcp2_propagate_stream_management_info(struct intel_connector *connector) 1841 { 1842 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1843 int i, tries = 3, ret; 1844 1845 if (!connector->hdcp.is_repeater) 1846 return 0; 1847 1848 for (i = 0; i < tries; i++) { 1849 ret = _hdcp2_propagate_stream_management_info(connector); 1850 if (!ret) 1851 break; 1852 1853 /* Lets restart the auth incase of seq_num_m roll over */ 1854 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) { 1855 drm_dbg_kms(&i915->drm, 1856 "seq_num_m roll over.(%d)\n", ret); 1857 break; 1858 } 1859 1860 drm_dbg_kms(&i915->drm, 1861 "HDCP2 stream management %d of %d Failed.(%d)\n", 1862 i + 1, tries, ret); 1863 } 1864 1865 return ret; 1866 } 1867 1868 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector) 1869 { 1870 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1871 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1872 int ret = 0, i, tries = 3; 1873 1874 for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) { 1875 ret = hdcp2_authenticate_sink(connector); 1876 if (!ret) { 1877 intel_hdcp_prepare_streams(connector); 1878 1879 ret = hdcp2_propagate_stream_management_info(connector); 1880 if (ret) { 1881 drm_dbg_kms(&i915->drm, 1882 "Stream management failed.(%d)\n", 1883 ret); 1884 break; 1885 } 1886 1887 ret = hdcp2_authenticate_port(connector); 1888 if (!ret) 1889 break; 1890 drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n", 1891 ret); 1892 } 1893 1894 /* Clearing the mei hdcp session */ 1895 drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n", 1896 i + 1, tries, ret); 1897 if (hdcp2_deauthenticate_port(connector) < 0) 1898 drm_dbg_kms(&i915->drm, "Port deauth failed.\n"); 1899 } 1900 1901 if (!ret && !dig_port->hdcp_auth_status) { 1902 /* 1903 * Ensuring the required 200mSec min time interval between 1904 * Session Key Exchange and encryption. 1905 */ 1906 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN); 1907 ret = hdcp2_enable_encryption(connector); 1908 if (ret < 0) { 1909 drm_dbg_kms(&i915->drm, 1910 "Encryption Enable Failed.(%d)\n", ret); 1911 if (hdcp2_deauthenticate_port(connector) < 0) 1912 drm_dbg_kms(&i915->drm, "Port deauth failed.\n"); 1913 } 1914 } 1915 1916 if (!ret) 1917 ret = hdcp2_enable_stream_encryption(connector); 1918 1919 return ret; 1920 } 1921 1922 static int _intel_hdcp2_enable(struct intel_connector *connector) 1923 { 1924 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1925 struct intel_hdcp *hdcp = &connector->hdcp; 1926 int ret; 1927 1928 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n", 1929 connector->base.name, connector->base.base.id, 1930 hdcp->content_type); 1931 1932 ret = hdcp2_authenticate_and_encrypt(connector); 1933 if (ret) { 1934 drm_dbg_kms(&i915->drm, "HDCP2 Type%d Enabling Failed. (%d)\n", 1935 hdcp->content_type, ret); 1936 return ret; 1937 } 1938 1939 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n", 1940 connector->base.name, connector->base.base.id, 1941 hdcp->content_type); 1942 1943 hdcp->hdcp2_encrypted = true; 1944 return 0; 1945 } 1946 1947 static int 1948 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery) 1949 { 1950 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1951 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1952 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1953 struct intel_hdcp *hdcp = &connector->hdcp; 1954 int ret; 1955 1956 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n", 