xref: /linux/drivers/gpu/drm/i915/display/intel_hdcp.c (revision a713222906e4f77b5fb1b5346d4f5de1adc639b4)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <seanpaul@chromium.org>
8  * Ramalingam C <ramalingam.c@intel.com>
9  */
10 
11 #include <linux/component.h>
12 #include <linux/debugfs.h>
13 #include <linux/i2c.h>
14 #include <linux/random.h>
15 
16 #include <drm/display/drm_hdcp_helper.h>
17 #include <drm/intel/i915_component.h>
18 
19 #include "i915_drv.h"
20 #include "i915_reg.h"
21 #include "intel_connector.h"
22 #include "intel_de.h"
23 #include "intel_display_power.h"
24 #include "intel_display_power_well.h"
25 #include "intel_display_rpm.h"
26 #include "intel_display_types.h"
27 #include "intel_dp_mst.h"
28 #include "intel_hdcp.h"
29 #include "intel_hdcp_gsc.h"
30 #include "intel_hdcp_gsc_message.h"
31 #include "intel_hdcp_regs.h"
32 #include "intel_hdcp_shim.h"
33 #include "intel_pcode.h"
34 
35 #define USE_HDCP_GSC(__display)		(DISPLAY_VER(__display) >= 14)
36 
37 #define KEY_LOAD_TRIES	5
38 #define HDCP2_LC_RETRY_CNT			3
39 
40 static void
41 intel_hdcp_adjust_hdcp_line_rekeying(struct intel_encoder *encoder,
42 				     struct intel_hdcp *hdcp,
43 				     bool enable)
44 {
45 	struct intel_display *display = to_intel_display(encoder);
46 	i915_reg_t rekey_reg;
47 	u32 rekey_bit = 0;
48 
49 	/* Here we assume HDMI is in TMDS mode of operation */
50 	if (!intel_encoder_is_hdmi(encoder))
51 		return;
52 
53 	if (DISPLAY_VER(display) >= 30) {
54 		rekey_reg = TRANS_DDI_FUNC_CTL(display, hdcp->cpu_transcoder);
55 		rekey_bit = XE3_TRANS_DDI_HDCP_LINE_REKEY_DISABLE;
56 	} else if (IS_DISPLAY_VERx100_STEP(display, 1401, STEP_B0, STEP_FOREVER) ||
57 		   IS_DISPLAY_VERx100_STEP(display, 2000, STEP_B0, STEP_FOREVER)) {
58 		rekey_reg = TRANS_DDI_FUNC_CTL(display, hdcp->cpu_transcoder);
59 		rekey_bit = TRANS_DDI_HDCP_LINE_REKEY_DISABLE;
60 	} else if (IS_DISPLAY_VERx100_STEP(display, 1400, STEP_D0, STEP_FOREVER)) {
61 		rekey_reg = CHICKEN_TRANS(display, hdcp->cpu_transcoder);
62 		rekey_bit = HDCP_LINE_REKEY_DISABLE;
63 	}
64 
65 	if (rekey_bit)
66 		intel_de_rmw(display, rekey_reg, rekey_bit, enable ? 0 : rekey_bit);
67 }
68 
69 static int intel_conn_to_vcpi(struct intel_atomic_state *state,
70 			      struct intel_connector *connector)
71 {
72 	struct drm_dp_mst_topology_mgr *mgr;
73 	struct drm_dp_mst_atomic_payload *payload;
74 	struct drm_dp_mst_topology_state *mst_state;
75 	int vcpi = 0;
76 
77 	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
78 	if (!connector->mst.port)
79 		return 0;
80 	mgr = connector->mst.port->mgr;
81 
82 	drm_modeset_lock(&mgr->base.lock, state->base.acquire_ctx);
83 	mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
84 	payload = drm_atomic_get_mst_payload_state(mst_state, connector->mst.port);
85 	if (drm_WARN_ON(mgr->dev, !payload))
86 		goto out;
87 
88 	vcpi = payload->vcpi;
89 	if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
90 		vcpi = 0;
91 		goto out;
92 	}
93 out:
94 	return vcpi;
95 }
96 
97 /*
98  * intel_hdcp_required_content_stream selects the most highest common possible HDCP
99  * content_type for all streams in DP MST topology because security f/w doesn't
100  * have any provision to mark content_type for each stream separately, it marks
101  * all available streams with the content_type proivided at the time of port
102  * authentication. This may prohibit the userspace to use type1 content on
103  * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
104  * DP MST topology. Though it is not compulsory, security fw should change its
105  * policy to mark different content_types for different streams.
106  */
107 static int
108 intel_hdcp_required_content_stream(struct intel_atomic_state *state,
109 				   struct intel_digital_port *dig_port)
110 {
111 	struct intel_display *display = to_intel_display(state);
112 	struct drm_connector_list_iter conn_iter;
113 	struct intel_digital_port *conn_dig_port;
114 	struct intel_connector *connector;
115 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
116 	bool enforce_type0 = false;
117 	int k;
118 
119 	if (dig_port->hdcp.auth_status)
120 		return 0;
121 
122 	data->k = 0;
123 
124 	if (!dig_port->hdcp.mst_type1_capable)
125 		enforce_type0 = true;
126 
127 	drm_connector_list_iter_begin(display->drm, &conn_iter);
128 	for_each_intel_connector_iter(connector, &conn_iter) {
129 		if (connector->base.status == connector_status_disconnected)
130 			continue;
131 
132 		if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
133 			continue;
134 
135 		conn_dig_port = intel_attached_dig_port(connector);
136 		if (conn_dig_port != dig_port)
137 			continue;
138 
139 		data->streams[data->k].stream_id =
140 			intel_conn_to_vcpi(state, connector);
141 		data->k++;
142 
143 		/* if there is only one active stream */
144 		if (intel_dp_mst_active_streams(&dig_port->dp) <= 1)
145 			break;
146 	}
147 	drm_connector_list_iter_end(&conn_iter);
148 
149 	if (drm_WARN_ON(display->drm, data->k > INTEL_NUM_PIPES(display) || data->k == 0))
150 		return -EINVAL;
151 
152 	/*
153 	 * Apply common protection level across all streams in DP MST Topology.
154 	 * Use highest supported content type for all streams in DP MST Topology.
155 	 */
156 	for (k = 0; k < data->k; k++)
157 		data->streams[k].stream_type =
158 			enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
159 
160 	return 0;
161 }
162 
163 static int intel_hdcp_prepare_streams(struct intel_atomic_state *state,
164 				      struct intel_connector *connector)
165 {
166 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
167 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
168 	struct intel_hdcp *hdcp = &connector->hdcp;
169 
170 	if (intel_encoder_is_mst(intel_attached_encoder(connector)))
171 		return intel_hdcp_required_content_stream(state, dig_port);
172 
173 	data->k = 1;
174 	data->streams[0].stream_id = 0;
175 	data->streams[0].stream_type = hdcp->content_type;
176 
177 	return 0;
178 }
179 
180 static
181 bool intel_hdcp_is_ksv_valid(u8 *ksv)
182 {
183 	int i, ones = 0;
184 	/* KSV has 20 1's and 20 0's */
185 	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
186 		ones += hweight8(ksv[i]);
187 	if (ones != 20)
188 		return false;
189 
190 	return true;
191 }
192 
193 static
194 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
195 			       const struct intel_hdcp_shim *shim, u8 *bksv)
196 {
197 	struct intel_display *display = to_intel_display(dig_port);
198 	int ret, i, tries = 2;
199 
200 	/* HDCP spec states that we must retry the bksv if it is invalid */
201 	for (i = 0; i < tries; i++) {
202 		ret = shim->read_bksv(dig_port, bksv);
203 		if (ret)
204 			return ret;
205 		if (intel_hdcp_is_ksv_valid(bksv))
206 			break;
207 	}
208 	if (i == tries) {
209 		drm_dbg_kms(display->drm, "Bksv is invalid\n");
210 		return -ENODEV;
211 	}
212 
213 	return 0;
214 }
215 
216 /* Is HDCP1.4 capable on Platform and Sink */
217 static bool intel_hdcp_get_capability(struct intel_connector *connector)
218 {
219 	struct intel_digital_port *dig_port;
220 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
221 	bool capable = false;
222 	u8 bksv[5];
223 
224 	if (!intel_attached_encoder(connector))
225 		return capable;
226 
227 	dig_port = intel_attached_dig_port(connector);
228 
229 	if (!shim)
230 		return capable;
231 
232 	if (shim->hdcp_get_capability) {
233 		shim->hdcp_get_capability(dig_port, &capable);
234 	} else {
235 		if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
236 			capable = true;
237 	}
238 
239 	return capable;
240 }
241 
242 /*
243  * Check if the source has all the building blocks ready to make
244  * HDCP 2.2 work
245  */
246 static bool intel_hdcp2_prerequisite(struct intel_connector *connector)
247 {
248 	struct intel_display *display = to_intel_display(connector);
249 	struct intel_hdcp *hdcp = &connector->hdcp;
250 
251 	/* I915 support for HDCP2.2 */
252 	if (!hdcp->hdcp2_supported)
253 		return false;
254 
255 	/* If MTL+ make sure gsc is loaded and proxy is setup */
256 	if (USE_HDCP_GSC(display)) {
257 		if (!intel_hdcp_gsc_check_status(display->drm))
258 			return false;
259 	}
260 
261 	/* MEI/GSC interface is solid depending on which is used */
262 	mutex_lock(&display->hdcp.hdcp_mutex);
263 	if (!display->hdcp.comp_added || !display->hdcp.arbiter) {
264 		mutex_unlock(&display->hdcp.hdcp_mutex);
265 		return false;
266 	}
267 	mutex_unlock(&display->hdcp.hdcp_mutex);
268 
269 	return true;
270 }
271 
272 /* Is HDCP2.2 capable on Platform and Sink */
273 static bool intel_hdcp2_get_capability(struct intel_connector *connector)
274 {
275 	struct intel_hdcp *hdcp = &connector->hdcp;
276 	bool capable = false;
277 
278 	if (!intel_hdcp2_prerequisite(connector))
279 		return false;
280 
281 	/* Sink's capability for HDCP2.2 */
282 	hdcp->shim->hdcp_2_2_get_capability(connector, &capable);
283 
284 	return capable;
285 }
286 
287 static void intel_hdcp_get_remote_capability(struct intel_connector *connector,
288 					     bool *hdcp_capable,
289 					     bool *hdcp2_capable)
290 {
291 	struct intel_hdcp *hdcp = &connector->hdcp;
292 
293 	if (!hdcp->shim->get_remote_hdcp_capability)
294 		return;
295 
296 	hdcp->shim->get_remote_hdcp_capability(connector, hdcp_capable,
297 					       hdcp2_capable);
298 
299 	if (!intel_hdcp2_prerequisite(connector))
300 		*hdcp2_capable = false;
301 }
302 
303 static bool intel_hdcp_in_use(struct intel_display *display,
304 			      enum transcoder cpu_transcoder, enum port port)
305 {
306 	return intel_de_read(display,
307 			     HDCP_STATUS(display, cpu_transcoder, port)) &
308 		HDCP_STATUS_ENC;
309 }
310 
311 static bool intel_hdcp2_in_use(struct intel_display *display,
312 			       enum transcoder cpu_transcoder, enum port port)
313 {
314 	return intel_de_read(display,
315 			     HDCP2_STATUS(display, cpu_transcoder, port)) &
316 		LINK_ENCRYPTION_STATUS;
317 }
318 
319 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
320 				    const struct intel_hdcp_shim *shim)
321 {
322 	int ret, read_ret;
323 	bool ksv_ready;
324 
325 	/* Poll for ksv list ready (spec says max time allowed is 5s) */
326 	ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
327 							 &ksv_ready),
328 			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
329 			 100 * 1000);
330 	if (ret)
331 		return ret;
332 	if (read_ret)
333 		return read_ret;
334 	if (!ksv_ready)
335 		return -ETIMEDOUT;
336 
337 	return 0;
338 }
339 
340 static bool hdcp_key_loadable(struct intel_display *display)
341 {
342 	enum i915_power_well_id id;
343 	bool enabled = false;
344 
345 	/*
346 	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
347 	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
348 	 */
349 	if (display->platform.haswell || display->platform.broadwell)
350 		id = HSW_DISP_PW_GLOBAL;
351 	else
352 		id = SKL_DISP_PW_1;
353 
354 	/* PG1 (power well #1) needs to be enabled */
355 	with_intel_display_rpm(display)
356 		enabled = intel_display_power_well_is_enabled(display, id);
357 
358 	/*
359 	 * Another req for hdcp key loadability is enabled state of pll for
360 	 * cdclk. Without active crtc we won't land here. So we are assuming that
361 	 * cdclk is already on.
