xref: /linux/drivers/gpu/drm/i915/display/intel_hdcp.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <seanpaul@chromium.org>
8  * Ramalingam C <ramalingam.c@intel.com>
9  */
10 
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14 
15 #include <drm/display/drm_hdcp_helper.h>
16 #include <drm/i915_component.h>
17 
18 #include "i915_drv.h"
19 #include "i915_reg.h"
20 #include "intel_connector.h"
21 #include "intel_de.h"
22 #include "intel_display_power.h"
23 #include "intel_display_power_well.h"
24 #include "intel_display_types.h"
25 #include "intel_hdcp.h"
26 #include "intel_pcode.h"
27 
28 #define KEY_LOAD_TRIES	5
29 #define HDCP2_LC_RETRY_CNT			3
30 
31 static int intel_conn_to_vcpi(struct intel_connector *connector)
32 {
33 	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
34 	return connector->port	? connector->port->vcpi.vcpi : 0;
35 }
36 
37 /*
38  * intel_hdcp_required_content_stream selects the most highest common possible HDCP
39  * content_type for all streams in DP MST topology because security f/w doesn't
40  * have any provision to mark content_type for each stream separately, it marks
41  * all available streams with the content_type proivided at the time of port
42  * authentication. This may prohibit the userspace to use type1 content on
43  * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
44  * DP MST topology. Though it is not compulsory, security fw should change its
45  * policy to mark different content_types for different streams.
46  */
47 static int
48 intel_hdcp_required_content_stream(struct intel_digital_port *dig_port)
49 {
50 	struct drm_connector_list_iter conn_iter;
51 	struct intel_digital_port *conn_dig_port;
52 	struct intel_connector *connector;
53 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
54 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
55 	bool enforce_type0 = false;
56 	int k;
57 
58 	data->k = 0;
59 
60 	if (dig_port->hdcp_auth_status)
61 		return 0;
62 
63 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
64 	for_each_intel_connector_iter(connector, &conn_iter) {
65 		if (connector->base.status == connector_status_disconnected)
66 			continue;
67 
68 		if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
69 			continue;
70 
71 		conn_dig_port = intel_attached_dig_port(connector);
72 		if (conn_dig_port != dig_port)
73 			continue;
74 
75 		if (!enforce_type0 && !dig_port->hdcp_mst_type1_capable)
76 			enforce_type0 = true;
77 
78 		data->streams[data->k].stream_id = intel_conn_to_vcpi(connector);
79 		data->k++;
80 
81 		/* if there is only one active stream */
82 		if (dig_port->dp.active_mst_links <= 1)
83 			break;
84 	}
85 	drm_connector_list_iter_end(&conn_iter);
86 
87 	if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
88 		return -EINVAL;
89 
90 	/*
91 	 * Apply common protection level across all streams in DP MST Topology.
92 	 * Use highest supported content type for all streams in DP MST Topology.
93 	 */
94 	for (k = 0; k < data->k; k++)
95 		data->streams[k].stream_type =
96 			enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
97 
98 	return 0;
99 }
100 
101 static int intel_hdcp_prepare_streams(struct intel_connector *connector)
102 {
103 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
104 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
105 	struct intel_hdcp *hdcp = &connector->hdcp;
106 	int ret;
107 
108 	if (!intel_encoder_is_mst(intel_attached_encoder(connector))) {
109 		data->k = 1;
110 		data->streams[0].stream_type = hdcp->content_type;
111 	} else {
112 		ret = intel_hdcp_required_content_stream(dig_port);
113 		if (ret)
114 			return ret;
115 	}
116 
117 	return 0;
118 }
119 
120 static
121 bool intel_hdcp_is_ksv_valid(u8 *ksv)
122 {
123 	int i, ones = 0;
124 	/* KSV has 20 1's and 20 0's */
125 	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
126 		ones += hweight8(ksv[i]);
127 	if (ones != 20)
128 		return false;
129 
130 	return true;
131 }
132 
133 static
134 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
135 			       const struct intel_hdcp_shim *shim, u8 *bksv)
136 {
137 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
138 	int ret, i, tries = 2;
139 
140 	/* HDCP spec states that we must retry the bksv if it is invalid */
141 	for (i = 0; i < tries; i++) {
142 		ret = shim->read_bksv(dig_port, bksv);
143 		if (ret)
144 			return ret;
145 		if (intel_hdcp_is_ksv_valid(bksv))
146 			break;
147 	}
148 	if (i == tries) {
149 		drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
150 		return -ENODEV;
151 	}
152 
153 	return 0;
154 }
155 
156 /* Is HDCP1.4 capable on Platform and Sink */
157 bool intel_hdcp_capable(struct intel_connector *connector)
158 {
159 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
160 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
161 	bool capable = false;
162 	u8 bksv[5];
163 
164 	if (!shim)
165 		return capable;
166 
167 	if (shim->hdcp_capable) {
168 		shim->hdcp_capable(dig_port, &capable);
169 	} else {
170 		if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
171 			capable = true;
172 	}
173 
174 	return capable;
175 }
176 
177 /* Is HDCP2.2 capable on Platform and Sink */
178 bool intel_hdcp2_capable(struct intel_connector *connector)
179 {
180 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
181 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
182 	struct intel_hdcp *hdcp = &connector->hdcp;
183 	bool capable = false;
184 
185 	/* I915 support for HDCP2.2 */
186 	if (!hdcp->hdcp2_supported)
187 		return false;
188 
189 	/* MEI interface is solid */
190 	mutex_lock(&dev_priv->hdcp_comp_mutex);
191 	if (!dev_priv->hdcp_comp_added ||  !dev_priv->hdcp_master) {
192 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
193 		return false;
194 	}
195 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
196 
197 	/* Sink's capability for HDCP2.2 */
198 	hdcp->shim->hdcp_2_2_capable(dig_port, &capable);
199 
200 	return capable;
201 }
202 
203 static bool intel_hdcp_in_use(struct drm_i915_private *dev_priv,
204 			      enum transcoder cpu_transcoder, enum port port)
205 {
206 	return intel_de_read(dev_priv,
207 	                     HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
208 	       HDCP_STATUS_ENC;
209 }
210 
211 static bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv,
212 			       enum transcoder cpu_transcoder, enum port port)
213 {
214 	return intel_de_read(dev_priv,
215 	                     HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
216 	       LINK_ENCRYPTION_STATUS;
217 }
218 
219 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
220 				    const struct intel_hdcp_shim *shim)
221 {
222 	int ret, read_ret;
223 	bool ksv_ready;
224 
225 	/* Poll for ksv list ready (spec says max time allowed is 5s) */
226 	ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
227 							 &ksv_ready),
228 			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
229 			 100 * 1000);
230 	if (ret)
231 		return ret;
232 	if (read_ret)
233 		return read_ret;
234 	if (!ksv_ready)
235 		return -ETIMEDOUT;
236 
237 	return 0;
238 }
239 
240 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
241 {
242 	enum i915_power_well_id id;
243 	intel_wakeref_t wakeref;
244 	bool enabled = false;
245 
246 	/*
247 	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
248 	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
249 	 */
250 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
251 		id = HSW_DISP_PW_GLOBAL;
252 	else
253 		id = SKL_DISP_PW_1;
254 
255 	/* PG1 (power well #1) needs to be enabled */
256 	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
257 		enabled = intel_display_power_well_is_enabled(dev_priv, id);
258 
259 	/*
260 	 * Another req for hdcp key loadability is enabled state of pll for
261 	 * cdclk. Without active crtc we wont land here. So we are assuming that
262 	 * cdclk is already on.