1957 connector->base.name, connector->base.base.id); 1958 1959 if (hdcp->shim->stream_2_2_encryption) { 1960 ret = hdcp->shim->stream_2_2_encryption(connector, false); 1961 if (ret) { 1962 drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 2.2 stream enc\n", 1963 connector->base.name, connector->base.base.id); 1964 return ret; 1965 } 1966 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n", 1967 transcoder_name(hdcp->stream_transcoder)); 1968 1969 if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery) 1970 return 0; 1971 } 1972 1973 ret = hdcp2_disable_encryption(connector); 1974 1975 if (hdcp2_deauthenticate_port(connector) < 0) 1976 drm_dbg_kms(&i915->drm, "Port deauth failed.\n"); 1977 1978 connector->hdcp.hdcp2_encrypted = false; 1979 dig_port->hdcp_auth_status = false; 1980 data->k = 0; 1981 1982 return ret; 1983 } 1984 1985 /* Implements the Link Integrity Check for HDCP2.2 */ 1986 static int intel_hdcp2_check_link(struct intel_connector *connector) 1987 { 1988 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1989 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1990 struct intel_hdcp *hdcp = &connector->hdcp; 1991 enum port port = dig_port->base.port; 1992 enum transcoder cpu_transcoder; 1993 int ret = 0; 1994 1995 mutex_lock(&hdcp->mutex); 1996 mutex_lock(&dig_port->hdcp_mutex); 1997 cpu_transcoder = hdcp->cpu_transcoder; 1998 1999 /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */ 2000 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED || 2001 !hdcp->hdcp2_encrypted) { 2002 ret = -EINVAL; 2003 goto out; 2004 } 2005 2006 if (drm_WARN_ON(&i915->drm, 2007 !intel_hdcp2_in_use(i915, cpu_transcoder, port))) { 2008 drm_err(&i915->drm, 2009 "HDCP2.2 link stopped the encryption, %x\n", 2010 intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port))); 2011 ret = -ENXIO; 2012 _intel_hdcp2_disable(connector, true); 2013 intel_hdcp_update_value(connector, 2014 DRM_MODE_CONTENT_PROTECTION_DESIRED, 2015 true); 2016 goto out; 2017 } 2018 2019 ret = hdcp->shim->check_2_2_link(dig_port, connector); 2020 if (ret == HDCP_LINK_PROTECTED) { 2021 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { 2022 intel_hdcp_update_value(connector, 2023 DRM_MODE_CONTENT_PROTECTION_ENABLED, 2024 true); 2025 } 2026 goto out; 2027 } 2028 2029 if (ret == HDCP_TOPOLOGY_CHANGE) { 2030 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED) 2031 goto out; 2032 2033 drm_dbg_kms(&i915->drm, 2034 "HDCP2.2 Downstream topology change\n"); 2035 ret = hdcp2_authenticate_repeater_topology(connector); 2036 if (!ret) { 2037 intel_hdcp_update_value(connector, 2038 DRM_MODE_CONTENT_PROTECTION_ENABLED, 2039 true); 2040 goto out; 2041 } 2042 drm_dbg_kms(&i915->drm, 2043 "[%s:%d] Repeater topology auth failed.(%d)\n", 2044 connector->base.name, connector->base.base.id, 2045 ret); 2046 } else { 2047 drm_dbg_kms(&i915->drm, 2048 "[%s:%d] HDCP2.2 link failed, retrying auth\n", 2049 connector->base.name, connector->base.base.id); 2050 } 2051 2052 ret = _intel_hdcp2_disable(connector, true); 2053 if (ret) { 2054 drm_err(&i915->drm, 2055 "[%s:%d] Failed to disable hdcp2.2 (%d)\n", 2056 connector->base.name, connector->base.base.id, ret); 2057 intel_hdcp_update_value(connector, 2058 DRM_MODE_CONTENT_PROTECTION_DESIRED, true); 2059 goto out; 2060 } 2061 2062 ret = _intel_hdcp2_enable(connector); 2063 if (ret) { 2064 drm_dbg_kms(&i915->drm, 2065 "[%s:%d] Failed to enable hdcp2.2 (%d)\n", 2066 connector->base.name, connector->base.base.id, 