362 	 */
363 
364 	return enabled;
365 }
366 
367 static void intel_hdcp_clear_keys(struct intel_display *display)
368 {
369 	intel_de_write(display, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
370 	intel_de_write(display, HDCP_KEY_STATUS,
371 		       HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
372 }
373 
374 static int intel_hdcp_load_keys(struct intel_display *display)
375 {
376 	struct drm_i915_private *i915 = to_i915(display->drm);
377 	int ret;
378 	u32 val;
379 
380 	val = intel_de_read(display, HDCP_KEY_STATUS);
381 	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
382 		return 0;
383 
384 	/*
385 	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
386 	 * out of reset. So if Key is not already loaded, its an error state.
387 	 */
388 	if (display->platform.haswell || display->platform.broadwell)
389 		if (!(intel_de_read(display, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
390 			return -ENXIO;
391 
392 	/*
393 	 * Initiate loading the HDCP key from fuses.
394 	 *
395 	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
396 	 * version 9 platforms (minus BXT) differ in the key load trigger
397 	 * process from other platforms. These platforms use the GT Driver
398 	 * Mailbox interface.
399 	 */
400 	if (DISPLAY_VER(display) == 9 && !display->platform.broxton) {
401 		ret = snb_pcode_write(&i915->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
402 		if (ret) {
403 			drm_err(display->drm,
404 				"Failed to initiate HDCP key load (%d)\n",
405 				ret);
406 			return ret;
407 		}
408 	} else {
409 		intel_de_write(display, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
410 	}
411 
412 	/* Wait for the keys to load (500us) */
413 	ret = intel_de_wait_custom(display, HDCP_KEY_STATUS,
414 				   HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
415 				   10, 1, &val);
416 	if (ret)
417 		return ret;
418 	else if (!(val & HDCP_KEY_LOAD_STATUS))
419 		return -ENXIO;
420 
421 	/* Send Aksv over to PCH display for use in authentication */
422 	intel_de_write(display, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
423 
424 	return 0;
425 }
426 
427 /* Returns updated SHA-1 index */
428 static int intel_write_sha_text(struct intel_display *display, u32 sha_text)
429 {
430 	intel_de_write(display, HDCP_SHA_TEXT, sha_text);
431 	if (intel_de_wait_for_set(display, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
432 		drm_err(display->drm, "Timed out waiting for SHA1 ready\n");
433 		return -ETIMEDOUT;
434 	}
435 	return 0;
436 }
437 
438 static
439 u32 intel_hdcp_get_repeater_ctl(struct intel_display *display,
440 				enum transcoder cpu_transcoder, enum port port)
441 {
442 	if (DISPLAY_VER(display) >= 12) {
443 		switch (cpu_transcoder) {
444 		case TRANSCODER_A:
445 			return HDCP_TRANSA_REP_PRESENT |
446 			       HDCP_TRANSA_SHA1_M0;
447 		case TRANSCODER_B:
448 			return HDCP_TRANSB_REP_PRESENT |
449 			       HDCP_TRANSB_SHA1_M0;
450 		case TRANSCODER_C:
451 			return HDCP_TRANSC_REP_PRESENT |
452 			       HDCP_TRANSC_SHA1_M0;
453 		case TRANSCODER_D:
454 			return HDCP_TRANSD_REP_PRESENT |
455 			       HDCP_TRANSD_SHA1_M0;
456 		default:
457 			drm_err(display->drm, "Unknown transcoder %d\n",
458 				cpu_transcoder);
459 			return 0;
460 		}
461 	}
462 
463 	switch (port) {
464 	case PORT_A:
465 		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
466 	case PORT_B:
467 		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
468 	case PORT_C:
469 		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
470 	case PORT_D:
471 		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
472 	case PORT_E:
473 		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
474 	default:
475 		drm_err(display->drm, "Unknown port %d\n", port);
476 		return 0;
477 	}
478 }
479 
480 static
481 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
482 				const struct intel_hdcp_shim *shim,
483 				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
484 {
485 	struct intel_display *display = to_intel_display(connector);
486 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
487 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
488 	enum port port = dig_port->base.port;
489 	u32 vprime, sha_text, sha_leftovers, rep_ctl;
490 	int ret, i, j, sha_idx;
491 
492 	/* Process V' values from the receiver */
493 	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
494 		ret = shim->read_v_prime_part(dig_port, i, &vprime);
495 		if (ret)
496 			return ret;
497 		intel_de_write(display, HDCP_SHA_V_PRIME(i), vprime);
498 	}
499 
500 	/*
501 	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
502 	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
503 	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
504 	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
505 	 * index will keep track of our progress through the 64 bytes as well as
506 	 * helping us work the 40-bit KSVs through our 32-bit register.
507 	 *
508 	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
509 	 */
510 	sha_idx = 0;
511 	sha_text = 0;
512 	sha_leftovers = 0;
513 	rep_ctl = intel_hdcp_get_repeater_ctl(display, cpu_transcoder, port);
514 	intel_de_write(display, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
515 	for (i = 0; i < num_downstream; i++) {
516 		unsigned int sha_empty;
517 		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
518 
519 		/* Fill up the empty slots in sha_text and write it out */
520 		sha_empty = sizeof(sha_text) - sha_leftovers;
521 		for (j = 0; j < sha_empty; j++) {
522 			u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
523 			sha_text |= ksv[j] << off;
524 		}
525 
526 		ret = intel_write_sha_text(display, sha_text);
527 		if (ret < 0)
528 			return ret;
529 
530 		/* Programming guide writes this every 64 bytes */
531 		sha_idx += sizeof(sha_text);
532 		if (!(sha_idx % 64))
533 			intel_de_write(display, HDCP_REP_CTL,
534 				       rep_ctl | HDCP_SHA1_TEXT_32);
535 
536 		/* Store the leftover bytes from the ksv in sha_text */
537 		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
538 		sha_text = 0;
539 		for (j = 0; j < sha_leftovers; j++)
540 			sha_text |= ksv[sha_empty + j] <<
541 					((sizeof(sha_text) - j - 1) * 8);
542 
543 		/*
544 		 * If we still have room in sha_text for more data, continue.
545 		 * Otherwise, write it out immediately.
546 		 */
547 		if (sizeof(sha_text) > sha_leftovers)
548 			continue;
549 
550 		ret = intel_write_sha_text(display, sha_text);
551 		if (ret < 0)
552 			return ret;
553 		sha_leftovers = 0;
554 		sha_text = 0;
555 		sha_idx += sizeof(sha_text);
556 	}
557 
558 	/*
559 	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
560 	 * bytes are leftover from the last ksv, we might be able to fit them
561 	 * all in sha_text (first 2 cases), or we might need to split them up
562 	 * into 2 writes (last 2 cases).
563 	 */
564 	if (sha_leftovers == 0) {
565 		/* Write 16 bits of text, 16 bits of M0 */
566 		intel_de_write(display, HDCP_REP_CTL,
567 			       rep_ctl | HDCP_SHA1_TEXT_16);
568 		ret = intel_write_sha_text(display,
569 					   bstatus[0] << 8 | bstatus[1]);
570 		if (ret < 0)
571 			return ret;
572 		sha_idx += sizeof(sha_text);
573 
574 		/* Write 32 bits of M0 */
575 		intel_de_write(display, HDCP_REP_CTL,
576 			       rep_ctl | HDCP_SHA1_TEXT_0);
577 		ret = intel_write_sha_text(display, 0);
578 		if (ret < 0)
579 			return ret;
580 		sha_idx += sizeof(sha_text);
581 
582 		/* Write 16 bits of M0 */
583 		intel_de_write(display, HDCP_REP_CTL,
584 			       rep_ctl | HDCP_SHA1_TEXT_16);
585 		ret = intel_write_sha_text(display, 0);
586 		if (ret < 0)
587 			return ret;
588 		sha_idx += sizeof(sha_text);
589 
590 	} else if (sha_leftovers == 1) {
591 		/* Write 24 bits of text, 8 bits of M0 */
592 		intel_de_write(display, HDCP_REP_CTL,
593 			       rep_ctl | HDCP_SHA1_TEXT_24);
594 		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
595 		/* Only 24-bits of data, must be in the LSB */
596 		sha_text = (sha_text & 0xffffff00) >> 8;
597 		ret = intel_write_sha_text(display, sha_text);
598 		if (ret < 0)
599 			return ret;
600 		sha_idx += sizeof(sha_text);
601 
602 		/* Write 32 bits of M0 */
603 		intel_de_write(display, HDCP_REP_CTL,
604 			       rep_ctl | HDCP_SHA1_TEXT_0);
605 		ret = intel_write_sha_text(display, 0);
606 		if (ret < 0)
607 			return ret;
608 		sha_idx += sizeof(sha_text);
609 
610 		/* Write 24 bits of M0 */
611 		intel_de_write(display, HDCP_REP_CTL,
612 			       rep_ctl | HDCP_SHA1_TEXT_8);
613 		ret = intel_write_sha_text(display, 0);
614 		if (ret < 0)
615 			return ret;
616 		sha_idx += sizeof(sha_text);
617 
618 	} else if (sha_leftovers == 2) {
619 		/* Write 32 bits of text */
620 		intel_de_write(display, HDCP_REP_CTL,
621 			       rep_ctl | HDCP_SHA1_TEXT_32);
622 		sha_text |= bstatus[0] << 8 | bstatus[1];
623 		ret = intel_write_sha_text(display, sha_text);
624 		if (ret < 0)
625 			return ret;
626 		sha_idx += sizeof(sha_text);
627 
628 		/* Write 64 bits of M0 */
629 		intel_de_write(display, HDCP_REP_CTL,
630 			       rep_ctl | HDCP_SHA1_TEXT_0);
631 		for (i = 0; i < 2; i++) {
632 			ret = intel_write_sha_text(display, 0);
633 			if (ret < 0)
634 				return ret;
635 			sha_idx += sizeof(sha_text);
636 		}
637 
638 		/*
639 		 * Terminate the SHA-1 stream by hand. For the other leftover
640 		 * cases this is appended by the hardware.
641 		 */
642 		intel_de_write(display, HDCP_REP_CTL,
643 			       rep_ctl | HDCP_SHA1_TEXT_32);
644 		sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
645 		ret = intel_write_sha_text(display, sha_text);
646 		if (ret < 0)
647 			return ret;
648 		sha_idx += sizeof(sha_text);
649 	} else if (sha_leftovers == 3) {
650 		/* Write 32 bits of text (filled from LSB) */
651 		intel_de_write(display, HDCP_REP_CTL,
652 			       rep_ctl | HDCP_SHA1_TEXT_32);
653 		sha_text |= bstatus[0];
654 		ret = intel_write_sha_text(display, sha_text);
655 		if (ret < 0)
656 			return ret;
657 		sha_idx += sizeof(sha_text);
658 
659 		/* Write 8 bits of text (filled from LSB), 24 bits of M0 */
660 		intel_de_write(display, HDCP_REP_CTL,
661 			       rep_ctl | HDCP_SHA1_TEXT_8);
662 		ret = intel_write_sha_text(display, bstatus[1]);
663 		if (ret < 0)
664 			return ret;
665 		sha_idx += sizeof(sha_text);
666 
667 		/* Write 32 bits of M0 */
668 		intel_de_write(display, HDCP_REP_CTL,
669 			       rep_ctl | HDCP_SHA1_TEXT_0);
670 		ret = intel_write_sha_text(display, 0);
671 		if (ret < 0)
672 			return ret;
673 		sha_idx += sizeof(sha_text);
674 
675 		/* Write 8 bits of M0 */
676 		intel_de_write(display, HDCP_REP_CTL,
677 			       rep_ctl | HDCP_SHA1_TEXT_24);
678 		ret = intel_write_sha_text(display, 0);
679 		if (ret < 0)
680 			return ret;
681 		sha_idx += sizeof(sha_text);
682 	} else {
683 		drm_dbg_kms(display->drm, "Invalid number of leftovers %d\n",
684 			    sha_leftovers);
685 		return -EINVAL;
686 	}
687 
688 	intel_de_write(display, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
689 	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
690 	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
691 		ret = intel_write_sha_text(display, 0);
692 		if (ret < 0)
693 			return ret;
694 		sha_idx += sizeof(sha_text);
695 	}
696 
697 	/*
698 	 * Last write gets the length of the concatenation in bits. That is:
699 	 *  - 5 bytes per device
700 	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
701 	 */
702 	sha_text = (num_downstream * 5 + 10) * 8;
703 	ret = intel_write_sha_text(display, sha_text);
704 	if (ret < 0)
705 		return ret;
706 
707 	/* Tell the HW we're done with the hash and wait for it to ACK */
708 	intel_de_write(display, HDCP_REP_CTL,
709 		       rep_ctl | HDCP_SHA1_COMPLETE_HASH);
710 	if (intel_de_wait_for_set(display, HDCP_REP_CTL,
711 				  HDCP_SHA1_COMPLETE, 1)) {
712 		drm_err(display->drm, "Timed out waiting for SHA1 complete\n");
713 		return -ETIMEDOUT;
714 	}
715 	if (!(intel_de_read(display, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
716 		drm_dbg_kms(display->drm, "SHA-1 mismatch, HDCP failed\n");
717 		return -ENXIO;
718 	}
719 
720 	return 0;
721 }
722 
723 /* Implements Part 2 of the HDCP authorization procedure */
724 static
725 int intel_hdcp_auth_downstream(struct intel_connector *connector)
726 {
727 	struct intel_display *display = to_intel_display(connector);
728 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
729 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
730 	u8 bstatus[2], num_downstream, *ksv_fifo;
731 	int ret, i, tries = 3;
732 
733 	ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
734 	if (ret) {
735 		drm_dbg_kms(display->drm,
736 			    "KSV list failed to become ready (%d)\n", ret);
737 		return ret;
738 	}
739 
740 	ret = shim->read_bstatus(dig_port, bstatus);
741 	if (ret)
742 		return ret;
743 
744 	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
745 	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
746 		drm_dbg_kms(display->drm, "Max Topology Limit Exceeded\n");
747 		return -EPERM;
748 	}
749 
750 	/*
751 	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
752 	 * the HDCP encryption. That implies that repeater can't have its own
753 	 * display. As there is no consumption of encrypted content in the
754 	 * repeater with 0 downstream devices, we are failing the
755 	 * authentication.