263 	 */
264 
265 	return enabled;
266 }
267 
268 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
269 {
270 	intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
271 	intel_de_write(dev_priv, HDCP_KEY_STATUS,
272 		       HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
273 }
274 
275 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
276 {
277 	int ret;
278 	u32 val;
279 
280 	val = intel_de_read(dev_priv, HDCP_KEY_STATUS);
281 	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
282 		return 0;
283 
284 	/*
285 	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
286 	 * out of reset. So if Key is not already loaded, its an error state.
287 	 */
288 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
289 		if (!(intel_de_read(dev_priv, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
290 			return -ENXIO;
291 
292 	/*
293 	 * Initiate loading the HDCP key from fuses.
294 	 *
295 	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
296 	 * version 9 platforms (minus BXT) differ in the key load trigger
297 	 * process from other platforms. These platforms use the GT Driver
298 	 * Mailbox interface.
299 	 */
300 	if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv)) {
301 		ret = snb_pcode_write(dev_priv, SKL_PCODE_LOAD_HDCP_KEYS, 1);
302 		if (ret) {
303 			drm_err(&dev_priv->drm,
304 				"Failed to initiate HDCP key load (%d)\n",
305 				ret);
306 			return ret;
307 		}
308 	} else {
309 		intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
310 	}
311 
312 	/* Wait for the keys to load (500us) */
313 	ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
314 					HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
315 					10, 1, &val);
316 	if (ret)
317 		return ret;
318 	else if (!(val & HDCP_KEY_LOAD_STATUS))
319 		return -ENXIO;
320 
321 	/* Send Aksv over to PCH display for use in authentication */
322 	intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
323 
324 	return 0;
325 }
326 
327 /* Returns updated SHA-1 index */
328 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
329 {
330 	intel_de_write(dev_priv, HDCP_SHA_TEXT, sha_text);
331 	if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
332 		drm_err(&dev_priv->drm, "Timed out waiting for SHA1 ready\n");
333 		return -ETIMEDOUT;
334 	}
335 	return 0;
336 }
337 
338 static
339 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv,
340 				enum transcoder cpu_transcoder, enum port port)
341 {
342 	if (DISPLAY_VER(dev_priv) >= 12) {
343 		switch (cpu_transcoder) {
344 		case TRANSCODER_A:
345 			return HDCP_TRANSA_REP_PRESENT |
346 			       HDCP_TRANSA_SHA1_M0;
347 		case TRANSCODER_B:
348 			return HDCP_TRANSB_REP_PRESENT |
349 			       HDCP_TRANSB_SHA1_M0;
350 		case TRANSCODER_C:
351 			return HDCP_TRANSC_REP_PRESENT |
352 			       HDCP_TRANSC_SHA1_M0;
353 		case TRANSCODER_D:
354 			return HDCP_TRANSD_REP_PRESENT |
355 			       HDCP_TRANSD_SHA1_M0;
356 		default:
357 			drm_err(&dev_priv->drm, "Unknown transcoder %d\n",
358 				cpu_transcoder);
359 			return -EINVAL;
360 		}
361 	}
362 
363 	switch (port) {
364 	case PORT_A:
365 		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
366 	case PORT_B:
367 		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
368 	case PORT_C:
369 		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
370 	case PORT_D:
371 		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
372 	case PORT_E:
373 		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
374 	default:
375 		drm_err(&dev_priv->drm, "Unknown port %d\n", port);
376 		return -EINVAL;
377 	}
378 }
379 
380 static
381 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
382 				const struct intel_hdcp_shim *shim,
383 				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
384 {
385 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
386 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
387 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
388 	enum port port = dig_port->base.port;
389 	u32 vprime, sha_text, sha_leftovers, rep_ctl;
390 	int ret, i, j, sha_idx;
391 
392 	/* Process V' values from the receiver */
393 	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
394 		ret = shim->read_v_prime_part(dig_port, i, &vprime);
395 		if (ret)
396 			return ret;
397 		intel_de_write(dev_priv, HDCP_SHA_V_PRIME(i), vprime);
398 	}
399 
400 	/*
401 	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
402 	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
403 	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
404 	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
405 	 * index will keep track of our progress through the 64 bytes as well as
406 	 * helping us work the 40-bit KSVs through our 32-bit register.
407 	 *
408 	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
409 	 */
410 	sha_idx = 0;
411 	sha_text = 0;
412 	sha_leftovers = 0;
413 	rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port);
414 	intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
415 	for (i = 0; i < num_downstream; i++) {
416 		unsigned int sha_empty;
417 		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
418 
419 		/* Fill up the empty slots in sha_text and write it out */
420 		sha_empty = sizeof(sha_text) - sha_leftovers;
421 		for (j = 0; j < sha_empty; j++) {
422 			u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
423 			sha_text |= ksv[j] << off;
424 		}
425 
426 		ret = intel_write_sha_text(dev_priv, sha_text);
427 		if (ret < 0)
428 			return ret;
429 
430 		/* Programming guide writes this every 64 bytes */
431 		sha_idx += sizeof(sha_text);
432 		if (!(sha_idx % 64))
433 			intel_de_write(dev_priv, HDCP_REP_CTL,
434 				       rep_ctl | HDCP_SHA1_TEXT_32);
435 
436 		/* Store the leftover bytes from the ksv in sha_text */
437 		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
438 		sha_text = 0;
439 		for (j = 0; j < sha_leftovers; j++)
440 			sha_text |= ksv[sha_empty + j] <<
441 					((sizeof(sha_text) - j - 1) * 8);
442 
443 		/*
444 		 * If we still have room in sha_text for more data, continue.