2067 ret); 2068 intel_hdcp_update_value(connector, 2069 DRM_MODE_CONTENT_PROTECTION_DESIRED, 2070 true); 2071 goto out; 2072 } 2073 2074 out: 2075 mutex_unlock(&dig_port->hdcp_mutex); 2076 mutex_unlock(&hdcp->mutex); 2077 return ret; 2078 } 2079 2080 static void intel_hdcp_check_work(struct work_struct *work) 2081 { 2082 struct intel_hdcp *hdcp = container_of(to_delayed_work(work), 2083 struct intel_hdcp, 2084 check_work); 2085 struct intel_connector *connector = intel_hdcp_to_connector(hdcp); 2086 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2087 2088 if (drm_connector_is_unregistered(&connector->base)) 2089 return; 2090 2091 if (!intel_hdcp2_check_link(connector)) 2092 queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 2093 DRM_HDCP2_CHECK_PERIOD_MS); 2094 else if (!intel_hdcp_check_link(connector)) 2095 queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 2096 DRM_HDCP_CHECK_PERIOD_MS); 2097 } 2098 2099 static int i915_hdcp_component_bind(struct device *i915_kdev, 2100 struct device *mei_kdev, void *data) 2101 { 2102 struct drm_i915_private *i915 = kdev_to_i915(i915_kdev); 2103 2104 drm_dbg(&i915->drm, "I915 HDCP comp bind\n"); 2105 mutex_lock(&i915->display.hdcp.hdcp_mutex); 2106 i915->display.hdcp.arbiter = (struct i915_hdcp_arbiter *)data; 2107 i915->display.hdcp.arbiter->hdcp_dev = mei_kdev; 2108 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 2109 2110 return 0; 2111 } 2112 2113 static void i915_hdcp_component_unbind(struct device *i915_kdev, 2114 struct device *mei_kdev, void *data) 2115 { 2116 struct drm_i915_private *i915 = kdev_to_i915(i915_kdev); 2117 2118 drm_dbg(&i915->drm, "I915 HDCP comp unbind\n"); 2119 mutex_lock(&i915->display.hdcp.hdcp_mutex); 2120 i915->display.hdcp.arbiter = NULL; 2121 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 2122 } 2123 2124 static const struct component_ops i915_hdcp_ops = { 2125 .bind = i915_hdcp_component_bind, 2126 .unbind = i915_hdcp_component_unbind, 2127 }; 2128 2129 static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port) 2130 { 2131 switch (port) { 2132 case PORT_A: 2133 return HDCP_DDI_A; 2134 case PORT_B ... PORT_F: 2135 return (enum hdcp_ddi)port; 2136 default: 2137 return HDCP_DDI_INVALID_PORT; 2138 } 2139 } 2140 2141 static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder) 2142 { 2143 switch (cpu_transcoder) { 2144 case TRANSCODER_A ... TRANSCODER_D: 2145 return (enum hdcp_transcoder)(cpu_transcoder | 0x10); 2146 default: /* eDP, DSI TRANSCODERS are non HDCP capable */ 2147 return HDCP_INVALID_TRANSCODER; 2148 } 2149 } 2150 2151 static int initialize_hdcp_port_data(struct intel_connector *connector, 2152 struct intel_digital_port *dig_port, 2153 const struct intel_hdcp_shim *shim) 2154 { 2155 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2156 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 2157 enum port port = dig_port->base.port; 2158 2159 if (DISPLAY_VER(i915) < 12) 2160 data->hdcp_ddi = intel_get_hdcp_ddi_index(port); 2161 else 2162 /* 2163 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled 2164 * with zero(INVALID PORT index). 2165 */ 2166 data->hdcp_ddi = HDCP_DDI_INVALID_PORT; 2167 2168 /* 2169 * As associated transcoder is set and modified at modeset, here hdcp_transcoder 2170 * is initialized to zero (invalid transcoder index). This will be 2171 * retained for <Gen12 forever. 