xref: /linux/drivers/gpu/drm/i915/display/intel_hdcp.c (revision 52a5a22d8afe3bd195f7b470c7535c63717f5ff7)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <seanpaul@chromium.org>
8  * Ramalingam C <ramalingam.c@intel.com>
9  */
10 
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14 
15 #include <drm/display/drm_hdcp_helper.h>
16 #include <drm/intel/i915_component.h>
17 
18 #include "i915_drv.h"
19 #include "i915_reg.h"
20 #include "intel_connector.h"
21 #include "intel_de.h"
22 #include "intel_display_power.h"
23 #include "intel_display_power_well.h"
24 #include "intel_display_types.h"
25 #include "intel_hdcp.h"
26 #include "intel_hdcp_gsc.h"
27 #include "intel_hdcp_regs.h"
28 #include "intel_hdcp_shim.h"
29 #include "intel_pcode.h"
30 
31 #define KEY_LOAD_TRIES	5
32 #define HDCP2_LC_RETRY_CNT			3
33 
34 /* WA: 16022217614 */
35 static void
36 intel_hdcp_disable_hdcp_line_rekeying(struct intel_encoder *encoder,
37 				      struct intel_hdcp *hdcp)
38 {
39 	struct intel_display *display = to_intel_display(encoder);
40 
41 	/* Here we assume HDMI is in TMDS mode of operation */
42 	if (encoder->type != INTEL_OUTPUT_HDMI)
43 		return;
44 
45 	if (DISPLAY_VER(display) >= 14) {
46 		if (IS_DISPLAY_VERx100_STEP(display, 1400, STEP_D0, STEP_FOREVER))
47 			intel_de_rmw(display, MTL_CHICKEN_TRANS(hdcp->cpu_transcoder),
48 				     0, HDCP_LINE_REKEY_DISABLE);
49 		else if (IS_DISPLAY_VERx100_STEP(display, 1401, STEP_B0, STEP_FOREVER) ||
50 			 IS_DISPLAY_VERx100_STEP(display, 2000, STEP_B0, STEP_FOREVER))
51 			intel_de_rmw(display,
52 				     TRANS_DDI_FUNC_CTL(display, hdcp->cpu_transcoder),
53 				     0, TRANS_DDI_HDCP_LINE_REKEY_DISABLE);
54 	}
55 }
56 
57 static int intel_conn_to_vcpi(struct intel_atomic_state *state,
58 			      struct intel_connector *connector)
59 {
60 	struct drm_dp_mst_topology_mgr *mgr;
61 	struct drm_dp_mst_atomic_payload *payload;
62 	struct drm_dp_mst_topology_state *mst_state;
63 	int vcpi = 0;
64 
65 	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
66 	if (!connector->port)
67 		return 0;
68 	mgr = connector->port->mgr;
69 
70 	drm_modeset_lock(&mgr->base.lock, state->base.acquire_ctx);
71 	mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
72 	payload = drm_atomic_get_mst_payload_state(mst_state, connector->port);
73 	if (drm_WARN_ON(mgr->dev, !payload))
74 		goto out;
75 
76 	vcpi = payload->vcpi;
77 	if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
78 		vcpi = 0;
79 		goto out;
80 	}
81 out:
82 	return vcpi;
83 }
84 
85 /*
86  * intel_hdcp_required_content_stream selects the most highest common possible HDCP
87  * content_type for all streams in DP MST topology because security f/w doesn't
88  * have any provision to mark content_type for each stream separately, it marks
89  * all available streams with the content_type proivided at the time of port
90  * authentication. This may prohibit the userspace to use type1 content on
91  * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
92  * DP MST topology. Though it is not compulsory, security fw should change its
93  * policy to mark different content_types for different streams.
94  */
95 static int
96 intel_hdcp_required_content_stream(struct intel_atomic_state *state,
97 				   struct intel_digital_port *dig_port)
98 {
99 	struct intel_display *display = to_intel_display(state);
100 	struct drm_connector_list_iter conn_iter;
101 	struct intel_digital_port *conn_dig_port;
102 	struct intel_connector *connector;
103 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
104 	bool enforce_type0 = false;
105 	int k;
106 
107 	if (dig_port->hdcp_auth_status)
108 		return 0;
109 
110 	data->k = 0;
111 
112 	if (!dig_port->hdcp_mst_type1_capable)
113 		enforce_type0 = true;
114 
115 	drm_connector_list_iter_begin(display->drm, &conn_iter);
116 	for_each_intel_connector_iter(connector, &conn_iter) {
117 		if (connector->base.status == connector_status_disconnected)
118 			continue;
119 
120 		if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
121 			continue;
122 
123 		conn_dig_port = intel_attached_dig_port(connector);
124 		if (conn_dig_port != dig_port)
125 			continue;
126 
127 		data->streams[data->k].stream_id =
128 			intel_conn_to_vcpi(state, connector);
129 		data->k++;
130 
131 		/* if there is only one active stream */
132 		if (dig_port->dp.active_mst_links <= 1)
133 			break;
134 	}
135 	drm_connector_list_iter_end(&conn_iter);
136 
137 	if (drm_WARN_ON(display->drm, data->k > INTEL_NUM_PIPES(display) || data->k == 0))
138 		return -EINVAL;
139 
140 	/*
141 	 * Apply common protection level across all streams in DP MST Topology.
142 	 * Use highest supported content type for all streams in DP MST Topology.
143 	 */
144 	for (k = 0; k < data->k; k++)
145 		data->streams[k].stream_type =
146 			enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
147 
148 	return 0;
149 }
150 
151 static int intel_hdcp_prepare_streams(struct intel_atomic_state *state,
152 				      struct intel_connector *connector)
153 {
154 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
155 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
156 	struct intel_hdcp *hdcp = &connector->hdcp;
157 
158 	if (intel_encoder_is_mst(intel_attached_encoder(connector)))
159 		return intel_hdcp_required_content_stream(state, dig_port);
160 
161 	data->k = 1;
162 	data->streams[0].stream_id = 0;
163 	data->streams[0].stream_type = hdcp->content_type;
164 
165 	return 0;
166 }
167 
168 static
169 bool intel_hdcp_is_ksv_valid(u8 *ksv)
170 {
171 	int i, ones = 0;
172 	/* KSV has 20 1's and 20 0's */
173 	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
174 		ones += hweight8(ksv[i]);
175 	if (ones != 20)
176 		return false;
177 
178 	return true;
179 }
180 
181 static
182 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
183 			       const struct intel_hdcp_shim *shim, u8 *bksv)
184 {
185 	struct intel_display *display = to_intel_display(dig_port);
186 	int ret, i, tries = 2;
187 
188 	/* HDCP spec states that we must retry the bksv if it is invalid */
189 	for (i = 0; i < tries; i++) {
190 		ret = shim->read_bksv(dig_port, bksv);
191 		if (ret)
192 			return ret;
193 		if (intel_hdcp_is_ksv_valid(bksv))
194 			break;
195 	}
196 	if (i == tries) {
197 		drm_dbg_kms(display->drm, "Bksv is invalid\n");
198 		return -ENODEV;
199 	}
200 
201 	return 0;
202 }
203 
204 /* Is HDCP1.4 capable on Platform and Sink */
205 bool intel_hdcp_get_capability(struct intel_connector *connector)
206 {
207 	struct intel_digital_port *dig_port;
208 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
209 	bool capable = false;
210 	u8 bksv[5];
211 
212 	if (!intel_attached_encoder(connector))
213 		return capable;
214 
215 	dig_port = intel_attached_dig_port(connector);
216 
217 	if (!shim)
218 		return capable;
219 
220 	if (shim->hdcp_get_capability) {
221 		shim->hdcp_get_capability(dig_port, &capable);
222 	} else {
223 		if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
224 			capable = true;
225 	}
226 
227 	return capable;
228 }
229 
230 /*
231  * Check if the source has all the building blocks ready to make
232  * HDCP 2.2 work
233  */
234 static bool intel_hdcp2_prerequisite(struct intel_connector *connector)
235 {
236 	struct intel_display *display = to_intel_display(connector);
237 	struct intel_hdcp *hdcp = &connector->hdcp;
238 
239 	/* I915 support for HDCP2.2 */
240 	if (!hdcp->hdcp2_supported)
241 		return false;
242 
243 	/* If MTL+ make sure gsc is loaded and proxy is setup */
244 	if (intel_hdcp_gsc_cs_required(display)) {
245 		if (!intel_hdcp_gsc_check_status(display))
246 			return false;
247 	}
248 
249 	/* MEI/GSC interface is solid depending on which is used */
250 	mutex_lock(&display->hdcp.hdcp_mutex);
251 	if (!display->hdcp.comp_added || !display->hdcp.arbiter) {
252 		mutex_unlock(&display->hdcp.hdcp_mutex);
253 		return false;
254 	}
255 	mutex_unlock(&display->hdcp.hdcp_mutex);
256 
257 	return true;
258 }
259 
260 /* Is HDCP2.2 capable on Platform and Sink */
261 bool intel_hdcp2_get_capability(struct intel_connector *connector)
262 {
263 	struct intel_hdcp *hdcp = &connector->hdcp;
264 	bool capable = false;
265 
266 	if (!intel_hdcp2_prerequisite(connector))
267 		return false;
268 
269 	/* Sink's capability for HDCP2.2 */
270 	hdcp->shim->hdcp_2_2_get_capability(connector, &capable);
271 
272 	return capable;
273 }
274 
275 void intel_hdcp_get_remote_capability(struct intel_connector *connector,
276 				      bool *hdcp_capable,
277 				      bool *hdcp2_capable)
278 {
279 	struct intel_hdcp *hdcp = &connector->hdcp;
280 
281 	if (!hdcp->shim->get_remote_hdcp_capability)
282 		return;
283 
284 	hdcp->shim->get_remote_hdcp_capability(connector, hdcp_capable,
285 					       hdcp2_capable);
286 
287 	if (!intel_hdcp2_prerequisite(connector))
288 		*hdcp2_capable = false;
289 }
290 
291 static bool intel_hdcp_in_use(struct intel_display *display,
292 			      enum transcoder cpu_transcoder, enum port port)
293 {
294 	return intel_de_read(display,
295 			     HDCP_STATUS(display, cpu_transcoder, port)) &
296 		HDCP_STATUS_ENC;
297 }
298 
299 static bool intel_hdcp2_in_use(struct intel_display *display,
300 			       enum transcoder cpu_transcoder, enum port port)
301 {
302 	return intel_de_read(display,
303 			     HDCP2_STATUS(display, cpu_transcoder, port)) &
304 		LINK_ENCRYPTION_STATUS;
305 }
306 
307 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
308 				    const struct intel_hdcp_shim *shim)
309 {
310 	int ret, read_ret;
311 	bool ksv_ready;
312 
313 	/* Poll for ksv list ready (spec says max time allowed is 5s) */
314 	ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
315 							 &ksv_ready),
316 			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
317 			 100 * 1000);
318 	if (ret)
319 		return ret;
320 	if (read_ret)
321 		return read_ret;
322 	if (!ksv_ready)
323 		return -ETIMEDOUT;
324 
325 	return 0;
326 }
327 
328 static bool hdcp_key_loadable(struct intel_display *display)
329 {
330 	struct drm_i915_private *i915 = to_i915(display->drm);
331 	enum i915_power_well_id id;
332 	intel_wakeref_t wakeref;
333 	bool enabled = false;
334 
335 	/*
336 	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
337 	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
338 	 */
339 	if (IS_HASWELL(i915) || IS_BROADWELL(i915))
340 		id = HSW_DISP_PW_GLOBAL;
341 	else
342 		id = SKL_DISP_PW_1;
343 
344 	/* PG1 (power well #1) needs to be enabled */
345 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
346 		enabled = intel_display_power_well_is_enabled(i915, id);
347 
348 	/*
349 	 * Another req for hdcp key loadability is enabled state of pll for
350 	 * cdclk. Without active crtc we wont land here. So we are assuming that
351 	 * cdclk is already on.