445 		 * Otherwise, write it out immediately.
446 		 */
447 		if (sizeof(sha_text) > sha_leftovers)
448 			continue;
449 
450 		ret = intel_write_sha_text(dev_priv, sha_text);
451 		if (ret < 0)
452 			return ret;
453 		sha_leftovers = 0;
454 		sha_text = 0;
455 		sha_idx += sizeof(sha_text);
456 	}
457 
458 	/*
459 	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
460 	 * bytes are leftover from the last ksv, we might be able to fit them
461 	 * all in sha_text (first 2 cases), or we might need to split them up
462 	 * into 2 writes (last 2 cases).
463 	 */
464 	if (sha_leftovers == 0) {
465 		/* Write 16 bits of text, 16 bits of M0 */
466 		intel_de_write(dev_priv, HDCP_REP_CTL,
467 			       rep_ctl | HDCP_SHA1_TEXT_16);
468 		ret = intel_write_sha_text(dev_priv,
469 					   bstatus[0] << 8 | bstatus[1]);
470 		if (ret < 0)
471 			return ret;
472 		sha_idx += sizeof(sha_text);
473 
474 		/* Write 32 bits of M0 */
475 		intel_de_write(dev_priv, HDCP_REP_CTL,
476 			       rep_ctl | HDCP_SHA1_TEXT_0);
477 		ret = intel_write_sha_text(dev_priv, 0);
478 		if (ret < 0)
479 			return ret;
480 		sha_idx += sizeof(sha_text);
481 
482 		/* Write 16 bits of M0 */
483 		intel_de_write(dev_priv, HDCP_REP_CTL,
484 			       rep_ctl | HDCP_SHA1_TEXT_16);
485 		ret = intel_write_sha_text(dev_priv, 0);
486 		if (ret < 0)
487 			return ret;
488 		sha_idx += sizeof(sha_text);
489 
490 	} else if (sha_leftovers == 1) {
491 		/* Write 24 bits of text, 8 bits of M0 */
492 		intel_de_write(dev_priv, HDCP_REP_CTL,
493 			       rep_ctl | HDCP_SHA1_TEXT_24);
494 		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
495 		/* Only 24-bits of data, must be in the LSB */
496 		sha_text = (sha_text & 0xffffff00) >> 8;
497 		ret = intel_write_sha_text(dev_priv, sha_text);
498 		if (ret < 0)
499 			return ret;
500 		sha_idx += sizeof(sha_text);
501 
502 		/* Write 32 bits of M0 */
503 		intel_de_write(dev_priv, HDCP_REP_CTL,
504 			       rep_ctl | HDCP_SHA1_TEXT_0);
505 		ret = intel_write_sha_text(dev_priv, 0);
506 		if (ret < 0)
507 			return ret;
508 		sha_idx += sizeof(sha_text);
509 
510 		/* Write 24 bits of M0 */
511 		intel_de_write(dev_priv, HDCP_REP_CTL,
512 			       rep_ctl | HDCP_SHA1_TEXT_8);
513 		ret = intel_write_sha_text(dev_priv, 0);
514 		if (ret < 0)
515 			return ret;
516 		sha_idx += sizeof(sha_text);
517 
518 	} else if (sha_leftovers == 2) {
519 		/* Write 32 bits of text */
520 		intel_de_write(dev_priv, HDCP_REP_CTL,
521 			       rep_ctl | HDCP_SHA1_TEXT_32);
522 		sha_text |= bstatus[0] << 8 | bstatus[1];
523 		ret = intel_write_sha_text(dev_priv, sha_text);
524 		if (ret < 0)
525 			return ret;
526 		sha_idx += sizeof(sha_text);
527 
528 		/* Write 64 bits of M0 */
529 		intel_de_write(dev_priv, HDCP_REP_CTL,
530 			       rep_ctl | HDCP_SHA1_TEXT_0);
531 		for (i = 0; i < 2; i++) {
532 			ret = intel_write_sha_text(dev_priv, 0);
533 			if (ret < 0)
534 				return ret;
535 			sha_idx += sizeof(sha_text);
536 		}
537 
538 		/*
539 		 * Terminate the SHA-1 stream by hand. For the other leftover
540 		 * cases this is appended by the hardware.
541 		 */
542 		intel_de_write(dev_priv, HDCP_REP_CTL,
543 			       rep_ctl | HDCP_SHA1_TEXT_32);
544 		sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
545 		ret = intel_write_sha_text(dev_priv, sha_text);
546 		if (ret < 0)
547 			return ret;
548 		sha_idx += sizeof(sha_text);
549 	} else if (sha_leftovers == 3) {
550 		/* Write 32 bits of text (filled from LSB) */
551 		intel_de_write(dev_priv, HDCP_REP_CTL,
552 			       rep_ctl | HDCP_SHA1_TEXT_32);
553 		sha_text |= bstatus[0];
554 		ret = intel_write_sha_text(dev_priv, sha_text);
555 		if (ret < 0)
556 			return ret;
557 		sha_idx += sizeof(sha_text);
558 
559 		/* Write 8 bits of text (filled from LSB), 24 bits of M0 */
560 		intel_de_write(dev_priv, HDCP_REP_CTL,
561 			       rep_ctl | HDCP_SHA1_TEXT_8);
562 		ret = intel_write_sha_text(dev_priv, bstatus[1]);
563 		if (ret < 0)
564 			return ret;
565 		sha_idx += sizeof(sha_text);
566 
567 		/* Write 32 bits of M0 */
568 		intel_de_write(dev_priv, HDCP_REP_CTL,
569 			       rep_ctl | HDCP_SHA1_TEXT_0);
570 		ret = intel_write_sha_text(dev_priv, 0);
571 		if (ret < 0)
572 			return ret;
573 		sha_idx += sizeof(sha_text);
574 
575 		/* Write 8 bits of M0 */
576 		intel_de_write(dev_priv, HDCP_REP_CTL,
577 			       rep_ctl | HDCP_SHA1_TEXT_24);
578 		ret = intel_write_sha_text(dev_priv, 0);
579 		if (ret < 0)
580 			return ret;
581 		sha_idx += sizeof(sha_text);
582 	} else {
583 		drm_dbg_kms(&dev_priv->drm, "Invalid number of leftovers %d\n",
584 			    sha_leftovers);
585 		return -EINVAL;
586 	}
587 
588 	intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
589 	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
590 	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
591 		ret = intel_write_sha_text(dev_priv, 0);
592 		if (ret < 0)
593 			return ret;
594 		sha_idx += sizeof(sha_text);
595 	}
596 
597 	/*
598 	 * Last write gets the length of the concatenation in bits. That is:
599 	 *  - 5 bytes per device
600 	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
601 	 */
602 	sha_text = (num_downstream * 5 + 10) * 8;
603 	ret = intel_write_sha_text(dev_priv, sha_text);
604 	if (ret < 0)
605 		return ret;
606 
607 	/* Tell the HW we're done with the hash and wait for it to ACK */
608 	intel_de_write(dev_priv, HDCP_REP_CTL,
609 		       rep_ctl | HDCP_SHA1_COMPLETE_HASH);
610 	if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
611 				  HDCP_SHA1_COMPLETE, 1)) {
612 		drm_err(&dev_priv->drm, "Timed out waiting for SHA1 complete\n");
613 		return -ETIMEDOUT;
614 	}
615 	if (!(intel_de_read(dev_priv, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
616 		drm_dbg_kms(&dev_priv->drm, "SHA-1 mismatch, HDCP failed\n");
617 		return -ENXIO;
618 	}
619 
620 	return 0;
621 }
622 
623 /* Implements Part 2 of the HDCP authorization procedure */
624 static
625 int intel_hdcp_auth_downstream(struct intel_connector *connector)
626 {