2172 */ 2173 data->hdcp_transcoder = HDCP_INVALID_TRANSCODER; 2174 2175 data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED; 2176 data->protocol = (u8)shim->protocol; 2177 2178 if (!data->streams) 2179 data->streams = kcalloc(INTEL_NUM_PIPES(i915), 2180 sizeof(struct hdcp2_streamid_type), 2181 GFP_KERNEL); 2182 if (!data->streams) { 2183 drm_err(&i915->drm, "Out of Memory\n"); 2184 return -ENOMEM; 2185 } 2186 2187 return 0; 2188 } 2189 2190 static bool is_hdcp2_supported(struct drm_i915_private *i915) 2191 { 2192 if (intel_hdcp_gsc_cs_required(i915)) 2193 return true; 2194 2195 if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP)) 2196 return false; 2197 2198 return (DISPLAY_VER(i915) >= 10 || 2199 IS_KABYLAKE(i915) || 2200 IS_COFFEELAKE(i915) || 2201 IS_COMETLAKE(i915)); 2202 } 2203 2204 void intel_hdcp_component_init(struct drm_i915_private *i915) 2205 { 2206 int ret; 2207 2208 if (!is_hdcp2_supported(i915)) 2209 return; 2210 2211 mutex_lock(&i915->display.hdcp.hdcp_mutex); 2212 drm_WARN_ON(&i915->drm, i915->display.hdcp.comp_added); 2213 2214 i915->display.hdcp.comp_added = true; 2215 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 2216 if (intel_hdcp_gsc_cs_required(i915)) 2217 ret = intel_hdcp_gsc_init(i915); 2218 else 2219 ret = component_add_typed(i915->drm.dev, &i915_hdcp_ops, 2220 I915_COMPONENT_HDCP); 2221 2222 if (ret < 0) { 2223 drm_dbg_kms(&i915->drm, "Failed at fw component add(%d)\n", 2224 ret); 2225 mutex_lock(&i915->display.hdcp.hdcp_mutex); 2226 i915->display.hdcp.comp_added = false; 2227 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 2228 return; 2229 } 2230 } 2231 2232 static void intel_hdcp2_init(struct intel_connector *connector, 2233 struct intel_digital_port *dig_port, 2234 const struct intel_hdcp_shim *shim) 2235 { 2236 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2237 struct intel_hdcp *hdcp = &connector->hdcp; 2238 int ret; 2239 2240 ret = initialize_hdcp_port_data(connector, dig_port, shim); 2241 if (ret) { 2242 drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n"); 2243 return; 2244 } 2245 2246 hdcp->hdcp2_supported = true; 2247 } 2248 2249 int intel_hdcp_init(struct intel_connector *connector, 2250 struct intel_digital_port *dig_port, 2251 const struct intel_hdcp_shim *shim) 2252 { 2253 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2254 struct intel_hdcp *hdcp = &connector->hdcp; 2255 int ret; 2256 2257 if (!shim) 2258 return -EINVAL; 2259 2260 if (is_hdcp2_supported(i915)) 2261 intel_hdcp2_init(connector, dig_port, shim); 2262 2263 ret = 2264 drm_connector_attach_content_protection_property(&connector->base, 2265 hdcp->hdcp2_supported); 2266 if (ret) { 2267 hdcp->hdcp2_supported = false; 2268 kfree(dig_port->hdcp_port_data.streams); 2269 return ret; 2270 } 2271 2272 hdcp->shim = shim; 2273 mutex_init(&hdcp->mutex); 2274 INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work); 2275 INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work); 2276 init_waitqueue_head(&hdcp->cp_irq_queue); 2277 2278 return 0; 2279 } 2280 2281 static int 2282 intel_hdcp_set_streams(struct intel_digital_port *dig_port, 2283 struct intel_atomic_state *state) 2284 { 2285 struct drm_connector_list_iter conn_iter; 2286 struct intel_digital_port *conn_dig_port; 2287 struct intel_connector *connector; 2288 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 2289 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 2290 2291 if (!intel_encoder_is_mst(&dig_port->base)) { 2292 data->k = 1; 2293 data->streams[0].stream_id = 0; 2294 return 