352 	 */
353 
354 	return enabled;
355 }
356 
357 static void intel_hdcp_clear_keys(struct intel_display *display)
358 {
359 	intel_de_write(display, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
360 	intel_de_write(display, HDCP_KEY_STATUS,
361 		       HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
362 }
363 
364 static int intel_hdcp_load_keys(struct intel_display *display)
365 {
366 	struct drm_i915_private *i915 = to_i915(display->drm);
367 	int ret;
368 	u32 val;
369 
370 	val = intel_de_read(display, HDCP_KEY_STATUS);
371 	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
372 		return 0;
373 
374 	/*
375 	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
376 	 * out of reset. So if Key is not already loaded, its an error state.
377 	 */
378 	if (IS_HASWELL(i915) || IS_BROADWELL(i915))
379 		if (!(intel_de_read(display, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
380 			return -ENXIO;
381 
382 	/*
383 	 * Initiate loading the HDCP key from fuses.
384 	 *
385 	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
386 	 * version 9 platforms (minus BXT) differ in the key load trigger
387 	 * process from other platforms. These platforms use the GT Driver
388 	 * Mailbox interface.
389 	 */
390 	if (DISPLAY_VER(display) == 9 && !IS_BROXTON(i915)) {
391 		ret = snb_pcode_write(&i915->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
392 		if (ret) {
393 			drm_err(display->drm,
394 				"Failed to initiate HDCP key load (%d)\n",
395 				ret);
396 			return ret;
397 		}
398 	} else {
399 		intel_de_write(display, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
400 	}
401 
402 	/* Wait for the keys to load (500us) */
403 	ret = intel_de_wait_custom(display, HDCP_KEY_STATUS,
404 				   HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
405 				   10, 1, &val);
406 	if (ret)
407 		return ret;
408 	else if (!(val & HDCP_KEY_LOAD_STATUS))
409 		return -ENXIO;
410 
411 	/* Send Aksv over to PCH display for use in authentication */
412 	intel_de_write(display, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
413 
414 	return 0;
415 }
416 
417 /* Returns updated SHA-1 index */
418 static int intel_write_sha_text(struct intel_display *display, u32 sha_text)
419 {
420 	intel_de_write(display, HDCP_SHA_TEXT, sha_text);
421 	if (intel_de_wait_for_set(display, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
422 		drm_err(display->drm, "Timed out waiting for SHA1 ready\n");
423 		return -ETIMEDOUT;
424 	}
425 	return 0;
426 }
427 
428 static
429 u32 intel_hdcp_get_repeater_ctl(struct intel_display *display,
430 				enum transcoder cpu_transcoder, enum port port)
431 {
432 	if (DISPLAY_VER(display) >= 12) {
433 		switch (cpu_transcoder) {
434 		case TRANSCODER_A:
435 			return HDCP_TRANSA_REP_PRESENT |
436 			       HDCP_TRANSA_SHA1_M0;
437 		case TRANSCODER_B:
438 			return HDCP_TRANSB_REP_PRESENT |
439 			       HDCP_TRANSB_SHA1_M0;
440 		case TRANSCODER_C:
441 			return HDCP_TRANSC_REP_PRESENT |
442 			       HDCP_TRANSC_SHA1_M0;
443 		case TRANSCODER_D:
444 			return HDCP_TRANSD_REP_PRESENT |
445 			       HDCP_TRANSD_SHA1_M0;
446 		default:
447 			drm_err(display->drm, "Unknown transcoder %d\n",
448 				cpu_transcoder);
449 			return 0;
450 		}
451 	}
452 
453 	switch (port) {
454 	case PORT_A:
455 		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
456 	case PORT_B:
457 		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
458 	case PORT_C:
459 		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
460 	case PORT_D:
461 		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
462 	case PORT_E:
463 		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
464 	default:
465 		drm_err(display->drm, "Unknown port %d\n", port);
466 		return 0;
467 	}
468 }
469 
470 static
471 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
472 				const struct intel_hdcp_shim *shim,
473 				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
474 {
475 	struct intel_display *display = to_intel_display(connector);
476 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
477 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
478 	enum port port = dig_port->base.port;
479 	u32 vprime, sha_text, sha_leftovers, rep_ctl;
480 	int ret, i, j, sha_idx;
481 
482 	/* Process V' values from the receiver */
483 	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
484 		ret = shim->read_v_prime_part(dig_port, i, &vprime);
485 		if (ret)
486 			return ret;
487 		intel_de_write(display, HDCP_SHA_V_PRIME(i), vprime);
488 	}
489 
490 	/*
491 	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
492 	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
493 	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
494 	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
495 	 * index will keep track of our progress through the 64 bytes as well as
496 	 * helping us work the 40-bit KSVs through our 32-bit register.
497 	 *
498 	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
499 	 */
500 	sha_idx = 0;
501 	sha_text = 0;
502 	sha_leftovers = 0;
503 	rep_ctl = intel_hdcp_get_repeater_ctl(display, cpu_transcoder, port);
504 	intel_de_write(display, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
505 	for (i = 0; i < num_downstream; i++) {
506 		unsigned int sha_empty;
507 		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
508 
509 		/* Fill up the empty slots in sha_text and write it out */
510 		sha_empty = sizeof(sha_text) - sha_leftovers;
511 		for (j = 0; j < sha_empty; j++) {
512 			u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
513 			sha_text |= ksv[j] << off;
514 		}
515 
516 		ret = intel_write_sha_text(display, sha_text);
517 		if (ret < 0)
518 			return ret;
519 
520 		/* Programming guide writes this every 64 bytes */
521 		sha_idx += sizeof(sha_text);
522 		if (!(sha_idx % 64))
523 			intel_de_write(display, HDCP_REP_CTL,
524 				       rep_ctl | HDCP_SHA1_TEXT_32);
525 
526 		/* Store the leftover bytes from the ksv in sha_text */
527 		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
528 		sha_text = 0;
529 		for (j = 0; j < sha_leftovers; j++)
530 			sha_text |= ksv[sha_empty + j] <<
531 					((sizeof(sha_text) - j - 1) * 8);
532 
533 		/*
534 		 * If we still have room in sha_text for more data, continue.
535 		 * Otherwise, write it out immediately.
536 		 */
537 		if (sizeof(sha_text) > sha_leftovers)
538 			continue;
539 
540 		ret = intel_write_sha_text(display, sha_text);
541 		if (ret < 0)
542 			return ret;
543 		sha_leftovers = 0;
544 		sha_text = 0;
545 		sha_idx += sizeof(sha_text);
546 	}
547 
548 	/*
549 	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
550 	 * bytes are leftover from the last ksv, we might be able to fit them
551 	 * all in sha_text (first 2 cases), or we might need to split them up
552 	 * into 2 writes (last 2 cases).
553 	 */
554 	if (sha_leftovers == 0) {
555 		/* Write 16 bits of text, 16 bits of M0 */
556 		intel_de_write(display, HDCP_REP_CTL,
557 			       rep_ctl | HDCP_SHA1_TEXT_16);
558 		ret = intel_write_sha_text(display,
559 					   bstatus[0] << 8 | bstatus[1]);
560 		if (ret < 0)
561 			return ret;
562 		sha_idx += sizeof(sha_text);
563 
564 		/* Write 32 bits of M0 */
565 		intel_de_write(display, HDCP_REP_CTL,
566 			       rep_ctl | HDCP_SHA1_TEXT_0);
567 		ret = intel_write_sha_text(display, 0);
568 		if (ret < 0)
569 			return ret;
570 		sha_idx += sizeof(sha_text);
571 
572 		/* Write 16 bits of M0 */
573 		intel_de_write(display, HDCP_REP_CTL,
574 			       rep_ctl | HDCP_SHA1_TEXT_16);
575 		ret = intel_write_sha_text(display, 0);
576 		if (ret < 0)
577 			return ret;
578 		sha_idx += sizeof(sha_text);
579 
580 	} else if (sha_leftovers == 1) {
581 		/* Write 24 bits of text, 8 bits of M0 */
582 		intel_de_write(display, HDCP_REP_CTL,
583 			       rep_ctl | HDCP_SHA1_TEXT_24);
584 		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
585 		/* Only 24-bits of data, must be in the LSB */
586 		sha_text = (sha_text & 0xffffff00) >> 8;
587 		ret = intel_write_sha_text(display, sha_text);
588 		if (ret < 0)
589 			return ret;
590 		sha_idx += sizeof(sha_text);
591 
592 		/* Write 32 bits of M0 */
593 		intel_de_write(display, HDCP_REP_CTL,
594 			       rep_ctl | HDCP_SHA1_TEXT_0);
595 		ret = intel_write_sha_text(display, 0);
596 		if (ret < 0)
597 			return ret;
598 		sha_idx += sizeof(sha_text);
599 
600 		/* Write 24 bits of M0 */
601 		intel_de_write(display, HDCP_REP_CTL,
602 			       rep_ctl | HDCP_SHA1_TEXT_8);
603 		ret = intel_write_sha_text(display, 0);
604 		if (ret < 0)
605 			return ret;
606 		sha_idx += sizeof(sha_text);
607 
608 	} else if (sha_leftovers == 2) {
609 		/* Write 32 bits of text */
610 		intel_de_write(display, HDCP_REP_CTL,
611 			       rep_ctl | HDCP_SHA1_TEXT_32);
612 		sha_text |= bstatus[0] << 8 | bstatus[1];
613 		ret = intel_write_sha_text(display, sha_text);
614 		if (ret < 0)
615 			return ret;
616 		sha_idx += sizeof(sha_text);
617 
618 		/* Write 64 bits of M0 */
619 		intel_de_write(display, HDCP_REP_CTL,
620 			       rep_ctl | HDCP_SHA1_TEXT_0);
621 		for (i = 0; i < 2; i++) {
622 			ret = intel_write_sha_text(display, 0);
623 			if (ret < 0)
624 				return ret;
625 			sha_idx += sizeof(sha_text);
626 		}
627 
628 		/*
629 		 * Terminate the SHA-1 stream by hand. For the other leftover
630 		 * cases this is appended by the hardware.
