1 /* SPDX-License-Identifier: MIT */ 2 /* 3 * Copyright (C) 2017 Google, Inc. 4 * Copyright _ 2017-2019, Intel Corporation. 5 * 6 * Authors: 7 * Sean Paul <seanpaul@chromium.org> 8 * Ramalingam C <ramalingam.c@intel.com> 9 */ 10 11 #include <linux/component.h> 12 #include <linux/i2c.h> 13 #include <linux/random.h> 14 15 #include <drm/display/drm_hdcp_helper.h> 16 #include <drm/intel/i915_component.h> 17 18 #include "i915_drv.h" 19 #include "i915_reg.h" 20 #include "intel_connector.h" 21 #include "intel_de.h" 22 #include "intel_display_power.h" 23 #include "intel_display_power_well.h" 24 #include "intel_display_types.h" 25 #include "intel_hdcp.h" 26 #include "intel_hdcp_gsc.h" 27 #include "intel_hdcp_regs.h" 28 #include "intel_pcode.h" 29 30 #define KEY_LOAD_TRIES 5 31 #define HDCP2_LC_RETRY_CNT 3 32 33 /* WA: 16022217614 */ 34 static void 35 intel_hdcp_disable_hdcp_line_rekeying(struct intel_encoder *encoder, 36 struct intel_hdcp *hdcp) 37 { 38 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 39 40 /* Here we assume HDMI is in TMDS mode of operation */ 41 if (encoder->type != INTEL_OUTPUT_HDMI) 42 return; 43 44 if (DISPLAY_VER(dev_priv) >= 14) { 45 if (IS_DISPLAY_IP_STEP(dev_priv, IP_VER(14, 0), STEP_D0, STEP_FOREVER)) 46 intel_de_rmw(dev_priv, MTL_CHICKEN_TRANS(hdcp->cpu_transcoder), 47 0, HDCP_LINE_REKEY_DISABLE); 48 else if (IS_DISPLAY_IP_STEP(dev_priv, IP_VER(14, 1), STEP_B0, STEP_FOREVER) || 49 IS_DISPLAY_IP_STEP(dev_priv, IP_VER(20, 0), STEP_B0, STEP_FOREVER)) 50 intel_de_rmw(dev_priv, 51 TRANS_DDI_FUNC_CTL(dev_priv, hdcp->cpu_transcoder), 52 0, TRANS_DDI_HDCP_LINE_REKEY_DISABLE); 53 } 54 } 55 56 static int intel_conn_to_vcpi(struct intel_atomic_state *state, 57 struct intel_connector *connector) 58 { 59 struct drm_dp_mst_topology_mgr *mgr; 60 struct drm_dp_mst_atomic_payload *payload; 61 struct drm_dp_mst_topology_state *mst_state; 62 int vcpi = 0; 63 64 /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */ 65 if (!connector->port) 66 return 0; 67 mgr = connector->port->mgr; 68 69 drm_modeset_lock(&mgr->base.lock, state->base.acquire_ctx); 70 mst_state = to_drm_dp_mst_topology_state(mgr->base.state); 71 payload = drm_atomic_get_mst_payload_state(mst_state, connector->port); 72 if (drm_WARN_ON(mgr->dev, !payload)) 73 goto out; 74 75 vcpi = payload->vcpi; 76 if (drm_WARN_ON(mgr->dev, vcpi < 0)) { 77 vcpi = 0; 78 goto out; 79 } 80 out: 81 return vcpi; 82 } 83 84 /* 85 * intel_hdcp_required_content_stream selects the most highest common possible HDCP 86 * content_type for all streams in DP MST topology because security f/w doesn't 87 * have any provision to mark content_type for each stream separately, it marks 88 * all available streams with the content_type proivided at the time of port 89 * authentication. This may prohibit the userspace to use type1 content on 90 * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in 91 * DP MST topology. Though it is not compulsory, security fw should change its 92 * policy to mark different content_types for different streams. 93 */ 94 static int 95 intel_hdcp_required_content_stream(struct intel_atomic_state *state, 96 struct intel_digital_port *dig_port) 97 { 98 struct drm_connector_list_iter conn_iter; 99 struct intel_digital_port *conn_dig_port; 100 struct intel_connector *connector; 101 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 102 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 103 bool enforce_type0 = false; 104 int k; 105 106 if (dig_port->hdcp_auth_status) 107 return 0; 108 109 data->k = 0; 110 111 if (!dig_port->hdcp_mst_type1_capable) 112 enforce_type0 = true; 113 114 drm_connector_list_iter_begin(&i915->drm, &conn_iter); 115 for_each_intel_connector_iter(connector, &conn_iter) { 116 if (connector->base.status == connector_status_disconnected) 117 continue; 118 119 if (!intel_encoder_is_mst(intel_attached_encoder(connector))) 120 continue; 121 122 conn_dig_port = intel_attached_dig_port(connector); 123 if (conn_dig_port != dig_port) 124 continue; 125 126 data->streams[data->k].stream_id = 127 intel_conn_to_vcpi(state, connector); 128 data->k++; 129 130 /* if there is only one active stream */ 131 if (dig_port->dp.active_mst_links <= 1) 132 break; 133 } 134 drm_connector_list_iter_end(&conn_iter); 135 136 if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0)) 137 return -EINVAL; 138 139 /* 140 * Apply common protection level across all streams in DP MST Topology. 141 * Use highest supported content type for all streams in DP MST Topology. 142 */ 143 for (k = 0; k < data->k; k++) 144 data->streams[k].stream_type = 145 enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1; 146 147 return 0; 148 } 149 150 static int intel_hdcp_prepare_streams(struct intel_atomic_state *state, 151 struct intel_connector *connector) 152 { 153 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 154 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 155 struct intel_hdcp *hdcp = &connector->hdcp; 156 157 if (intel_encoder_is_mst(intel_attached_encoder(connector))) 158 return intel_hdcp_required_content_stream(state, dig_port); 159 160 data->k = 1; 161 data->streams[0].stream_id = 0; 162 data->streams[0].stream_type = hdcp->content_type; 163 164 return 0; 165 } 166 167 static 168 bool intel_hdcp_is_ksv_valid(u8 *ksv) 169 { 170 int i, ones = 0; 171 /* KSV has 20 1's and 20 0's */ 172 for (i = 0; i < DRM_HDCP_KSV_LEN; i++) 173 ones += hweight8(ksv[i]); 174 if (ones != 20) 175 return false; 176 177 return true; 178 } 179 180 static 181 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port, 182 const struct intel_hdcp_shim *shim, u8 *bksv) 183 { 184 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); 185 int ret, i, tries = 2; 186 187 /* HDCP spec states that we must retry the bksv if it is invalid */ 188 for (i = 0; i < tries; i++) { 189 ret = shim->read_bksv(dig_port, bksv); 190 if (ret) 191 return ret; 192 if (intel_hdcp_is_ksv_valid(bksv)) 193 break; 194 } 195 if (i == tries) { 196 drm_dbg_kms(&i915->drm, "Bksv is invalid\n"); 197 return -ENODEV; 198 } 199 200 return 0; 201 } 202 203 /* Is HDCP1.4 capable on Platform and Sink */ 204 bool intel_hdcp_get_capability(struct intel_connector *connector) 205 { 206 struct intel_digital_port *dig_port; 207 const struct intel_hdcp_shim *shim = connector->hdcp.shim; 208 bool capable = false; 209 u8 bksv[5]; 210 211 if (!intel_attached_encoder(connector)) 212 return capable; 213 214 dig_port = intel_attached_dig_port(connector); 215 216 if (!shim) 217 return capable; 218 219 if (shim->hdcp_get_capability) { 220 shim->hdcp_get_capability(dig_port, &capable); 221 } else { 222 if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv)) 223 capable = true; 224 } 225 226 return capable; 227 } 228 229 /* 230 * Check if the source has all the building blocks ready to make 231 * HDCP 2.2 work 232 */ 233 static bool intel_hdcp2_prerequisite(struct intel_connector *connector) 234 { 235 struct drm_i915_private *i915 = to_i915(connector->base.dev); 236 struct intel_hdcp *hdcp = &connector->hdcp; 237 238 /* I915 support for HDCP2.2 */ 239 if (!hdcp->hdcp2_supported) 240 return false; 241 242 /* If MTL+ make sure gsc is loaded and proxy is setup */ 243 if (intel_hdcp_gsc_cs_required(i915)) { 244 if (!intel_hdcp_gsc_check_status(i915)) 245 return false; 246 } 247 248 /* MEI/GSC interface is solid depending on which is used */ 249 mutex_lock(&i915->display.hdcp.hdcp_mutex); 250 if (!i915->display.hdcp.comp_added || !i915->display.hdcp.arbiter) { 251 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 252 return false; 253 } 254 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 255 256 return true; 257 } 258 259 /* Is HDCP2.2 capable on Platform and Sink */ 260 bool intel_hdcp2_get_capability(struct intel_connector *connector) 261 { 262 struct intel_hdcp *hdcp = &connector->hdcp; 263 bool capable = false; 264 265 if (!intel_hdcp2_prerequisite(connector)) 266 return false; 267 268 /* Sink's capability for HDCP2.2 */ 269 hdcp->shim->hdcp_2_2_get_capability(connector, &capable); 270 271 return capable; 272 } 273 274 void intel_hdcp_get_remote_capability(struct intel_connector *connector, 275 bool *hdcp_capable, 276 bool *hdcp2_capable) 277 { 278 struct intel_hdcp *hdcp = &connector->hdcp; 279 280 if (!hdcp->shim->get_remote_hdcp_capability) 281 return; 282 283 hdcp->shim->get_remote_hdcp_capability(connector, hdcp_capable, 284 hdcp2_capable); 285 286 if (!intel_hdcp2_prerequisite(connector)) 287 *hdcp2_capable = false; 288 } 289 290 static bool intel_hdcp_in_use(struct drm_i915_private *i915, 291 enum transcoder cpu_transcoder, enum port port) 292 { 293 return intel_de_read(i915, 294 HDCP_STATUS(i915, cpu_transcoder, port)) & 295 HDCP_STATUS_ENC; 296 } 297 298 static bool intel_hdcp2_in_use(struct drm_i915_private *i915, 299 enum transcoder cpu_transcoder, enum port port) 300 { 301 return intel_de_read(i915, 302 HDCP2_STATUS(i915, cpu_transcoder, port)) & 303 LINK_ENCRYPTION_STATUS; 304 } 305 306 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port, 307 const struct intel_hdcp_shim *shim) 308 { 309 int ret, read_ret; 310 bool ksv_ready; 311 312 /* Poll for ksv list ready (spec says max time allowed is 5s) */ 313 ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port, 314 &ksv_ready), 315 read_ret || ksv_ready, 5 * 1000 * 1000, 1000, 316 100 * 1000); 317 if (ret) 318 return ret; 319 if (read_ret) 320 return read_ret; 321 if (!ksv_ready) 322 return -ETIMEDOUT; 323 324 return 0; 325 } 326 327 static bool hdcp_key_loadable(struct drm_i915_private *i915) 328 { 329 enum i915_power_well_id id; 330 intel_wakeref_t wakeref; 331 bool enabled = false; 332 333 /* 334 * On HSW and BDW, Display HW loads the Key as soon as Display resumes. 