0; 2295 } 2296 2297 data->k = 0; 2298 2299 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 2300 for_each_intel_connector_iter(connector, &conn_iter) { 2301 if (connector->base.status == connector_status_disconnected) 2302 continue; 2303 2304 if (!intel_encoder_is_mst(intel_attached_encoder(connector))) 2305 continue; 2306 2307 conn_dig_port = intel_attached_dig_port(connector); 2308 if (conn_dig_port != dig_port) 2309 continue; 2310 2311 data->streams[data->k].stream_id = 2312 intel_conn_to_vcpi(&state->base, connector); 2313 data->k++; 2314 2315 /* if there is only one active stream */ 2316 if (dig_port->dp.active_mst_links <= 1) 2317 break; 2318 } 2319 drm_connector_list_iter_end(&conn_iter); 2320 2321 if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0)) 2322 return -EINVAL; 2323 2324 return 0; 2325 } 2326 2327 int intel_hdcp_enable(struct intel_atomic_state *state, 2328 struct intel_encoder *encoder, 2329 const struct intel_crtc_state *pipe_config, 2330 const struct drm_connector_state *conn_state) 2331 { 2332 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2333 struct intel_connector *connector = 2334 to_intel_connector(conn_state->connector); 2335 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 2336 struct intel_hdcp *hdcp = &connector->hdcp; 2337 unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS; 2338 int ret = -EINVAL; 2339 2340 if (!hdcp->shim) 2341 return -ENOENT; 2342 2343 if (!connector->encoder) { 2344 drm_err(&i915->drm, "[%s:%d] encoder is not initialized\n", 2345 connector->base.name, connector->base.base.id); 2346 return -ENODEV; 2347 } 2348 2349 mutex_lock(&hdcp->mutex); 2350 mutex_lock(&dig_port->hdcp_mutex); 2351 drm_WARN_ON(&i915->drm, 2352 hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED); 2353 hdcp->content_type = (u8)conn_state->hdcp_content_type; 2354 2355 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) { 2356 hdcp->cpu_transcoder = pipe_config->mst_master_transcoder; 2357 hdcp->stream_transcoder = pipe_config->cpu_transcoder; 2358 } else { 2359 hdcp->cpu_transcoder = pipe_config->cpu_transcoder; 2360 hdcp->stream_transcoder = INVALID_TRANSCODER; 2361 } 2362 2363 if (DISPLAY_VER(i915) >= 12) 2364 dig_port->hdcp_port_data.hdcp_transcoder = 2365 intel_get_hdcp_transcoder(hdcp->cpu_transcoder); 2366 2367 /* 2368 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup 2369 * is capable of HDCP2.2, it is preferred to use HDCP2.2. 2370 */ 2371 if (intel_hdcp2_capable(connector)) { 2372 ret = intel_hdcp_set_streams(dig_port, state); 2373 if (!ret) { 2374 ret = _intel_hdcp2_enable(connector); 2375 if (!ret) 2376 check_link_interval = 2377 DRM_HDCP2_CHECK_PERIOD_MS; 2378 } else { 2379 drm_dbg_kms(&i915->drm, 2380 "Set content streams failed: (%d)\n", 2381 ret); 2382 } 2383 } 2384 2385 /* 2386 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will 2387 * be attempted. 2388 */ 2389 if (ret && intel_hdcp_capable(connector) && 2390 hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) { 2391 ret = _intel_hdcp_enable(connector); 2392 } 2393 2394 if (!ret) { 2395 queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 2396 check_link_interval); 2397 intel_hdcp_update_value(connector, 2398 DRM_MODE_CONTENT_PROTECTION_ENABLED, 2399 true); 2400 } 2401 2402 mutex_unlock(&dig_port->hdcp_mutex); 2403 mutex_unlock(&hdcp->mutex); 2404 return ret; 2405 } 2406 2407 int intel_hdcp_disable(struct intel_connector *connector) 2408 { 2409 