756 	 */
757 	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
758 	if (num_downstream == 0) {
759 		drm_dbg_kms(display->drm,
760 			    "Repeater with zero downstream devices\n");
761 		return -EINVAL;
762 	}
763 
764 	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
765 	if (!ksv_fifo) {
766 		drm_dbg_kms(display->drm, "Out of mem: ksv_fifo\n");
767 		return -ENOMEM;
768 	}
769 
770 	ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
771 	if (ret)
772 		goto err;
773 
774 	if (drm_hdcp_check_ksvs_revoked(display->drm, ksv_fifo,
775 					num_downstream) > 0) {
776 		drm_err(display->drm, "Revoked Ksv(s) in ksv_fifo\n");
777 		ret = -EPERM;
778 		goto err;
779 	}
780 
781 	/*
782 	 * When V prime mismatches, DP Spec mandates re-read of
783 	 * V prime atleast twice.
784 	 */
785 	for (i = 0; i < tries; i++) {
786 		ret = intel_hdcp_validate_v_prime(connector, shim,
787 						  ksv_fifo, num_downstream,
788 						  bstatus);
789 		if (!ret)
790 			break;
791 	}
792 
793 	if (i == tries) {
794 		drm_dbg_kms(display->drm,
795 			    "V Prime validation failed.(%d)\n", ret);
796 		goto err;
797 	}
798 
799 	drm_dbg_kms(display->drm, "HDCP is enabled (%d downstream devices)\n",
800 		    num_downstream);
801 	ret = 0;
802 err:
803 	kfree(ksv_fifo);
804 	return ret;
805 }
806 
807 /* Implements Part 1 of the HDCP authorization procedure */
808 static int intel_hdcp_auth(struct intel_connector *connector)
809 {
810 	struct intel_display *display = to_intel_display(connector);
811 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
812 	struct intel_hdcp *hdcp = &connector->hdcp;
813 	const struct intel_hdcp_shim *shim = hdcp->shim;
814 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
815 	enum port port = dig_port->base.port;
816 	unsigned long r0_prime_gen_start;
817 	int ret, i, tries = 2;
818 	union {
819 		u32 reg[2];
820 		u8 shim[DRM_HDCP_AN_LEN];
821 	} an;
822 	union {
823 		u32 reg[2];
824 		u8 shim[DRM_HDCP_KSV_LEN];
825 	} bksv;
826 	union {
827 		u32 reg;
828 		u8 shim[DRM_HDCP_RI_LEN];
829 	} ri;
830 	bool repeater_present, hdcp_capable;
831 
832 	/*
833 	 * Detects whether the display is HDCP capable. Although we check for
834 	 * valid Bksv below, the HDCP over DP spec requires that we check
835 	 * whether the display supports HDCP before we write An. For HDMI
836 	 * displays, this is not necessary.
837 	 */
838 	if (shim->hdcp_get_capability) {
839 		ret = shim->hdcp_get_capability(dig_port, &hdcp_capable);
840 		if (ret)
841 			return ret;
842 		if (!hdcp_capable) {
843 			drm_dbg_kms(display->drm,
844 				    "Panel is not HDCP capable\n");
845 			return -EINVAL;
846 		}
847 	}
848 
849 	/* Initialize An with 2 random values and acquire it */
850 	for (i = 0; i < 2; i++)
851 		intel_de_write(display,
852 			       HDCP_ANINIT(display, cpu_transcoder, port),
853 			       get_random_u32());
854 	intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port),
855 		       HDCP_CONF_CAPTURE_AN);
856 
857 	/* Wait for An to be acquired */
858 	if (intel_de_wait_for_set(display,
859 				  HDCP_STATUS(display, cpu_transcoder, port),
860 				  HDCP_STATUS_AN_READY, 1)) {
861 		drm_err(display->drm, "Timed out waiting for An\n");
862 		return -ETIMEDOUT;
863 	}
864 
865 	an.reg[0] = intel_de_read(display,
866 				  HDCP_ANLO(display, cpu_transcoder, port));
867 	an.reg[1] = intel_de_read(display,
868 				  HDCP_ANHI(display, cpu_transcoder, port));
869 	ret = shim->write_an_aksv(dig_port, an.shim);
870 	if (ret)
871 		return ret;
872 
873 	r0_prime_gen_start = jiffies;
874 
875 	memset(&bksv, 0, sizeof(bksv));
876 
877 	ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
878 	if (ret < 0)
879 		return ret;
880 
881 	if (drm_hdcp_check_ksvs_revoked(display->drm, bksv.shim, 1) > 0) {
882 		drm_err(display->drm, "BKSV is revoked\n");
883 		return -EPERM;
884 	}
885 
886 	intel_de_write(display, HDCP_BKSVLO(display, cpu_transcoder, port),
887 		       bksv.reg[0]);
888 	intel_de_write(display, HDCP_BKSVHI(display, cpu_transcoder, port),
889 		       bksv.reg[1]);
890 
891 	ret = shim->repeater_present(dig_port, &repeater_present);
892 	if (ret)
893 		return ret;
894 	if (repeater_present)
895 		intel_de_write(display, HDCP_REP_CTL,
896 			       intel_hdcp_get_repeater_ctl(display, cpu_transcoder, port));
897 
898 	ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
899 	if (ret)
900 		return ret;
901 
902 	intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port),
903 		       HDCP_CONF_AUTH_AND_ENC);
904 
905 	/* Wait for R0 ready */
906 	if (wait_for(intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)) &
907 		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
908 		drm_err(display->drm, "Timed out waiting for R0 ready\n");
909 		return -ETIMEDOUT;
910 	}
911 
912 	/*
913 	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
914 	 * some monitors can take longer than this. We'll set the timeout at
915 	 * 300ms just to be sure.
916 	 *
917 	 * On DP, there's an R0_READY bit available but no such bit
918 	 * exists on HDMI. Since the upper-bound is the same, we'll just do
919 	 * the stupid thing instead of polling on one and not the other.
920 	 */
921 	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
922 
923 	tries = 3;
924 
925 	/*
926 	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
927 	 * of R0 mismatch.
928 	 */
929 	for (i = 0; i < tries; i++) {
930 		ri.reg = 0;
931 		ret = shim->read_ri_prime(dig_port, ri.shim);
932 		if (ret)
933 			return ret;
934 		intel_de_write(display,
935 			       HDCP_RPRIME(display, cpu_transcoder, port),
936 			       ri.reg);
937 
938 		/* Wait for Ri prime match */
939 		if (!wait_for(intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)) &
940 			      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
941 			break;
942 	}
943 
944 	if (i == tries) {
945 		drm_dbg_kms(display->drm,
946 			    "Timed out waiting for Ri prime match (%x)\n",
947 			    intel_de_read(display,
948 					  HDCP_STATUS(display, cpu_transcoder, port)));
949 		return -ETIMEDOUT;
950 	}
951 
952 	/* Wait for encryption confirmation */
953 	if (intel_de_wait_for_set(display,
954 				  HDCP_STATUS(display, cpu_transcoder, port),
955 				  HDCP_STATUS_ENC,
956 				  HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
957 		drm_err(display->drm, "Timed out waiting for encryption\n");
958 		return -ETIMEDOUT;
959 	}
960 
961 	/* DP MST Auth Part 1 Step 2.a and Step 2.b */
962 	if (shim->stream_encryption) {
963 		ret = shim->stream_encryption(connector, true);
964 		if (ret) {
965 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 1.4 stream enc\n",
966 				connector->base.base.id, connector->base.name);
967 			return ret;
968 		}
969 		drm_dbg_kms(display->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
970 			    transcoder_name(hdcp->stream_transcoder));
971 	}
972 
973 	if (repeater_present)
974 		return intel_hdcp_auth_downstream(connector);
975 
976 	drm_dbg_kms(display->drm, "HDCP is enabled (no repeater present)\n");
977 	return 0;
978 }
979 
980 static int _intel_hdcp_disable(struct intel_connector *connector)
981 {
982 	struct intel_display *display = to_intel_display(connector);
983 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
984 	struct intel_hdcp *hdcp = &connector->hdcp;
985 	enum port port = dig_port->base.port;
986 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
987 	u32 repeater_ctl;
988 	int ret;
989 
990 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP is being disabled...\n",
991 		    connector->base.base.id, connector->base.name);
992 
993 	if (hdcp->shim->stream_encryption) {
994 		ret = hdcp->shim->stream_encryption(connector, false);
995 		if (ret) {
996 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 1.4 stream enc\n",
997 				connector->base.base.id, connector->base.name);
998 			return ret;
999 		}
1000 		drm_dbg_kms(display->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
1001 			    transcoder_name(hdcp->stream_transcoder));
1002 		/*
1003 		 * If there are other connectors on this port using HDCP,
1004 		 * don't disable it until it disabled HDCP encryption for
1005 		 * all connectors in MST topology.