335 * On all BXT+, SW can load the keys only when the PW#1 is turned on. 336 */ 337 if (IS_HASWELL(i915) || IS_BROADWELL(i915)) 338 id = HSW_DISP_PW_GLOBAL; 339 else 340 id = SKL_DISP_PW_1; 341 342 /* PG1 (power well #1) needs to be enabled */ 343 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 344 enabled = intel_display_power_well_is_enabled(i915, id); 345 346 /* 347 * Another req for hdcp key loadability is enabled state of pll for 348 * cdclk. Without active crtc we wont land here. So we are assuming that 349 * cdclk is already on. 350 */ 351 352 return enabled; 353 } 354 355 static void intel_hdcp_clear_keys(struct drm_i915_private *i915) 356 { 357 intel_de_write(i915, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER); 358 intel_de_write(i915, HDCP_KEY_STATUS, 359 HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE); 360 } 361 362 static int intel_hdcp_load_keys(struct drm_i915_private *i915) 363 { 364 int ret; 365 u32 val; 366 367 val = intel_de_read(i915, HDCP_KEY_STATUS); 368 if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS)) 369 return 0; 370 371 /* 372 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes 373 * out of reset. So if Key is not already loaded, its an error state. 374 */ 375 if (IS_HASWELL(i915) || IS_BROADWELL(i915)) 376 if (!(intel_de_read(i915, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE)) 377 return -ENXIO; 378 379 /* 380 * Initiate loading the HDCP key from fuses. 381 * 382 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display 383 * version 9 platforms (minus BXT) differ in the key load trigger 384 * process from other platforms. These platforms use the GT Driver 385 * Mailbox interface. 386 */ 387 if (DISPLAY_VER(i915) == 9 && !IS_BROXTON(i915)) { 388 ret = snb_pcode_write(&i915->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1); 389 if (ret) { 390 drm_err(&i915->drm, 391 "Failed to initiate HDCP key load (%d)\n", 392 ret); 393 return ret; 394 } 395 } else { 396 intel_de_write(i915, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER); 397 } 398 399 /* Wait for the keys to load (500us) */ 400 ret = intel_de_wait_custom(i915, HDCP_KEY_STATUS, 401 HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE, 402 10, 1, &val); 403 if (ret) 404 return ret; 405 else if (!(val & HDCP_KEY_LOAD_STATUS)) 406 return -ENXIO; 407 408 /* Send Aksv over to PCH display for use in authentication */ 409 intel_de_write(i915, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER); 410 411 return 0; 412 } 413 414 /* Returns updated SHA-1 index */ 415 static int intel_write_sha_text(struct drm_i915_private *i915, u32 sha_text) 416 { 417 intel_de_write(i915, HDCP_SHA_TEXT, sha_text); 418 if (intel_de_wait_for_set(i915, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) { 419 drm_err(&i915->drm, "Timed out waiting for SHA1 ready\n"); 420 return -ETIMEDOUT; 421 } 422 return 0; 423 } 424 425 static 426 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *i915, 427 enum transcoder cpu_transcoder, enum port port) 428 { 429 if (DISPLAY_VER(i915) >= 12) { 430 switch (cpu_transcoder) { 431 case TRANSCODER_A: 432 return HDCP_TRANSA_REP_PRESENT | 433 HDCP_TRANSA_SHA1_M0; 434 case TRANSCODER_B: 435 return HDCP_TRANSB_REP_PRESENT | 436 HDCP_TRANSB_SHA1_M0; 437 case TRANSCODER_C: 438 return HDCP_TRANSC_REP_PRESENT | 439 HDCP_TRANSC_SHA1_M0; 440 case TRANSCODER_D: 441 return HDCP_TRANSD_REP_PRESENT | 442 HDCP_TRANSD_SHA1_M0; 443 default: 444 drm_err(&i915->drm, "Unknown transcoder %d\n", 445 cpu_transcoder); 446 return 0; 447 } 448 } 449 450 switch (port) { 451 case PORT_A: 452 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0; 453 case PORT_B: 454 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0; 455 case PORT_C: 456 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0; 457 case PORT_D: 458 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0; 459 case PORT_E: 460 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0; 461 default: 462 drm_err(&i915->drm, "Unknown port %d\n", port); 463 return 0; 464 } 465 } 466 467 static 468 int intel_hdcp_validate_v_prime(struct intel_connector *connector, 469 const struct intel_hdcp_shim *shim, 470 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus) 471 { 472 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 473 struct drm_i915_private *i915 = to_i915(connector->base.dev); 474 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder; 475 enum port port = dig_port->base.port; 476 u32 vprime, sha_text, sha_leftovers, rep_ctl; 477 int ret, i, j, sha_idx; 478 479 /* Process V' values from the receiver */ 480 for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) { 481 ret = shim->read_v_prime_part(dig_port, i, &vprime); 482 if (ret) 483 return ret; 484 intel_de_write(i915, HDCP_SHA_V_PRIME(i), vprime); 485 } 486 487 /* 488 * We need to write the concatenation of all device KSVs, BINFO (DP) || 489 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte 490 * stream is written via the HDCP_SHA_TEXT register in 32-bit 491 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This 492 * index will keep track of our progress through the 64 bytes as well as 493 * helping us work the 40-bit KSVs through our 32-bit register. 494 * 495 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian 496 */ 497 sha_idx = 0; 498 sha_text = 0; 499 sha_leftovers = 0; 500 rep_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port); 501 intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); 502 for (i = 0; i < num_downstream; i++) { 503 unsigned int sha_empty; 504 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN]; 505 506 /* Fill up the empty slots in sha_text and write it out */ 507 sha_empty = sizeof(sha_text) - sha_leftovers; 508 for (j = 0; j < sha_empty; j++) { 509 u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8); 510 sha_text |= ksv[j] << off; 511 } 512 513 ret = intel_write_sha_text(i915, sha_text); 514 if (ret < 0) 515 return ret; 516 517 /* Programming guide writes this every 64 bytes */ 518 sha_idx += sizeof(sha_text); 519 if (!(sha_idx % 64)) 520 intel_de_write(i915, HDCP_REP_CTL, 521 rep_ctl | HDCP_SHA1_TEXT_32); 522 523 /* Store the leftover bytes from the ksv in sha_text */ 524 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty; 525 sha_text = 0; 526 for (j = 0; j < sha_leftovers; j++) 527 sha_text |= ksv[sha_empty + j] << 528 ((sizeof(sha_text) - j - 1) * 8); 529 530 /* 531 * If we still have room in sha_text for more data, continue. 532 * Otherwise, write it out immediately. 533 */ 534 if (sizeof(sha_text) > sha_leftovers) 535 continue; 536 537 ret = intel_write_sha_text(i915, sha_text); 538 if (ret < 0) 539 return ret; 540 sha_leftovers = 0; 541 sha_text = 0; 542 sha_idx += sizeof(sha_text); 543 } 544 545 /* 546 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many 547 * bytes are leftover from the last ksv, we might be able to fit them 548 * all in sha_text (first 2 cases), or we might need to split them up 549 * into 2 writes (last 2 cases). 550 */ 551 if (sha_leftovers == 0) { 552 /* Write 16 bits of text, 16 bits of M0 */ 553 intel_de_write(i915, HDCP_REP_CTL, 554 rep_ctl | HDCP_SHA1_TEXT_16); 555 ret = intel_write_sha_text(i915, 556 bstatus[0] << 8 | bstatus[1]); 557 if (ret < 0) 558 return ret; 559 sha_idx += sizeof(sha_text); 560 561 /* Write 32 bits of M0 */ 562 intel_de_write(i915, HDCP_REP_CTL, 563 rep_ctl | HDCP_SHA1_TEXT_0); 564 ret = intel_write_sha_text(i915, 0); 565 if (ret < 0) 566 return ret; 567 sha_idx += sizeof(sha_text); 568 569 /* Write 16 bits of M0 */ 570 intel_de_write(i915, HDCP_REP_CTL, 571 rep_ctl | HDCP_SHA1_TEXT_16); 572 ret = intel_write_sha_text(i915, 0); 573 if (ret < 0) 574 return ret; 575 sha_idx += sizeof(sha_text); 576 577 } else if (sha_leftovers == 1) { 578 /* Write 24 bits of text, 8 bits of M0 */ 579 intel_de_write(i915, HDCP_REP_CTL, 580 rep_ctl | HDCP_SHA1_TEXT_24); 581 sha_text |= bstatus[0] << 16 | bstatus[1] << 8; 582 /* Only 24-bits of data, must be in the LSB */ 583 sha_text = (sha_text & 0xffffff00) >> 8; 584 ret = intel_write_sha_text(i915, sha_text); 585 if (ret < 0) 586 return ret; 587 sha_idx += sizeof(sha_text); 588 589 /* Write 32 bits of M0 */ 590 intel_de_write(i915, HDCP_REP_CTL, 591 rep_ctl | HDCP_SHA1_TEXT_0); 592 ret = intel_write_sha_text(i915, 0); 593 if (ret < 0) 594 return ret; 595 sha_idx += sizeof(sha_text); 596 597 /* Write 24 bits of M0 */ 598 intel_de_write(i915, HDCP_REP_CTL, 599 rep_ctl | HDCP_SHA1_TEXT_8); 600 ret = intel_write_sha_text(i915, 0); 601 if (ret < 0) 602 return ret; 603 sha_idx += sizeof(sha_text); 604 605 } else if (sha_leftovers == 2) { 606 /* Write 32 bits of text */ 607 intel_de_write(i915, HDCP_REP_CTL, 608 rep_ctl | HDCP_SHA1_TEXT_32); 609 sha_text |= bstatus[0] << 8 | bstatus[1]; 610 ret = intel_write_sha_text(i915, sha_text); 611 if (ret < 0) 612 return ret; 613 sha_idx += sizeof(sha_text); 614 615 /* Write 64 bits of M0 */ 616 intel_de_write(i915, HDCP_REP_CTL, 617 rep_ctl | HDCP_SHA1_TEXT_0); 618 for (i = 0; i < 2; i++) { 619 ret = intel_write_sha_text(i915, 0); 620 if (ret < 0) 621 return ret; 622 sha_idx += sizeof(sha_text); 623 } 624 625 /* 626 * Terminate the SHA-1 stream by hand. For the other leftover 627 * cases this is appended by the hardware. 628 */ 629 intel_de_write(i915, HDCP_REP_CTL, 630 rep_ctl | HDCP_SHA1_TEXT_32); 631 sha_text = DRM_HDCP_SHA1_TERMINATOR << 24; 632 ret = intel_write_sha_text(i915, sha_text); 633 if (ret < 0) 634 return ret; 635 sha_idx += sizeof(sha_text); 636 } else if (sha_leftovers == 3) { 637 /* Write 32 bits of text (filled from LSB) */ 638 intel_de_write(i915, HDCP_REP_CTL, 639 rep_ctl | HDCP_SHA1_TEXT_32); 640 sha_text |= bstatus[0]; 641 ret = intel_write_sha_text(i915, sha_text); 642 if (ret < 0) 643 return ret; 644 sha_idx += sizeof(sha_text); 645 646 /* Write 8 bits of text (filled from LSB), 24 bits of M0 */ 647 intel_de_write(i915, HDCP_REP_CTL, 648 rep_ctl | HDCP_SHA1_TEXT_8); 649 ret = intel_write_sha_text(i915, bstatus[1]); 650 if (ret < 0) 651 return ret; 652 sha_idx += sizeof(sha_text); 653 654 /* Write 32 bits of M0 */ 655 intel_de_write(i915, HDCP_REP_CTL, 656 rep_ctl | HDCP_SHA1_TEXT_0); 657 ret = intel_write_sha_text(i915, 0); 658 if (ret < 0) 659 return ret; 660 sha_idx += sizeof(sha_text); 661 662 /* Write 8 bits of M0 */ 663 intel_de_write(i915, HDCP_REP_CTL, 664 rep_ctl | HDCP_SHA1_TEXT_24); 665 ret = intel_write_sha_text(i915, 0); 666 if (ret < 0) 667 return ret; 668 sha_idx += sizeof(sha_text); 669 } else { 670 drm_dbg_kms(&i915->drm, "Invalid number of leftovers %d\n", 671 sha_leftovers); 672 return -EINVAL; 673 } 674 675 intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32); 676 /* Fill up to 64-4 bytes with zeros (leave the last write for length) */ 677 while ((sha_idx % 64) < (64 - sizeof(sha_text))) { 678 ret = intel_write_sha_text(i915, 0); 679 if (ret < 0) 680 return ret; 681 sha_idx += sizeof(sha_text); 682 } 683 684 /* 685 * Last write gets the length of the concatenation in bits. That is: 686 * - 5 bytes per device 687 * - 10 bytes for BINFO/BSTATUS(2), M0(8) 688 */ 689 sha_text = (num_downstream * 5 + 10) * 8; 690 ret = intel_write_sha_text(i915, sha_text); 691 if (ret < 0) 692 return ret; 693 694 /* Tell the HW we're done with the hash and wait for it to ACK */ 695 intel_de_write(i915, HDCP_REP_CTL, 696 rep_ctl | HDCP_SHA1_COMPLETE_HASH); 697 if (intel_de_wait_for_set(i915, HDCP_REP_CTL, 698 HDCP_SHA1_COMPLETE, 1)) { 699 drm_err(&i915->drm, "Timed out waiting for SHA1 complete\n"); 700 return -ETIMEDOUT; 701 } 702 if (!