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 2410 struct intel_hdcp *hdcp = &connector->hdcp; 2411 int ret = 0; 2412 2413 if (!hdcp->shim) 2414 return -ENOENT; 2415 2416 mutex_lock(&hdcp->mutex); 2417 mutex_lock(&dig_port->hdcp_mutex); 2418 2419 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED) 2420 goto out; 2421 2422 intel_hdcp_update_value(connector, 2423 DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false); 2424 if (hdcp->hdcp2_encrypted) 2425 ret = _intel_hdcp2_disable(connector, false); 2426 else if (hdcp->hdcp_encrypted) 2427 ret = _intel_hdcp_disable(connector); 2428 2429 out: 2430 mutex_unlock(&dig_port->hdcp_mutex); 2431 mutex_unlock(&hdcp->mutex); 2432 cancel_delayed_work_sync(&hdcp->check_work); 2433 return ret; 2434 } 2435 2436 void intel_hdcp_update_pipe(struct intel_atomic_state *state, 2437 struct intel_encoder *encoder, 2438 const struct intel_crtc_state *crtc_state, 2439 const struct drm_connector_state *conn_state) 2440 { 2441 struct intel_connector *connector = 2442 to_intel_connector(conn_state->connector); 2443 struct intel_hdcp *hdcp = &connector->hdcp; 2444 bool content_protection_type_changed, desired_and_not_enabled = false; 2445 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2446 2447 if (!connector->hdcp.shim) 2448 return; 2449 2450 content_protection_type_changed = 2451 (conn_state->hdcp_content_type != hdcp->content_type && 2452 conn_state->content_protection != 2453 DRM_MODE_CONTENT_PROTECTION_UNDESIRED); 2454 2455 /* 2456 * During the HDCP encryption session if Type change is requested, 2457 * disable the HDCP and reenable it with new TYPE value. 2458 */ 2459 if (conn_state->content_protection == 2460 DRM_MODE_CONTENT_PROTECTION_UNDESIRED || 2461 content_protection_type_changed) 2462 intel_hdcp_disable(connector); 2463 2464 /* 2465 * Mark the hdcp state as DESIRED after the hdcp disable of type 2466 * change procedure. 2467 */ 2468 if (content_protection_type_changed) { 2469 mutex_lock(&hdcp->mutex); 2470 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED; 2471 drm_connector_get(&connector->base); 2472 queue_work(i915->unordered_wq, &hdcp->prop_work); 2473 mutex_unlock(&hdcp->mutex); 2474 } 2475 2476 if (conn_state->content_protection == 2477 DRM_MODE_CONTENT_PROTECTION_DESIRED) { 2478 mutex_lock(&hdcp->mutex); 2479 /* Avoid enabling hdcp, if it already ENABLED */ 2480 desired_and_not_enabled = 2481 hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED; 2482 mutex_unlock(&hdcp->mutex); 2483 /* 2484 * If HDCP already ENABLED and CP property is DESIRED, schedule 2485 * prop_work to update correct CP property to user space. 2486 */ 2487 if (!desired_and_not_enabled && !content_protection_type_changed) { 2488 drm_connector_get(&connector->base); 2489 queue_work(i915->unordered_wq, &hdcp->prop_work); 2490 } 2491 } 2492 2493 if (desired_and_not_enabled || content_protection_type_changed) 2494 intel_hdcp_enable(state, encoder, crtc_state, conn_state); 2495 } 2496 2497 void intel_hdcp_component_fini(struct drm_i915_private *i915) 2498 { 2499 mutex_lock(&i915->display.hdcp.hdcp_mutex); 2500 if (!i915->display.hdcp.comp_added) { 2501 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 2502 return; 2503 } 2504 2505 i915->display.hdcp.comp_added = false; 2506 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 2507 2508 if (intel_hdcp_gsc_cs_required(i915)) 2509 intel_hdcp_gsc_fini(i915); 2510 else 2511 component_del(i915->drm.dev, &i915_hdcp_ops); 2512 } 2513 2514 void intel_hdcp_cleanup(struct intel_connector *connector) 2515 { 2516 struct intel_hdcp *hdcp = &connector->hdcp; 2517 2518 if (!hdcp->shim) 2519 return; 2520 2521 /* 2522 * If the connector is registered, it's possible userspace could kick 2523 * off another HDCP enable, which would re-spawn the workers. 