631 		 */
632 		intel_de_write(display, HDCP_REP_CTL,
633 			       rep_ctl | HDCP_SHA1_TEXT_32);
634 		sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
635 		ret = intel_write_sha_text(display, sha_text);
636 		if (ret < 0)
637 			return ret;
638 		sha_idx += sizeof(sha_text);
639 	} else if (sha_leftovers == 3) {
640 		/* Write 32 bits of text (filled from LSB) */
641 		intel_de_write(display, HDCP_REP_CTL,
642 			       rep_ctl | HDCP_SHA1_TEXT_32);
643 		sha_text |= bstatus[0];
644 		ret = intel_write_sha_text(display, sha_text);
645 		if (ret < 0)
646 			return ret;
647 		sha_idx += sizeof(sha_text);
648 
649 		/* Write 8 bits of text (filled from LSB), 24 bits of M0 */
650 		intel_de_write(display, HDCP_REP_CTL,
651 			       rep_ctl | HDCP_SHA1_TEXT_8);
652 		ret = intel_write_sha_text(display, bstatus[1]);
653 		if (ret < 0)
654 			return ret;
655 		sha_idx += sizeof(sha_text);
656 
657 		/* Write 32 bits of M0 */
658 		intel_de_write(display, HDCP_REP_CTL,
659 			       rep_ctl | HDCP_SHA1_TEXT_0);
660 		ret = intel_write_sha_text(display, 0);
661 		if (ret < 0)
662 			return ret;
663 		sha_idx += sizeof(sha_text);
664 
665 		/* Write 8 bits of M0 */
666 		intel_de_write(display, HDCP_REP_CTL,
667 			       rep_ctl | HDCP_SHA1_TEXT_24);
668 		ret = intel_write_sha_text(display, 0);
669 		if (ret < 0)
670 			return ret;
671 		sha_idx += sizeof(sha_text);
672 	} else {
673 		drm_dbg_kms(display->drm, "Invalid number of leftovers %d\n",
674 			    sha_leftovers);
675 		return -EINVAL;
676 	}
677 
678 	intel_de_write(display, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
679 	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
680 	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
681 		ret = intel_write_sha_text(display, 0);
682 		if (ret < 0)
683 			return ret;
684 		sha_idx += sizeof(sha_text);
685 	}
686 
687 	/*
688 	 * Last write gets the length of the concatenation in bits. That is:
689 	 *  - 5 bytes per device
690 	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
691 	 */
692 	sha_text = (num_downstream * 5 + 10) * 8;
693 	ret = intel_write_sha_text(display, sha_text);
694 	if (ret < 0)
695 		return ret;
696 
697 	/* Tell the HW we're done with the hash and wait for it to ACK */
698 	intel_de_write(display, HDCP_REP_CTL,
699 		       rep_ctl | HDCP_SHA1_COMPLETE_HASH);
700 	if (intel_de_wait_for_set(display, HDCP_REP_CTL,
701 				  HDCP_SHA1_COMPLETE, 1)) {
702 		drm_err(display->drm, "Timed out waiting for SHA1 complete\n");
703 		return -ETIMEDOUT;
704 	}
705 	if (!(intel_de_read(display, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
706 		drm_dbg_kms(display->drm, "SHA-1 mismatch, HDCP failed\n");
707 		return -ENXIO;
708 	}
709 
710 	return 0;
711 }
712 
713 /* Implements Part 2 of the HDCP authorization procedure */
714 static
715 int intel_hdcp_auth_downstream(struct intel_connector *connector)
716 {
717 	struct intel_display *display = to_intel_display(connector);
718 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
719 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
720 	u8 bstatus[2], num_downstream, *ksv_fifo;
721 	int ret, i, tries = 3;
722 
723 	ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
724 	if (ret) {
725 		drm_dbg_kms(display->drm,
726 			    "KSV list failed to become ready (%d)\n", ret);
727 		return ret;
728 	}
729 
730 	ret = shim->read_bstatus(dig_port, bstatus);
731 	if (ret)
732 		return ret;
733 
734 	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
735 	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
736 		drm_dbg_kms(display->drm, "Max Topology Limit Exceeded\n");
737 		return -EPERM;
738 	}
739 
740 	/*
741 	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
742 	 * the HDCP encryption. That implies that repeater can't have its own
743 	 * display. As there is no consumption of encrypted content in the
744 	 * repeater with 0 downstream devices, we are failing the
745 	 * authentication.
746 	 */
747 	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
748 	if (num_downstream == 0) {
749 		drm_dbg_kms(display->drm,
750 			    "Repeater with zero downstream devices\n");
751 		return -EINVAL;
752 	}
753 
754 	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
755 	if (!ksv_fifo) {
756 		drm_dbg_kms(display->drm, "Out of mem: ksv_fifo\n");
757 		return -ENOMEM;
758 	}
759 
760 	ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
761 	if (ret)
762 		goto err;
763 
764 	if (drm_hdcp_check_ksvs_revoked(display->drm, ksv_fifo,
765 					num_downstream) > 0) {
766 		drm_err(display->drm, "Revoked Ksv(s) in ksv_fifo\n");
767 		ret = -EPERM;
768 		goto err;
769 	}
770 
771 	/*
772 	 * When V prime mismatches, DP Spec mandates re-read of
773 	 * V prime atleast twice.
774 	 */
775 	for (i = 0; i < tries; i++) {
776 		ret = intel_hdcp_validate_v_prime(connector, shim,
777 						  ksv_fifo, num_downstream,
778 						  bstatus);
779 		if (!ret)
780 			break;
781 	}
782 
783 	if (i == tries) {
784 		drm_dbg_kms(display->drm,
785 			    "V Prime validation failed.(%d)\n", ret);
786 		goto err;
787 	}
788 
789 	drm_dbg_kms(display->drm, "HDCP is enabled (%d downstream devices)\n",
790 		    num_downstream);
791 	ret = 0;
792 err:
793 	kfree(ksv_fifo);
794 	return ret;
795 }
796 
797 /* Implements Part 1 of the HDCP authorization procedure */
798 static int intel_hdcp_auth(struct intel_connector *connector)
799 {
800 	struct intel_display *display = to_intel_display(connector);
801 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
802 	struct intel_hdcp *hdcp = &connector->hdcp;
803 	const struct intel_hdcp_shim *shim = hdcp->shim;
804 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
805 	enum port port = dig_port->base.port;
806 	unsigned long r0_prime_gen_start;
807 	int ret, i, tries = 2;
808 	union {
809 		u32 reg[2];
810 		u8 shim[DRM_HDCP_AN_LEN];
811 	} an;
812 	union {
813 		u32 reg[2];
814 		u8 shim[DRM_HDCP_KSV_LEN];
815 	} bksv;
816 	union {
817 		u32 reg;
818 		u8 shim[DRM_HDCP_RI_LEN];
819 	} ri;
820 	bool repeater_present, hdcp_capable;
821 
822 	/*
823 	 * Detects whether the display is HDCP capable. Although we check for
824 	 * valid Bksv below, the HDCP over DP spec requires that we check
825 	 * whether the display supports HDCP before we write An. For HDMI
826 	 * displays, this is not necessary.
827 	 */
828 	if (shim->hdcp_get_capability) {
829 		ret = shim->hdcp_get_capability(dig_port, &hdcp_capable);
830 		if (ret)
831 			return ret;
832 		if (!hdcp_capable) {
833 			drm_dbg_kms(display->drm,
834 				    "Panel is not HDCP capable\n");
835 			return -EINVAL;
836 		}
837 	}
838 
839 	/* Initialize An with 2 random values and acquire it */
840 	for (i = 0; i < 2; i++)
841 		intel_de_write(display,
842 			       HDCP_ANINIT(display, cpu_transcoder, port),
843 			       get_random_u32());
844 	intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port),
845 		       HDCP_CONF_CAPTURE_AN);
846 
847 	/* Wait for An to be acquired */
848 	if (intel_de_wait_for_set(display,
849 				  HDCP_STATUS(display, cpu_transcoder, port),
850 				  HDCP_STATUS_AN_READY, 1)) {
851 		drm_err(display->drm, "Timed out waiting for An\n");
852 		return -ETIMEDOUT;
853 	}
854 
855 	an.reg[0] = intel_de_read(display,
856 				  HDCP_ANLO(display, cpu_transcoder, port));
857 	an.reg[1] = intel_de_read(display,
858 				  HDCP_ANHI(display, cpu_transcoder, port));
859 	ret = shim->write_an_aksv(dig_port, an.shim);
860 	if (ret)
861 		return ret;
862 
863 	r0_prime_gen_start = jiffies;
864 
865 	memset(&bksv, 0, sizeof(bksv));
866 
867 	ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
868 	if (ret < 0)
869 		return ret;
870 
871 	if (drm_hdcp_check_ksvs_revoked(display->drm, bksv.shim, 1) > 0) {
872 		drm_err(display->drm, "BKSV is revoked\n");
873 		return -EPERM;
874 	}
875 
876 	intel_de_write(display, HDCP_BKSVLO(display, cpu_transcoder, port),
877 		       bksv.reg[0]);
878 	intel_de_write(display, HDCP_BKSVHI(display, cpu_transcoder, port),
879 		       bksv.reg[1]);
880 
881 	ret = shim->repeater_present(dig_port, &repeater_present);
882 	if (ret)
883 		return ret;
884 	if (repeater_present)
885 		intel_de_write(display, HDCP_REP_CTL,
886 			       intel_hdcp_get_repeater_ctl(display, cpu_transcoder, port));
887 
888 	ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
889 	if (ret)
890 		return ret;
891 
892 	intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port),
893 		       HDCP_CONF_AUTH_AND_ENC);
894 
895 	/* Wait for R0 ready */
896 	if (wait_for(intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)) &
897 		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
898 		drm_err(display->drm, "Timed out waiting for R0 ready\n");
899 		return -ETIMEDOUT;
900 	}
901 
902 	/*
903 	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
904 	 * some monitors can take longer than this. We'll set the timeout at
905 	 * 300ms just to be sure.
906 	 *
907 	 * On DP, there's an R0_READY bit available but no such bit
908 	 * exists on HDMI. Since the upper-bound is the same, we'll just do
909 	 * the stupid thing instead of polling on one and not the other.
910 	 */
911 	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
912 
913 	tries = 3;
914 
915 	/*
916 	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
917 	 * of R0 mismatch.
918 	 */
919 	for (i = 0; i < tries; i++) {
920 		ri.reg = 0;
921 		ret = shim->read_ri_prime(dig_port, ri.shim);
922 		if (ret)
923 			return ret;
924 		intel_de_write(display,
925 			       HDCP_RPRIME(display, cpu_transcoder, port),
926 			       ri.reg);
927 
928 		/* Wait for Ri prime match */
929 		if (!wait_for(intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)) &
930 			      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
931 			break;
932 	}
933 
934 	if (i == tries) {
935 		drm_dbg_kms(display->drm,
936 			    "Timed out waiting for Ri prime match (%x)\n",
937 			    intel_de_read(display,
938 					  HDCP_STATUS(display, cpu_transcoder, port)));
939 		return -ETIMEDOUT;
940 	}
941 
942 	/* Wait for encryption confirmation */
943 	if (intel_de_wait_for_set(display,
944 				  HDCP_STATUS(display, cpu_transcoder, port),
945 				  HDCP_STATUS_ENC,
946 				  HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
947 		drm_err(display->drm, "Timed out waiting for encryption\n");
948 		return -ETIMEDOUT;
949 	}
950 
951 	/* DP MST Auth Part 1 Step 2.a and Step 2.b */
952 	if (shim->stream_encryption) {
953 		ret = shim->stream_encryption(connector, true);
954 		if (ret) {
955 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 1.4 stream enc\n",
956 				connector->base.base.id, connector->base.name);
957 			return ret;
958 		}
959 		drm_dbg_kms(display->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
960 			    transcoder_name(hdcp->stream_transcoder));
961 	}
962 
963 	if (repeater_present)
964 		return intel_hdcp_auth_downstream(connector);
965 
966 	drm_dbg_kms(display->drm, "HDCP is enabled (no repeater present)\n");
967 	return 0;
968 }
969 
970 static int _intel_hdcp_disable(struct intel_connector *connector)
971 {
972 	struct intel_display *display = to_intel_display(connector);
973 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
974 	struct intel_hdcp *hdcp = &connector->hdcp;
975 	enum port port = dig_port->base.port;
976 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
977 	u32 repeater_ctl;
978 	int ret;
979 
980 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP is being disabled...\n",
981 		    connector->base.base.id, connector->base.name);
982 
983 	if (hdcp->shim->stream_encryption) {
984 		ret = hdcp->shim->stream_encryption(connector, false);
985 		if (ret) {
986 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 1.4 stream enc\n",
987 				connector->base.base.id, connector->base.name);
988 			return ret;
989 		}
990 		drm_dbg_kms(display->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
991 			    transcoder_name(hdcp->stream_transcoder));
992 		/*
993 		 * If there are other connectors on this port using HDCP,
994 		 * don't disable it until it disabled HDCP encryption for
995 		 * all connectors in MST topology.