(intel_de_read(i915, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) { 703 drm_dbg_kms(&i915->drm, "SHA-1 mismatch, HDCP failed\n"); 704 return -ENXIO; 705 } 706 707 return 0; 708 } 709 710 /* Implements Part 2 of the HDCP authorization procedure */ 711 static 712 int intel_hdcp_auth_downstream(struct intel_connector *connector) 713 { 714 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 715 struct drm_i915_private *i915 = to_i915(connector->base.dev); 716 const struct intel_hdcp_shim *shim = connector->hdcp.shim; 717 u8 bstatus[2], num_downstream, *ksv_fifo; 718 int ret, i, tries = 3; 719 720 ret = intel_hdcp_poll_ksv_fifo(dig_port, shim); 721 if (ret) { 722 drm_dbg_kms(&i915->drm, 723 "KSV list failed to become ready (%d)\n", ret); 724 return ret; 725 } 726 727 ret = shim->read_bstatus(dig_port, bstatus); 728 if (ret) 729 return ret; 730 731 if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) || 732 DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) { 733 drm_dbg_kms(&i915->drm, "Max Topology Limit Exceeded\n"); 734 return -EPERM; 735 } 736 737 /* 738 * When repeater reports 0 device count, HDCP1.4 spec allows disabling 739 * the HDCP encryption. That implies that repeater can't have its own 740 * display. As there is no consumption of encrypted content in the 741 * repeater with 0 downstream devices, we are failing the 742 * authentication. 743 */ 744 num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]); 745 if (num_downstream == 0) { 746 drm_dbg_kms(&i915->drm, 747 "Repeater with zero downstream devices\n"); 748 return -EINVAL; 749 } 750 751 ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL); 752 if (!ksv_fifo) { 753 drm_dbg_kms(&i915->drm, "Out of mem: ksv_fifo\n"); 754 return -ENOMEM; 755 } 756 757 ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo); 758 if (ret) 759 goto err; 760 761 if (drm_hdcp_check_ksvs_revoked(&i915->drm, ksv_fifo, 762 num_downstream) > 0) { 763 drm_err(&i915->drm, "Revoked Ksv(s) in ksv_fifo\n"); 764 ret = -EPERM; 765 goto err; 766 } 767 768 /* 769 * When V prime mismatches, DP Spec mandates re-read of 770 * V prime atleast twice. 771 */ 772 for (i = 0; i < tries; i++) { 773 ret = intel_hdcp_validate_v_prime(connector, shim, 774 ksv_fifo, num_downstream, 775 bstatus); 776 if (!ret) 777 break; 778 } 779 780 if (i == tries) { 781 drm_dbg_kms(&i915->drm, 782 "V Prime validation failed.(%d)\n", ret); 783 goto err; 784 } 785 786 drm_dbg_kms(&i915->drm, "HDCP is enabled (%d downstream devices)\n", 787 num_downstream); 788 ret = 0; 789 err: 790 kfree(ksv_fifo); 791 return ret; 792 } 793 794 /* Implements Part 1 of the HDCP authorization procedure */ 795 static int intel_hdcp_auth(struct intel_connector *connector) 796 { 797 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 798 struct drm_i915_private *i915 = to_i915(connector->base.dev); 799 struct intel_hdcp *hdcp = &connector->hdcp; 800 const struct intel_hdcp_shim *shim = hdcp->shim; 801 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder; 802 enum port port = dig_port->base.port; 803 unsigned long r0_prime_gen_start; 804 int ret, i, tries = 2; 805 union { 806 u32 reg[2]; 807 u8 shim[DRM_HDCP_AN_LEN]; 808 } an; 809 union { 810 u32 reg[2]; 811 u8 shim[DRM_HDCP_KSV_LEN]; 812 } bksv; 813 union { 814 u32 reg; 815 u8 shim[DRM_HDCP_RI_LEN]; 816 } ri; 817 bool repeater_present, hdcp_capable; 818 819 /* 820 * Detects whether the display is HDCP capable. Although we check for 821 * valid Bksv below, the HDCP over DP spec requires that we check 822 * whether the display supports HDCP before we write An. For HDMI 823 * displays, this is not necessary. 824 */ 825 if (shim->hdcp_get_capability) { 826 ret = shim->hdcp_get_capability(dig_port, &hdcp_capable); 827 if (ret) 828 return ret; 829 if (!hdcp_capable) { 830 drm_dbg_kms(&i915->drm, 831 "Panel is not HDCP capable\n"); 832 return -EINVAL; 833 } 834 } 835 836 /* Initialize An with 2 random values and acquire it */ 837 for (i = 0; i < 2; i++) 838 intel_de_write(i915, 839 HDCP_ANINIT(i915, cpu_transcoder, port), 840 get_random_u32()); 841 intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port), 842 HDCP_CONF_CAPTURE_AN); 843 844 /* Wait for An to be acquired */ 845 if (intel_de_wait_for_set(i915, 846 HDCP_STATUS(i915, cpu_transcoder, port), 847 HDCP_STATUS_AN_READY, 1)) { 848 drm_err(&i915->drm, "Timed out waiting for An\n"); 849 return -ETIMEDOUT; 850 } 851 852 an.reg[0] = intel_de_read(i915, 853 HDCP_ANLO(i915, cpu_transcoder, port)); 854 an.reg[1] = intel_de_read(i915, 855 HDCP_ANHI(i915, cpu_transcoder, port)); 856 ret = shim->write_an_aksv(dig_port, an.shim); 857 if (ret) 858 return ret; 859 860 r0_prime_gen_start = jiffies; 861 862 memset(&bksv, 0, sizeof(bksv)); 863 864 ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim); 865 if (ret < 0) 866 return ret; 867 868 if (drm_hdcp_check_ksvs_revoked(&i915->drm, bksv.shim, 1) > 0) { 869 drm_err(&i915->drm, "BKSV is revoked\n"); 870 return -EPERM; 871 } 872 873 intel_de_write(i915, HDCP_BKSVLO(i915, cpu_transcoder, port), 874 bksv.reg[0]); 875 intel_de_write(i915, HDCP_BKSVHI(i915, cpu_transcoder, port), 876 bksv.reg[1]); 877 878 ret = shim->repeater_present(dig_port, &repeater_present); 879 if (ret) 880 return ret; 881 if (repeater_present) 882 intel_de_write(i915, HDCP_REP_CTL, 883 intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port)); 884 885 ret = shim->toggle_signalling(dig_port, cpu_transcoder, true); 886 if (ret) 887 return ret; 888 889 intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port), 890 HDCP_CONF_AUTH_AND_ENC); 891 892 /* Wait for R0 ready */ 893 if (wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) & 894 (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) { 895 drm_err(&i915->drm, "Timed out waiting for R0 ready\n"); 896 return -ETIMEDOUT; 897 } 898 899 /* 900 * Wait for R0' to become available. The spec says 100ms from Aksv, but 901 * some monitors can take longer than this. We'll set the timeout at 902 * 300ms just to be sure. 903 * 904 * On DP, there's an R0_READY bit available but no such bit 905 * exists on HDMI. Since the upper-bound is the same, we'll just do 906 * the stupid thing instead of polling on one and not the other. 907 */ 908 wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300); 909 910 tries = 3; 911 912 /* 913 * DP HDCP Spec mandates the two more reattempt to read R0, incase 914 * of R0 mismatch. 915 */ 916 for (i = 0; i < tries; i++) { 917 ri.reg = 0; 918 ret = shim->read_ri_prime(dig_port, ri.shim); 919 if (ret) 920 return ret; 921 intel_de_write(i915, 922 HDCP_RPRIME(i915, cpu_transcoder, port), 923 ri.reg); 924 925 /* Wait for Ri prime match */ 926 if (!wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) & 927 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) 928 break; 929 } 930 931 if (i == tries) { 932 drm_dbg_kms(&i915->drm, 933 "Timed out waiting for Ri prime match (%x)\n", 934 intel_de_read(i915, 935 HDCP_STATUS(i915, cpu_transcoder, port))); 936 return -ETIMEDOUT; 937 } 938 939 /* Wait for encryption confirmation */ 940 if (intel_de_wait_for_set(i915, 941 HDCP_STATUS(i915, cpu_transcoder, port), 942 HDCP_STATUS_ENC, 943 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) { 944 drm_err(&i915->drm, "Timed out waiting for encryption\n"); 945 return -ETIMEDOUT; 946 } 947 948 /* DP MST Auth Part 1 Step 2.a and Step 2.b */ 949 if (shim->stream_encryption) { 950 ret = shim->stream_encryption(connector, true); 951 if (ret) { 952 drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 1.4 stream enc\n", 953 connector->base.base.id, connector->base.name); 954 return ret; 955 } 956 drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encrypted\n", 957 transcoder_name(hdcp->stream_transcoder)); 958 } 959 960 if (repeater_present) 961 return intel_hdcp_auth_downstream(connector); 962 963 drm_dbg_kms(&i915->drm, "HDCP is enabled (no repeater present)\n"); 964 return 0; 965 } 966 967 static int _intel_hdcp_disable(struct intel_connector *connector) 968 { 969 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 970 struct drm_i915_private *i915 = to_i915(connector->base.dev); 971 struct intel_hdcp *hdcp = &connector->hdcp; 972 enum port port = dig_port->base.port; 973 enum transcoder cpu_transcoder = hdcp->cpu_transcoder; 974 u32 repeater_ctl; 975 int ret; 976 977 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP is being disabled...\n", 978 connector->base.base.id, connector->base.name); 979 980 if (hdcp->shim->stream_encryption) { 981 ret = hdcp->shim->stream_encryption(connector, false); 982 if (ret) { 983 drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 1.4 stream enc\n", 984 connector->base.base.id, connector->base.name); 985 return ret; 986 } 987 drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n", 988 transcoder_name(hdcp->stream_transcoder)); 989 /* 990 * If there are other connectors on this port using HDCP, 991 * don't disable it until it disabled HDCP encryption for 992 * all connectors in MST topology. 993 */ 994 if (dig_port->num_hdcp_streams > 0) 995 return 0; 996 } 997 998 hdcp->hdcp_encrypted = false; 999 intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port), 0); 1000 if (intel_de_wait_for_clear(i915, 1001 HDCP_STATUS(i915, cpu_transcoder, port), 1002 ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) { 1003 drm_err(&i915->drm, 1004 "Failed to disable HDCP, timeout clearing status\n"); 1005 return -ETIMEDOUT; 1006 } 1007 1008 repeater_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, 1009 port); 1010 intel_de_rmw(i915, HDCP_REP_CTL, repeater_ctl, 0); 1011 1012 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false); 1013 if (ret) { 1014 drm_err(&i915->drm, "Failed to disable HDCP signalling\n"); 1015 return ret; 1016 } 1017 1018 drm_dbg_kms(&i915->drm, "HDCP is disabled\n"); 1019 return 0; 1020 } 1021 1022 static int intel_hdcp1_enable(struct intel_connector *connector) 1023 { 1024 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1025 struct intel_hdcp *hdcp = &connector->hdcp; 1026 int i, ret, tries = 3; 1027 1028 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP is being enabled...