627 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
628 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
629 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
630 	u8 bstatus[2], num_downstream, *ksv_fifo;
631 	int ret, i, tries = 3;
632 
633 	ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
634 	if (ret) {
635 		drm_dbg_kms(&dev_priv->drm,
636 			    "KSV list failed to become ready (%d)\n", ret);
637 		return ret;
638 	}
639 
640 	ret = shim->read_bstatus(dig_port, bstatus);
641 	if (ret)
642 		return ret;
643 
644 	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
645 	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
646 		drm_dbg_kms(&dev_priv->drm, "Max Topology Limit Exceeded\n");
647 		return -EPERM;
648 	}
649 
650 	/*
651 	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
652 	 * the HDCP encryption. That implies that repeater can't have its own
653 	 * display. As there is no consumption of encrypted content in the
654 	 * repeater with 0 downstream devices, we are failing the
655 	 * authentication.
656 	 */
657 	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
658 	if (num_downstream == 0) {
659 		drm_dbg_kms(&dev_priv->drm,
660 			    "Repeater with zero downstream devices\n");
661 		return -EINVAL;
662 	}
663 
664 	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
665 	if (!ksv_fifo) {
666 		drm_dbg_kms(&dev_priv->drm, "Out of mem: ksv_fifo\n");
667 		return -ENOMEM;
668 	}
669 
670 	ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
671 	if (ret)
672 		goto err;
673 
674 	if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, ksv_fifo,
675 					num_downstream) > 0) {
676 		drm_err(&dev_priv->drm, "Revoked Ksv(s) in ksv_fifo\n");
677 		ret = -EPERM;
678 		goto err;
679 	}
680 
681 	/*
682 	 * When V prime mismatches, DP Spec mandates re-read of
683 	 * V prime atleast twice.
684 	 */
685 	for (i = 0; i < tries; i++) {
686 		ret = intel_hdcp_validate_v_prime(connector, shim,
687 						  ksv_fifo, num_downstream,
688 						  bstatus);
689 		if (!ret)
690 			break;
691 	}
692 
693 	if (i == tries) {
694 		drm_dbg_kms(&dev_priv->drm,
695 			    "V Prime validation failed.(%d)\n", ret);
696 		goto err;
697 	}
698 
699 	drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (%d downstream devices)\n",
700 		    num_downstream);
701 	ret = 0;
702 err:
703 	kfree(ksv_fifo);
704 	return ret;
705 }
706 
707 /* Implements Part 1 of the HDCP authorization procedure */
708 static int intel_hdcp_auth(struct intel_connector *connector)
709 {
710 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
711 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
712 	struct intel_hdcp *hdcp = &connector->hdcp;
713 	const struct intel_hdcp_shim *shim = hdcp->shim;
714 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
715 	enum port port = dig_port->base.port;
716 	unsigned long r0_prime_gen_start;
717 	int ret, i, tries = 2;
718 	union {
719 		u32 reg[2];
720 		u8 shim[DRM_HDCP_AN_LEN];
721 	} an;
722 	union {
723 		u32 reg[2];
724 		u8 shim[DRM_HDCP_KSV_LEN];
725 	} bksv;
726 	union {
727 		u32 reg;
728 		u8 shim[DRM_HDCP_RI_LEN];
729 	} ri;
730 	bool repeater_present, hdcp_capable;
731 
732 	/*
733 	 * Detects whether the display is HDCP capable. Although we check for
734 	 * valid Bksv below, the HDCP over DP spec requires that we check
735 	 * whether the display supports HDCP before we write An. For HDMI
736 	 * displays, this is not necessary.
737 	 */
738 	if (shim->hdcp_capable) {
739 		ret = shim->hdcp_capable(dig_port, &hdcp_capable);
740 		if (ret)
741 			return ret;
742 		if (!hdcp_capable) {
743 			drm_dbg_kms(&dev_priv->drm,
744 				    "Panel is not HDCP capable\n");
745 			return -EINVAL;
746 		}
747 	}
748 
749 	/* Initialize An with 2 random values and acquire it */
750 	for (i = 0; i < 2; i++)
751 		intel_de_write(dev_priv,
752 			       HDCP_ANINIT(dev_priv, cpu_transcoder, port),
753 			       get_random_u32());
754 	intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
755 		       HDCP_CONF_CAPTURE_AN);
756 
757 	/* Wait for An to be acquired */
758 	if (intel_de_wait_for_set(dev_priv,
759 				  HDCP_STATUS(dev_priv, cpu_transcoder, port),
760 				  HDCP_STATUS_AN_READY, 1)) {
761 		drm_err(&dev_priv->drm, "Timed out waiting for An\n");
762 		return -ETIMEDOUT;
763 	}
764 
765 	an.reg[0] = intel_de_read(dev_priv,
766 				  HDCP_ANLO(dev_priv, cpu_transcoder, port));
767 	an.reg[1] = intel_de_read(dev_priv,
768 				  HDCP_ANHI(dev_priv, cpu_transcoder, port));
769 	ret = shim->write_an_aksv(dig_port, an.shim);
770 	if (ret)
771 		return ret;
772 
773 	r0_prime_gen_start = jiffies;
774 
775 	memset(&bksv, 0, sizeof(bksv));
776 
777 	ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
778 	if (ret < 0)
779 		return ret;
780 
781 	if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, bksv.shim, 1) > 0) {
782 		drm_err(&dev_priv->drm, "BKSV is revoked\n");
783 		return -EPERM;
784 	}
785 
786 	intel_de_write(dev_priv, HDCP_BKSVLO(dev_priv, cpu_transcoder, port),
787 		       bksv.reg[0]);
788 	intel_de_write(dev_priv, HDCP_BKSVHI(dev_priv, cpu_transcoder, port),
789 		       bksv.reg[1]);
790 
791 	ret = shim->repeater_present(dig_port, &repeater_present);
792 	if (ret)
793 		return ret;
794 	if (repeater_present)
795 		intel_de_write(dev_priv, HDCP_REP_CTL,
796 			       intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port));
797 
798 	ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
799 	if (ret)
800 		return ret;
801 
802 	intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
803 		       HDCP_CONF_AUTH_AND_ENC);
804 
805 	/* Wait for R0 ready */
806 	if (wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
807 		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
808 		drm_err(&dev_priv->drm, "Timed out waiting for R0 ready\n");
809 		return -ETIMEDOUT;
810 	}
811 
812 	/*
813 	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
814 	 * some monitors can take longer than this. We'll set the timeout at
815 	 * 300ms just to be sure.