2524 */ 2525 drm_WARN_ON(connector->base.dev, 2526 connector->base.registration_state == DRM_CONNECTOR_REGISTERED); 2527 2528 /* 2529 * Now that the connector is not registered, check_work won't be run, 2530 * but cancel any outstanding instances of it 2531 */ 2532 cancel_delayed_work_sync(&hdcp->check_work); 2533 2534 /* 2535 * We don't cancel prop_work in the same way as check_work since it 2536 * requires connection_mutex which could be held while calling this 2537 * function. Instead, we rely on the connector references grabbed before 2538 * scheduling prop_work to ensure the connector is alive when prop_work 2539 * is run. So if we're in the destroy path (which is where this 2540 * function should be called), we're "guaranteed" that prop_work is not 2541 * active (tl;dr This Should Never Happen). 2542 */ 2543 drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work)); 2544 2545 mutex_lock(&hdcp->mutex); 2546 hdcp->shim = NULL; 2547 mutex_unlock(&hdcp->mutex); 2548 } 2549 2550 void intel_hdcp_atomic_check(struct drm_connector *connector, 2551 struct drm_connector_state *old_state, 2552 struct drm_connector_state *new_state) 2553 { 2554 u64 old_cp = old_state->content_protection; 2555 u64 new_cp = new_state->content_protection; 2556 struct drm_crtc_state *crtc_state; 2557 2558 if (!new_state->crtc) { 2559 /* 2560 * If the connector is being disabled with CP enabled, mark it 2561 * desired so it's re-enabled when the connector is brought back 2562 */ 2563 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED) 2564 new_state->content_protection = 2565 DRM_MODE_CONTENT_PROTECTION_DESIRED; 2566 return; 2567 } 2568 2569 crtc_state = drm_atomic_get_new_crtc_state(new_state->state, 2570 new_state->crtc); 2571 /* 2572 * Fix the HDCP uapi content protection state in case of modeset. 2573 * FIXME: As per HDCP content protection property uapi doc, an uevent() 2574 * need to be sent if there is transition from ENABLED->DESIRED. 2575 */ 2576 if (drm_atomic_crtc_needs_modeset(crtc_state) && 2577 (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED && 2578 new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)) 2579 new_state->content_protection = 2580 DRM_MODE_CONTENT_PROTECTION_DESIRED; 2581 2582 /* 2583 * Nothing to do if the state didn't change, or HDCP was activated since 2584 * the last commit. And also no change in hdcp content type. 2585 */ 2586 if (old_cp == new_cp || 2587 (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED && 2588 new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) { 2589 if (old_state->hdcp_content_type == 2590 new_state->hdcp_content_type) 2591 return; 2592 } 2593 2594 crtc_state->mode_changed = true; 2595 } 2596 2597 /* Handles the CP_IRQ raised from the DP HDCP sink */ 2598 void intel_hdcp_handle_cp_irq(struct intel_connector *connector) 2599 { 2600 struct intel_hdcp *hdcp = &connector->hdcp; 2601 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2602 2603 if (!hdcp->shim) 2604 return; 2605 2606 atomic_inc(&connector->hdcp.cp_irq_count); 2607 wake_up_all(&connector->hdcp.cp_irq_queue); 2608 2609 queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 0); 2610 } 2611