996 		 */
997 		if (dig_port->num_hdcp_streams > 0)
998 			return 0;
999 	}
1000 
1001 	hdcp->hdcp_encrypted = false;
1002 	intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port), 0);
1003 	if (intel_de_wait_for_clear(display,
1004 				    HDCP_STATUS(display, cpu_transcoder, port),
1005 				    ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
1006 		drm_err(display->drm,
1007 			"Failed to disable HDCP, timeout clearing status\n");
1008 		return -ETIMEDOUT;
1009 	}
1010 
1011 	repeater_ctl = intel_hdcp_get_repeater_ctl(display, cpu_transcoder,
1012 						   port);
1013 	intel_de_rmw(display, HDCP_REP_CTL, repeater_ctl, 0);
1014 
1015 	ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
1016 	if (ret) {
1017 		drm_err(display->drm, "Failed to disable HDCP signalling\n");
1018 		return ret;
1019 	}
1020 
1021 	drm_dbg_kms(display->drm, "HDCP is disabled\n");
1022 	return 0;
1023 }
1024 
1025 static int intel_hdcp1_enable(struct intel_connector *connector)
1026 {
1027 	struct intel_display *display = to_intel_display(connector);
1028 	struct intel_hdcp *hdcp = &connector->hdcp;
1029 	int i, ret, tries = 3;
1030 
1031 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP is being enabled...\n",
1032 		    connector->base.base.id, connector->base.name);
1033 
1034 	if (!hdcp_key_loadable(display)) {
1035 		drm_err(display->drm, "HDCP key Load is not possible\n");
1036 		return -ENXIO;
1037 	}
1038 
1039 	for (i = 0; i < KEY_LOAD_TRIES; i++) {
1040 		ret = intel_hdcp_load_keys(display);
1041 		if (!ret)
1042 			break;
1043 		intel_hdcp_clear_keys(display);
1044 	}
1045 	if (ret) {
1046 		drm_err(display->drm, "Could not load HDCP keys, (%d)\n",
1047 			ret);
1048 		return ret;
1049 	}
1050 
1051 	/* Incase of authentication failures, HDCP spec expects reauth. */
1052 	for (i = 0; i < tries; i++) {
1053 		ret = intel_hdcp_auth(connector);
1054 		if (!ret) {
1055 			hdcp->hdcp_encrypted = true;
1056 			return 0;
1057 		}
1058 
1059 		drm_dbg_kms(display->drm, "HDCP Auth failure (%d)\n", ret);
1060 
1061 		/* Ensuring HDCP encryption and signalling are stopped. */
1062 		_intel_hdcp_disable(connector);
1063 	}
1064 
1065 	drm_dbg_kms(display->drm,
1066 		    "HDCP authentication failed (%d tries/%d)\n", tries, ret);
1067 	return ret;
1068 }
1069 
1070 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
1071 {
1072 	return container_of(hdcp, struct intel_connector, hdcp);
1073 }
1074 
1075 static void intel_hdcp_update_value(struct intel_connector *connector,
1076 				    u64 value, bool update_property)
1077 {
1078 	struct intel_display *display = to_intel_display(connector);
1079 	struct drm_i915_private *i915 = to_i915(display->drm);
1080 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1081 	struct intel_hdcp *hdcp = &connector->hdcp;
1082 
1083 	drm_WARN_ON(display->drm, !mutex_is_locked(&hdcp->mutex));
1084 
1085 	if (hdcp->value == value)
1086 		return;
1087 
1088 	drm_WARN_ON(display->drm, !mutex_is_locked(&dig_port->hdcp_mutex));
1089 
1090 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1091 		if (!drm_WARN_ON(display->drm, dig_port->num_hdcp_streams == 0))
1092 			dig_port->num_hdcp_streams--;
1093 	} else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1094 		dig_port->num_hdcp_streams++;
1095 	}
1096 
1097 	hdcp->value = value;
1098 	if (update_property) {
1099 		drm_connector_get(&connector->base);
1100 		if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
1101 			drm_connector_put(&connector->base);
1102 	}
1103 }
1104 
1105 /* Implements Part 3 of the HDCP authorization procedure */
1106 static int intel_hdcp_check_link(struct intel_connector *connector)
1107 {
1108 	struct intel_display *display = to_intel_display(connector);
1109 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1110 	struct intel_hdcp *hdcp = &connector->hdcp;
1111 	enum port port = dig_port->base.port;
1112 	enum transcoder cpu_transcoder;
1113 	int ret = 0;
1114 
1115 	mutex_lock(&hdcp->mutex);
1116 	mutex_lock(&dig_port->hdcp_mutex);
1117 
1118 	cpu_transcoder = hdcp->cpu_transcoder;
1119 
1120 	/* Check_link valid only when HDCP1.4 is enabled */
1121 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1122 	    !hdcp->hdcp_encrypted) {
1123 		ret = -EINVAL;
1124 		goto out;
1125 	}
1126 
1127 	if (drm_WARN_ON(display->drm,
1128 			!intel_hdcp_in_use(display, cpu_transcoder, port))) {
1129 		drm_err(display->drm,
1130 			"[CONNECTOR:%d:%s] HDCP link stopped encryption,%x\n",
1131 			connector->base.base.id, connector->base.name,
1132 			intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)));
1133 		ret = -ENXIO;
1134 		intel_hdcp_update_value(connector,
1135 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1136 					true);
1137 		goto out;
1138 	}
1139 
1140 	if (hdcp->shim->check_link(dig_port, connector)) {
1141 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1142 			intel_hdcp_update_value(connector,
1143 				DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1144 		}
1145 		goto out;
1146 	}
1147 
1148 	drm_dbg_kms(display->drm,
1149 		    "[CONNECTOR:%d:%s] HDCP link failed, retrying authentication\n",
1150 		    connector->base.base.id, connector->base.name);
1151 
1152 	ret = _intel_hdcp_disable(connector);
1153 	if (ret) {
1154 		drm_err(display->drm, "Failed to disable hdcp (%d)\n", ret);
1155 		intel_hdcp_update_value(connector,
1156 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1157 					true);
1158 		goto out;
1159 	}
1160 
1161 	ret = intel_hdcp1_enable(connector);
1162 	if (ret) {
1163 		drm_err(display->drm, "Failed to enable hdcp (%d)\n", ret);
1164 		intel_hdcp_update_value(connector,
1165 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1166 					true);
1167 		goto out;
1168 	}
1169 
1170 out:
1171 	mutex_unlock(&dig_port->hdcp_mutex);
1172 	mutex_unlock(&hdcp->mutex);
1173 	return ret;
1174 }
1175 
1176 static void intel_hdcp_prop_work(struct work_struct *work)
1177 {
1178 	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1179 					       prop_work);
1180 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1181 	struct intel_display *display = to_intel_display(connector);
1182 
1183 	drm_modeset_lock(&display->drm->mode_config.connection_mutex, NULL);
1184 	mutex_lock(&hdcp->mutex);
1185 
1186 	/*
1187 	 * This worker is only used to flip between ENABLED/DESIRED. Either of
1188 	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1189 	 * we're running just after hdcp has been disabled, so just exit
1190 	 */
1191 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1192 		drm_hdcp_update_content_protection(&connector->base,
1193 						   hdcp->value);
1194 
1195 	mutex_unlock(&hdcp->mutex);
1196 	drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
1197 
1198 	drm_connector_put(&connector->base);
1199 }
1200 
1201 bool is_hdcp_supported(struct intel_display *display, enum port port)
1202 {
1203 	return DISPLAY_RUNTIME_INFO(display)->has_hdcp &&
1204 		(DISPLAY_VER(display) >= 12 || port < PORT_E);
1205 }
1206 
1207 static int
1208 hdcp2_prepare_ake_init(struct intel_connector *connector,
1209 		       struct hdcp2_ake_init *ake_data)
1210 {
1211 	struct intel_display *display = to_intel_display(connector);
1212 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1213 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1214 	struct i915_hdcp_arbiter *arbiter;
1215 	int ret;
1216 
1217 	mutex_lock(&display->hdcp.hdcp_mutex);
1218 	arbiter = display->hdcp.arbiter;
1219 
1220 	if (!arbiter || !arbiter->ops) {
1221 		mutex_unlock(&display->hdcp.hdcp_mutex);
1222 		return -EINVAL;
1223 	}
1224 
1225 	ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data);
1226 	if (ret)
1227 		drm_dbg_kms(display->drm, "Prepare_ake_init failed. %d\n",
1228 			    ret);
1229 	mutex_unlock(&display->hdcp.hdcp_mutex);
1230 
1231 	return ret;
1232 }
1233 
1234 static int
1235 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1236 				struct hdcp2_ake_send_cert *rx_cert,
1237 				bool *paired,
1238 				struct hdcp2_ake_no_stored_km *ek_pub_km,
1239 				size_t *msg_sz)
1240 {
1241 	struct intel_display *display = to_intel_display(connector);
1242 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1243 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1244 	struct i915_hdcp_arbiter *arbiter;
1245 	int ret;
1246 
1247 	mutex_lock(&display->hdcp.hdcp_mutex);
1248 	arbiter = display->hdcp.arbiter;
1249 
1250 	if (!arbiter || !arbiter->ops) {
1251 		mutex_unlock(&display->hdcp.hdcp_mutex);
1252 		return -EINVAL;
1253 	}
1254 
1255 	ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data,
1256 							 rx_cert, paired,
1257 							 ek_pub_km, msg_sz);
1258 	if (ret < 0)
1259 		drm_dbg_kms(display->drm, "Verify rx_cert failed. %d\n",
1260 			    ret);
1261 	mutex_unlock(&display->hdcp.hdcp_mutex);
1262 
1263 	return ret;
1264 }
1265 
1266 static int hdcp2_verify_hprime(struct intel_connector *connector,
1267 			       struct hdcp2_ake_send_hprime *rx_hprime)
1268 {
1269 	struct intel_display *display = to_intel_display(connector);
1270 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1271 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1272 	struct i915_hdcp_arbiter *arbiter;
1273 	int ret;
1274 
1275 	mutex_lock(&display->hdcp.hdcp_mutex);
1276 	arbiter = display->hdcp.arbiter;
1277 
1278 	if (!arbiter || !arbiter->ops) {
1279 		mutex_unlock(&display->hdcp.hdcp_mutex);
1280 		return -EINVAL;
1281 	}
1282 
1283 	ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime);
1284 	if (ret < 0)
1285 		drm_dbg_kms(display->drm, "Verify hprime failed. %d\n", ret);
1286 	mutex_unlock(&display->hdcp.hdcp_mutex);
1287 
1288 	return ret;
1289 }
1290 
1291 static int