816 	 *
817 	 * On DP, there's an R0_READY bit available but no such bit
818 	 * exists on HDMI. Since the upper-bound is the same, we'll just do
819 	 * the stupid thing instead of polling on one and not the other.
820 	 */
821 	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
822 
823 	tries = 3;
824 
825 	/*
826 	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
827 	 * of R0 mismatch.
828 	 */
829 	for (i = 0; i < tries; i++) {
830 		ri.reg = 0;
831 		ret = shim->read_ri_prime(dig_port, ri.shim);
832 		if (ret)
833 			return ret;
834 		intel_de_write(dev_priv,
835 			       HDCP_RPRIME(dev_priv, cpu_transcoder, port),
836 			       ri.reg);
837 
838 		/* Wait for Ri prime match */
839 		if (!wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
840 			      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
841 			break;
842 	}
843 
844 	if (i == tries) {
845 		drm_dbg_kms(&dev_priv->drm,
846 			    "Timed out waiting for Ri prime match (%x)\n",
847 			    intel_de_read(dev_priv, HDCP_STATUS(dev_priv,
848 					  cpu_transcoder, port)));
849 		return -ETIMEDOUT;
850 	}
851 
852 	/* Wait for encryption confirmation */
853 	if (intel_de_wait_for_set(dev_priv,
854 				  HDCP_STATUS(dev_priv, cpu_transcoder, port),
855 				  HDCP_STATUS_ENC,
856 				  HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
857 		drm_err(&dev_priv->drm, "Timed out waiting for encryption\n");
858 		return -ETIMEDOUT;
859 	}
860 
861 	/* DP MST Auth Part 1 Step 2.a and Step 2.b */
862 	if (shim->stream_encryption) {
863 		ret = shim->stream_encryption(connector, true);
864 		if (ret) {
865 			drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 1.4 stream enc\n",
866 				connector->base.name, connector->base.base.id);
867 			return ret;
868 		}
869 		drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
870 			    transcoder_name(hdcp->stream_transcoder));
871 	}
872 
873 	if (repeater_present)
874 		return intel_hdcp_auth_downstream(connector);
875 
876 	drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (no repeater present)\n");
877 	return 0;
878 }
879 
880 static int _intel_hdcp_disable(struct intel_connector *connector)
881 {
882 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
883 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
884 	struct intel_hdcp *hdcp = &connector->hdcp;
885 	enum port port = dig_port->base.port;
886 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
887 	u32 repeater_ctl;
888 	int ret;
889 
890 	drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being disabled...\n",
891 		    connector->base.name, connector->base.base.id);
892 
893 	if (hdcp->shim->stream_encryption) {
894 		ret = hdcp->shim->stream_encryption(connector, false);
895 		if (ret) {
896 			drm_err(&dev_priv->drm, "[%s:%d] Failed to disable HDCP 1.4 stream enc\n",
897 				connector->base.name, connector->base.base.id);
898 			return ret;
899 		}
900 		drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
901 			    transcoder_name(hdcp->stream_transcoder));
902 		/*
903 		 * If there are other connectors on this port using HDCP,
904 		 * don't disable it until it disabled HDCP encryption for
905 		 * all connectors in MST topology.
906 		 */
907 		if (dig_port->num_hdcp_streams > 0)
908 			return 0;
909 	}
910 
911 	hdcp->hdcp_encrypted = false;
912 	intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), 0);
913 	if (intel_de_wait_for_clear(dev_priv,
914 				    HDCP_STATUS(dev_priv, cpu_transcoder, port),
915 				    ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
916 		drm_err(&dev_priv->drm,
917 			"Failed to disable HDCP, timeout clearing status\n");
918 		return -ETIMEDOUT;
919 	}
920 
921 	repeater_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder,
922 						   port);
923 	intel_de_write(dev_priv, HDCP_REP_CTL,
924 		       intel_de_read(dev_priv, HDCP_REP_CTL) & ~repeater_ctl);
925 
926 	ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
927 	if (ret) {
928 		drm_err(&dev_priv->drm, "Failed to disable HDCP signalling\n");
929 		return ret;
930 	}
931 
932 	drm_dbg_kms(&dev_priv->drm, "HDCP is disabled\n");
933 	return 0;
934 }
935 
936 static int _intel_hdcp_enable(struct intel_connector *connector)
937 {
938 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
939 	struct intel_hdcp *hdcp = &connector->hdcp;
940 	int i, ret, tries = 3;
941 
942 	drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being enabled...\n",
943 		    connector->base.name, connector->base.base.id);
944 
945 	if (!hdcp_key_loadable(dev_priv)) {
946 		drm_err(&dev_priv->drm, "HDCP key Load is not possible\n");
947 		return -ENXIO;
948 	}
949 
950 	for (i = 0; i < KEY_LOAD_TRIES; i++) {
951 		ret = intel_hdcp_load_keys(dev_priv);
952 		if (!ret)
953 			break;
954 		intel_hdcp_clear_keys(dev_priv);
955 	}
956 	if (ret) {
957 		drm_err(&dev_priv->drm, "Could not load HDCP keys, (%d)\n",
958 			ret);
959 		return ret;
960 	}
961 
962 	/* Incase of authentication failures, HDCP spec expects reauth. */
963 	for (i = 0; i < tries; i++) {
964 		ret = intel_hdcp_auth(connector);
965 		if (!ret) {
966 			hdcp->hdcp_encrypted = true;
967 			return 0;
968 		}
969 
970 		drm_dbg_kms(&dev_priv->drm, "HDCP Auth failure (%d)\n", ret);
971 
972 		/* Ensuring HDCP encryption and signalling are stopped. */
973 		_intel_hdcp_disable(connector);
974 	}
975 
976 	drm_dbg_kms(&dev_priv->drm,
977 		    "HDCP authentication failed (%d tries/%d)\n", tries, ret);
978 	return ret;
979 }
980 
981 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
982 {
983 	return container_of(hdcp, struct intel_connector, hdcp);
984 }
985 
986 static void intel_hdcp_update_value(struct intel_connector *connector,
987 				    u64 value, bool update_property)
988 {
989 	struct drm_device *dev = connector->base.dev;
990 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
991 	struct intel_hdcp *hdcp = &connector->hdcp;
992 
993 	drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
994 
995 	if (hdcp->value == value)
996 		return;
997 
998 	drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
999 
1000 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1001 		if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
1002 			dig_port->num_hdcp_streams--;
1003 	} else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1004 		dig_port->num_hdcp_streams++;
1005 	}
1006 
1007 	hdcp->value = value;
1008 	if (update_property) {
1009 		drm_connector_get(&connector->base);
1010 		schedule_work(&hdcp->prop_work);
1011 	}
1012 }
1013 
1014 /* Implements Part 3 of the HDCP authorization procedure */
1015 static int intel_hdcp_check_link(struct intel_connector *connector)
1016 {
1017 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1018 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1019 	struct intel_hdcp *hdcp = &connector->hdcp;
1020 	enum port port = dig_port->base.port;
1021 	enum transcoder cpu_transcoder;
1022 	int ret = 0;
1023 
1024 	mutex_lock(&hdcp->mutex);
1025 	mutex_lock(&dig_port->hdcp_mutex);
1026 
1027 	cpu_transcoder = hdcp->cpu_transcoder;
1028 