1006 		 */
1007 		if (dig_port->hdcp.num_streams > 0)
1008 			return 0;
1009 	}
1010 
1011 	hdcp->hdcp_encrypted = false;
1012 	intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port), 0);
1013 	if (intel_de_wait_for_clear(display,
1014 				    HDCP_STATUS(display, cpu_transcoder, port),
1015 				    ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
1016 		drm_err(display->drm,
1017 			"Failed to disable HDCP, timeout clearing status\n");
1018 		return -ETIMEDOUT;
1019 	}
1020 
1021 	repeater_ctl = intel_hdcp_get_repeater_ctl(display, cpu_transcoder,
1022 						   port);
1023 	intel_de_rmw(display, HDCP_REP_CTL, repeater_ctl, 0);
1024 
1025 	ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
1026 	if (ret) {
1027 		drm_err(display->drm, "Failed to disable HDCP signalling\n");
1028 		return ret;
1029 	}
1030 
1031 	drm_dbg_kms(display->drm, "HDCP is disabled\n");
1032 	return 0;
1033 }
1034 
1035 static int intel_hdcp1_enable(struct intel_connector *connector)
1036 {
1037 	struct intel_display *display = to_intel_display(connector);
1038 	struct intel_hdcp *hdcp = &connector->hdcp;
1039 	int i, ret, tries = 3;
1040 
1041 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP is being enabled...\n",
1042 		    connector->base.base.id, connector->base.name);
1043 
1044 	if (!hdcp_key_loadable(display)) {
1045 		drm_err(display->drm, "HDCP key Load is not possible\n");
1046 		return -ENXIO;
1047 	}
1048 
1049 	for (i = 0; i < KEY_LOAD_TRIES; i++) {
1050 		ret = intel_hdcp_load_keys(display);
1051 		if (!ret)
1052 			break;
1053 		intel_hdcp_clear_keys(display);
1054 	}
1055 	if (ret) {
1056 		drm_err(display->drm, "Could not load HDCP keys, (%d)\n",
1057 			ret);
1058 		return ret;
1059 	}
1060 
1061 	intel_hdcp_adjust_hdcp_line_rekeying(connector->encoder, hdcp, true);
1062 
1063 	/* Incase of authentication failures, HDCP spec expects reauth. */
1064 	for (i = 0; i < tries; i++) {
1065 		ret = intel_hdcp_auth(connector);
1066 		if (!ret) {
1067 			hdcp->hdcp_encrypted = true;
1068 			return 0;
1069 		}
1070 
1071 		drm_dbg_kms(display->drm, "HDCP Auth failure (%d)\n", ret);
1072 
1073 		/* Ensuring HDCP encryption and signalling are stopped. */
1074 		_intel_hdcp_disable(connector);
1075 	}
1076 
1077 	drm_dbg_kms(display->drm,
1078 		    "HDCP authentication failed (%d tries/%d)\n", tries, ret);
1079 	return ret;
1080 }
1081 
1082 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
1083 {
1084 	return container_of(hdcp, struct intel_connector, hdcp);
1085 }
1086 
1087 static void intel_hdcp_update_value(struct intel_connector *connector,
1088 				    u64 value, bool update_property)
1089 {
1090 	struct intel_display *display = to_intel_display(connector);
1091 	struct drm_i915_private *i915 = to_i915(display->drm);
1092 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1093 	struct intel_hdcp *hdcp = &connector->hdcp;
1094 
1095 	drm_WARN_ON(display->drm, !mutex_is_locked(&hdcp->mutex));
1096 
1097 	if (hdcp->value == value)
1098 		return;
1099 
1100 	drm_WARN_ON(display->drm, !mutex_is_locked(&dig_port->hdcp.mutex));
1101 
1102 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1103 		if (!drm_WARN_ON(display->drm, dig_port->hdcp.num_streams == 0))
1104 			dig_port->hdcp.num_streams--;
1105 	} else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1106 		dig_port->hdcp.num_streams++;
1107 	}
1108 
1109 	hdcp->value = value;
1110 	if (update_property) {
1111 		drm_connector_get(&connector->base);
1112 		if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
1113 			drm_connector_put(&connector->base);
1114 	}
1115 }
1116 
1117 /* Implements Part 3 of the HDCP authorization procedure */
1118 static int intel_hdcp_check_link(struct intel_connector *connector)
1119 {
1120 	struct intel_display *display = to_intel_display(connector);
1121 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1122 	struct intel_hdcp *hdcp = &connector->hdcp;
1123 	enum port port = dig_port->base.port;
1124 	enum transcoder cpu_transcoder;
1125 	int ret = 0;
1126 
1127 	mutex_lock(&hdcp->mutex);
1128 	mutex_lock(&dig_port->hdcp.mutex);
1129 
1130 	cpu_transcoder = hdcp->cpu_transcoder;
1131 
1132 	/* Check_link valid only when HDCP1.4 is enabled */
1133 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1134 	    !hdcp->hdcp_encrypted) {
1135 		ret = -EINVAL;
1136 		goto out;
1137 	}
1138 
1139 	if (drm_WARN_ON(display->drm,
1140 			!intel_hdcp_in_use(display, cpu_transcoder, port))) {
1141 		drm_err(display->drm,
1142 			"[CONNECTOR:%d:%s] HDCP link stopped encryption,%x\n",
1143 			connector->base.base.id, connector->base.name,
1144 			intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)));
1145 		ret = -ENXIO;
1146 		intel_hdcp_update_value(connector,
1147 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1148 					true);
1149 		goto out;
1150 	}
1151 
1152 	if (hdcp->shim->check_link(dig_port, connector)) {
1153 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1154 			intel_hdcp_update_value(connector,
1155 				DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1156 		}
1157 		goto out;
1158 	}
1159 
1160 	drm_dbg_kms(display->drm,
1161 		    "[CONNECTOR:%d:%s] HDCP link failed, retrying authentication\n",
1162 		    connector->base.base.id, connector->base.name);
1163 
1164 	ret = _intel_hdcp_disable(connector);
1165 	if (ret) {
1166 		drm_err(display->drm, "Failed to disable hdcp (%d)\n", ret);
1167 		intel_hdcp_update_value(connector,
1168 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1169 					true);
1170 		goto out;
1171 	}
1172 
1173 	ret = intel_hdcp1_enable(connector);
1174 	if (ret) {
1175 		drm_err(display->drm, "Failed to enable hdcp (%d)\n", ret);
1176 		intel_hdcp_update_value(connector,
1177 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1178 					true);
1179 		goto out;
1180 	}
1181 
1182 out:
1183 	mutex_unlock(&dig_port->hdcp.mutex);
1184 	mutex_unlock(&hdcp->mutex);
1185 	return ret;
1186 }
1187 
1188 static void intel_hdcp_prop_work(struct work_struct *work)
1189 {
1190 	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1191 					       prop_work);
1192 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1193 	struct intel_display *display = to_intel_display(connector);
1194 
1195 	drm_modeset_lock(&display->drm->mode_config.connection_mutex, NULL);
1196 	mutex_lock(&hdcp->mutex);
1197 
1198 	/*
1199 	 * This worker is only used to flip between ENABLED/DESIRED. Either of
1200 	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1201 	 * we're running just after hdcp has been disabled, so just exit
1202 	 */
1203 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1204 		drm_hdcp_update_content_protection(&connector->base,
1205 						   hdcp->value);
1206 
1207 	mutex_unlock(&hdcp->mutex);
1208 	drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
1209 
1210 	drm_connector_put(&connector->base);
1211 }
1212 
1213 bool is_hdcp_supported(struct intel_display *display, enum port port)
1214 {
1215 	return DISPLAY_RUNTIME_INFO(display)->has_hdcp &&
1216 		(DISPLAY_VER(display) >= 12 || port < PORT_E);
1217 }
1218 
1219 static int
1220 hdcp2_prepare_ake_init(struct intel_connector *connector,
1221 		       struct hdcp2_ake_init *ake_data)
1222 {
1223 	struct intel_display *display = to_intel_display(connector);
1224 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1225 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1226 	struct i915_hdcp_arbiter *arbiter;
1227 	int ret;
1228 
1229 	mutex_lock(&display->hdcp.hdcp_mutex);
1230 	arbiter = display->hdcp.arbiter;
1231 
1232 	if (!arbiter || !arbiter->ops) {
1233 		mutex_unlock(&display->hdcp.hdcp_mutex);
1234 		return -EINVAL;
1235 	}
1236 
1237 	ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data);
1238 	if (ret)
1239 		drm_dbg_kms(display->drm, "Prepare_ake_init failed. %d\n",
1240 			    ret);
1241 	mutex_unlock(&display->hdcp.hdcp_mutex);
1242 
1243 	return ret;
1244 }
1245 
1246 static int
1247 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1248 				struct hdcp2_ake_send_cert *rx_cert,
1249 				bool *paired,
1250 				struct hdcp2_ake_no_stored_km *ek_pub_km,
1251 				size_t *msg_sz)
1252 {
1253 	struct intel_display *display = to_intel_display(connector);
1254 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1255 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1256 	struct i915_hdcp_arbiter *arbiter;
1257 	int ret;
1258 
1259 	mutex_lock(&display->hdcp.hdcp_mutex);
1260 	arbiter = display->hdcp.arbiter;
1261 
1262 	if (!arbiter || !arbiter->ops) {
1263 		mutex_unlock(&display->hdcp.hdcp_mutex);
1264 		return -EINVAL;
1265 	}
1266 
1267 	ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data,
1268 							 rx_cert, paired,
1269 							 ek_pub_km, msg_sz);
1270 	if (ret < 0)
1271 		drm_dbg_kms(display->drm, "Verify rx_cert failed. %d\n",
1272 			    ret);
1273 	mutex_unlock(&display->hdcp.hdcp_mutex);
1274 
1275 	return ret;
1276 }
1277 
1278 static int hdcp2_verify_hprime(struct intel_connector *connector,
1279 			       struct hdcp2_ake_send_hprime *rx_hprime)
1280 {
1281 	struct intel_display *display = to_intel_display(connector);
1282 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1283 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1284 	struct i915_hdcp_arbiter *arbiter;
1285 	int ret;
1286 
1287 	mutex_lock(&display->hdcp.hdcp_mutex);
1288 	arbiter = display->hdcp.arbiter;
1289 
1290 	if (!arbiter || !arbiter->ops) {
1291 		mutex_unlock(&display->hdcp.hdcp_mutex);
1292 		return -EINVAL;
1293 	}
1294 
1295 	ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime);
1296 	if (ret < 0)
1297 		drm_dbg_kms(display->drm, "Verify hprime failed. %d\n", ret);
1298 	mutex_unlock(&display->hdcp.hdcp_mutex);
1299 
1300 	return ret;
1301 }
1302 
1303 static int
1304 hdcp2_store_pairing_info(struct intel_connector *connector,
1305 			 struct hdcp2_ake_send_pairing_info *pairing_info)
1306 {
1307 	struct intel_display *display = to_intel_display(connector);
1308 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1309 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1310 	struct i915_hdcp_arbiter *arbiter;
1311 	int ret;
1312 
1313 	mutex_lock(&display->hdcp.hdcp_mutex);
1314 	arbiter = display->hdcp.arbiter;
1315 
1316 	if (!arbiter || !arbiter->ops) {
1317 		mutex_unlock(&display->hdcp.hdcp_mutex);
1318 		return -EINVAL;
1319 	}
1320 
1321 	ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info);
1322 	if (ret < 0)
1323 		drm_dbg_kms(display->drm, "Store pairing info failed. %d\n",
1324 			    ret);
1325 	mutex_unlock(&display->hdcp.hdcp_mutex);
1326 
1327 	return ret;
1328 }
1329 
1330 static int
1331 hdcp2_prepare_lc_init(struct intel_connector *connector,
1332 		      struct hdcp2_lc_init *lc_init)
1333 {
1334 	struct intel_display *display = to_intel_display(connector);
1335 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1336 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1337 	struct i915_hdcp_arbiter *arbiter;
1338 	int ret;
1339 
1340 	mutex_lock(&display->hdcp.hdcp_mutex);
1341 	arbiter = display->hdcp.arbiter;
1342 
1343 	if (!arbiter || !arbiter->ops) {
1344 		mutex_unlock(&display->hdcp.hdcp_mutex);
1345 		return -EINVAL;
1346 	}
1347 
1348 	ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init);
1349 	if (ret < 0)
1350 		drm_dbg_kms(display->drm, "Prepare lc_init failed. %d\n",
1351 			    ret);
1352 	mutex_unlock(&display->hdcp.hdcp_mutex);
1353 
1354 	return ret;
1355 }
1356 
1357 static int
1358 hdcp2_verify_lprime(struct intel_connector *connector,
1359 		    struct hdcp2_lc_send_lprime *rx_lprime)
1360 {
1361 	struct intel_display *display = to_intel_display(connector);
1362 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1363 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1364 	struct i915_hdcp_arbiter *arbiter;
1365 	int ret;
1366 
1367 	mutex_lock(&display->hdcp.hdcp_mutex);
1368 	arbiter = display->hdcp.arbiter;
1369 
1370 	if (!arbiter || !arbiter->ops) {
1371 		mutex_unlock(&display->hdcp.hdcp_mutex);
1372 		return -EINVAL;
1373 	}
1374 
1375 	ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime);
1376 	if (ret < 0)
1377 		drm_dbg_kms(display->drm, "Verify L_Prime failed. %d\n",
1378 			    ret);
1379 	mutex_unlock(&display->hdcp.hdcp_mutex);
1380 
1381 	return ret;
1382 }
1383 
1384 static int hdcp2_prepare_skey(struct intel_connector *connector,
1385 			      struct hdcp2_ske_send_eks *ske_data)
1386 {
1387 	struct intel_display *display = to_intel_display(connector);
1388 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1389 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1390 	struct i915_hdcp_arbiter *arbiter;
1391 	int ret;
1392 
1393 	mutex_lock(&display->hdcp.hdcp_mutex);
1394 	arbiter = display->hdcp.arbiter;
1395 
1396 	if (!arbiter || !arbiter->ops) {
1397 		mutex_unlock(&display->hdcp.hdcp_mutex);
1398 		return -EINVAL;