1292 hdcp2_store_pairing_info(struct intel_connector *connector,
1293 			 struct hdcp2_ake_send_pairing_info *pairing_info)
1294 {
1295 	struct intel_display *display = to_intel_display(connector);
1296 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1297 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1298 	struct i915_hdcp_arbiter *arbiter;
1299 	int ret;
1300 
1301 	mutex_lock(&display->hdcp.hdcp_mutex);
1302 	arbiter = display->hdcp.arbiter;
1303 
1304 	if (!arbiter || !arbiter->ops) {
1305 		mutex_unlock(&display->hdcp.hdcp_mutex);
1306 		return -EINVAL;
1307 	}
1308 
1309 	ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info);
1310 	if (ret < 0)
1311 		drm_dbg_kms(display->drm, "Store pairing info failed. %d\n",
1312 			    ret);
1313 	mutex_unlock(&display->hdcp.hdcp_mutex);
1314 
1315 	return ret;
1316 }
1317 
1318 static int
1319 hdcp2_prepare_lc_init(struct intel_connector *connector,
1320 		      struct hdcp2_lc_init *lc_init)
1321 {
1322 	struct intel_display *display = to_intel_display(connector);
1323 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1324 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1325 	struct i915_hdcp_arbiter *arbiter;
1326 	int ret;
1327 
1328 	mutex_lock(&display->hdcp.hdcp_mutex);
1329 	arbiter = display->hdcp.arbiter;
1330 
1331 	if (!arbiter || !arbiter->ops) {
1332 		mutex_unlock(&display->hdcp.hdcp_mutex);
1333 		return -EINVAL;
1334 	}
1335 
1336 	ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init);
1337 	if (ret < 0)
1338 		drm_dbg_kms(display->drm, "Prepare lc_init failed. %d\n",
1339 			    ret);
1340 	mutex_unlock(&display->hdcp.hdcp_mutex);
1341 
1342 	return ret;
1343 }
1344 
1345 static int
1346 hdcp2_verify_lprime(struct intel_connector *connector,
1347 		    struct hdcp2_lc_send_lprime *rx_lprime)
1348 {
1349 	struct intel_display *display = to_intel_display(connector);
1350 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1351 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1352 	struct i915_hdcp_arbiter *arbiter;
1353 	int ret;
1354 
1355 	mutex_lock(&display->hdcp.hdcp_mutex);
1356 	arbiter = display->hdcp.arbiter;
1357 
1358 	if (!arbiter || !arbiter->ops) {
1359 		mutex_unlock(&display->hdcp.hdcp_mutex);
1360 		return -EINVAL;
1361 	}
1362 
1363 	ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime);
1364 	if (ret < 0)
1365 		drm_dbg_kms(display->drm, "Verify L_Prime failed. %d\n",
1366 			    ret);
1367 	mutex_unlock(&display->hdcp.hdcp_mutex);
1368 
1369 	return ret;
1370 }
1371 
1372 static int hdcp2_prepare_skey(struct intel_connector *connector,
1373 			      struct hdcp2_ske_send_eks *ske_data)
1374 {
1375 	struct intel_display *display = to_intel_display(connector);
1376 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1377 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1378 	struct i915_hdcp_arbiter *arbiter;
1379 	int ret;
1380 
1381 	mutex_lock(&display->hdcp.hdcp_mutex);
1382 	arbiter = display->hdcp.arbiter;
1383 
1384 	if (!arbiter || !arbiter->ops) {
1385 		mutex_unlock(&display->hdcp.hdcp_mutex);
1386 		return -EINVAL;
1387 	}
1388 
1389 	ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data);
1390 	if (ret < 0)
1391 		drm_dbg_kms(display->drm, "Get session key failed. %d\n",
1392 			    ret);
1393 	mutex_unlock(&display->hdcp.hdcp_mutex);
1394 
1395 	return ret;
1396 }
1397 
1398 static int
1399 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1400 				      struct hdcp2_rep_send_receiverid_list
1401 								*rep_topology,
1402 				      struct hdcp2_rep_send_ack *rep_send_ack)
1403 {
1404 	struct intel_display *display = to_intel_display(connector);
1405 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1406 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1407 	struct i915_hdcp_arbiter *arbiter;
1408 	int ret;
1409 
1410 	mutex_lock(&display->hdcp.hdcp_mutex);
1411 	arbiter = display->hdcp.arbiter;
1412 
1413 	if (!arbiter || !arbiter->ops) {
1414 		mutex_unlock(&display->hdcp.hdcp_mutex);
1415 		return -EINVAL;
1416 	}
1417 
1418 	ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev,
1419 							    data,
1420 							    rep_topology,
1421 							    rep_send_ack);
1422 	if (ret < 0)
1423 		drm_dbg_kms(display->drm,
1424 			    "Verify rep topology failed. %d\n", ret);
1425 	mutex_unlock(&display->hdcp.hdcp_mutex);
1426 
1427 	return ret;
1428 }
1429 
1430 static int
1431 hdcp2_verify_mprime(struct intel_connector *connector,
1432 		    struct hdcp2_rep_stream_ready *stream_ready)
1433 {
1434 	struct intel_display *display = to_intel_display(connector);
1435 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1436 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1437 	struct i915_hdcp_arbiter *arbiter;
1438 	int ret;
1439 
1440 	mutex_lock(&display->hdcp.hdcp_mutex);
1441 	arbiter = display->hdcp.arbiter;
1442 
1443 	if (!arbiter || !arbiter->ops) {
1444 		mutex_unlock(&display->hdcp.hdcp_mutex);
1445 		return -EINVAL;
1446 	}
1447 
1448 	ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready);
1449 	if (ret < 0)
1450 		drm_dbg_kms(display->drm, "Verify mprime failed. %d\n", ret);
1451 	mutex_unlock(&display->hdcp.hdcp_mutex);
1452 
1453 	return ret;
1454 }
1455 
1456 static int hdcp2_authenticate_port(struct intel_connector *connector)
1457 {
1458 	struct intel_display *display = to_intel_display(connector);
1459 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1460 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1461 	struct i915_hdcp_arbiter *arbiter;
1462 	int ret;
1463 
1464 	mutex_lock(&display->hdcp.hdcp_mutex);
1465 	arbiter = display->hdcp.arbiter;
1466 
1467 	if (!arbiter || !arbiter->ops) {
1468 		mutex_unlock(&display->hdcp.hdcp_mutex);
1469 		return -EINVAL;
1470 	}
1471 
1472 	ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data);
1473 	if (ret < 0)
1474 		drm_dbg_kms(display->drm, "Enable hdcp auth failed. %d\n",
1475 			    ret);
1476 	mutex_unlock(&display->hdcp.hdcp_mutex);
1477 
1478 	return ret;
1479 }
1480 
1481 static int hdcp2_close_session(struct intel_connector *connector)
1482 {
1483 	struct intel_display *display = to_intel_display(connector);
1484 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1485 	struct i915_hdcp_arbiter *arbiter;
1486 	int ret;
1487 
1488 	mutex_lock(&display->hdcp.hdcp_mutex);
1489 	arbiter = display->hdcp.arbiter;
1490 
1491 	if (!arbiter || !arbiter->ops) {
1492 		mutex_unlock(&display->hdcp.hdcp_mutex);
1493 		return -EINVAL;
1494 	}
1495 
1496 	ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev,
1497 					     &dig_port->hdcp_port_data);
1498 	mutex_unlock(&display->hdcp.hdcp_mutex);
1499 
1500 	return ret;
1501 }
1502 
1503 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1504 {
1505 	return hdcp2_close_session(connector);
1506 }
1507 
1508 /* Authentication flow starts from here */
1509 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1510 {
1511 	struct intel_display *display = to_intel_display(connector);
1512 	struct intel_digital_port *dig_port =
1513 		intel_attached_dig_port(connector);
1514 	struct intel_hdcp *hdcp = &connector->hdcp;
1515 	union {
1516 		struct hdcp2_ake_init ake_init;
1517 		struct hdcp2_ake_send_cert send_cert;
1518 		struct hdcp2_ake_no_stored_km no_stored_km;
1519 		struct hdcp2_ake_send_hprime send_hprime;
1520 		struct hdcp2_ake_send_pairing_info pairing_info;
1521 	} msgs;
1522 	const struct intel_hdcp_shim *shim = hdcp->shim;
1523 	size_t size;
1524 	int ret, i, max_retries;
1525 
1526 	/* Init for seq_num */
1527 	hdcp->seq_num_v = 0;
1528 	hdcp->seq_num_m = 0;
1529 
1530 	if (intel_encoder_is_dp(&dig_port->base) ||
1531 	    intel_encoder_is_mst(&dig_port->base))
1532 		max_retries = 10;
1533 	else
1534 		max_retries = 1;
1535 
1536 	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1537 	if (ret < 0)
1538 		return ret;
1539 
1540 	/*
1541 	 * Retry the first read and write to downstream at least 10 times
1542 	 * with a 50ms delay if not hdcp2 capable for DP/DPMST encoders
1543 	 * (dock decides to stop advertising hdcp2 capability for some reason).
1544 	 * The reason being that during suspend resume dock usually keeps the
1545 	 * HDCP2 registers inaccesible causing AUX error. This wouldn't be a
1546 	 * big problem if the userspace just kept retrying with some delay while
1547 	 * it continues to play low value content but most userpace applications
1548 	 * end up throwing an error when it receives one from KMD. This makes
1549 	 * sure we give the dock and the sink devices to complete its power cycle
1550 	 * and then try HDCP authentication. The values of 10 and delay of 50ms
1551 	 * was decided based on multiple trial and errors.
1552 	 */
1553 	for (i = 0; i < max_retries; i++) {
1554 		if (!intel_hdcp2_get_capability(connector)) {
1555 			msleep(50);
1556 			continue;
1557 		}
1558 
1559 		ret = shim->write_2_2_msg(connector, &msgs.ake_init,
1560 					  sizeof(msgs.ake_init));
1561 		if (ret < 0)
1562 			continue;
1563 
1564 		ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_CERT,
1565 					 &msgs.send_cert, sizeof(msgs.send_cert));
1566 		if (ret > 0)
1567 			break;
1568 	}
1569 
1570 	if (ret < 0)
1571 		return ret;
1572 
1573 	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1574 		drm_dbg_kms(display->drm, "cert.rx_caps dont claim HDCP2.2\n");
1575 		return -EINVAL;
1576 	}
1577 
1578 	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1579 
1580 	if (drm_hdcp_check_ksvs_revoked(display->drm,
1581 					msgs.send_cert.cert_rx.receiver_id,
1582 					1) > 0) {
1583 		drm_err(display->drm, "Receiver ID is revoked\n");
1584 		return -EPERM;
1585 	}
1586 
1587 	/*
1588 	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1589 	 * stored also.