1029 	/* Check_link valid only when HDCP1.4 is enabled */
1030 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1031 	    !hdcp->hdcp_encrypted) {
1032 		ret = -EINVAL;
1033 		goto out;
1034 	}
1035 
1036 	if (drm_WARN_ON(&dev_priv->drm,
1037 			!intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) {
1038 		drm_err(&dev_priv->drm,
1039 			"%s:%d HDCP link stopped encryption,%x\n",
1040 			connector->base.name, connector->base.base.id,
1041 			intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)));
1042 		ret = -ENXIO;
1043 		intel_hdcp_update_value(connector,
1044 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1045 					true);
1046 		goto out;
1047 	}
1048 
1049 	if (hdcp->shim->check_link(dig_port, connector)) {
1050 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1051 			intel_hdcp_update_value(connector,
1052 				DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1053 		}
1054 		goto out;
1055 	}
1056 
1057 	drm_dbg_kms(&dev_priv->drm,
1058 		    "[%s:%d] HDCP link failed, retrying authentication\n",
1059 		    connector->base.name, connector->base.base.id);
1060 
1061 	ret = _intel_hdcp_disable(connector);
1062 	if (ret) {
1063 		drm_err(&dev_priv->drm, "Failed to disable hdcp (%d)\n", ret);
1064 		intel_hdcp_update_value(connector,
1065 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1066 					true);
1067 		goto out;
1068 	}
1069 
1070 	ret = _intel_hdcp_enable(connector);
1071 	if (ret) {
1072 		drm_err(&dev_priv->drm, "Failed to enable hdcp (%d)\n", ret);
1073 		intel_hdcp_update_value(connector,
1074 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1075 					true);
1076 		goto out;
1077 	}
1078 
1079 out:
1080 	mutex_unlock(&dig_port->hdcp_mutex);
1081 	mutex_unlock(&hdcp->mutex);
1082 	return ret;
1083 }
1084 
1085 static void intel_hdcp_prop_work(struct work_struct *work)
1086 {
1087 	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1088 					       prop_work);
1089 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1090 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1091 
1092 	drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, NULL);
1093 	mutex_lock(&hdcp->mutex);
1094 
1095 	/*
1096 	 * This worker is only used to flip between ENABLED/DESIRED. Either of
1097 	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1098 	 * we're running just after hdcp has been disabled, so just exit
1099 	 */
1100 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1101 		drm_hdcp_update_content_protection(&connector->base,
1102 						   hdcp->value);
1103 
1104 	mutex_unlock(&hdcp->mutex);
1105 	drm_modeset_unlock(&dev_priv->drm.mode_config.connection_mutex);
1106 
1107 	drm_connector_put(&connector->base);
1108 }
1109 
1110 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
1111 {
1112 	return INTEL_INFO(dev_priv)->display.has_hdcp &&
1113 			(DISPLAY_VER(dev_priv) >= 12 || port < PORT_E);
1114 }
1115 
1116 static int
1117 hdcp2_prepare_ake_init(struct intel_connector *connector,
1118 		       struct hdcp2_ake_init *ake_data)
1119 {
1120 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1121 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1122 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1123 	struct i915_hdcp_comp_master *comp;
1124 	int ret;
1125 
1126 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1127 	comp = dev_priv->hdcp_master;
1128 
1129 	if (!comp || !comp->ops) {
1130 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1131 		return -EINVAL;
1132 	}
1133 
1134 	ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
1135 	if (ret)
1136 		drm_dbg_kms(&dev_priv->drm, "Prepare_ake_init failed. %d\n",
1137 			    ret);
1138 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1139 
1140 	return ret;
1141 }
1142 
1143 static int
1144 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1145 				struct hdcp2_ake_send_cert *rx_cert,
1146 				bool *paired,
1147 				struct hdcp2_ake_no_stored_km *ek_pub_km,
1148 				size_t *msg_sz)
1149 {
1150 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1151 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1152 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1153 	struct i915_hdcp_comp_master *comp;
1154 	int ret;
1155 
1156 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1157 	comp = dev_priv->hdcp_master;
1158 
1159 	if (!comp || !comp->ops) {
1160 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1161 		return -EINVAL;
1162 	}
1163 
1164 	ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
1165 							 rx_cert, paired,
1166 							 ek_pub_km, msg_sz);
1167 	if (ret < 0)
1168 		drm_dbg_kms(&dev_priv->drm, "Verify rx_cert failed. %d\n",
1169 			    ret);
1170 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1171 
1172 	return ret;
1173 }
1174 
1175 static int hdcp2_verify_hprime(struct intel_connector *connector,
1176 			       struct hdcp2_ake_send_hprime *rx_hprime)
1177 {
1178 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1179 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1180 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1181 	struct i915_hdcp_comp_master *comp;
1182 	int ret;
1183 
1184 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1185 	comp = dev_priv->hdcp_master;
1186 
1187 	if (!comp || !comp->ops) {
1188 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1189 		return -EINVAL;
1190 	}
1191 
1192 	ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
1193 	if (ret < 0)
1194 		drm_dbg_kms(&dev_priv->drm, "Verify hprime failed. %d\n", ret);
1195 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1196 
1197 	return ret;
1198 }
1199 
1200 static int
1201 hdcp2_store_pairing_info(struct intel_connector *connector,
1202 			 struct hdcp2_ake_send_pairing_info *pairing_info)
1203 {
1204 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1205 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1206 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1207 	struct i915_hdcp_comp_master *comp;
1208 	int ret;
1209 
1210 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1211 	comp = dev_priv->hdcp_master;
1212 
1213 	if (!comp || !comp->ops) {
1214 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1215 		return -EINVAL;
1216 	}
1217 
1218 	ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
1219 	if (ret < 0)
1220 		drm_dbg_kms(&dev_priv->drm, "Store pairing info failed. %d\n",
1221 			    ret);
1222 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1223 
1224 	return ret;
1225 }
1226 
1227 static int
1228 hdcp2_prepare_lc_init(struct intel_connector *connector,
1229 		      struct hdcp2_lc_init *lc_init)
1230 {
1231 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1232 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1233 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1234 	struct i915_hdcp_comp_master *comp;
1235 	int ret;
1236 
1237 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1238 	comp = dev_priv->hdcp_master;
1239 
1240 	if (!comp || !comp->ops) {
1241 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1242 		return -EINVAL;
1243 	}
1244 