\n", 1029 connector->base.base.id, connector->base.name); 1030 1031 if (!hdcp_key_loadable(i915)) { 1032 drm_err(&i915->drm, "HDCP key Load is not possible\n"); 1033 return -ENXIO; 1034 } 1035 1036 for (i = 0; i < KEY_LOAD_TRIES; i++) { 1037 ret = intel_hdcp_load_keys(i915); 1038 if (!ret) 1039 break; 1040 intel_hdcp_clear_keys(i915); 1041 } 1042 if (ret) { 1043 drm_err(&i915->drm, "Could not load HDCP keys, (%d)\n", 1044 ret); 1045 return ret; 1046 } 1047 1048 /* Incase of authentication failures, HDCP spec expects reauth. */ 1049 for (i = 0; i < tries; i++) { 1050 ret = intel_hdcp_auth(connector); 1051 if (!ret) { 1052 hdcp->hdcp_encrypted = true; 1053 return 0; 1054 } 1055 1056 drm_dbg_kms(&i915->drm, "HDCP Auth failure (%d)\n", ret); 1057 1058 /* Ensuring HDCP encryption and signalling are stopped. */ 1059 _intel_hdcp_disable(connector); 1060 } 1061 1062 drm_dbg_kms(&i915->drm, 1063 "HDCP authentication failed (%d tries/%d)\n", tries, ret); 1064 return ret; 1065 } 1066 1067 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp) 1068 { 1069 return container_of(hdcp, struct intel_connector, hdcp); 1070 } 1071 1072 static void intel_hdcp_update_value(struct intel_connector *connector, 1073 u64 value, bool update_property) 1074 { 1075 struct drm_device *dev = connector->base.dev; 1076 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1077 struct intel_hdcp *hdcp = &connector->hdcp; 1078 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1079 1080 drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex)); 1081 1082 if (hdcp->value == value) 1083 return; 1084 1085 drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex)); 1086 1087 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) { 1088 if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0)) 1089 dig_port->num_hdcp_streams--; 1090 } else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) { 1091 dig_port->num_hdcp_streams++; 1092 } 1093 1094 hdcp->value = value; 1095 if (update_property) { 1096 drm_connector_get(&connector->base); 1097 queue_work(i915->unordered_wq, &hdcp->prop_work); 1098 } 1099 } 1100 1101 /* Implements Part 3 of the HDCP authorization procedure */ 1102 static int intel_hdcp_check_link(struct intel_connector *connector) 1103 { 1104 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1105 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1106 struct intel_hdcp *hdcp = &connector->hdcp; 1107 enum port port = dig_port->base.port; 1108 enum transcoder cpu_transcoder; 1109 int ret = 0; 1110 1111 mutex_lock(&hdcp->mutex); 1112 mutex_lock(&dig_port->hdcp_mutex); 1113 1114 cpu_transcoder = hdcp->cpu_transcoder; 1115 1116 /* Check_link valid only when HDCP1.4 is enabled */ 1117 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED || 1118 !hdcp->hdcp_encrypted) { 1119 ret = -EINVAL; 1120 goto out; 1121 } 1122 1123 if (drm_WARN_ON(&i915->drm, 1124 !intel_hdcp_in_use(i915, cpu_transcoder, port))) { 1125 drm_err(&i915->drm, 1126 "[CONNECTOR:%d:%s] HDCP link stopped encryption,%x\n", 1127 connector->base.base.id, connector->base.name, 1128 intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port))); 1129 ret = -ENXIO; 1130 intel_hdcp_update_value(connector, 1131 DRM_MODE_CONTENT_PROTECTION_DESIRED, 1132 true); 1133 goto out; 1134 } 1135 1136 if (hdcp->shim->check_link(dig_port, connector)) { 1137 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { 1138 intel_hdcp_update_value(connector, 1139 DRM_MODE_CONTENT_PROTECTION_ENABLED, true); 1140 } 1141 goto out; 1142 } 1143 1144 drm_dbg_kms(&i915->drm, 1145 "[CONNECTOR:%d:%s] HDCP link failed, retrying authentication\n", 1146 connector->base.base.id, connector->base.name); 1147 1148 ret = _intel_hdcp_disable(connector); 1149 if (ret) { 1150 drm_err(&i915->drm, "Failed to disable hdcp (%d)\n", ret); 1151 intel_hdcp_update_value(connector, 1152 DRM_MODE_CONTENT_PROTECTION_DESIRED, 1153 true); 1154 goto out; 1155 } 1156 1157 intel_hdcp_update_value(connector, 1158 DRM_MODE_CONTENT_PROTECTION_DESIRED, 1159 true); 1160 out: 1161 mutex_unlock(&dig_port->hdcp_mutex); 1162 mutex_unlock(&hdcp->mutex); 1163 return ret; 1164 } 1165 1166 static void intel_hdcp_prop_work(struct work_struct *work) 1167 { 1168 struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp, 1169 prop_work); 1170 struct intel_connector *connector = intel_hdcp_to_connector(hdcp); 1171 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1172 1173 drm_modeset_lock(&i915->drm.mode_config.connection_mutex, NULL); 1174 mutex_lock(&hdcp->mutex); 1175 1176 /* 1177 * This worker is only used to flip between ENABLED/DESIRED. Either of 1178 * those to UNDESIRED is handled by core. If value == UNDESIRED, 1179 * we're running just after hdcp has been disabled, so just exit 1180 */ 1181 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) 1182 drm_hdcp_update_content_protection(&connector->base, 1183 hdcp->value); 1184 1185 mutex_unlock(&hdcp->mutex); 1186 drm_modeset_unlock(&i915->drm.mode_config.connection_mutex); 1187 1188 drm_connector_put(&connector->base); 1189 } 1190 1191 bool is_hdcp_supported(struct drm_i915_private *i915, enum port port) 1192 { 1193 return DISPLAY_RUNTIME_INFO(i915)->has_hdcp && 1194 (DISPLAY_VER(i915) >= 12 || port < PORT_E); 1195 } 1196 1197 static int 1198 hdcp2_prepare_ake_init(struct intel_connector *connector, 1199 struct hdcp2_ake_init *ake_data) 1200 { 1201 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1202 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1203 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1204 struct i915_hdcp_arbiter *arbiter; 1205 int ret; 1206 1207 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1208 arbiter = i915->display.hdcp.arbiter; 1209 1210 if (!arbiter || !arbiter->ops) { 1211 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1212 return -EINVAL; 1213 } 1214 1215 ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data); 1216 if (ret) 1217 drm_dbg_kms(&i915->drm, "Prepare_ake_init failed. %d\n", 1218 ret); 1219 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1220 1221 return ret; 1222 } 1223 1224 static int 1225 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector, 1226 struct hdcp2_ake_send_cert *rx_cert, 1227 bool *paired, 1228 struct hdcp2_ake_no_stored_km *ek_pub_km, 1229 size_t *msg_sz) 1230 { 1231 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1232 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1233 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1234 struct i915_hdcp_arbiter *arbiter; 1235 int ret; 1236 1237 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1238 arbiter = i915->display.hdcp.arbiter; 1239 1240 if (!arbiter || !arbiter->ops) { 1241 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1242 return -EINVAL; 1243 } 1244 1245 ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data, 1246 rx_cert, paired, 1247 ek_pub_km, msg_sz); 1248 if (ret < 0) 1249 drm_dbg_kms(&i915->drm, "Verify rx_cert failed. %d\n", 1250 ret); 1251 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1252 1253 return ret; 1254 } 1255 1256 static int hdcp2_verify_hprime(struct intel_connector *connector, 1257 struct hdcp2_ake_send_hprime *rx_hprime) 1258 { 1259 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1260 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1261 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1262 struct i915_hdcp_arbiter *arbiter; 1263 int ret; 1264 1265 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1266 arbiter = i915->display.hdcp.arbiter; 1267 1268 if (!arbiter || !arbiter->ops) { 1269 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1270 return -EINVAL; 1271 } 1272 1273 ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime); 1274 if (ret < 0) 1275 drm_dbg_kms(&i915->drm, "Verify hprime failed. %d\n", ret); 1276 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1277 1278 return ret; 1279 } 1280 1281 static int 1282 hdcp2_store_pairing_info(struct intel_connector *connector, 1283 struct hdcp2_ake_send_pairing_info *pairing_info) 1284 { 1285 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1286 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1287 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1288 struct i915_hdcp_arbiter *arbiter; 1289 int ret; 1290 1291 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1292 arbiter = i915->display.hdcp.arbiter; 1293 1294 if (!arbiter || !arbiter->ops) { 1295 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1296 return -EINVAL; 1297 } 1298 1299 ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info); 1300 if (ret < 0) 1301 drm_dbg_kms(&i915->drm, "Store pairing info failed. %d\n", 1302 ret); 1303 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1304 1305 return ret; 1306 } 1307 1308 static int 1309 hdcp2_prepare_lc_init(struct intel_connector *connector, 1310 struct hdcp2_lc_init *lc_init) 1311 { 1312 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1313 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1314 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1315 struct i915_hdcp_arbiter *arbiter; 1316 int ret; 1317 1318 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1319 arbiter = i915->display.hdcp.arbiter; 1320 1321 if (!arbiter || !arbiter->ops) { 1322 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1323 return -EINVAL; 1324 } 1325 1326 ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init); 1327 if (ret < 0) 1328 drm_dbg_kms(&i915->drm, "Prepare lc_init failed. %d\n", 1329 ret); 1330 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1331 1332 return ret; 1333 } 1334 1335 static int 1336 hdcp2_verify_lprime(struct intel_connector *connector, 1337 struct hdcp2_lc_send_lprime *rx_lprime) 1338 { 1339 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1340 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1341 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1342 struct i915_hdcp_arbiter *arbiter; 1343 int ret; 1344 1345 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1346 arbiter = i915->display.hdcp.arbiter; 1347 1348 if (!arbiter || !arbiter->ops) { 1349 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1350 return -EINVAL; 1351 } 1352 1353 ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime); 1354 if (ret < 0) 1355 drm_dbg_kms(&i915->drm, "Verify L_Prime failed. %d\n", 1356 ret); 1357 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1358 1359 return ret; 1360 } 1361 1362 static int hdcp2_prepare_skey(struct intel_connector *connector, 1363 struct hdcp2_ske_send_eks *ske_data) 1364 { 1365 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1366 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1367 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1368 struct i915_hdcp_arbiter *arbiter; 1369 int ret; 1370 1371 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1372 arbiter = i915->display.hdcp.arbiter; 1373 1374 if (!arbiter || !arbiter->ops) { 1375 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1376 return -EINVAL; 1377 } 1378 1379 ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data); 1380 if (ret < 0) 1381 drm_dbg_kms(&i915->drm, "Get session key failed. %d\n", 1382 ret); 1383 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1384 1385 return ret; 1386 } 1387 1388 static int 1389 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector, 1390 struct hdcp2_rep_send_receiverid_list 1391 *rep_topology, 1392 struct hdcp2_rep_send_ack *rep_send_ack) 1393 { 1394 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1395 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1396 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1397 struct i915_hdcp_arbiter *arbiter; 1398 int ret; 1399 1400 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1401 arbiter = i915->display.hdcp.arbiter; 1402 1403 if (!arbiter || !arbiter->ops) { 1404 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1405 return -EINVAL; 1406 } 1407 1408 ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev, 1409 data, 1410 rep_topology, 1411 rep_send_ack); 1412 if (ret < 0) 1413 drm_dbg_kms(&i915->drm, 1414 "Verify rep topology failed. %d\n", ret); 1415 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1416 1417 return ret; 1418 } 1419 1420 static int 1421 hdcp2_verify_mprime(struct intel_connector *connector, 1422 struct hdcp2_rep_stream_ready *stream_ready) 1423 { 1424 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1425 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1426 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1427 struct i915_hdcp_arbiter *arbiter; 1428 int ret; 1429 1430 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1431 arbiter = i915->display.hdcp.arbiter; 1432 1433 if (!arbiter || !arbiter->ops) { 1434 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1435 return -EINVAL; 1436 } 1437 1438 ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready); 1439 if (ret < 0) 1440 drm_dbg_kms(&i915->drm, "Verify mprime failed. %d\n", ret); 1441 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1442 1443 return ret; 1444 } 1445 1446 static int hdcp2_authenticate_port(struct intel_connector *connector) 1447 { 1448 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1449 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1450 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1451 struct i915_hdcp_arbiter *arbiter; 1452 int ret; 1453 1454 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1455 arbiter = i915->display.hdcp.arbiter; 1456 1457 if (!arbiter || !arbiter->ops) { 1458 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1459 return -EINVAL; 1460 } 1461 1462 ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data); 1463 if (ret < 0) 1464 drm_dbg_kms(&i915->drm, "Enable hdcp auth failed. %d\n", 1465 ret); 1466 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1467 1468 return ret; 1469 } 1470 1471 static int hdcp2_close_session(struct intel_connector *connector) 1472 { 1473 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1474 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1475 struct i915_hdcp_arbiter *arbiter; 1476 int ret; 1477 1478 mutex_lock(&i915->display.hdcp.hdcp_mutex); 1479 arbiter = i915->display.hdcp.arbiter; 1480 1481 if (!arbiter || !arbiter->ops) { 1482 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1483 return -EINVAL; 1484 } 1485 1486 ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev, 1487 &dig_port->hdcp_port_data); 1488 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 1489 1490 return ret; 1491 } 1492 1493 static int hdcp2_deauthenticate_port(struct intel_connector *connector) 1494 { 1495 return hdcp2_close_session(connector); 1496 } 1497 1498 /* Authentication flow starts from here */ 1499 static int hdcp2_authentication_key_exchange(struct intel_connector *connector) 1500 { 1501 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1502 struct intel_hdcp *hdcp = &connector->hdcp; 1503 union { 1504 struct hdcp2_ake_init ake_init; 1505 struct hdcp2_ake_send_cert send_cert; 1506 struct hdcp2_ake_no_stored_km no_stored_km; 1507 struct hdcp2_ake_send_hprime send_hprime; 1508 struct hdcp2_ake_send_pairing_info pairing_info; 1509 } msgs; 1510 const struct intel_hdcp_shim *shim = hdcp->shim; 1511 size_t size; 1512 int ret; 1513 1514 /* Init for seq_num */ 1515 hdcp->seq_num_v = 0; 1516 hdcp->seq_num_m = 0; 1517 1518 ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init); 1519 if (ret < 0) 1520 return ret; 1521 1522 ret = shim->write_2_2_msg(connector, &msgs.ake_init, 1523 sizeof(msgs.ake_init)); 1524 if (ret < 0) 1525 return ret; 1526 1527 ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_CERT, 1528 &msgs.send_cert, sizeof(msgs.send_cert)); 1529 if (ret < 0) 1530 return ret; 1531 1532 if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) { 1533 drm_dbg_kms(&i915->drm, "cert.rx_caps dont claim HDCP2.2\n"); 1534 return -EINVAL; 1535 } 1536 1537 hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]); 1538 1539 if (drm_hdcp_check_ksvs_revoked(&i915->drm, 1540 msgs.send_cert.cert_rx.receiver_id, 1541 1) > 0) { 1542 drm_err(&i915->drm, "Receiver ID is revoked\n"); 1543 return -EPERM; 1544 } 1545 1546 /* 1547 * Here msgs.no_stored_km will hold msgs corresponding to the km 1548 * stored also. 1549 */ 1550 ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert, 1551 &hdcp->is_paired, 1552 &msgs.no_stored_km, &size); 1553 if (ret < 0) 1554 return ret; 1555 1556 ret = shim->write_2_2_msg(connector, &msgs.no_stored_km, size); 1557 if (ret < 0) 1558 return ret; 1559 1560 ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_HPRIME, 1561 &msgs.send_hprime, sizeof(msgs.send_hprime)); 1562 if (ret < 0) 1563 return ret; 1564 1565 ret = hdcp2_verify_hprime(connector, &msgs.send_hprime); 1566 if (ret < 0) 1567 return ret; 1568 1569 if (!hdcp->is_paired) { 1570 /* Pairing is required */ 1571 ret = shim->read_2_2_msg(connector, 1572 HDCP_2_2_AKE_SEND_PAIRING_INFO, 1573 &msgs.pairing_info, 1574 sizeof(msgs.pairing_info)); 1575 if (ret < 0) 1576 return ret; 1577 1578 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info); 1579 if (ret < 0) 1580 return ret; 1581 hdcp->is_paired = true; 1582 } 1583 1584 return 0; 1585 } 1586 1587 static int hdcp2_locality_check(struct intel_connector *connector) 1588 { 1589 struct intel_hdcp *hdcp = &connector->hdcp; 1590 union { 1591 struct hdcp2_lc_init lc_init; 1592 struct hdcp2_lc_send_lprime send_lprime; 1593 } msgs; 1594 const struct intel_hdcp_shim *shim = hdcp->shim; 1595 int tries = HDCP2_LC_RETRY_CNT, ret, i; 1596 1597 for (i = 0; i < tries; i++) { 1598 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init); 1599 if (ret < 0) 1600 continue; 1601 1602 ret = shim->write_2_2_msg(connector, &msgs.lc_init, 1603 sizeof(msgs.lc_init)); 1604 if (ret < 0) 1605 continue; 1606 1607 ret = shim->read_2_2_msg(connector, 1608 HDCP_2_2_LC_SEND_LPRIME, 1609 &msgs.send_lprime, 1610 sizeof(msgs.send_lprime)); 1611 if (ret < 0) 1612 continue; 1613 1614 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime); 1615 if (!ret) 1616 break; 1617 } 1618 1619 return ret; 1620 } 1621 1622 static int hdcp2_session_key_exchange(struct intel_connector *connector) 1623 { 1624 struct intel_hdcp *hdcp = &connector->hdcp; 1625 struct hdcp2_ske_send_eks send_eks; 1626 int ret; 1627 1628 ret = hdcp2_prepare_skey(connector, &send_eks); 1629 if (ret < 0) 1630 return ret; 1631 1632 ret = hdcp->shim->write_2_2_msg(connector, &send_eks, 1633 sizeof(send_eks)); 1634 if (ret < 0) 1635 return ret; 1636 1637 return 0; 1638 } 1639 1640 static 1641 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector) 1642 { 1643 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1644 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1645 struct intel_hdcp *hdcp = &connector->hdcp; 1646 union { 1647 struct hdcp2_rep_stream_manage stream_manage; 1648 struct hdcp2_rep_stream_ready stream_ready; 1649 } msgs; 1650 const struct intel_hdcp_shim *shim = hdcp->shim; 1651 int ret, streams_size_delta, i; 1652 1653 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) 1654 return -ERANGE; 1655 1656 /* Prepare RepeaterAuth_Stream_Manage msg */ 1657 msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE; 1658 drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m); 1659 1660 msgs.stream_manage.k = cpu_to_be16(data->k); 1661 1662 for (i = 0; i < data->k; i++) { 1663 msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id; 1664 msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type; 1665 } 1666 1667 streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) * 1668 sizeof(struct hdcp2_streamid_type); 1669 /* Send it to Repeater */ 1670 ret = shim->write_2_2_msg(connector, &msgs.stream_manage, 1671 sizeof(msgs.stream_manage) - streams_size_delta); 1672 if (ret < 0) 1673 goto out; 1674 1675 ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_STREAM_READY, 1676 &msgs.stream_ready, sizeof(msgs.stream_ready)); 1677 if (ret < 0) 1678 goto out; 1679 1680 data->seq_num_m = hdcp->seq_num_m; 1681 1682 ret = hdcp2_verify_mprime(connector, &msgs.stream_ready); 1683 1684 out: 1685 hdcp->seq_num_m++; 1686 1687 return ret; 1688 } 1689 1690 static 1691 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector) 1692 { 1693 