1590 	 */
1591 	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1592 					      &hdcp->is_paired,
1593 					      &msgs.no_stored_km, &size);
1594 	if (ret < 0)
1595 		return ret;
1596 
1597 	ret = shim->write_2_2_msg(connector, &msgs.no_stored_km, size);
1598 	if (ret < 0)
1599 		return ret;
1600 
1601 	ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_HPRIME,
1602 				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1603 	if (ret < 0)
1604 		return ret;
1605 
1606 	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1607 	if (ret < 0)
1608 		return ret;
1609 
1610 	if (!hdcp->is_paired) {
1611 		/* Pairing is required */
1612 		ret = shim->read_2_2_msg(connector,
1613 					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1614 					 &msgs.pairing_info,
1615 					 sizeof(msgs.pairing_info));
1616 		if (ret < 0)
1617 			return ret;
1618 
1619 		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1620 		if (ret < 0)
1621 			return ret;
1622 		hdcp->is_paired = true;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 static int hdcp2_locality_check(struct intel_connector *connector)
1629 {
1630 	struct intel_hdcp *hdcp = &connector->hdcp;
1631 	union {
1632 		struct hdcp2_lc_init lc_init;
1633 		struct hdcp2_lc_send_lprime send_lprime;
1634 	} msgs;
1635 	const struct intel_hdcp_shim *shim = hdcp->shim;
1636 	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1637 
1638 	for (i = 0; i < tries; i++) {
1639 		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1640 		if (ret < 0)
1641 			continue;
1642 
1643 		ret = shim->write_2_2_msg(connector, &msgs.lc_init,
1644 				      sizeof(msgs.lc_init));
1645 		if (ret < 0)
1646 			continue;
1647 
1648 		ret = shim->read_2_2_msg(connector,
1649 					 HDCP_2_2_LC_SEND_LPRIME,
1650 					 &msgs.send_lprime,
1651 					 sizeof(msgs.send_lprime));
1652 		if (ret < 0)
1653 			continue;
1654 
1655 		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1656 		if (!ret)
1657 			break;
1658 	}
1659 
1660 	return ret;
1661 }
1662 
1663 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1664 {
1665 	struct intel_hdcp *hdcp = &connector->hdcp;
1666 	struct hdcp2_ske_send_eks send_eks;
1667 	int ret;
1668 
1669 	ret = hdcp2_prepare_skey(connector, &send_eks);
1670 	if (ret < 0)
1671 		return ret;
1672 
1673 	ret = hdcp->shim->write_2_2_msg(connector, &send_eks,
1674 					sizeof(send_eks));
1675 	if (ret < 0)
1676 		return ret;
1677 
1678 	return 0;
1679 }
1680 
1681 static
1682 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1683 {
1684 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1685 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1686 	struct intel_hdcp *hdcp = &connector->hdcp;
1687 	union {
1688 		struct hdcp2_rep_stream_manage stream_manage;
1689 		struct hdcp2_rep_stream_ready stream_ready;
1690 	} msgs;
1691 	const struct intel_hdcp_shim *shim = hdcp->shim;
1692 	int ret, streams_size_delta, i;
1693 
1694 	if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1695 		return -ERANGE;
1696 
1697 	/* Prepare RepeaterAuth_Stream_Manage msg */
1698 	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1699 	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1700 
1701 	msgs.stream_manage.k = cpu_to_be16(data->k);
1702 
1703 	for (i = 0; i < data->k; i++) {
1704 		msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1705 		msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1706 	}
1707 
1708 	streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1709 				sizeof(struct hdcp2_streamid_type);
1710 	/* Send it to Repeater */
1711 	ret = shim->write_2_2_msg(connector, &msgs.stream_manage,
1712 				  sizeof(msgs.stream_manage) - streams_size_delta);
1713 	if (ret < 0)
1714 		goto out;
1715 
1716 	ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_STREAM_READY,
1717 				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1718 	if (ret < 0)
1719 		goto out;
1720 
1721 	data->seq_num_m = hdcp->seq_num_m;
1722 
1723 	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1724 
1725 out:
1726 	hdcp->seq_num_m++;
1727 
1728 	return ret;
1729 }
1730 
1731 static
1732 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1733 {
1734 	struct intel_display *display = to_intel_display(connector);
1735 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1736 	struct intel_hdcp *hdcp = &connector->hdcp;
1737 	union {
1738 		struct hdcp2_rep_send_receiverid_list recvid_list;
1739 		struct hdcp2_rep_send_ack rep_ack;
1740 	} msgs;
1741 	const struct intel_hdcp_shim *shim = hdcp->shim;
1742 	u32 seq_num_v, device_cnt;
1743 	u8 *rx_info;
1744 	int ret;
1745 
1746 	ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_SEND_RECVID_LIST,
1747 				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1748 	if (ret < 0)
1749 		return ret;
1750 
1751 	rx_info = msgs.recvid_list.rx_info;
1752 
1753 	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1754 	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1755 		drm_dbg_kms(display->drm, "Topology Max Size Exceeded\n");
1756 		return -EINVAL;
1757 	}
1758 
1759 	/*
1760 	 * MST topology is not Type 1 capable if it contains a downstream
1761 	 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1762 	 */
1763 	dig_port->hdcp_mst_type1_capable =
1764 		!HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1765 		!HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1766 
1767 	if (!dig_port->hdcp_mst_type1_capable && hdcp->content_type) {
1768 		drm_dbg_kms(display->drm,
1769 			    "HDCP1.x or 2.0 Legacy Device Downstream\n");
1770 		return -EINVAL;
1771 	}
1772 
1773 	/* Converting and Storing the seq_num_v to local variable as DWORD */
1774 	seq_num_v =
1775 		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1776 
1777 	if (!hdcp->hdcp2_encrypted && seq_num_v) {
1778 		drm_dbg_kms(display->drm,
1779 			    "Non zero Seq_num_v at first RecvId_List msg\n");
1780 		return -EINVAL;
1781 	}
1782 
1783 	if (seq_num_v < hdcp->seq_num_v) {
1784 		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1785 		drm_dbg_kms(display->drm, "Seq_num_v roll over.\n");
1786 		return -EINVAL;
1787 	}
1788 
1789 	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1790 		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1791 	if (drm_hdcp_check_ksvs_revoked(display->drm,
1792 					msgs.recvid_list.receiver_ids,
1793 					device_cnt) > 0) {
1794 		drm_err(display->drm, "Revoked receiver ID(s) is in list\n");
1795 		return -EPERM;
1796 	}
1797 
1798 	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1799 						    &msgs.recvid_list,
1800 						    &msgs.rep_ack);
1801 	if (ret < 0)
1802 		return ret;
1803 
1804 	hdcp->seq_num_v = seq_num_v;
1805 	ret = shim->write_2_2_msg(connector, &msgs.rep_ack,
1806 				  sizeof(msgs.rep_ack));
1807 	if (ret < 0)
1808 		return ret;
1809 
1810 	return 0;
1811 }
1812 
1813 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1814 {
1815 	struct intel_display *display = to_intel_display(connector);
1816 	struct intel_hdcp *hdcp = &connector->hdcp;
1817 	const struct intel_hdcp_shim *shim = hdcp->shim;
1818 	int ret;
1819 
1820 	ret = hdcp2_authentication_key_exchange(connector);
1821 	if (ret < 0) {
1822 		drm_dbg_kms(display->drm, "AKE Failed. Err : %d\n", ret);
1823 		return ret;
1824 	}
1825 
1826 	ret = hdcp2_locality_check(connector);
1827 	if (ret < 0) {
1828 		drm_dbg_kms(display->drm,
1829 			    "Locality Check failed. Err : %d\n", ret);
1830 		return ret;
1831 	}
1832 
1833 	ret = hdcp2_session_key_exchange(connector);
1834 	if (ret < 0) {
1835 		drm_dbg_kms(display->drm, "SKE Failed. Err : %d\n", ret);
1836 		return ret;
1837 	}
1838 
1839 	if (shim->config_stream_type) {
1840 		ret = shim->config_stream_type(connector,
1841 					       hdcp->is_repeater,
1842 					       hdcp->content_type);
1843 		if (ret < 0)
1844 			return ret;
1845 	}
1846 
1847 	if (hdcp->is_repeater) {
1848 		ret = hdcp2_authenticate_repeater_topology(connector);
1849 		if (ret < 0) {
1850 			drm_dbg_kms(display->drm,
1851 				    "Repeater Auth Failed. Err: %d\n", ret);
1852 			return ret;
1853 		}
1854 	}
1855 
1856 	return ret;
1857 }
1858 
1859 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1860 {
1861 	struct intel_display *display = to_intel_display(connector);
1862 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1863 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1864 	struct intel_hdcp *hdcp = &connector->hdcp;
1865 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1866 	enum port port = dig_port->base.port;
1867 	int ret = 0;
1868 
1869 	if (!(intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1870 			    LINK_ENCRYPTION_STATUS)) {
1871 		drm_err(display->drm, "[CONNECTOR:%d:%s] HDCP 2.2 Link is not encrypted\n",
1872 			connector->base.base.id, connector->base.name);
1873 		ret = -EPERM;
1874 		goto link_recover;
1875 	}
1876 
1877 	if (hdcp->shim->stream_2_2_encryption) {
1878 		ret = hdcp->shim->stream_2_2_encryption(connector, true);
1879 		if (ret) {
1880 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 2.2 stream enc\n",
1881 				connector->base.base.id, connector->base.name);
1882 			return ret;
1883 		}
1884 		drm_dbg_kms(display->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1885 			    transcoder_name(hdcp->stream_transcoder));
1886 	}
1887 
1888 	return 0;
1889 
1890 link_recover:
1891 	if (hdcp2_deauthenticate_port(connector) < 0)
1892 		drm_dbg_kms(display->drm, "Port deauth failed.\n");
1893 
1894 	dig_port->hdcp_auth_status = false;
1895 	data->k = 0;
1896 
1897 	return ret;
1898 }
1899 
1900 static int hdcp2_enable_encryption(struct intel_connector *connector)
1901 {
1902 	struct intel_display *display = to_intel_display(connector);
1903 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1904 	struct intel_hdcp *hdcp = &connector->hdcp;
1905 	enum port port = dig_port->base.port;
1906 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1907 	int ret;
1908 
1909 	drm_WARN_ON(display->drm,
1910 		    intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1911 		    LINK_ENCRYPTION_STATUS);
1912 	if (hdcp->shim->toggle_signalling) {
1913 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1914 						    true);
1915 		if (ret) {
1916 			drm_err(display->drm,
1917 				"Failed to enable HDCP signalling. %d\n",
1918 				ret);
1919 			return ret;
1920 		}
1921 	}
1922 
1923 	if (intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1924 	    LINK_AUTH_STATUS)
1925 		/* Link is Authenticated. Now set for Encryption */
1926 		intel_de_rmw(display, HDCP2_CTL(display, cpu_transcoder, port),
1927 			     0, CTL_LINK_ENCRYPTION_REQ);
1928 
1929 	ret = intel_de_wait_for_set(display,
1930 				    HDCP2_STATUS(display, cpu_transcoder,
1931 						 port),
1932 				    LINK_ENCRYPTION_STATUS,
1933 				    HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1934 	dig_port->hdcp_auth_status = true;
1935 
1936 	return ret;
1937 }
1938 
1939 static int hdcp2_disable_encryption(struct intel_connector *connector)
1940 {
1941 	struct intel_display *display = to_intel_display(connector);
1942 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1943 	struct intel_hdcp *hdcp = &connector->hdcp;
1944 	enum port port = dig_port->base.port;
1945 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1946 	int ret;
1947 
1948 	drm_WARN_ON(display->drm,
1949 		    !(intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1950 				    LINK_ENCRYPTION_STATUS));
1951 
1952 	intel_de_rmw(display, HDCP2_CTL(display, cpu_transcoder, port),
1953 		     CTL_LINK_ENCRYPTION_REQ, 0);
1954 
1955 	ret = intel_de_wait_for_clear(display,
1956 				      HDCP2_STATUS(display, cpu_transcoder,
1957 						   port),
1958 				      LINK_ENCRYPTION_STATUS,
1959 				      HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1960 	if (ret == -ETIMEDOUT)
1961 		drm_dbg_kms(display->drm, "Disable Encryption Timedout");
1962 
1963 	if (hdcp->shim->toggle_signalling) {
1964 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1965 						    false);
1966 		if (ret) {
1967 			drm_err(display->drm,
1968 				"Failed to disable HDCP signalling. %d\n",
1969 				ret);
1970 			return ret;
1971 		}
1972 	}
1973 
1974 	return ret;
1975 }
1976 
1977 static int
1978 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1979 {
1980 	struct intel_display *display = to_intel_display(connector);
1981 	int i, tries = 3, ret;
1982 
1983 	if (!connector->hdcp.is_repeater)
1984 		return 0;
1985 
1986 	for (i = 0; i < tries; i++) {
1987 		ret = _hdcp2_propagate_stream_management_info(connector);
1988 		if (!ret)
1989 			break;
1990 
1991 		/* Lets restart the auth incase of seq_num_m roll over */
1992 		if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1993 			drm_dbg_kms(display->drm,
1994 				    "seq_num_m roll over.(%d)\n", ret);
1995 			break;
1996 		}
1997 
1998 		drm_dbg_kms(display->drm,
1999 			    "HDCP2 stream management %d of %d Failed.(%d)\n",
2000 			    i + 1, tries, ret);
2001 	}
2002 
2003 	return ret;
2004 }
2005 
2006 static int hdcp2_authenticate_and_encrypt(struct intel_atomic_state *state,
2007 					  struct intel_connector *connector)
2008 {
2009 	struct intel_display *display = to_intel_display(connector);
2010 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2011 	int ret = 0, i, tries = 3;
2012 
2013 	for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
2014 		ret = hdcp2_authenticate_sink(connector);
2015 		if (!ret) {
2016 			ret = intel_hdcp_prepare_streams(state, connector);
2017 			if (ret) {
2018 				drm_dbg_kms(display->drm,
2019 					    "Prepare stream failed.(%d)\n",
2020 					    ret);
2021 				break;
2022 			}
2023 
2024 			ret = hdcp2_propagate_stream_management_info(connector);
2025 			if (ret) {
2026 				drm_dbg_kms(display->drm,
2027 					    "Stream management failed.(%d)\n",
2028 					    ret);
2029 				break;
2030 			}
2031 
2032 			ret = hdcp2_authenticate_port(connector);
2033 			if (!ret)
2034 				break;
2035 			drm_dbg_kms(display->drm, "HDCP2 port auth failed.(%d)\n",
2036 				    ret);
2037 		}
2038 
2039 		/* Clearing the mei hdcp session */
2040 		drm_dbg_kms(display->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
2041 			    i + 1, tries, ret);
2042 		if (hdcp2_deauthenticate_port(connector) < 0)
2043 			drm_dbg_kms(display->drm, "Port deauth failed.\n");
2044 	}
2045 
2046 	if (!ret && !dig_port->hdcp_auth_status) {
2047 		/*
2048 		 * Ensuring the required 200mSec min time interval between
2049 		 * Session Key Exchange and encryption.