1399 	}
1400 
1401 	ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data);
1402 	if (ret < 0)
1403 		drm_dbg_kms(display->drm, "Get session key failed. %d\n",
1404 			    ret);
1405 	mutex_unlock(&display->hdcp.hdcp_mutex);
1406 
1407 	return ret;
1408 }
1409 
1410 static int
1411 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1412 				      struct hdcp2_rep_send_receiverid_list
1413 								*rep_topology,
1414 				      struct hdcp2_rep_send_ack *rep_send_ack)
1415 {
1416 	struct intel_display *display = to_intel_display(connector);
1417 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1418 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1419 	struct i915_hdcp_arbiter *arbiter;
1420 	int ret;
1421 
1422 	mutex_lock(&display->hdcp.hdcp_mutex);
1423 	arbiter = display->hdcp.arbiter;
1424 
1425 	if (!arbiter || !arbiter->ops) {
1426 		mutex_unlock(&display->hdcp.hdcp_mutex);
1427 		return -EINVAL;
1428 	}
1429 
1430 	ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev,
1431 							    data,
1432 							    rep_topology,
1433 							    rep_send_ack);
1434 	if (ret < 0)
1435 		drm_dbg_kms(display->drm,
1436 			    "Verify rep topology failed. %d\n", ret);
1437 	mutex_unlock(&display->hdcp.hdcp_mutex);
1438 
1439 	return ret;
1440 }
1441 
1442 static int
1443 hdcp2_verify_mprime(struct intel_connector *connector,
1444 		    struct hdcp2_rep_stream_ready *stream_ready)
1445 {
1446 	struct intel_display *display = to_intel_display(connector);
1447 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1448 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1449 	struct i915_hdcp_arbiter *arbiter;
1450 	int ret;
1451 
1452 	mutex_lock(&display->hdcp.hdcp_mutex);
1453 	arbiter = display->hdcp.arbiter;
1454 
1455 	if (!arbiter || !arbiter->ops) {
1456 		mutex_unlock(&display->hdcp.hdcp_mutex);
1457 		return -EINVAL;
1458 	}
1459 
1460 	ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready);
1461 	if (ret < 0)
1462 		drm_dbg_kms(display->drm, "Verify mprime failed. %d\n", ret);
1463 	mutex_unlock(&display->hdcp.hdcp_mutex);
1464 
1465 	return ret;
1466 }
1467 
1468 static int hdcp2_authenticate_port(struct intel_connector *connector)
1469 {
1470 	struct intel_display *display = to_intel_display(connector);
1471 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1472 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1473 	struct i915_hdcp_arbiter *arbiter;
1474 	int ret;
1475 
1476 	mutex_lock(&display->hdcp.hdcp_mutex);
1477 	arbiter = display->hdcp.arbiter;
1478 
1479 	if (!arbiter || !arbiter->ops) {
1480 		mutex_unlock(&display->hdcp.hdcp_mutex);
1481 		return -EINVAL;
1482 	}
1483 
1484 	ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data);
1485 	if (ret < 0)
1486 		drm_dbg_kms(display->drm, "Enable hdcp auth failed. %d\n",
1487 			    ret);
1488 	mutex_unlock(&display->hdcp.hdcp_mutex);
1489 
1490 	return ret;
1491 }
1492 
1493 static int hdcp2_close_session(struct intel_connector *connector)
1494 {
1495 	struct intel_display *display = to_intel_display(connector);
1496 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1497 	struct i915_hdcp_arbiter *arbiter;
1498 	int ret;
1499 
1500 	mutex_lock(&display->hdcp.hdcp_mutex);
1501 	arbiter = display->hdcp.arbiter;
1502 
1503 	if (!arbiter || !arbiter->ops) {
1504 		mutex_unlock(&display->hdcp.hdcp_mutex);
1505 		return -EINVAL;
1506 	}
1507 
1508 	ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev,
1509 					     &dig_port->hdcp.port_data);
1510 	mutex_unlock(&display->hdcp.hdcp_mutex);
1511 
1512 	return ret;
1513 }
1514 
1515 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1516 {
1517 	return hdcp2_close_session(connector);
1518 }
1519 
1520 /* Authentication flow starts from here */
1521 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1522 {
1523 	struct intel_display *display = to_intel_display(connector);
1524 	struct intel_digital_port *dig_port =
1525 		intel_attached_dig_port(connector);
1526 	struct intel_hdcp *hdcp = &connector->hdcp;
1527 	union {
1528 		struct hdcp2_ake_init ake_init;
1529 		struct hdcp2_ake_send_cert send_cert;
1530 		struct hdcp2_ake_no_stored_km no_stored_km;
1531 		struct hdcp2_ake_send_hprime send_hprime;
1532 		struct hdcp2_ake_send_pairing_info pairing_info;
1533 	} msgs;
1534 	const struct intel_hdcp_shim *shim = hdcp->shim;
1535 	size_t size;
1536 	int ret, i, max_retries;
1537 
1538 	/* Init for seq_num */
1539 	hdcp->seq_num_v = 0;
1540 	hdcp->seq_num_m = 0;
1541 
1542 	if (intel_encoder_is_dp(&dig_port->base) ||
1543 	    intel_encoder_is_mst(&dig_port->base))
1544 		max_retries = 10;
1545 	else
1546 		max_retries = 1;
1547 
1548 	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1549 	if (ret < 0)
1550 		return ret;
1551 
1552 	/*
1553 	 * Retry the first read and write to downstream at least 10 times
1554 	 * with a 50ms delay if not hdcp2 capable for DP/DPMST encoders
1555 	 * (dock decides to stop advertising hdcp2 capability for some reason).
1556 	 * The reason being that during suspend resume dock usually keeps the
1557 	 * HDCP2 registers inaccessible causing AUX error. This wouldn't be a
1558 	 * big problem if the userspace just kept retrying with some delay while
1559 	 * it continues to play low value content but most userspace applications
1560 	 * end up throwing an error when it receives one from KMD. This makes
1561 	 * sure we give the dock and the sink devices to complete its power cycle
1562 	 * and then try HDCP authentication. The values of 10 and delay of 50ms
1563 	 * was decided based on multiple trial and errors.
1564 	 */
1565 	for (i = 0; i < max_retries; i++) {
1566 		if (!intel_hdcp2_get_capability(connector)) {
1567 			msleep(50);
1568 			continue;
1569 		}
1570 
1571 		ret = shim->write_2_2_msg(connector, &msgs.ake_init,
1572 					  sizeof(msgs.ake_init));
1573 		if (ret < 0)
1574 			continue;
1575 
1576 		ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_CERT,
1577 					 &msgs.send_cert, sizeof(msgs.send_cert));
1578 		if (ret > 0)
1579 			break;
1580 	}
1581 
1582 	if (ret < 0)
1583 		return ret;
1584 
1585 	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1586 		drm_dbg_kms(display->drm, "cert.rx_caps dont claim HDCP2.2\n");
1587 		return -EINVAL;
1588 	}
1589 
1590 	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1591 
1592 	if (drm_hdcp_check_ksvs_revoked(display->drm,
1593 					msgs.send_cert.cert_rx.receiver_id,
1594 					1) > 0) {
1595 		drm_err(display->drm, "Receiver ID is revoked\n");
1596 		return -EPERM;
1597 	}
1598 
1599 	/*
1600 	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1601 	 * stored also.
1602 	 */
1603 	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1604 					      &hdcp->is_paired,
1605 					      &msgs.no_stored_km, &size);
1606 	if (ret < 0)
1607 		return ret;
1608 
1609 	ret = shim->write_2_2_msg(connector, &msgs.no_stored_km, size);
1610 	if (ret < 0)
1611 		return ret;
1612 
1613 	ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_HPRIME,
1614 				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1615 	if (ret < 0)
1616 		return ret;
1617 
1618 	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1619 	if (ret < 0)
1620 		return ret;
1621 
1622 	if (!hdcp->is_paired) {
1623 		/* Pairing is required */
1624 		ret = shim->read_2_2_msg(connector,
1625 					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1626 					 &msgs.pairing_info,
1627 					 sizeof(msgs.pairing_info));
1628 		if (ret < 0)
1629 			return ret;
1630 
1631 		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1632 		if (ret < 0)
1633 			return ret;
1634 		hdcp->is_paired = true;
1635 	}
1636 
1637 	return 0;
1638 }
1639 
1640 static int hdcp2_locality_check(struct intel_connector *connector)
1641 {
1642 	struct intel_hdcp *hdcp = &connector->hdcp;
1643 	union {
1644 		struct hdcp2_lc_init lc_init;
1645 		struct hdcp2_lc_send_lprime send_lprime;
1646 	} msgs;
1647 	const struct intel_hdcp_shim *shim = hdcp->shim;
1648 	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1649 
1650 	for (i = 0; i < tries; i++) {
1651 		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1652 		if (ret < 0)
1653 			continue;
1654 
1655 		ret = shim->write_2_2_msg(connector, &msgs.lc_init,
1656 				      sizeof(msgs.lc_init));
1657 		if (ret < 0)
1658 			continue;
1659 
1660 		ret = shim->read_2_2_msg(connector,
1661 					 HDCP_2_2_LC_SEND_LPRIME,
1662 					 &msgs.send_lprime,
1663 					 sizeof(msgs.send_lprime));
1664 		if (ret < 0)
1665 			continue;
1666 
1667 		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1668 		if (!ret)
1669 			break;
1670 	}
1671 
1672 	return ret;
1673 }
1674 
1675 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1676 {
1677 	struct intel_hdcp *hdcp = &connector->hdcp;
1678 	struct hdcp2_ske_send_eks send_eks;
1679 	int ret;
1680 
1681 	ret = hdcp2_prepare_skey(connector, &send_eks);
1682 	if (ret < 0)
1683 		return ret;
1684 
1685 	ret = hdcp->shim->write_2_2_msg(connector, &send_eks,
1686 					sizeof(send_eks));
1687 	if (ret < 0)
1688 		return ret;
1689 
1690 	return 0;
1691 }
1692 
1693 static
1694 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1695 {
1696 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1697 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1698 	struct intel_hdcp *hdcp = &connector->hdcp;
1699 	union {
1700 		struct hdcp2_rep_stream_manage stream_manage;
1701 		struct hdcp2_rep_stream_ready stream_ready;
1702 	} msgs;
1703 	const struct intel_hdcp_shim *shim = hdcp->shim;
1704 	int ret, streams_size_delta, i;
1705 
1706 	if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1707 		return -ERANGE;
1708 
1709 	/* Prepare RepeaterAuth_Stream_Manage msg */
1710 	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1711 	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1712 
1713 	msgs.stream_manage.k = cpu_to_be16(data->k);
1714 
1715 	for (i = 0; i < data->k; i++) {
1716 		msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1717 		msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1718 	}
1719 
1720 	streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1721 				sizeof(struct hdcp2_streamid_type);
1722 	/* Send it to Repeater */
1723 	ret = shim->write_2_2_msg(connector, &msgs.stream_manage,
1724 				  sizeof(msgs.stream_manage) - streams_size_delta);
1725 	if (ret < 0)
1726 		goto out;
1727 
1728 	ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_STREAM_READY,
1729 				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1730 	if (ret < 0)
1731 		goto out;
1732 
1733 	data->seq_num_m = hdcp->seq_num_m;
1734 
1735 	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1736 
1737 out:
1738 	hdcp->seq_num_m++;
1739 
1740 	return ret;
1741 }
1742 
1743 static
1744 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1745 {
1746 	struct intel_display *display = to_intel_display(connector);
1747 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1748 	struct intel_hdcp *hdcp = &connector->hdcp;
1749 	union {
1750 		struct hdcp2_rep_send_receiverid_list recvid_list;
1751 		struct hdcp2_rep_send_ack rep_ack;
1752 	} msgs;
1753 	const struct intel_hdcp_shim *shim = hdcp->shim;
1754 	u32 seq_num_v, device_cnt;
1755 	u8 *rx_info;
1756 	int ret;
1757 
1758 	ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_SEND_RECVID_LIST,
1759 				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1760 	if (ret < 0)
1761 		return ret;
1762 
1763 	rx_info = msgs.recvid_list.rx_info;
1764 
1765 	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1766 	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1767 		drm_dbg_kms(display->drm, "Topology Max Size Exceeded\n");
1768 		return -EINVAL;
1769 	}
1770 
1771 	/*
1772 	 * MST topology is not Type 1 capable if it contains a downstream
1773 	 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1774 	 */
1775 	dig_port->hdcp.mst_type1_capable =
1776 		!HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1777 		!HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1778 
1779 	if (!dig_port->hdcp.mst_type1_capable && hdcp->content_type) {
1780 		drm_dbg_kms(display->drm,
1781 			    "HDCP1.x or 2.0 Legacy Device Downstream\n");
1782 		return -EINVAL;
1783 	}
1784 
1785 	/* Converting and Storing the seq_num_v to local variable as DWORD */
1786 	seq_num_v =
1787 		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1788 
1789 	if (!hdcp->hdcp2_encrypted && seq_num_v) {
1790 		drm_dbg_kms(display->drm,
1791 			    "Non zero Seq_num_v at first RecvId_List msg\n");
1792 		return -EINVAL;
1793 	}
1794 
1795 	if (seq_num_v < hdcp->seq_num_v) {
1796 		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1797 		drm_dbg_kms(display->drm, "Seq_num_v roll over.\n");
1798 		return -EINVAL;
1799 	}
1800 
1801 	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1802 		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1803 	if (drm_hdcp_check_ksvs_revoked(display->drm,