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1694 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1695 struct intel_hdcp *hdcp = &connector->hdcp; 1696 union { 1697 struct hdcp2_rep_send_receiverid_list recvid_list; 1698 struct hdcp2_rep_send_ack rep_ack; 1699 } msgs; 1700 const struct intel_hdcp_shim *shim = hdcp->shim; 1701 u32 seq_num_v, device_cnt; 1702 u8 *rx_info; 1703 int ret; 1704 1705 ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_SEND_RECVID_LIST, 1706 &msgs.recvid_list, sizeof(msgs.recvid_list)); 1707 if (ret < 0) 1708 return ret; 1709 1710 rx_info = msgs.recvid_list.rx_info; 1711 1712 if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) || 1713 HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) { 1714 drm_dbg_kms(&i915->drm, "Topology Max Size Exceeded\n"); 1715 return -EINVAL; 1716 } 1717 1718 /* 1719 * MST topology is not Type 1 capable if it contains a downstream 1720 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant. 1721 */ 1722 dig_port->hdcp_mst_type1_capable = 1723 !HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) && 1724 !HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]); 1725 1726 if (!dig_port->hdcp_mst_type1_capable && hdcp->content_type) { 1727 drm_dbg_kms(&i915->drm, 1728 "HDCP1.x or 2.0 Legacy Device Downstream\n"); 1729 return -EINVAL; 1730 } 1731 1732 /* Converting and Storing the seq_num_v to local variable as DWORD */ 1733 seq_num_v = 1734 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v); 1735 1736 if (!hdcp->hdcp2_encrypted && seq_num_v) { 1737 drm_dbg_kms(&i915->drm, 1738 "Non zero Seq_num_v at first RecvId_List msg\n"); 1739 return -EINVAL; 1740 } 1741 1742 if (seq_num_v < hdcp->seq_num_v) { 1743 /* Roll over of the seq_num_v from repeater. Reauthenticate. */ 1744 drm_dbg_kms(&i915->drm, "Seq_num_v roll over.\n"); 1745 return -EINVAL; 1746 } 1747 1748 device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | 1749 HDCP_2_2_DEV_COUNT_LO(rx_info[1])); 1750 if (drm_hdcp_check_ksvs_revoked(&i915->drm, 1751 msgs.recvid_list.receiver_ids, 1752 device_cnt) > 0) { 1753 drm_err(&i915->drm, "Revoked receiver ID(s) is in list\n"); 1754 return -EPERM; 1755 } 1756 1757 ret = hdcp2_verify_rep_topology_prepare_ack(connector, 1758 &msgs.recvid_list, 1759 &msgs.rep_ack); 1760 if (ret < 0) 1761 return ret; 1762 1763 hdcp->seq_num_v = seq_num_v; 1764 ret = shim->write_2_2_msg(connector, &msgs.rep_ack, 1765 sizeof(msgs.rep_ack)); 1766 if (ret < 0) 1767 return ret; 1768 1769 return 0; 1770 } 1771 1772 static int hdcp2_authenticate_sink(struct intel_connector *connector) 1773 { 1774 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1775 struct intel_hdcp *hdcp = &connector->hdcp; 1776 const struct intel_hdcp_shim *shim = hdcp->shim; 1777 int ret; 1778 1779 ret = hdcp2_authentication_key_exchange(connector); 1780 if (ret < 0) { 1781 drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret); 1782 return ret; 1783 } 1784 1785 ret = hdcp2_locality_check(connector); 1786 if (ret < 0) { 1787 drm_dbg_kms(&i915->drm, 1788 "Locality Check failed. Err : %d\n", ret); 1789 return ret; 1790 } 1791 1792 ret = hdcp2_session_key_exchange(connector); 1793 if (ret < 0) { 1794 drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret); 1795 return ret; 1796 } 1797 1798 if (shim->config_stream_type) { 1799 ret = shim->config_stream_type(connector, 1800 hdcp->is_repeater, 1801 hdcp->content_type); 1802 if (ret < 0) 1803 return ret; 1804 } 1805 1806 if (hdcp->is_repeater) { 1807 ret = hdcp2_authenticate_repeater_topology(connector); 1808 if (ret < 0) { 1809 drm_dbg_kms(&i915->drm, 1810 "Repeater Auth Failed. Err: %d\n", ret); 1811 return ret; 1812 } 1813 } 1814 1815 return ret; 1816 } 1817 1818 static int hdcp2_enable_stream_encryption(struct intel_connector *connector) 1819 { 1820 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1821 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1822 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 1823 struct intel_hdcp *hdcp = &connector->hdcp; 1824 enum transcoder cpu_transcoder = hdcp->cpu_transcoder; 1825 enum port port = dig_port->base.port; 1826 int ret = 0; 1827 1828 if (!(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) & 1829 LINK_ENCRYPTION_STATUS)) { 1830 drm_err(&i915->drm, "[CONNECTOR:%d:%s] HDCP 2.2 Link is not encrypted\n", 1831 connector->base.base.id, connector->base.name); 1832 ret = -EPERM; 1833 goto link_recover; 1834 } 1835 1836 if (hdcp->shim->stream_2_2_encryption) { 1837 ret = hdcp->shim->stream_2_2_encryption(connector, true); 1838 if (ret) { 1839 drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 2.2 stream enc\n", 1840 connector->base.base.id, connector->base.name); 1841 return ret; 1842 } 1843 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encrypted\n", 1844 transcoder_name(hdcp->stream_transcoder)); 1845 } 1846 1847 return 0; 1848 1849 link_recover: 1850 if (hdcp2_deauthenticate_port(connector) < 0) 1851 drm_dbg_kms(&i915->drm, "Port deauth failed.\n"); 1852 1853 dig_port->hdcp_auth_status = false; 1854 data->k = 0; 1855 1856 return ret; 1857 } 1858 1859 static int hdcp2_enable_encryption(struct intel_connector *connector) 1860 { 1861 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1862 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1863 struct intel_hdcp *hdcp = &connector->hdcp; 1864 enum port port = dig_port->base.port; 1865 enum transcoder cpu_transcoder = hdcp->cpu_transcoder; 1866 int ret; 1867 1868 drm_WARN_ON(&i915->drm, 1869 intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) & 1870 LINK_ENCRYPTION_STATUS); 1871 if (hdcp->shim->toggle_signalling) { 1872 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, 1873 true); 1874 if (ret) { 1875 drm_err(&i915->drm, 1876 "Failed to enable HDCP signalling. %d\n", 1877 ret); 1878 return ret; 1879 } 1880 } 1881 1882 if (intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) & 1883 LINK_AUTH_STATUS) 1884 /* Link is Authenticated. Now set for Encryption */ 1885 intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port), 1886 0, CTL_LINK_ENCRYPTION_REQ); 1887 1888 ret = intel_de_wait_for_set(i915, 1889 HDCP2_STATUS(i915, cpu_transcoder, 1890 port), 1891 LINK_ENCRYPTION_STATUS, 1892 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS); 1893 dig_port->hdcp_auth_status = true; 1894 1895 return ret; 1896 } 1897 1898 static int hdcp2_disable_encryption(struct intel_connector *connector) 1899 { 1900 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1901 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1902 struct intel_hdcp *hdcp = &connector->hdcp; 1903 enum port port = dig_port->base.port; 1904 enum transcoder cpu_transcoder = hdcp->cpu_transcoder; 1905 int ret; 1906 1907 drm_WARN_ON(&i915->drm, !(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) & 1908 LINK_ENCRYPTION_STATUS)); 1909 1910 intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port), 1911 CTL_LINK_ENCRYPTION_REQ, 0); 1912 1913 ret = intel_de_wait_for_clear(i915, 1914 HDCP2_STATUS(i915, cpu_transcoder, 1915 port), 1916 LINK_ENCRYPTION_STATUS, 1917 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS); 1918 if (ret == -ETIMEDOUT) 1919 drm_dbg_kms(&i915->drm, "Disable Encryption Timedout"); 1920 1921 if (hdcp->shim->toggle_signalling) { 1922 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, 1923 false); 1924 if (ret) { 1925 drm_err(&i915->drm, 1926 "Failed to disable HDCP signalling. %d\n", 1927 ret); 1928 return ret; 1929 } 1930 } 1931 1932 return ret; 1933 } 1934 1935 static int 1936 hdcp2_propagate_stream_management_info(struct intel_connector *connector) 1937 { 1938 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1939 int i, tries = 3, ret; 1940 1941 if (!connector->hdcp.is_repeater) 1942 return 0; 1943 1944 for (i = 0; i < tries; i++) { 1945 ret = _hdcp2_propagate_stream_management_info(connector); 1946 if (!ret) 1947 break; 1948 1949 /* Lets restart the auth incase of seq_num_m roll over */ 1950 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) { 1951 drm_dbg_kms(&i915->drm, 1952 "seq_num_m roll over.(%d)\n", ret); 1953 break; 1954 } 1955 1956 drm_dbg_kms(&i915->drm, 1957 "HDCP2 stream management %d of %d Failed.(%d)\n", 1958 i + 1, tries, ret); 1959 } 1960 1961 return ret; 1962 } 1963 1964 static int hdcp2_authenticate_and_encrypt(struct intel_atomic_state *state, 1965 struct intel_connector *connector) 1966 { 1967 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 1968 struct drm_i915_private *i915 = to_i915(connector->base.dev); 1969 int ret = 0, i, tries = 3; 1970 1971 for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) { 1972 ret = hdcp2_authenticate_sink(connector); 1973 if (!ret) { 1974 ret = intel_hdcp_prepare_streams(state, connector); 1975 if (ret) { 1976 drm_dbg_kms(&i915->drm, 1977 "Prepare stream failed.(%d)\n", 1978 ret); 1979 break; 1980 } 1981 1982 ret = hdcp2_propagate_stream_management_info(connector); 1983 if (ret) { 1984 drm_dbg_kms(&i915->drm, 1985 "Stream management failed.(%d)\n", 1986 ret); 1987 break; 1988 } 1989 1990 ret = hdcp2_authenticate_port(connector); 1991 if (!ret) 1992 break; 1993 drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n", 1994 ret); 1995 } 1996 1997 /* Clearing the mei hdcp session */ 1998 drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n", 1999 i + 1, tries, ret); 2000 if (hdcp2_deauthenticate_port(connector) < 0) 2001 drm_dbg_kms(&i915->drm, "Port deauth failed.\n"); 2002 } 2003 2004 if (!ret && !dig_port->hdcp_auth_status) { 2005 /* 2006 * Ensuring the required 200mSec min time interval between 2007 * Session Key Exchange and encryption. 2008 */ 2009 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN); 2010 ret = hdcp2_enable_encryption(connector); 2011 if (ret < 0) { 2012 drm_dbg_kms(&i915->drm, 2013 "Encryption Enable Failed.(%d)\n", ret); 2014 if (hdcp2_deauthenticate_port(connector) < 0) 2015 drm_dbg_kms(&i915->drm, "Port deauth failed.