2050 		 */
2051 		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
2052 		ret = hdcp2_enable_encryption(connector);
2053 		if (ret < 0) {
2054 			drm_dbg_kms(display->drm,
2055 				    "Encryption Enable Failed.(%d)\n", ret);
2056 			if (hdcp2_deauthenticate_port(connector) < 0)
2057 				drm_dbg_kms(display->drm, "Port deauth failed.\n");
2058 		}
2059 	}
2060 
2061 	if (!ret)
2062 		ret = hdcp2_enable_stream_encryption(connector);
2063 
2064 	return ret;
2065 }
2066 
2067 static int _intel_hdcp2_enable(struct intel_atomic_state *state,
2068 			       struct intel_connector *connector)
2069 {
2070 	struct intel_display *display = to_intel_display(connector);
2071 	struct intel_hdcp *hdcp = &connector->hdcp;
2072 	int ret;
2073 
2074 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being enabled. Type: %d\n",
2075 		    connector->base.base.id, connector->base.name,
2076 		    hdcp->content_type);
2077 
2078 	intel_hdcp_disable_hdcp_line_rekeying(connector->encoder, hdcp);
2079 
2080 	ret = hdcp2_authenticate_and_encrypt(state, connector);
2081 	if (ret) {
2082 		drm_dbg_kms(display->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
2083 			    hdcp->content_type, ret);
2084 		return ret;
2085 	}
2086 
2087 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is enabled. Type %d\n",
2088 		    connector->base.base.id, connector->base.name,
2089 		    hdcp->content_type);
2090 
2091 	hdcp->hdcp2_encrypted = true;
2092 	return 0;
2093 }
2094 
2095 static int
2096 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
2097 {
2098 	struct intel_display *display = to_intel_display(connector);
2099 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2100 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2101 	struct intel_hdcp *hdcp = &connector->hdcp;
2102 	int ret;
2103 
2104 	drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being Disabled\n",
2105 		    connector->base.base.id, connector->base.name);
2106 
2107 	if (hdcp->shim->stream_2_2_encryption) {
2108 		ret = hdcp->shim->stream_2_2_encryption(connector, false);
2109 		if (ret) {
2110 			drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 2.2 stream enc\n",
2111 				connector->base.base.id, connector->base.name);
2112 			return ret;
2113 		}
2114 		drm_dbg_kms(display->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
2115 			    transcoder_name(hdcp->stream_transcoder));
2116 
2117 		if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
2118 			return 0;
2119 	}
2120 
2121 	ret = hdcp2_disable_encryption(connector);
2122 
2123 	if (hdcp2_deauthenticate_port(connector) < 0)
2124 		drm_dbg_kms(display->drm, "Port deauth failed.\n");
2125 
2126 	connector->hdcp.hdcp2_encrypted = false;
2127 	dig_port->hdcp_auth_status = false;
2128 	data->k = 0;
2129 
2130 	return ret;
2131 }
2132 
2133 /* Implements the Link Integrity Check for HDCP2.2 */
2134 static int intel_hdcp2_check_link(struct intel_connector *connector)
2135 {
2136 	struct intel_display *display = to_intel_display(connector);
2137 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2138 	struct intel_hdcp *hdcp = &connector->hdcp;
2139 	enum port port = dig_port->base.port;
2140 	enum transcoder cpu_transcoder;
2141 	int ret = 0;
2142 
2143 	mutex_lock(&hdcp->mutex);
2144 	mutex_lock(&dig_port->hdcp_mutex);
2145 	cpu_transcoder = hdcp->cpu_transcoder;
2146 
2147 	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2148 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2149 	    !hdcp->hdcp2_encrypted) {
2150 		ret = -EINVAL;
2151 		goto out;
2152 	}
2153 
2154 	if (drm_WARN_ON(display->drm,
2155 			!intel_hdcp2_in_use(display, cpu_transcoder, port))) {
2156 		drm_err(display->drm,
2157 			"HDCP2.2 link stopped the encryption, %x\n",
2158 			intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)));
2159 		ret = -ENXIO;
2160 		_intel_hdcp2_disable(connector, true);
2161 		intel_hdcp_update_value(connector,
2162 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2163 					true);
2164 		goto out;
2165 	}
2166 
2167 	ret = hdcp->shim->check_2_2_link(dig_port, connector);
2168 	if (ret == HDCP_LINK_PROTECTED) {
2169 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2170 			intel_hdcp_update_value(connector,
2171 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2172 					true);
2173 		}
2174 		goto out;
2175 	}
2176 
2177 	if (ret == HDCP_TOPOLOGY_CHANGE) {
2178 		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2179 			goto out;
2180 
2181 		drm_dbg_kms(display->drm,
2182 			    "HDCP2.2 Downstream topology change\n");
2183 	} else {
2184 		drm_dbg_kms(display->drm,
2185 			    "[CONNECTOR:%d:%s] HDCP2.2 link failed, retrying auth\n",
2186 			    connector->base.base.id, connector->base.name);
2187 	}
2188 
2189 	ret = _intel_hdcp2_disable(connector, true);
2190 	if (ret) {
2191 		drm_err(display->drm,
2192 			"[CONNECTOR:%d:%s] Failed to disable hdcp2.2 (%d)\n",
2193 			connector->base.base.id, connector->base.name, ret);
2194 		intel_hdcp_update_value(connector,
2195 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2196 		goto out;
2197 	}
2198 
2199 	intel_hdcp_update_value(connector,
2200 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2201 out:
2202 	mutex_unlock(&dig_port->hdcp_mutex);
2203 	mutex_unlock(&hdcp->mutex);
2204 	return ret;
2205 }
2206 
2207 static void intel_hdcp_check_work(struct work_struct *work)
2208 {
2209 	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2210 					       struct intel_hdcp,
2211 					       check_work);
2212 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2213 	struct intel_display *display = to_intel_display(connector);
2214 	struct drm_i915_private *i915 = to_i915(display->drm);
2215 
2216 	if (drm_connector_is_unregistered(&connector->base))
2217 		return;
2218 
2219 	if (!intel_hdcp2_check_link(connector))
2220 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2221 				   DRM_HDCP2_CHECK_PERIOD_MS);
2222 	else if (!intel_hdcp_check_link(connector))
2223 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2224 				   DRM_HDCP_CHECK_PERIOD_MS);
2225 }
2226 
2227 static int i915_hdcp_component_bind(struct device *drv_kdev,
2228 				    struct device *mei_kdev, void *data)
2229 {
2230 	struct intel_display *display = to_intel_display(drv_kdev);
2231 
2232 	drm_dbg(display->drm, "I915 HDCP comp bind\n");
2233 	mutex_lock(&display->hdcp.hdcp_mutex);
2234 	display->hdcp.arbiter = (struct i915_hdcp_arbiter *)data;
2235 	display->hdcp.arbiter->hdcp_dev = mei_kdev;
2236 	mutex_unlock(&display->hdcp.hdcp_mutex);
2237 
2238 	return 0;
2239 }
2240 
2241 static void i915_hdcp_component_unbind(struct device *drv_kdev,
2242 				       struct device *mei_kdev, void *data)
2243 {
2244 	struct intel_display *display = to_intel_display(drv_kdev);
2245 
2246 	drm_dbg(display->drm, "I915 HDCP comp unbind\n");
2247 	mutex_lock(&display->hdcp.hdcp_mutex);
2248 	display->hdcp.arbiter = NULL;
2249 	mutex_unlock(&display->hdcp.hdcp_mutex);
2250 }
2251 
2252 static const struct component_ops i915_hdcp_ops = {
2253 	.bind   = i915_hdcp_component_bind,
2254 	.unbind = i915_hdcp_component_unbind,
2255 };
2256 
2257 static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port)
2258 {
2259 	switch (port) {
2260 	case PORT_A:
2261 		return HDCP_DDI_A;
2262 	case PORT_B ... PORT_F:
2263 		return (enum hdcp_ddi)port;
2264 	default:
2265 		return HDCP_DDI_INVALID_PORT;
2266 	}
2267 }
2268 
2269 static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)
2270 {
2271 	switch (cpu_transcoder) {
2272 	case TRANSCODER_A ... TRANSCODER_D:
2273 		return (enum hdcp_transcoder)(cpu_transcoder | 0x10);
2274 	default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2275 		return HDCP_INVALID_TRANSCODER;
2276 	}
2277 }
2278 
2279 static int initialize_hdcp_port_data(struct intel_connector *connector,
2280 				     struct intel_digital_port *dig_port,
2281 				     const struct intel_hdcp_shim *shim)
2282 {
2283 	struct intel_display *display = to_intel_display(connector);
2284 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2285 	enum port port = dig_port->base.port;
2286 
2287 	if (DISPLAY_VER(display) < 12)
2288 		data->hdcp_ddi = intel_get_hdcp_ddi_index(port);
2289 	else
2290 		/*
2291 		 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled
2292 		 * with zero(INVALID PORT index).
2293 		 */
2294 		data->hdcp_ddi = HDCP_DDI_INVALID_PORT;
2295 
2296 	/*
2297 	 * As associated transcoder is set and modified at modeset, here hdcp_transcoder
2298 	 * is initialized to zero (invalid transcoder index). This will be
2299 	 * retained for <Gen12 forever.