1804 					msgs.recvid_list.receiver_ids,
1805 					device_cnt) > 0) {
1806 		drm_err(display->drm, "Revoked receiver ID(s) is in list\n");
1807 		return -EPERM;
1808 	}
1809 
1810 	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1811 						    &msgs.recvid_list,
1812 						    &msgs.rep_ack);
1813 	if (ret < 0)
1814 		return ret;
1815 
1816 	hdcp->seq_num_v = seq_num_v;
1817 	ret = shim->write_2_2_msg(connector, &msgs.rep_ack,
1818 				  sizeof(msgs.rep_ack));
1819 	if (ret < 0)
1820 		return ret;
1821 
1822 	return 0;
1823 }
1824 
1825 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1826 {
1827 	struct intel_display *display = to_intel_display(connector);
1828 	struct intel_hdcp *hdcp = &connector->hdcp;
1829 	const struct intel_hdcp_shim *shim = hdcp->shim;
1830 	int ret;
1831 
1832 	ret = hdcp2_authentication_key_exchange(connector);
1833 	if (ret < 0) {
1834 		drm_dbg_kms(display->drm, "AKE Failed. Err : %d\n", ret);
1835 		return ret;
1836 	}
1837 
1838 	ret = hdcp2_locality_check(connector);
1839 	if (ret < 0) {
1840 		drm_dbg_kms(display->drm,
1841 			    "Locality Check failed. Err : %d\n", ret);
1842 		return ret;
1843 	}
1844 
1845 	ret = hdcp2_session_key_exchange(connector);
1846 	if (ret < 0) {
1847 		drm_dbg_kms(display->drm, "SKE Failed. Err : %d\n", ret);
1848 		return ret;
1849 	}
1850 
1851 	if (shim->config_stream_type) {
1852 		ret = shim->config_stream_type(connector,
1853 					       hdcp->is_repeater,
1854 					       hdcp->content_type);
1855 		if (ret < 0)
1856 			return ret;
1857 	}
1858 
1859 	if (hdcp->is_repeater) {
1860 		ret = hdcp2_authenticate_repeater_topology(connector);
1861 		if (ret < 0) {
1862 			drm_dbg_kms(display->drm,
1863 				    "Repeater Auth Failed. Err: %d\n", ret);
1864 			return ret;
1865 		}
1866 	}
1867 
1868 	return ret;
1869 }
1870 
1871 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1872 {
1873 	struct intel_display *display = to_intel_display(connector);
1874 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1875 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1876 	struct intel_hdcp *hdcp = &connector->hdcp;
1877 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1878 	enum port port = dig_port->base.port;
1879 	int ret = 0;
1880 
1881 	if (!(intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1882 			    LINK_ENCRYPTION_STATUS)) {
1883 		drm_err(display->drm, "[CONNECTOR:%d:%s] HDCP 2.2 Link is not encrypted\n",
1884 			connector->base.base.id, connector->base.name);
1885 		ret = -EPERM;
1886 		goto link_recover;
1887 	}
1888 
1889 	if (hdcp->shim->stream_2_2_encryption) {
1890 		ret = hdcp->shim->stream_2_2_encryption(connector, true);
1891 		if (ret) {
1892 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 2.2 stream enc\n",
1893 				connector->base.base.id, connector->base.name);
1894 			return ret;
1895 		}
1896 		drm_dbg_kms(display->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1897 			    transcoder_name(hdcp->stream_transcoder));
1898 	}
1899 
1900 	return 0;
1901 
1902 link_recover:
1903 	if (hdcp2_deauthenticate_port(connector) < 0)
1904 		drm_dbg_kms(display->drm, "Port deauth failed.\n");
1905 
1906 	dig_port->hdcp.auth_status = false;
1907 	data->k = 0;
1908 
1909 	return ret;
1910 }
1911 
1912 static int hdcp2_enable_encryption(struct intel_connector *connector)
1913 {
1914 	struct intel_display *display = to_intel_display(connector);
1915 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1916 	struct intel_hdcp *hdcp = &connector->hdcp;
1917 	enum port port = dig_port->base.port;
1918 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1919 	int ret;
1920 
1921 	drm_WARN_ON(display->drm,
1922 		    intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1923 		    LINK_ENCRYPTION_STATUS);
1924 	if (hdcp->shim->toggle_signalling) {
1925 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1926 						    true);
1927 		if (ret) {
1928 			drm_err(display->drm,
1929 				"Failed to enable HDCP signalling. %d\n",
1930 				ret);
1931 			return ret;
1932 		}
1933 	}
1934 
1935 	if (intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1936 	    LINK_AUTH_STATUS)
1937 		/* Link is Authenticated. Now set for Encryption */
1938 		intel_de_rmw(display, HDCP2_CTL(display, cpu_transcoder, port),
1939 			     0, CTL_LINK_ENCRYPTION_REQ);
1940 
1941 	ret = intel_de_wait_for_set(display,
1942 				    HDCP2_STATUS(display, cpu_transcoder,
1943 						 port),
1944 				    LINK_ENCRYPTION_STATUS,
1945 				    HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1946 	dig_port->hdcp.auth_status = true;
1947 
1948 	return ret;
1949 }
1950 
1951 static int hdcp2_disable_encryption(struct intel_connector *connector)
1952 {
1953 	struct intel_display *display = to_intel_display(connector);
1954 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1955 	struct intel_hdcp *hdcp = &connector->hdcp;
1956 	enum port port = dig_port->base.port;
1957 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1958 	int ret;
1959 
1960 	drm_WARN_ON(display->drm,
1961 		    !(intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1962 				    LINK_ENCRYPTION_STATUS));
1963 
1964 	intel_de_rmw(display, HDCP2_CTL(display, cpu_transcoder, port),
1965 		     CTL_LINK_ENCRYPTION_REQ, 0);
1966 
1967 	ret = intel_de_wait_for_clear(display,
1968 				      HDCP2_STATUS(display, cpu_transcoder,
1969 						   port),
1970 				      LINK_ENCRYPTION_STATUS,
1971 				      HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1972 	if (ret == -ETIMEDOUT)
1973 		drm_dbg_kms(display->drm, "Disable Encryption Timedout");
1974 
1975 	if (hdcp->shim->toggle_signalling) {
1976 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1977 						    false);
1978 		if (ret) {
1979 			drm_err(display->drm,
1980 				"Failed to disable HDCP signalling. %d\n",
1981 				ret);
1982 			return ret;
1983 		}
1984 	}
1985 
1986 	return ret;
1987 }
1988 
1989 static int
1990 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1991 {
1992 	struct intel_display *display = to_intel_display(connector);
1993 	int i, tries = 3, ret;
1994 
1995 	if (!connector->hdcp.is_repeater)
1996 		return 0;
1997 
1998 	for (i = 0; i < tries; i++) {
1999 		ret = _hdcp2_propagate_stream_management_info(connector);
2000 		if (!ret)
2001 			break;
2002 
2003 		/* Lets restart the auth incase of seq_num_m roll over */
2004 		if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
2005 			drm_dbg_kms(display->drm,
2006 				    "seq_num_m roll over.(%d)\n", ret);
2007 			break;
2008 		}
2009 
2010 		drm_dbg_kms(display->drm,
2011 			    "HDCP2 stream management %d of %d Failed.(%d)\n",
2012 			    i + 1, tries, ret);
2013 	}
2014 
2015 	return ret;
2016 }
2017 
2018 static int hdcp2_authenticate_and_encrypt(struct intel_atomic_state *state,
2019 					  struct intel_connector *connector)
2020 {
2021 	struct intel_display *display = to_intel_display(connector);
2022 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2023 	int ret = 0, i, tries = 3;
2024 
2025 	for (i = 0; i < tries && !dig_port->hdcp.auth_status; i++) {
2026 		ret = hdcp2_authenticate_sink(connector);
2027 		if (!ret) {
2028 			ret = intel_hdcp_prepare_streams(state, connector);
2029 			if (ret) {
2030 				drm_dbg_kms(display->drm,
2031 					    "Prepare stream failed.(%d)\n",
2032 					    ret);
2033 				break;
2034 			}
2035 
2036 			ret = hdcp2_propagate_stream_management_info(connector);
2037 			if (ret) {
2038 				drm_dbg_kms(display->drm,
2039 					    "Stream management failed.(%d)\n",
2040 					    ret);
2041 				break;
2042 			}
2043 
2044 			ret = hdcp2_authenticate_port(connector);
2045 			if (!ret)
2046 				break;
2047 			drm_dbg_kms(display->drm, "HDCP2 port auth failed.(%d)\n",
2048 				    ret);
2049 		}
2050 
2051 		/* Clearing the mei hdcp session */
2052 		drm_dbg_kms(display->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
2053 			    i + 1, tries, ret);
2054 		if (hdcp2_deauthenticate_port(connector) < 0)
2055 			drm_dbg_kms(display->drm, "Port deauth failed.\n");
2056 	}
2057 
2058 	if (!ret && !dig_port->hdcp.auth_status) {
2059 		/*
2060 		 * Ensuring the required 200mSec min time interval between
2061 		 * Session Key Exchange and encryption.
2062 		 */
2063 		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
2064 		ret = hdcp2_enable_encryption(connector);
2065 		if (ret < 0) {
2066 			drm_dbg_kms(display->drm,
2067 				    "Encryption Enable Failed.(%d)\n", ret);
2068 			if (hdcp2_deauthenticate_port(connector) < 0)
2069 				drm_dbg_kms(display->drm, "Port deauth failed.\n");
2070 		}
2071 	}
2072 
2073 	if (!ret)
2074 		ret = hdcp2_enable_stream_encryption(connector);
2075 
2076 	return ret;
2077 }
2078 
2079 static int _intel_hdcp2_enable(struct intel_atomic_state *state,
2080 			       struct intel_connector *connector)
2081 {
2082 	struct intel_display *display = to_intel_display(connector);
2083 	struct intel_hdcp *hdcp = &connector->hdcp;
2084 	int ret;
2085 
2086 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being enabled. Type: %d\n",
2087 		    connector->base.base.id, connector->base.name,
2088 		    hdcp->content_type);
2089 
2090 	intel_hdcp_adjust_hdcp_line_rekeying(connector->encoder, hdcp, false);
2091 
2092 	ret = hdcp2_authenticate_and_encrypt(state, connector);
2093 	if (ret) {
2094 		drm_dbg_kms(display->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
2095 			    hdcp->content_type, ret);
2096 		return ret;
2097 	}
2098 
2099 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is enabled. Type %d\n",
2100 		    connector->base.base.id, connector->base.name,
2101 		    hdcp->content_type);
2102 
2103 	hdcp->hdcp2_encrypted = true;
2104 	return 0;
2105 }
2106 
2107 static int
2108 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
2109 {
2110 	struct intel_display *display = to_intel_display(connector);
2111 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2112 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
2113 	struct intel_hdcp *hdcp = &connector->hdcp;
2114 	int ret;
2115 
2116 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being Disabled\n",
2117 		    connector->base.base.id, connector->base.name);
2118 
2119 	if (hdcp->shim->stream_2_2_encryption) {
2120 		ret = hdcp->shim->stream_2_2_encryption(connector, false);
2121 		if (ret) {
2122 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 2.2 stream enc\n",
2123 				connector->base.base.id, connector->base.name);
2124 			return ret;
2125 		}
2126 		drm_dbg_kms(display->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
2127 			    transcoder_name(hdcp->stream_transcoder));
2128 
2129 		if (dig_port->hdcp.num_streams > 0 && !hdcp2_link_recovery)
2130 			return 0;
2131 	}
2132 
2133 	ret = hdcp2_disable_encryption(connector);
2134 
2135 	if (hdcp2_deauthenticate_port(connector) < 0)
2136 		drm_dbg_kms(display->drm, "Port deauth failed.\n");
2137 
2138 	connector->hdcp.hdcp2_encrypted = false;
2139 	dig_port->hdcp.auth_status = false;
2140 	data->k = 0;
2141 
2142 	return ret;
2143 }
2144 
2145 /* Implements the Link Integrity Check for HDCP2.2 */
2146 static int intel_hdcp2_check_link(struct intel_connector *connector)
2147 {
2148 	struct intel_display *display = to_intel_display(connector);
2149 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2150 	struct intel_hdcp *hdcp = &connector->hdcp;
2151 	enum port port = dig_port->base.port;
2152 	enum transcoder cpu_transcoder;
2153 	int ret = 0;
2154 
2155 	mutex_lock(&hdcp->mutex);
2156 	mutex_lock(&dig_port->hdcp.mutex);
2157 	cpu_transcoder = hdcp->cpu_transcoder;
2158 
2159 	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2160 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2161 	    !hdcp->hdcp2_encrypted) {
2162 		ret = -EINVAL;
2163 		goto out;
2164 	}
2165 
2166 	if (drm_WARN_ON(display->drm,
2167 			!intel_hdcp2_in_use(display, cpu_transcoder, port))) {
2168 		drm_err(display->drm,
2169 			"HDCP2.2 link stopped the encryption, %x\n",
2170 			intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)));
2171 		ret = -ENXIO;
2172 		_intel_hdcp2_disable(connector, true);
2173 		intel_hdcp_update_value(connector,
2174 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2175 					true);
2176 		goto out;
2177 	}
2178 
2179 	ret = hdcp->shim->check_2_2_link(dig_port, connector);
2180 	if (ret == HDCP_LINK_PROTECTED) {
2181 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2182 			intel_hdcp_update_value(connector,
2183 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2184 					true);
2185 		}
2186 		goto out;
2187 	}
2188 
2189 	if (ret == HDCP_TOPOLOGY_CHANGE) {
2190 		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2191 			goto out;
2192 
2193 		drm_dbg_kms(display->drm,
2194 			    "HDCP2.2 Downstream topology change\n");
2195 
2196 		ret = hdcp2_authenticate_repeater_topology(connector);
2197 		if (!ret) {