1245 	ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1246 	if (ret < 0)
1247 		drm_dbg_kms(&dev_priv->drm, "Prepare lc_init failed. %d\n",
1248 			    ret);
1249 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1250 
1251 	return ret;
1252 }
1253 
1254 static int
1255 hdcp2_verify_lprime(struct intel_connector *connector,
1256 		    struct hdcp2_lc_send_lprime *rx_lprime)
1257 {
1258 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1259 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1260 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1261 	struct i915_hdcp_comp_master *comp;
1262 	int ret;
1263 
1264 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1265 	comp = dev_priv->hdcp_master;
1266 
1267 	if (!comp || !comp->ops) {
1268 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1269 		return -EINVAL;
1270 	}
1271 
1272 	ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1273 	if (ret < 0)
1274 		drm_dbg_kms(&dev_priv->drm, "Verify L_Prime failed. %d\n",
1275 			    ret);
1276 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1277 
1278 	return ret;
1279 }
1280 
1281 static int hdcp2_prepare_skey(struct intel_connector *connector,
1282 			      struct hdcp2_ske_send_eks *ske_data)
1283 {
1284 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1285 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1286 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1287 	struct i915_hdcp_comp_master *comp;
1288 	int ret;
1289 
1290 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1291 	comp = dev_priv->hdcp_master;
1292 
1293 	if (!comp || !comp->ops) {
1294 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1295 		return -EINVAL;
1296 	}
1297 
1298 	ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1299 	if (ret < 0)
1300 		drm_dbg_kms(&dev_priv->drm, "Get session key failed. %d\n",
1301 			    ret);
1302 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1303 
1304 	return ret;
1305 }
1306 
1307 static int
1308 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1309 				      struct hdcp2_rep_send_receiverid_list
1310 								*rep_topology,
1311 				      struct hdcp2_rep_send_ack *rep_send_ack)
1312 {
1313 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1314 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1315 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1316 	struct i915_hdcp_comp_master *comp;
1317 	int ret;
1318 
1319 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1320 	comp = dev_priv->hdcp_master;
1321 
1322 	if (!comp || !comp->ops) {
1323 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1324 		return -EINVAL;
1325 	}
1326 
1327 	ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1328 							 rep_topology,
1329 							 rep_send_ack);
1330 	if (ret < 0)
1331 		drm_dbg_kms(&dev_priv->drm,
1332 			    "Verify rep topology failed. %d\n", ret);
1333 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1334 
1335 	return ret;
1336 }
1337 
1338 static int
1339 hdcp2_verify_mprime(struct intel_connector *connector,
1340 		    struct hdcp2_rep_stream_ready *stream_ready)
1341 {
1342 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1343 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1344 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1345 	struct i915_hdcp_comp_master *comp;
1346 	int ret;
1347 
1348 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1349 	comp = dev_priv->hdcp_master;
1350 
1351 	if (!comp || !comp->ops) {
1352 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1353 		return -EINVAL;
1354 	}
1355 
1356 	ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1357 	if (ret < 0)
1358 		drm_dbg_kms(&dev_priv->drm, "Verify mprime failed. %d\n", ret);
1359 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1360 
1361 	return ret;
1362 }
1363 
1364 static int hdcp2_authenticate_port(struct intel_connector *connector)
1365 {
1366 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1367 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1368 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1369 	struct i915_hdcp_comp_master *comp;
1370 	int ret;
1371 
1372 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1373 	comp = dev_priv->hdcp_master;
1374 
1375 	if (!comp || !comp->ops) {
1376 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1377 		return -EINVAL;
1378 	}
1379 
1380 	ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1381 	if (ret < 0)
1382 		drm_dbg_kms(&dev_priv->drm, "Enable hdcp auth failed. %d\n",
1383 			    ret);
1384 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1385 
1386 	return ret;
1387 }
1388 
1389 static int hdcp2_close_mei_session(struct intel_connector *connector)
1390 {
1391 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1392 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1393 	struct i915_hdcp_comp_master *comp;
1394 	int ret;
1395 
1396 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1397 	comp = dev_priv->hdcp_master;
1398 
1399 	if (!comp || !comp->ops) {
1400 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1401 		return -EINVAL;
1402 	}
1403 
1404 	ret = comp->ops->close_hdcp_session(comp->mei_dev,
1405 					     &dig_port->hdcp_port_data);
1406 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1407 
1408 	return ret;
1409 }
1410 
1411 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1412 {
1413 	return hdcp2_close_mei_session(connector);
1414 }
1415 
1416 /* Authentication flow starts from here */
1417 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1418 {
1419 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1420 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1421 	struct intel_hdcp *hdcp = &connector->hdcp;
1422 	union {
1423 		struct hdcp2_ake_init ake_init;
1424 		struct hdcp2_ake_send_cert send_cert;
1425 		struct hdcp2_ake_no_stored_km no_stored_km;
1426 		struct hdcp2_ake_send_hprime send_hprime;
1427 		struct hdcp2_ake_send_pairing_info pairing_info;
1428 	} msgs;
1429 	const struct intel_hdcp_shim *shim = hdcp->shim;
1430 	size_t size;
1431 	int ret;
1432 
1433 	/* Init for seq_num */
1434 	hdcp->seq_num_v = 0;
1435 	hdcp->seq_num_m = 0;
1436 
1437 	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1438 	if (ret < 0)
1439 		return ret;
1440 
1441 	ret = shim->write_2_2_msg(dig_port, &msgs.ake_init,
1442 				  sizeof(msgs.ake_init));
1443 	if (ret < 0)
1444 		return ret;
1445 
1446 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT,
1447 				 &msgs.send_cert, sizeof(msgs.send_cert));
1448 	if (ret < 0)
1449 		return ret;
1450 
1451 	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1452 		drm_dbg_kms(&dev_priv->drm, "cert.rx_caps dont claim HDCP2.2\n");
1453 		return -EINVAL;
1454 	}
1455 
1456 	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1457 
1458 	if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1459 					msgs.send_cert.cert_rx.receiver_id,
1460 					1) > 0) {
1461 		drm_err(&dev_priv->drm, "Receiver ID is revoked\n");
1462 		return -EPERM;
1463 	}
1464 
1465 	/*
1466 	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1467 	 * stored also.