2300 	 */
2301 	data->hdcp_transcoder = HDCP_INVALID_TRANSCODER;
2302 
2303 	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2304 	data->protocol = (u8)shim->protocol;
2305 
2306 	if (!data->streams)
2307 		data->streams = kcalloc(INTEL_NUM_PIPES(display),
2308 					sizeof(struct hdcp2_streamid_type),
2309 					GFP_KERNEL);
2310 	if (!data->streams) {
2311 		drm_err(display->drm, "Out of Memory\n");
2312 		return -ENOMEM;
2313 	}
2314 
2315 	return 0;
2316 }
2317 
2318 static bool is_hdcp2_supported(struct intel_display *display)
2319 {
2320 	struct drm_i915_private *i915 = to_i915(display->drm);
2321 
2322 	if (intel_hdcp_gsc_cs_required(display))
2323 		return true;
2324 
2325 	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2326 		return false;
2327 
2328 	return (DISPLAY_VER(display) >= 10 ||
2329 		IS_KABYLAKE(i915) ||
2330 		IS_COFFEELAKE(i915) ||
2331 		IS_COMETLAKE(i915));
2332 }
2333 
2334 void intel_hdcp_component_init(struct intel_display *display)
2335 {
2336 	int ret;
2337 
2338 	if (!is_hdcp2_supported(display))
2339 		return;
2340 
2341 	mutex_lock(&display->hdcp.hdcp_mutex);
2342 	drm_WARN_ON(display->drm, display->hdcp.comp_added);
2343 
2344 	display->hdcp.comp_added = true;
2345 	mutex_unlock(&display->hdcp.hdcp_mutex);
2346 	if (intel_hdcp_gsc_cs_required(display))
2347 		ret = intel_hdcp_gsc_init(display);
2348 	else
2349 		ret = component_add_typed(display->drm->dev, &i915_hdcp_ops,
2350 					  I915_COMPONENT_HDCP);
2351 
2352 	if (ret < 0) {
2353 		drm_dbg_kms(display->drm, "Failed at fw component add(%d)\n",
2354 			    ret);
2355 		mutex_lock(&display->hdcp.hdcp_mutex);
2356 		display->hdcp.comp_added = false;
2357 		mutex_unlock(&display->hdcp.hdcp_mutex);
2358 		return;
2359 	}
2360 }
2361 
2362 static void intel_hdcp2_init(struct intel_connector *connector,
2363 			     struct intel_digital_port *dig_port,
2364 			     const struct intel_hdcp_shim *shim)
2365 {
2366 	struct intel_display *display = to_intel_display(connector);
2367 	struct intel_hdcp *hdcp = &connector->hdcp;
2368 	int ret;
2369 
2370 	ret = initialize_hdcp_port_data(connector, dig_port, shim);
2371 	if (ret) {
2372 		drm_dbg_kms(display->drm, "Mei hdcp data init failed\n");
2373 		return;
2374 	}
2375 
2376 	hdcp->hdcp2_supported = true;
2377 }
2378 
2379 int intel_hdcp_init(struct intel_connector *connector,
2380 		    struct intel_digital_port *dig_port,
2381 		    const struct intel_hdcp_shim *shim)
2382 {
2383 	struct intel_display *display = to_intel_display(connector);
2384 	struct intel_hdcp *hdcp = &connector->hdcp;
2385 	int ret;
2386 
2387 	if (!shim)
2388 		return -EINVAL;
2389 
2390 	if (is_hdcp2_supported(display))
2391 		intel_hdcp2_init(connector, dig_port, shim);
2392 
2393 	ret = drm_connector_attach_content_protection_property(&connector->base,
2394 							       hdcp->hdcp2_supported);
2395 	if (ret) {
2396 		hdcp->hdcp2_supported = false;
2397 		kfree(dig_port->hdcp_port_data.streams);
2398 		return ret;
2399 	}
2400 
2401 	hdcp->shim = shim;
2402 	mutex_init(&hdcp->mutex);
2403 	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2404 	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2405 	init_waitqueue_head(&hdcp->cp_irq_queue);
2406 
2407 	return 0;
2408 }
2409 
2410 static int _intel_hdcp_enable(struct intel_atomic_state *state,
2411 			      struct intel_encoder *encoder,
2412 			      const struct intel_crtc_state *pipe_config,
2413 			      const struct drm_connector_state *conn_state)
2414 {
2415 	struct intel_display *display = to_intel_display(encoder);
2416 	struct drm_i915_private *i915 = to_i915(display->drm);
2417 	struct intel_connector *connector =
2418 		to_intel_connector(conn_state->connector);
2419 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2420 	struct intel_hdcp *hdcp = &connector->hdcp;
2421 	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2422 	int ret = -EINVAL;
2423 
2424 	if (!hdcp->shim)
2425 		return -ENOENT;
2426 
2427 	if (!connector->encoder) {
2428 		drm_err(display->drm, "[CONNECTOR:%d:%s] encoder is not initialized\n",
2429 			connector->base.base.id, connector->base.name);
2430 		return -ENODEV;
2431 	}
2432 
2433 	mutex_lock(&hdcp->mutex);
2434 	mutex_lock(&dig_port->hdcp_mutex);
2435 	drm_WARN_ON(display->drm,
2436 		    hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2437 	hdcp->content_type = (u8)conn_state->hdcp_content_type;
2438 
2439 	if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2440 		hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2441 		hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2442 	} else {
2443 		hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2444 		hdcp->stream_transcoder = INVALID_TRANSCODER;
2445 	}
2446 
2447 	if (DISPLAY_VER(display) >= 12)
2448 		dig_port->hdcp_port_data.hdcp_transcoder =
2449 			intel_get_hdcp_transcoder(hdcp->cpu_transcoder);
2450 
2451 	/*
2452 	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2453 	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2454 	 */
2455 	if (intel_hdcp2_get_capability(connector)) {
2456 		ret = _intel_hdcp2_enable(state, connector);
2457 		if (!ret)
2458 			check_link_interval =
2459 				DRM_HDCP2_CHECK_PERIOD_MS;
2460 	}
2461 
2462 	/*
2463 	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2464 	 * be attempted.
2465 	 */
2466 	if (ret && intel_hdcp_get_capability(connector) &&
2467 	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2468 		ret = intel_hdcp1_enable(connector);
2469 	}
2470 
2471 	if (!ret) {
2472 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2473 				   check_link_interval);
2474 		intel_hdcp_update_value(connector,
2475 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2476 					true);
2477 	}
2478 
2479 	mutex_unlock(&dig_port->hdcp_mutex);
2480 	mutex_unlock(&hdcp->mutex);
2481 	return ret;
2482 }
2483 
2484 void intel_hdcp_enable(struct intel_atomic_state *state,
2485 		       struct intel_encoder *encoder,
2486 		       const struct intel_crtc_state *crtc_state,
2487 		       const struct drm_connector_state *conn_state)
2488 {
2489 	struct intel_connector *connector =
2490 		to_intel_connector(conn_state->connector);
2491 	struct intel_hdcp *hdcp = &connector->hdcp;
2492 
2493 	/*
2494 	 * Enable hdcp if it's desired or if userspace is enabled and
2495 	 * driver set its state to undesired
2496 	 */
2497 	if (conn_state->content_protection ==
2498 	    DRM_MODE_CONTENT_PROTECTION_DESIRED ||
2499 	    (conn_state->content_protection ==
2500 	    DRM_MODE_CONTENT_PROTECTION_ENABLED && hdcp->value ==
2501 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2502 		_intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2503 }
2504 
2505 int intel_hdcp_disable(struct intel_connector *connector)
2506 {
2507 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2508 	struct intel_hdcp *hdcp = &connector->hdcp;
2509 	int ret = 0;
2510 
2511 	if (!hdcp->shim)
2512 		return -ENOENT;
2513 
2514 	mutex_lock(&hdcp->mutex);
2515 	mutex_lock(&dig_port->hdcp_mutex);
2516 
2517 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2518 		goto out;
2519 
2520 	intel_hdcp_update_value(connector,
2521 				DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2522 	if (hdcp->hdcp2_encrypted)
2523 		ret = _intel_hdcp2_disable(connector, false);
2524 	else if (hdcp->hdcp_encrypted)
2525 		ret = _intel_hdcp_disable(connector);
2526 
2527 out:
2528 	mutex_unlock(&dig_port->hdcp_mutex);
2529 	mutex_unlock(&hdcp->mutex);
2530 	cancel_delayed_work_sync(&hdcp->check_work);
2531 	return ret;
2532 }
2533 
2534 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2535 			    struct intel_encoder *encoder,
2536 			    const struct intel_crtc_state *crtc_state,
2537 			    const struct drm_connector_state *conn_state)
2538 {
2539 	struct intel_connector *connector =
2540 				to_intel_connector(conn_state->connector);
2541 	struct intel_hdcp *hdcp = &connector->hdcp;
2542 	bool content_protection_type_changed, desired_and_not_enabled = false;
2543 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2544 
2545 	if (!connector->hdcp.shim)
2546 		return;
2547 
2548 	content_protection_type_changed =
2549 		(conn_state->hdcp_content_type != hdcp->content_type &&
2550 		 conn_state->content_protection !=
2551 		 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2552 
2553 	/*
2554 	 * During the HDCP encryption session if Type change is requested,
2555 	 * disable the HDCP and reenable it with new TYPE value.
2556 	 */
2557 	if (conn_state->content_protection ==
2558 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2559 	    content_protection_type_changed)
2560 		intel_hdcp_disable(connector);
2561 
2562 	/*
2563 	 * Mark the hdcp state as DESIRED after the hdcp disable of type
2564 	 * change procedure.
2565 	 */
2566 	if (content_protection_type_changed) {
2567 		mutex_lock(&hdcp->mutex);
2568 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2569 		drm_connector_get(&connector->base);
2570 		if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
2571 			drm_connector_put(&connector->base);
2572 		mutex_unlock(&hdcp->mutex);
2573 	}
2574 
2575 	if (conn_state->content_protection ==
2576 	    DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2577 		mutex_lock(&hdcp->mutex);
2578 		/* Avoid enabling hdcp, if it already ENABLED */
2579 		desired_and_not_enabled =
2580 			hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2581 		mutex_unlock(&hdcp->mutex);
2582 		/*
2583 		 * If HDCP already ENABLED and CP property is DESIRED, schedule
2584 		 * prop_work to update correct CP property to user space.
2585 		 */
2586 		if (!desired_and_not_enabled && !content_protection_type_changed) {
2587 			drm_connector_get(&connector->base);
2588 			if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
2589 				drm_connector_put(&connector->base);
2590 
2591 		}
2592 	}
2593 
2594 	if (desired_and_not_enabled || content_protection_type_changed)
2595 		_intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2596 }
2597 
2598 void intel_hdcp_component_fini(struct intel_display *display)
2599 {
2600 	mutex_lock(&display->hdcp.hdcp_mutex);
2601 	if (!display->hdcp.comp_added) {
2602 		mutex_unlock(&display->hdcp.hdcp_mutex);
2603 		return;
2604 	}
2605 
2606 	display->hdcp.comp_added = false;
2607 	mutex_unlock(&display->hdcp.hdcp_mutex);
2608 
2609 	if (intel_hdcp_gsc_cs_required(display))
2610 		intel_hdcp_gsc_fini(display);
2611 	else
2612 		component_del(display->drm->dev, &i915_hdcp_ops);
2613 }
2614 
2615 void intel_hdcp_cleanup(struct intel_connector *connector)
2616 {
2617 	struct intel_hdcp *hdcp = &connector->hdcp;
2618 
2619 	if (!hdcp->shim)
2620 		return;
2621 
2622 	/*
2623 	 * If the connector is registered, it's possible userspace could kick
2624 	 * off another HDCP enable, which would re-spawn the workers.
2625 	 */
2626 	drm_WARN_ON(connector->base.dev,
2627 		connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2628 
2629 	/*
2630 	 * Now that the connector is not registered, check_work won't be run,
2631 	 * but cancel any outstanding instances of it
2632 	 */
2633 	cancel_delayed_work_sync(&hdcp->check_work);
2634 
2635 	/*
2636 	 * We don't cancel prop_work in the same way as check_work since it
2637 	 * requires connection_mutex which could be held while calling this
2638 	 * function. Instead, we rely on the connector references grabbed before
2639 	 * scheduling prop_work to ensure the connector is alive when prop_work
2640 	 * is run. So if we're in the destroy path (which is where this
2641 	 * function should be called), we're "guaranteed" that prop_work is not
2642 	 * active (tl;dr This Should Never Happen).
2643 	 */
2644 	drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2645 
2646 	mutex_lock(&hdcp->mutex);
2647 	hdcp->shim = NULL;
2648 	mutex_unlock(&hdcp->mutex);
2649 }
2650 
2651 void intel_hdcp_atomic_check(struct drm_connector *connector,
2652 			     struct drm_connector_state *old_state,
2653 			     struct drm_connector_state *new_state)
2654 {
2655 	u64 old_cp = old_state->content_protection;
2656 	u64 new_cp = new_state->content_protection;
2657 	struct drm_crtc_state *crtc_state;
2658 
2659 	if (!new_state->crtc) {
2660 		/*
2661 		 * If the connector is being disabled with CP enabled, mark it
2662 		 * desired so it's re-enabled when the connector is brought back
2663 		 */
2664 		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2665 			new_state->content_protection =
2666 				DRM_MODE_CONTENT_PROTECTION_DESIRED;
2667 		return;
2668 	}
2669 
2670 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2671 						   new_state->crtc);
2672 	/*
2673 	 * Fix the HDCP uapi content protection state in case of modeset.
2674 	 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2675 	 * need to be sent if there is transition from ENABLED->DESIRED.
2676 	 */
2677 	if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2678 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2679 	    new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2680 		new_state->content_protection =
2681 			DRM_MODE_CONTENT_PROTECTION_DESIRED;
2682 
2683 	/*
2684 	 * Nothing to do if the state didn't change, or HDCP was activated since
2685 	 * the last commit. And also no change in hdcp content type.
2686 	 */
2687 	if (old_cp == new_cp ||
2688 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2689 	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2690 		if (old_state->hdcp_content_type ==
2691 				new_state->hdcp_content_type)
2692 			return;
2693 	}
2694 
2695 	crtc_state->mode_changed = true;
2696 }
2697 
2698 /* Handles the CP_IRQ raised from the DP HDCP sink */
2699 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2700 {
2701 	struct intel_hdcp *hdcp = &connector->hdcp;
2702 	struct intel_display *display = to_intel_display(connector);
2703 	struct drm_i915_private *i915 = to_i915(display->drm);
2704 
2705 	if (!hdcp->shim)
2706 		return;
2707 
2708 	atomic_inc(&connector->hdcp.cp_irq_count);
2709 	wake_up_all(&connector->hdcp.cp_irq_queue);
2710 
2711 	queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 0);
2712 }
2713