2198 			intel_hdcp_update_value(connector,
2199 						DRM_MODE_CONTENT_PROTECTION_ENABLED,
2200 						true);
2201 			goto out;
2202 		}
2203 
2204 		drm_dbg_kms(display->drm,
2205 			    "[CONNECTOR:%d:%s] Repeater topology auth failed.(%d)\n",
2206 			    connector->base.base.id, connector->base.name,
2207 			    ret);
2208 	} else {
2209 		drm_dbg_kms(display->drm,
2210 			    "[CONNECTOR:%d:%s] HDCP2.2 link failed, retrying auth\n",
2211 			    connector->base.base.id, connector->base.name);
2212 	}
2213 
2214 	ret = _intel_hdcp2_disable(connector, true);
2215 	if (ret) {
2216 		drm_err(display->drm,
2217 			"[CONNECTOR:%d:%s] Failed to disable hdcp2.2 (%d)\n",
2218 			connector->base.base.id, connector->base.name, ret);
2219 		intel_hdcp_update_value(connector,
2220 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2221 		goto out;
2222 	}
2223 
2224 	intel_hdcp_update_value(connector,
2225 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2226 out:
2227 	mutex_unlock(&dig_port->hdcp.mutex);
2228 	mutex_unlock(&hdcp->mutex);
2229 	return ret;
2230 }
2231 
2232 static void intel_hdcp_check_work(struct work_struct *work)
2233 {
2234 	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2235 					       struct intel_hdcp,
2236 					       check_work);
2237 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2238 	struct intel_display *display = to_intel_display(connector);
2239 	struct drm_i915_private *i915 = to_i915(display->drm);
2240 
2241 	if (drm_connector_is_unregistered(&connector->base))
2242 		return;
2243 
2244 	if (!intel_hdcp2_check_link(connector))
2245 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2246 				   DRM_HDCP2_CHECK_PERIOD_MS);
2247 	else if (!intel_hdcp_check_link(connector))
2248 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2249 				   DRM_HDCP_CHECK_PERIOD_MS);
2250 }
2251 
2252 static int i915_hdcp_component_bind(struct device *drv_kdev,
2253 				    struct device *mei_kdev, void *data)
2254 {
2255 	struct intel_display *display = to_intel_display(drv_kdev);
2256 
2257 	drm_dbg(display->drm, "I915 HDCP comp bind\n");
2258 	mutex_lock(&display->hdcp.hdcp_mutex);
2259 	display->hdcp.arbiter = (struct i915_hdcp_arbiter *)data;
2260 	display->hdcp.arbiter->hdcp_dev = mei_kdev;
2261 	mutex_unlock(&display->hdcp.hdcp_mutex);
2262 
2263 	return 0;
2264 }
2265 
2266 static void i915_hdcp_component_unbind(struct device *drv_kdev,
2267 				       struct device *mei_kdev, void *data)
2268 {
2269 	struct intel_display *display = to_intel_display(drv_kdev);
2270 
2271 	drm_dbg(display->drm, "I915 HDCP comp unbind\n");
2272 	mutex_lock(&display->hdcp.hdcp_mutex);
2273 	display->hdcp.arbiter = NULL;
2274 	mutex_unlock(&display->hdcp.hdcp_mutex);
2275 }
2276 
2277 static const struct component_ops i915_hdcp_ops = {
2278 	.bind   = i915_hdcp_component_bind,
2279 	.unbind = i915_hdcp_component_unbind,
2280 };
2281 
2282 static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port)
2283 {
2284 	switch (port) {
2285 	case PORT_A:
2286 		return HDCP_DDI_A;
2287 	case PORT_B ... PORT_F:
2288 		return (enum hdcp_ddi)port;
2289 	default:
2290 		return HDCP_DDI_INVALID_PORT;
2291 	}
2292 }
2293 
2294 static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)
2295 {
2296 	switch (cpu_transcoder) {
2297 	case TRANSCODER_A ... TRANSCODER_D:
2298 		return (enum hdcp_transcoder)(cpu_transcoder | 0x10);
2299 	default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2300 		return HDCP_INVALID_TRANSCODER;
2301 	}
2302 }
2303 
2304 static int initialize_hdcp_port_data(struct intel_connector *connector,
2305 				     struct intel_digital_port *dig_port,
2306 				     const struct intel_hdcp_shim *shim)
2307 {
2308 	struct intel_display *display = to_intel_display(connector);
2309 	struct hdcp_port_data *data = &dig_port->hdcp.port_data;
2310 	enum port port = dig_port->base.port;
2311 
2312 	if (DISPLAY_VER(display) < 12)
2313 		data->hdcp_ddi = intel_get_hdcp_ddi_index(port);
2314 	else
2315 		/*
2316 		 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled
2317 		 * with zero(INVALID PORT index).
2318 		 */
2319 		data->hdcp_ddi = HDCP_DDI_INVALID_PORT;
2320 
2321 	/*
2322 	 * As associated transcoder is set and modified at modeset, here hdcp_transcoder
2323 	 * is initialized to zero (invalid transcoder index). This will be
2324 	 * retained for <Gen12 forever.
2325 	 */
2326 	data->hdcp_transcoder = HDCP_INVALID_TRANSCODER;
2327 
2328 	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2329 	data->protocol = (u8)shim->protocol;
2330 
2331 	if (!data->streams)
2332 		data->streams = kcalloc(INTEL_NUM_PIPES(display),
2333 					sizeof(struct hdcp2_streamid_type),
2334 					GFP_KERNEL);
2335 	if (!data->streams) {
2336 		drm_err(display->drm, "Out of Memory\n");
2337 		return -ENOMEM;
2338 	}
2339 
2340 	return 0;
2341 }
2342 
2343 static bool is_hdcp2_supported(struct intel_display *display)
2344 {
2345 	if (USE_HDCP_GSC(display))
2346 		return true;
2347 
2348 	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2349 		return false;
2350 
2351 	return DISPLAY_VER(display) >= 10 ||
2352 		display->platform.kabylake ||
2353 		display->platform.coffeelake ||
2354 		display->platform.cometlake;
2355 }
2356 
2357 void intel_hdcp_component_init(struct intel_display *display)
2358 {
2359 	int ret;
2360 
2361 	if (!is_hdcp2_supported(display))
2362 		return;
2363 
2364 	mutex_lock(&display->hdcp.hdcp_mutex);
2365 	drm_WARN_ON(display->drm, display->hdcp.comp_added);
2366 
2367 	display->hdcp.comp_added = true;
2368 	mutex_unlock(&display->hdcp.hdcp_mutex);
2369 	if (USE_HDCP_GSC(display))
2370 		ret = intel_hdcp_gsc_init(display);
2371 	else
2372 		ret = component_add_typed(display->drm->dev, &i915_hdcp_ops,
2373 					  I915_COMPONENT_HDCP);
2374 
2375 	if (ret < 0) {
2376 		drm_dbg_kms(display->drm, "Failed at fw component add(%d)\n",
2377 			    ret);
2378 		mutex_lock(&display->hdcp.hdcp_mutex);
2379 		display->hdcp.comp_added = false;
2380 		mutex_unlock(&display->hdcp.hdcp_mutex);
2381 		return;
2382 	}
2383 }
2384 
2385 static void intel_hdcp2_init(struct intel_connector *connector,
2386 			     struct intel_digital_port *dig_port,
2387 			     const struct intel_hdcp_shim *shim)
2388 {
2389 	struct intel_display *display = to_intel_display(connector);
2390 	struct intel_hdcp *hdcp = &connector->hdcp;
2391 	int ret;
2392 
2393 	ret = initialize_hdcp_port_data(connector, dig_port, shim);
2394 	if (ret) {
2395 		drm_dbg_kms(display->drm, "Mei hdcp data init failed\n");
2396 		return;
2397 	}
2398 
2399 	hdcp->hdcp2_supported = true;
2400 }
2401 
2402 int intel_hdcp_init(struct intel_connector *connector,
2403 		    struct intel_digital_port *dig_port,
2404 		    const struct intel_hdcp_shim *shim)
2405 {
2406 	struct intel_display *display = to_intel_display(connector);
2407 	struct intel_hdcp *hdcp = &connector->hdcp;
2408 	int ret;
2409 
2410 	if (!shim)
2411 		return -EINVAL;
2412 
2413 	if (is_hdcp2_supported(display))
2414 		intel_hdcp2_init(connector, dig_port, shim);
2415 
2416 	ret = drm_connector_attach_content_protection_property(&connector->base,
2417 							       hdcp->hdcp2_supported);
2418 	if (ret) {
2419 		hdcp->hdcp2_supported = false;
2420 		kfree(dig_port->hdcp.port_data.streams);
2421 		return ret;
2422 	}
2423 
2424 	hdcp->shim = shim;
2425 	mutex_init(&hdcp->mutex);
2426 	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2427 	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2428 	init_waitqueue_head(&hdcp->cp_irq_queue);
2429 
2430 	return 0;
2431 }
2432 
2433 static int _intel_hdcp_enable(struct intel_atomic_state *state,
2434 			      struct intel_encoder *encoder,
2435 			      const struct intel_crtc_state *pipe_config,
2436 			      const struct drm_connector_state *conn_state)
2437 {
2438 	struct intel_display *display = to_intel_display(encoder);
2439 	struct drm_i915_private *i915 = to_i915(display->drm);
2440 	struct intel_connector *connector =
2441 		to_intel_connector(conn_state->connector);
2442 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2443 	struct intel_hdcp *hdcp = &connector->hdcp;
2444 	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2445 	int ret = -EINVAL;
2446 
2447 	if (!hdcp->shim)
2448 		return -ENOENT;
2449 
2450 	if (!connector->encoder) {
2451 		drm_err(display->drm, "[CONNECTOR:%d:%s] encoder is not initialized\n",
2452 			connector->base.base.id, connector->base.name);
2453 		return -ENODEV;
2454 	}
2455 
2456 	mutex_lock(&hdcp->mutex);
2457 	mutex_lock(&dig_port->hdcp.mutex);
2458 	drm_WARN_ON(display->drm,
2459 		    hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2460 	hdcp->content_type = (u8)conn_state->hdcp_content_type;
2461 
2462 	if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2463 		hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2464 		hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2465 	} else {
2466 		hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2467 		hdcp->stream_transcoder = INVALID_TRANSCODER;
2468 	}
2469 
2470 	if (DISPLAY_VER(display) >= 12)
2471 		dig_port->hdcp.port_data.hdcp_transcoder =
2472 			intel_get_hdcp_transcoder(hdcp->cpu_transcoder);
2473 
2474 	/*
2475 	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2476 	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2477 	 */
2478 	if (!hdcp->force_hdcp14 && intel_hdcp2_get_capability(connector)) {
2479 		ret = _intel_hdcp2_enable(state, connector);
2480 		if (!ret)
2481 			check_link_interval =
2482 				DRM_HDCP2_CHECK_PERIOD_MS;
2483 	}
2484 
2485 	if (hdcp->force_hdcp14)
2486 		drm_dbg_kms(display->drm, "Forcing HDCP 1.4\n");
2487 
2488 	/*
2489 	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2490 	 * be attempted.
2491 	 */
2492 	if (ret && intel_hdcp_get_capability(connector) &&
2493 	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2494 		ret = intel_hdcp1_enable(connector);
2495 	}
2496 
2497 	if (!ret) {
2498 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2499 				   check_link_interval);
2500 		intel_hdcp_update_value(connector,
2501 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2502 					true);
2503 	}
2504 
2505 	mutex_unlock(&dig_port->hdcp.mutex);
2506 	mutex_unlock(&hdcp->mutex);
2507 	return ret;
2508 }
2509 
2510 void intel_hdcp_enable(struct intel_atomic_state *state,
2511 		       struct intel_encoder *encoder,
2512 		       const struct intel_crtc_state *crtc_state,
2513 		       const struct drm_connector_state *conn_state)
2514 {
2515 	struct intel_connector *connector =
2516 		to_intel_connector(conn_state->connector);
2517 	struct intel_hdcp *hdcp = &connector->hdcp;
2518 
2519 	/*
2520 	 * Enable hdcp if it's desired or if userspace is enabled and
2521 	 * driver set its state to undesired
2522 	 */
2523 	if (conn_state->content_protection ==
2524 	    DRM_MODE_CONTENT_PROTECTION_DESIRED ||
2525 	    (conn_state->content_protection ==
2526 	    DRM_MODE_CONTENT_PROTECTION_ENABLED && hdcp->value ==
2527 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2528 		_intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2529 }
2530 
2531 int intel_hdcp_disable(struct intel_connector *connector)
2532 {
2533 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2534 	struct intel_hdcp *hdcp = &connector->hdcp;
2535 	int ret = 0;
2536 
2537 	if (!hdcp->shim)
2538 		return -ENOENT;
2539 
2540 	mutex_lock(&hdcp->mutex);
2541 	mutex_lock(&dig_port->hdcp.mutex);
2542 
2543 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2544 		goto out;
2545 
2546 	intel_hdcp_update_value(connector,
2547 				DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2548 	if (hdcp->hdcp2_encrypted)
2549 		ret = _intel_hdcp2_disable(connector, false);
2550 	else if (hdcp->hdcp_encrypted)
2551 		ret = _intel_hdcp_disable(connector);
2552 
2553 out:
2554 	mutex_unlock(&dig_port->hdcp.mutex);
2555 	mutex_unlock(&hdcp->mutex);
2556 	cancel_delayed_work_sync(&hdcp->check_work);
2557 	return ret;
2558 }
2559 
2560 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2561 			    struct intel_encoder *encoder,
2562 			    const struct intel_crtc_state *crtc_state,
2563 			    const struct drm_connector_state *conn_state)
2564 {
2565 	struct intel_connector *connector =
2566 				to_intel_connector(conn_state->connector);
2567 	struct intel_hdcp *hdcp = &connector->hdcp;
2568 	bool content_protection_type_changed, desired_and_not_enabled = false;
2569 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2570 
2571 	if (!connector->hdcp.shim)
2572 		return;
2573 
2574 	content_protection_type_changed =
2575 		(conn_state->hdcp_content_type != hdcp->content_type &&
2576 		 conn_state->content_protection !=
2577 		 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2578 
2579 	/*
2580 	 * During the HDCP encryption session if Type change is requested,
2581 	 * disable the HDCP and re-enable it with new TYPE value.