\n"); 2016 } 2017 } 2018 2019 if (!ret) 2020 ret = hdcp2_enable_stream_encryption(connector); 2021 2022 return ret; 2023 } 2024 2025 static int _intel_hdcp2_enable(struct intel_atomic_state *state, 2026 struct intel_connector *connector) 2027 { 2028 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2029 struct intel_hdcp *hdcp = &connector->hdcp; 2030 int ret; 2031 2032 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being enabled. Type: %d\n", 2033 connector->base.base.id, connector->base.name, 2034 hdcp->content_type); 2035 2036 intel_hdcp_disable_hdcp_line_rekeying(connector->encoder, hdcp); 2037 2038 ret = hdcp2_authenticate_and_encrypt(state, connector); 2039 if (ret) { 2040 drm_dbg_kms(&i915->drm, "HDCP2 Type%d Enabling Failed. (%d)\n", 2041 hdcp->content_type, ret); 2042 return ret; 2043 } 2044 2045 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP2.2 is enabled. Type %d\n", 2046 connector->base.base.id, connector->base.name, 2047 hdcp->content_type); 2048 2049 hdcp->hdcp2_encrypted = true; 2050 return 0; 2051 } 2052 2053 static int 2054 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery) 2055 { 2056 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 2057 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2058 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 2059 struct intel_hdcp *hdcp = &connector->hdcp; 2060 int ret; 2061 2062 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being Disabled\n", 2063 connector->base.base.id, connector->base.name); 2064 2065 if (hdcp->shim->stream_2_2_encryption) { 2066 ret = hdcp->shim->stream_2_2_encryption(connector, false); 2067 if (ret) { 2068 drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 2.2 stream enc\n", 2069 connector->base.base.id, connector->base.name); 2070 return ret; 2071 } 2072 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n", 2073 transcoder_name(hdcp->stream_transcoder)); 2074 2075 if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery) 2076 return 0; 2077 } 2078 2079 ret = hdcp2_disable_encryption(connector); 2080 2081 if (hdcp2_deauthenticate_port(connector) < 0) 2082 drm_dbg_kms(&i915->drm, "Port deauth failed.\n"); 2083 2084 connector->hdcp.hdcp2_encrypted = false; 2085 dig_port->hdcp_auth_status = false; 2086 data->k = 0; 2087 2088 return ret; 2089 } 2090 2091 /* Implements the Link Integrity Check for HDCP2.2 */ 2092 static int intel_hdcp2_check_link(struct intel_connector *connector) 2093 { 2094 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 2095 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2096 struct intel_hdcp *hdcp = &connector->hdcp; 2097 enum port port = dig_port->base.port; 2098 enum transcoder cpu_transcoder; 2099 int ret = 0; 2100 2101 mutex_lock(&hdcp->mutex); 2102 mutex_lock(&dig_port->hdcp_mutex); 2103 cpu_transcoder = hdcp->cpu_transcoder; 2104 2105 /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */ 2106 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED || 2107 !hdcp->hdcp2_encrypted) { 2108 ret = -EINVAL; 2109 goto out; 2110 } 2111 2112 if (drm_WARN_ON(&i915->drm, 2113 !intel_hdcp2_in_use(i915, cpu_transcoder, port))) { 2114 drm_err(&i915->drm, 2115 "HDCP2.2 link stopped the encryption, %x\n", 2116 intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port))); 2117 ret = -ENXIO; 2118 _intel_hdcp2_disable(connector, true); 2119 intel_hdcp_update_value(connector, 2120 DRM_MODE_CONTENT_PROTECTION_DESIRED, 2121 true); 2122 goto out; 2123 } 2124 2125 ret = hdcp->shim->check_2_2_link(dig_port, connector); 2126 if (ret == HDCP_LINK_PROTECTED) { 2127 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { 2128 intel_hdcp_update_value(connector, 2129 DRM_MODE_CONTENT_PROTECTION_ENABLED, 2130 true); 2131 } 2132 goto out; 2133 } 2134 2135 if (ret == HDCP_TOPOLOGY_CHANGE) { 2136 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED) 2137 goto out; 2138 2139 drm_dbg_kms(&i915->drm, 2140 "HDCP2.2 Downstream topology change\n"); 2141 } else { 2142 drm_dbg_kms(&i915->drm, 2143 "[CONNECTOR:%d:%s] HDCP2.2 link failed, retrying auth\n", 2144 connector->base.base.id, connector->base.name); 2145 } 2146 2147 ret = _intel_hdcp2_disable(connector, true); 2148 if (ret) { 2149 drm_err(&i915->drm, 2150 "[CONNECTOR:%d:%s] Failed to disable hdcp2.2 (%d)\n", 2151 connector->base.base.id, connector->base.name, ret); 2152 intel_hdcp_update_value(connector, 2153 DRM_MODE_CONTENT_PROTECTION_DESIRED, true); 2154 goto out; 2155 } 2156 2157 intel_hdcp_update_value(connector, 2158 DRM_MODE_CONTENT_PROTECTION_DESIRED, true); 2159 out: 2160 mutex_unlock(&dig_port->hdcp_mutex); 2161 mutex_unlock(&hdcp->mutex); 2162 return ret; 2163 } 2164 2165 static void intel_hdcp_check_work(struct work_struct *work) 2166 { 2167 struct intel_hdcp *hdcp = container_of(to_delayed_work(work), 2168 struct intel_hdcp, 2169 check_work); 2170 struct intel_connector *connector = intel_hdcp_to_connector(hdcp); 2171 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2172 2173 if (drm_connector_is_unregistered(&connector->base)) 2174 return; 2175 2176 if (!intel_hdcp2_check_link(connector)) 2177 queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 2178 DRM_HDCP2_CHECK_PERIOD_MS); 2179 else if (!intel_hdcp_check_link(connector)) 2180 queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 2181 DRM_HDCP_CHECK_PERIOD_MS); 2182 } 2183 2184 static int i915_hdcp_component_bind(struct device *i915_kdev, 2185 struct device *mei_kdev, void *data) 2186 { 2187 struct drm_i915_private *i915 = kdev_to_i915(i915_kdev); 2188 2189 drm_dbg(&i915->drm, "I915 HDCP comp bind\n"); 2190 mutex_lock(&i915->display.hdcp.hdcp_mutex); 2191 i915->display.hdcp.arbiter = (struct i915_hdcp_arbiter *)data; 2192 i915->display.hdcp.arbiter->hdcp_dev = mei_kdev; 2193 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 2194 2195 return 0; 2196 } 2197 2198 static void i915_hdcp_component_unbind(struct device *i915_kdev, 2199 struct device *mei_kdev, void *data) 2200 { 2201 struct drm_i915_private *i915 = kdev_to_i915(i915_kdev); 2202 2203 drm_dbg(&i915->drm, "I915 HDCP comp unbind\n"); 2204 mutex_lock(&i915->display.hdcp.hdcp_mutex); 2205 i915->display.hdcp.arbiter = NULL; 2206 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 2207 } 2208 2209 static const struct component_ops i915_hdcp_ops = { 2210 .bind = i915_hdcp_component_bind, 2211 .unbind = i915_hdcp_component_unbind, 2212 }; 2213 2214 static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port) 2215 { 2216 switch (port) { 2217 case PORT_A: 2218 return HDCP_DDI_A; 2219 case PORT_B ... PORT_F: 2220 return (enum hdcp_ddi)port; 2221 default: 2222 return HDCP_DDI_INVALID_PORT; 2223 } 2224 } 2225 2226 static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder) 2227 { 2228 switch (cpu_transcoder) { 2229 case TRANSCODER_A ... TRANSCODER_D: 2230 return (enum hdcp_transcoder)(cpu_transcoder | 0x10); 2231 default: /* eDP, DSI TRANSCODERS are non HDCP capable */ 2232 return HDCP_INVALID_TRANSCODER; 2233 } 2234 } 2235 2236 static int initialize_hdcp_port_data(struct intel_connector *connector, 2237 struct intel_digital_port *dig_port, 2238 const struct intel_hdcp_shim *shim) 2239 { 2240 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2241 struct hdcp_port_data *data = &dig_port->hdcp_port_data; 2242 enum port port = dig_port->base.port; 2243 2244 if (DISPLAY_VER(i915) < 12) 2245 data->hdcp_ddi = intel_get_hdcp_ddi_index(port); 2246 else 2247 /* 2248 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled 2249 * with zero(INVALID PORT index). 2250 */ 2251 data->hdcp_ddi = HDCP_DDI_INVALID_PORT; 2252 2253 /* 2254 * As associated transcoder is set and modified at modeset, here hdcp_transcoder 2255 * is initialized to zero (invalid transcoder index). This will be 2256 * retained for <Gen12 forever. 2257 */ 2258 data->hdcp_transcoder = HDCP_INVALID_TRANSCODER; 2259 2260 data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED; 2261 data->protocol = (u8)shim->protocol; 2262 2263 if (!data->streams) 2264 data->streams = kcalloc(INTEL_NUM_PIPES(i915), 2265 sizeof(struct hdcp2_streamid_type), 2266 GFP_KERNEL); 2267 if (!data->streams) { 2268 drm_err(&i915->drm, "Out of Memory\n"); 2269 return -ENOMEM; 2270 } 2271 2272 return 0; 2273 } 2274 2275 static bool is_hdcp2_supported(struct drm_i915_private *i915) 2276 { 2277 if (intel_hdcp_gsc_cs_required(i915)) 2278 return true; 2279 2280 if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP)) 2281 return false; 2282 2283 return (DISPLAY_VER(i915) >= 10 || 2284 IS_KABYLAKE(i915) || 2285 IS_COFFEELAKE(i915) || 2286 IS_COMETLAKE(i915)); 2287 } 2288 2289 void intel_hdcp_component_init(struct drm_i915_private *i915) 2290 { 2291 int ret; 2292 2293 if (!is_hdcp2_supported(i915)) 2294 return; 2295 2296 mutex_lock(&i915->display.hdcp.hdcp_mutex); 2297 drm_WARN_ON(&i915->drm, i915->display.hdcp.comp_added); 2298 2299 i915->display.hdcp.comp_added = true; 2300 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 2301 if (intel_hdcp_gsc_cs_required(i915)) 2302 ret = intel_hdcp_gsc_init(i915); 2303 else 2304 ret = component_add_typed(i915->drm.dev, &i915_hdcp_ops, 2305 I915_COMPONENT_HDCP); 2306 2307 if (ret < 0) { 2308 drm_dbg_kms(&i915->drm, "Failed at fw component add(%d)\n", 2309 ret); 2310 mutex_lock(&i915->display.hdcp.hdcp_mutex); 2311 i915->display.hdcp.comp_added = false; 2312 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 2313 return; 2314 } 2315 } 2316 2317 static void intel_hdcp2_init(struct intel_connector *connector, 2318 struct intel_digital_port *dig_port, 2319 const struct intel_hdcp_shim *shim) 2320 { 2321 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2322 struct intel_hdcp *hdcp = &connector->hdcp; 2323 int ret; 2324 2325 ret = initialize_hdcp_port_data(connector, dig_port, shim); 2326 if (ret) { 2327 drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n"); 2328 return; 2329 } 2330 2331 hdcp->hdcp2_supported = true; 2332 } 2333 2334 int intel_hdcp_init(struct intel_connector *connector, 2335 struct intel_digital_port *dig_port, 2336 const struct intel_hdcp_shim *shim) 2337 { 2338 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2339 struct intel_hdcp *hdcp = &connector->hdcp; 2340 int ret; 2341 2342 if (!shim) 2343 return -EINVAL; 2344 2345 if (is_hdcp2_supported(i915)) 2346 intel_hdcp2_init(connector, dig_port, shim); 2347 2348 ret = 2349 drm_connector_attach_content_protection_property(&connector->base, 2350 hdcp->hdcp2_supported); 2351 if (ret) { 2352 hdcp->hdcp2_supported = false; 2353 kfree(dig_port->hdcp_port_data.streams); 2354 return ret; 2355 } 2356 2357 hdcp->shim = shim; 2358 mutex_init(&hdcp->mutex); 2359 INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work); 2360 INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work); 2361 init_waitqueue_head(&hdcp->cp_irq_queue); 2362 2363 return 0; 2364 } 2365 2366 static int _intel_hdcp_enable(struct intel_atomic_state *state, 2367 struct intel_encoder *encoder, 2368 const struct intel_crtc_state *pipe_config, 2369 const struct drm_connector_state *conn_state) 2370 { 2371 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 2372 struct intel_connector *connector = 2373 to_intel_connector(conn_state->connector); 2374 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 2375 struct intel_hdcp *hdcp = &connector->hdcp; 2376 unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS; 2377 int ret = -EINVAL; 2378 2379 if (!hdcp->shim) 2380 return -ENOENT; 2381 2382 if (!connector->encoder) { 2383 drm_err(&i915->drm, "[CONNECTOR:%d:%s] encoder is not initialized\n", 2384 connector->base.base.id, connector->base.name); 2385 return -ENODEV; 2386 } 2387 2388 mutex_lock(&hdcp->mutex); 2389 mutex_lock(&dig_port->hdcp_mutex); 2390 drm_WARN_ON(&i915->drm, 2391 hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED); 2392 hdcp->content_type = (u8)conn_state->hdcp_content_type; 2393 2394 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) { 2395 hdcp->cpu_transcoder = pipe_config->mst_master_transcoder; 2396 hdcp->stream_transcoder = pipe_config->cpu_transcoder; 2397 } else { 2398 hdcp->cpu_transcoder = pipe_config->cpu_transcoder; 2399 hdcp->stream_transcoder = INVALID_TRANSCODER; 2400 } 2401 2402 if (DISPLAY_VER(i915) >= 12) 2403 dig_port->hdcp_port_data.hdcp_transcoder = 2404 intel_get_hdcp_transcoder(hdcp->cpu_transcoder); 2405 2406 /* 2407 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup 2408 * is capable of HDCP2.2, it is preferred to use HDCP2.2. 2409 */ 2410 if (intel_hdcp2_get_capability(connector)) { 2411 ret = _intel_hdcp2_enable(state, connector); 2412 if (!ret) 2413 check_link_interval = 2414 DRM_HDCP2_CHECK_PERIOD_MS; 2415 } 2416 2417 /* 2418 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will 2419 * be attempted. 2420 */ 2421 if (ret && intel_hdcp_get_capability(connector) && 2422 hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) { 2423 ret = intel_hdcp1_enable(connector); 2424 } 2425 2426 if (!ret) { 2427 queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 2428 check_link_interval); 2429 intel_hdcp_update_value(connector, 2430 DRM_MODE_CONTENT_PROTECTION_ENABLED, 2431 true); 2432 } 2433 2434 mutex_unlock(&dig_port->hdcp_mutex); 2435 mutex_unlock(&hdcp->mutex); 2436 return ret; 2437 } 2438 2439 void intel_hdcp_enable(struct intel_atomic_state *state, 2440 struct intel_encoder *encoder, 2441 const struct intel_crtc_state *crtc_state, 2442 const struct drm_connector_state *conn_state) 2443 { 2444 struct intel_connector *connector = 2445 to_intel_connector(conn_state->connector); 2446 struct intel_hdcp *hdcp = &connector->hdcp; 2447 2448 /* 2449 * Enable hdcp if it's desired or if userspace is enabled and 2450 * driver set its state to undesired 2451 */ 2452 if (conn_state->content_protection == 2453 DRM_MODE_CONTENT_PROTECTION_DESIRED || 2454 (conn_state->content_protection == 2455 DRM_MODE_CONTENT_PROTECTION_ENABLED && hdcp->value == 2456 DRM_MODE_CONTENT_PROTECTION_UNDESIRED)) 2457 _intel_hdcp_enable(state, encoder, crtc_state, conn_state); 2458 } 2459 2460 int intel_hdcp_disable(struct intel_connector *connector) 2461 { 2462 struct intel_digital_port *dig_port = intel_attached_dig_port(connector); 2463 struct intel_hdcp *hdcp = &connector->hdcp; 2464 int ret = 0; 2465 2466 if (!hdcp->shim) 2467 return -ENOENT; 2468 2469 mutex_lock(&hdcp->mutex); 2470 mutex_lock(&dig_port->hdcp_mutex); 2471 2472 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED) 2473 goto out; 2474 2475 intel_hdcp_update_value(connector, 2476 DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false); 2477 if (hdcp->hdcp2_encrypted) 2478 ret = _intel_hdcp2_disable(connector, false); 2479 else if (hdcp->hdcp_encrypted) 2480 ret = _intel_hdcp_disable(connector); 2481 2482 out: 2483 mutex_unlock(&dig_port->hdcp_mutex); 2484 mutex_unlock(&hdcp->mutex); 2485 cancel_delayed_work_sync(&hdcp->check_work); 2486 return ret; 2487 } 2488 2489 void intel_hdcp_update_pipe(struct intel_atomic_state *state, 2490 struct intel_encoder *encoder, 2491 const struct intel_crtc_state *crtc_state, 2492 const struct drm_connector_state *conn_state) 2493 { 2494 struct intel_connector *connector = 2495 to_intel_connector(conn_state->connector); 2496 struct intel_hdcp *hdcp = &connector->hdcp; 2497 bool content_protection_type_changed, desired_and_not_enabled = false; 2498 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2499 2500 if (!connector->hdcp.shim) 2501 return; 2502 2503 content_protection_type_changed = 2504 (conn_state->hdcp_content_type != hdcp->content_type && 2505 conn_state->content_protection != 2506 DRM_MODE_CONTENT_PROTECTION_UNDESIRED); 2507 2508 /* 2509 * During the HDCP encryption session if Type change is requested, 2510 * disable the HDCP and reenable it with new TYPE value. 2511 */ 2512 if (conn_state->content_protection == 2513 DRM_MODE_CONTENT_PROTECTION_UNDESIRED || 2514 content_protection_type_changed) 2515 intel_hdcp_disable(connector); 2516 2517 /* 2518 * Mark the hdcp state as DESIRED after the hdcp disable of type 2519 * change procedure. 2520 */ 2521 if (content_protection_type_changed) { 2522 mutex_lock(&hdcp->mutex); 2523 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED; 2524 drm_connector_get(&connector->base); 2525 queue_work(i915->unordered_wq, &hdcp->prop_work); 2526 mutex_unlock(&hdcp->mutex); 2527 } 2528 2529 if (conn_state->content_protection == 2530 DRM_MODE_CONTENT_PROTECTION_DESIRED) { 2531 mutex_lock(&hdcp->mutex); 2532 /* Avoid enabling hdcp, if it already ENABLED */ 2533 desired_and_not_enabled = 2534 hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED; 2535 mutex_unlock(&hdcp->mutex); 2536 /* 2537 * If HDCP already ENABLED and CP property is DESIRED, schedule 2538 * prop_work to update correct CP property to user space. 2539 */ 2540 if (!desired_and_not_enabled && !content_protection_type_changed) { 2541 drm_connector_get(&connector->base); 2542 queue_work(i915->unordered_wq, &hdcp->prop_work); 2543 } 2544 } 2545 2546 if (desired_and_not_enabled || content_protection_type_changed) 2547 _intel_hdcp_enable(state, encoder, crtc_state, conn_state); 2548 } 2549 2550 void intel_hdcp_component_fini(struct drm_i915_private *i915) 2551 { 2552 mutex_lock(&i915->display.hdcp.hdcp_mutex); 2553 if (!i915->display.hdcp.comp_added) { 2554 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 2555 return; 2556 } 2557 2558 i915->display.hdcp.comp_added = false; 2559 mutex_unlock(&i915->display.hdcp.hdcp_mutex); 2560 2561 if (intel_hdcp_gsc_cs_required(i915)) 2562 intel_hdcp_gsc_fini(i915); 2563 else 2564 component_del(i915->drm.dev, &i915_hdcp_ops); 2565 } 2566 2567 void intel_hdcp_cleanup(struct intel_connector *connector) 2568 { 2569 struct intel_hdcp *hdcp = &connector->hdcp; 2570 2571 if (!hdcp->shim) 2572 return; 2573 2574 /* 2575 * If the connector is registered, it's possible userspace could kick 2576 * off another HDCP enable, which would re-spawn the workers. 2577 */ 2578 drm_WARN_ON(connector->base.dev, 2579 connector->base.registration_state == DRM_CONNECTOR_REGISTERED); 2580 2581 /* 2582 * Now that the connector is not registered, check_work won't be run, 2583 * but cancel any outstanding instances of it 2584 */ 2585 cancel_delayed_work_sync(&hdcp->check_work); 2586 2587 /* 2588 * We don't cancel prop_work in the same way as check_work since it 2589 * requires connection_mutex which could be held while calling this 2590 * function. Instead, we rely on the connector references grabbed before 2591 * scheduling prop_work to ensure the connector is alive when prop_work 2592 * is run. So if we're in the destroy path (which is where this 2593 * function should be called), we're "guaranteed" that prop_work is not 2594 * active (tl;dr This Should Never Happen). 2595 */ 2596 drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work)); 2597 2598 mutex_lock(&hdcp->mutex); 2599 hdcp->shim = NULL; 2600 mutex_unlock(&hdcp->mutex); 2601 } 2602 2603 void intel_hdcp_atomic_check(struct drm_connector *connector, 2604 struct drm_connector_state *old_state, 2605 struct drm_connector_state *new_state) 2606 { 2607 u64 old_cp = old_state->content_protection; 2608 u64 new_cp = new_state->content_protection; 2609 struct drm_crtc_state *crtc_state; 2610 2611 if (!new_state->crtc) { 2612 /* 2613 * If the connector is being disabled with CP enabled, mark it 2614 * desired so it's re-enabled when the connector is brought back 2615 */ 2616 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED) 2617 new_state->content_protection = 2618 DRM_MODE_CONTENT_PROTECTION_DESIRED; 2619 return; 2620 } 2621 2622 crtc_state = drm_atomic_get_new_crtc_state(new_state->state, 2623 new_state->crtc); 2624 /* 2625 * Fix the HDCP uapi content protection state in case of modeset. 2626 * FIXME: As per HDCP content protection property uapi doc, an uevent() 2627 * need to be sent if there is transition from ENABLED->DESIRED. 2628 */ 2629 if (drm_atomic_crtc_needs_modeset(crtc_state) && 2630 (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED && 2631 new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)) 2632 new_state->content_protection = 2633 DRM_MODE_CONTENT_PROTECTION_DESIRED; 2634 2635 /* 2636 * Nothing to do if the state didn't change, or HDCP was activated since 2637 * the last commit. And also no change in hdcp content type. 2638 */ 2639 if (old_cp == new_cp || 2640 (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED && 2641 new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) { 2642 if (old_state->hdcp_content_type == 2643 new_state->hdcp_content_type) 2644 return; 2645 } 2646 2647 crtc_state->mode_changed = true; 2648 } 2649 2650 /* Handles the CP_IRQ raised from the DP HDCP sink */ 2651 void intel_hdcp_handle_cp_irq(struct intel_connector *connector) 2652 { 2653 struct intel_hdcp *hdcp = &connector->hdcp; 2654 struct drm_i915_private *i915 = to_i915(connector->base.dev); 2655 2656 if (!hdcp->shim) 2657 return; 2658 2659 atomic_inc(&connector->hdcp.cp_irq_count); 2660 wake_up_all(&connector->hdcp.cp_irq_queue); 2661 2662 queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 0); 2663 } 2664