2582 	 */
2583 	if (conn_state->content_protection ==
2584 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2585 	    content_protection_type_changed)
2586 		intel_hdcp_disable(connector);
2587 
2588 	/*
2589 	 * Mark the hdcp state as DESIRED after the hdcp disable of type
2590 	 * change procedure.
2591 	 */
2592 	if (content_protection_type_changed) {
2593 		mutex_lock(&hdcp->mutex);
2594 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2595 		drm_connector_get(&connector->base);
2596 		if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
2597 			drm_connector_put(&connector->base);
2598 		mutex_unlock(&hdcp->mutex);
2599 	}
2600 
2601 	if (conn_state->content_protection ==
2602 	    DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2603 		mutex_lock(&hdcp->mutex);
2604 		/* Avoid enabling hdcp, if it already ENABLED */
2605 		desired_and_not_enabled =
2606 			hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2607 		mutex_unlock(&hdcp->mutex);
2608 		/*
2609 		 * If HDCP already ENABLED and CP property is DESIRED, schedule
2610 		 * prop_work to update correct CP property to user space.
2611 		 */
2612 		if (!desired_and_not_enabled && !content_protection_type_changed) {
2613 			drm_connector_get(&connector->base);
2614 			if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
2615 				drm_connector_put(&connector->base);
2616 
2617 		}
2618 	}
2619 
2620 	if (desired_and_not_enabled || content_protection_type_changed)
2621 		_intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2622 }
2623 
2624 void intel_hdcp_cancel_works(struct intel_connector *connector)
2625 {
2626 	if (!connector->hdcp.shim)
2627 		return;
2628 
2629 	cancel_delayed_work_sync(&connector->hdcp.check_work);
2630 	cancel_work_sync(&connector->hdcp.prop_work);
2631 }
2632 
2633 void intel_hdcp_component_fini(struct intel_display *display)
2634 {
2635 	mutex_lock(&display->hdcp.hdcp_mutex);
2636 	if (!display->hdcp.comp_added) {
2637 		mutex_unlock(&display->hdcp.hdcp_mutex);
2638 		return;
2639 	}
2640 
2641 	display->hdcp.comp_added = false;
2642 	mutex_unlock(&display->hdcp.hdcp_mutex);
2643 
2644 	if (USE_HDCP_GSC(display))
2645 		intel_hdcp_gsc_fini(display);
2646 	else
2647 		component_del(display->drm->dev, &i915_hdcp_ops);
2648 }
2649 
2650 void intel_hdcp_cleanup(struct intel_connector *connector)
2651 {
2652 	struct intel_hdcp *hdcp = &connector->hdcp;
2653 
2654 	if (!hdcp->shim)
2655 		return;
2656 
2657 	/*
2658 	 * If the connector is registered, it's possible userspace could kick
2659 	 * off another HDCP enable, which would re-spawn the workers.
2660 	 */
2661 	drm_WARN_ON(connector->base.dev,
2662 		connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2663 
2664 	/*
2665 	 * Now that the connector is not registered, check_work won't be run,
2666 	 * but cancel any outstanding instances of it
2667 	 */
2668 	cancel_delayed_work_sync(&hdcp->check_work);
2669 
2670 	/*
2671 	 * We don't cancel prop_work in the same way as check_work since it
2672 	 * requires connection_mutex which could be held while calling this
2673 	 * function. Instead, we rely on the connector references grabbed before
2674 	 * scheduling prop_work to ensure the connector is alive when prop_work
2675 	 * is run. So if we're in the destroy path (which is where this
2676 	 * function should be called), we're "guaranteed" that prop_work is not
2677 	 * active (tl;dr This Should Never Happen).
2678 	 */
2679 	drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2680 
2681 	mutex_lock(&hdcp->mutex);
2682 	hdcp->shim = NULL;
2683 	mutex_unlock(&hdcp->mutex);
2684 }
2685 
2686 void intel_hdcp_atomic_check(struct drm_connector *connector,
2687 			     struct drm_connector_state *old_state,
2688 			     struct drm_connector_state *new_state)
2689 {
2690 	u64 old_cp = old_state->content_protection;
2691 	u64 new_cp = new_state->content_protection;
2692 	struct drm_crtc_state *crtc_state;
2693 
2694 	if (!new_state->crtc) {
2695 		/*
2696 		 * If the connector is being disabled with CP enabled, mark it
2697 		 * desired so it's re-enabled when the connector is brought back
2698 		 */
2699 		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2700 			new_state->content_protection =
2701 				DRM_MODE_CONTENT_PROTECTION_DESIRED;
2702 		return;
2703 	}
2704 
2705 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2706 						   new_state->crtc);
2707 	/*
2708 	 * Fix the HDCP uapi content protection state in case of modeset.
2709 	 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2710 	 * need to be sent if there is transition from ENABLED->DESIRED.
2711 	 */
2712 	if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2713 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2714 	    new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2715 		new_state->content_protection =
2716 			DRM_MODE_CONTENT_PROTECTION_DESIRED;
2717 
2718 	/*
2719 	 * Nothing to do if the state didn't change, or HDCP was activated since
2720 	 * the last commit. And also no change in hdcp content type.
2721 	 */
2722 	if (old_cp == new_cp ||
2723 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2724 	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2725 		if (old_state->hdcp_content_type ==
2726 				new_state->hdcp_content_type)
2727 			return;
2728 	}
2729 
2730 	crtc_state->mode_changed = true;
2731 }
2732 
2733 /* Handles the CP_IRQ raised from the DP HDCP sink */
2734 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2735 {
2736 	struct intel_hdcp *hdcp = &connector->hdcp;
2737 	struct intel_display *display = to_intel_display(connector);
2738 	struct drm_i915_private *i915 = to_i915(display->drm);
2739 
2740 	if (!hdcp->shim)
2741 		return;
2742 
2743 	atomic_inc(&connector->hdcp.cp_irq_count);
2744 	wake_up_all(&connector->hdcp.cp_irq_queue);
2745 
2746 	queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 0);
2747 }
2748 
2749 static void __intel_hdcp_info(struct seq_file *m, struct intel_connector *connector,
2750 			      bool remote_req)
2751 {
2752 	bool hdcp_cap = false, hdcp2_cap = false;
2753 
2754 	if (!connector->hdcp.shim) {
2755 		seq_puts(m, "No Connector Support");
2756 		goto out;
2757 	}
2758 
2759 	if (remote_req) {
2760 		intel_hdcp_get_remote_capability(connector, &hdcp_cap, &hdcp2_cap);
2761 	} else {
2762 		hdcp_cap = intel_hdcp_get_capability(connector);
2763 		hdcp2_cap = intel_hdcp2_get_capability(connector);
2764 	}
2765 
2766 	if (hdcp_cap)
2767 		seq_puts(m, "HDCP1.4 ");
2768 	if (hdcp2_cap)
2769 		seq_puts(m, "HDCP2.2 ");
2770 
2771 	if (!hdcp_cap && !hdcp2_cap)
2772 		seq_puts(m, "None");
2773 
2774 out:
2775 	seq_puts(m, "\n");
2776 }
2777 
2778 void intel_hdcp_info(struct seq_file *m, struct intel_connector *connector)
2779 {
2780 	seq_puts(m, "\tHDCP version: ");
2781 	if (connector->mst.dp) {
2782 		__intel_hdcp_info(m, connector, true);
2783 		seq_puts(m, "\tMST Hub HDCP version: ");
2784 	}
2785 	__intel_hdcp_info(m, connector, false);
2786 }
2787 
2788 static int intel_hdcp_sink_capability_show(struct seq_file *m, void *data)
2789 {
2790 	struct intel_connector *connector = m->private;
2791 	struct intel_display *display = to_intel_display(connector);
2792 	int ret;
2793 
2794 	ret = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
2795 	if (ret)
2796 		return ret;
2797 
2798 	if (!connector->base.encoder ||
2799 	    connector->base.status != connector_status_connected) {
2800 		ret = -ENODEV;
2801 		goto out;
2802 	}
2803 
2804 	seq_printf(m, "%s:%d HDCP version: ", connector->base.name,
2805 		   connector->base.base.id);
2806 	__intel_hdcp_info(m, connector, false);
2807 
2808 out:
2809 	drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
2810 
2811 	return ret;
2812 }
2813 DEFINE_SHOW_ATTRIBUTE(intel_hdcp_sink_capability);
2814 
2815 static ssize_t intel_hdcp_force_14_write(struct file *file,
2816 					 const char __user *ubuf,
2817 					 size_t len, loff_t *offp)
2818 {
2819 	struct seq_file *m = file->private_data;
2820 	struct intel_connector *connector = m->private;
2821 	struct intel_hdcp *hdcp = &connector->hdcp;
2822 	bool force_hdcp14 = false;
2823 	int ret;
2824 
2825 	if (len == 0)
2826 		return 0;
2827 
2828 	ret = kstrtobool_from_user(ubuf, len, &force_hdcp14);
2829 	if (ret < 0)
2830 		return ret;
2831 
2832 	hdcp->force_hdcp14 = force_hdcp14;
2833 	*offp += len;
2834 
2835 	return len;
2836 }
2837 
2838 static int intel_hdcp_force_14_show(struct seq_file *m, void *data)
2839 {
2840 	struct intel_connector *connector = m->private;
2841 	struct intel_display *display = to_intel_display(connector);
2842 	struct intel_encoder *encoder = intel_attached_encoder(connector);
2843 	struct intel_hdcp *hdcp = &connector->hdcp;
2844 	struct drm_crtc *crtc;
2845 	int ret;
2846 
2847 	if (!encoder)
2848 		return -ENODEV;
2849 
2850 	ret = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
2851 	if (ret)
2852 		return ret;
2853 
2854 	crtc = connector->base.state->crtc;
2855 	if (connector->base.status != connector_status_connected || !crtc) {
2856 		ret = -ENODEV;
2857 		goto out;
2858 	}
2859 
2860 	seq_printf(m, "%s\n",
2861 		   str_yes_no(hdcp->force_hdcp14));
2862 out:
2863 	drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
2864 
2865 	return ret;
2866 }
2867 
2868 static int intel_hdcp_force_14_open(struct inode *inode,
2869 				    struct file *file)
2870 {
2871 	return single_open(file, intel_hdcp_force_14_show,
2872 			   inode->i_private);
2873 }
2874 
2875 static const struct file_operations intel_hdcp_force_14_fops = {
2876 	.owner = THIS_MODULE,
2877 	.open = intel_hdcp_force_14_open,
2878 	.read = seq_read,
2879 	.llseek = seq_lseek,
2880 	.release = single_release,
2881 	.write = intel_hdcp_force_14_write
2882 };
2883 
2884 void intel_hdcp_connector_debugfs_add(struct intel_connector *connector)
2885 {
2886 	struct dentry *root = connector->base.debugfs_entry;
2887 	int connector_type = connector->base.connector_type;
2888 
2889 	if (connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
2890 	    connector_type == DRM_MODE_CONNECTOR_HDMIA ||
2891 	    connector_type == DRM_MODE_CONNECTOR_HDMIB) {
2892 		debugfs_create_file("i915_hdcp_sink_capability", 0444, root,
2893 				    connector, &intel_hdcp_sink_capability_fops);
2894 		debugfs_create_file("i915_force_hdcp14", 0644, root,
2895 				    connector, &intel_hdcp_force_14_fops);
2896 	}
2897 }
2898