1468 	 */
1469 	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1470 					      &hdcp->is_paired,
1471 					      &msgs.no_stored_km, &size);
1472 	if (ret < 0)
1473 		return ret;
1474 
1475 	ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size);
1476 	if (ret < 0)
1477 		return ret;
1478 
1479 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1480 				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1481 	if (ret < 0)
1482 		return ret;
1483 
1484 	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1485 	if (ret < 0)
1486 		return ret;
1487 
1488 	if (!hdcp->is_paired) {
1489 		/* Pairing is required */
1490 		ret = shim->read_2_2_msg(dig_port,
1491 					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1492 					 &msgs.pairing_info,
1493 					 sizeof(msgs.pairing_info));
1494 		if (ret < 0)
1495 			return ret;
1496 
1497 		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1498 		if (ret < 0)
1499 			return ret;
1500 		hdcp->is_paired = true;
1501 	}
1502 
1503 	return 0;
1504 }
1505 
1506 static int hdcp2_locality_check(struct intel_connector *connector)
1507 {
1508 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1509 	struct intel_hdcp *hdcp = &connector->hdcp;
1510 	union {
1511 		struct hdcp2_lc_init lc_init;
1512 		struct hdcp2_lc_send_lprime send_lprime;
1513 	} msgs;
1514 	const struct intel_hdcp_shim *shim = hdcp->shim;
1515 	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1516 
1517 	for (i = 0; i < tries; i++) {
1518 		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1519 		if (ret < 0)
1520 			continue;
1521 
1522 		ret = shim->write_2_2_msg(dig_port, &msgs.lc_init,
1523 				      sizeof(msgs.lc_init));
1524 		if (ret < 0)
1525 			continue;
1526 
1527 		ret = shim->read_2_2_msg(dig_port,
1528 					 HDCP_2_2_LC_SEND_LPRIME,
1529 					 &msgs.send_lprime,
1530 					 sizeof(msgs.send_lprime));
1531 		if (ret < 0)
1532 			continue;
1533 
1534 		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1535 		if (!ret)
1536 			break;
1537 	}
1538 
1539 	return ret;
1540 }
1541 
1542 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1543 {
1544 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1545 	struct intel_hdcp *hdcp = &connector->hdcp;
1546 	struct hdcp2_ske_send_eks send_eks;
1547 	int ret;
1548 
1549 	ret = hdcp2_prepare_skey(connector, &send_eks);
1550 	if (ret < 0)
1551 		return ret;
1552 
1553 	ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks,
1554 					sizeof(send_eks));
1555 	if (ret < 0)
1556 		return ret;
1557 
1558 	return 0;
1559 }
1560 
1561 static
1562 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1563 {
1564 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1565 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1566 	struct intel_hdcp *hdcp = &connector->hdcp;
1567 	union {
1568 		struct hdcp2_rep_stream_manage stream_manage;
1569 		struct hdcp2_rep_stream_ready stream_ready;
1570 	} msgs;
1571 	const struct intel_hdcp_shim *shim = hdcp->shim;
1572 	int ret, streams_size_delta, i;
1573 
1574 	if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1575 		return -ERANGE;
1576 
1577 	/* Prepare RepeaterAuth_Stream_Manage msg */
1578 	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1579 	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1580 
1581 	msgs.stream_manage.k = cpu_to_be16(data->k);
1582 
1583 	for (i = 0; i < data->k; i++) {
1584 		msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1585 		msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1586 	}
1587 
1588 	streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1589 				sizeof(struct hdcp2_streamid_type);
1590 	/* Send it to Repeater */
1591 	ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage,
1592 				  sizeof(msgs.stream_manage) - streams_size_delta);
1593 	if (ret < 0)
1594 		goto out;
1595 
1596 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY,
1597 				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1598 	if (ret < 0)
1599 		goto out;
1600 
1601 	data->seq_num_m = hdcp->seq_num_m;
1602 
1603 	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1604 
1605 out:
1606 	hdcp->seq_num_m++;
1607 
1608 	return ret;
1609 }
1610 
1611 static
1612 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1613 {
1614 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1615 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1616 	struct intel_hdcp *hdcp = &connector->hdcp;
1617 	union {
1618 		struct hdcp2_rep_send_receiverid_list recvid_list;
1619 		struct hdcp2_rep_send_ack rep_ack;
1620 	} msgs;
1621 	const struct intel_hdcp_shim *shim = hdcp->shim;
1622 	u32 seq_num_v, device_cnt;
1623 	u8 *rx_info;
1624 	int ret;
1625 
1626 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1627 				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1628 	if (ret < 0)
1629 		return ret;
1630 
1631 	rx_info = msgs.recvid_list.rx_info;
1632 
1633 	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1634 	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1635 		drm_dbg_kms(&dev_priv->drm, "Topology Max Size Exceeded\n");
1636 		return -EINVAL;
1637 	}
1638 
1639 	/*
1640 	 * MST topology is not Type 1 capable if it contains a downstream
1641 	 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1642 	 */
1643 	dig_port->hdcp_mst_type1_capable =
1644 		!HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1645 		!HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1646 
1647 	/* Converting and Storing the seq_num_v to local variable as DWORD */
1648 	seq_num_v =
1649 		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1650 
1651 	if (!hdcp->hdcp2_encrypted && seq_num_v) {
1652 		drm_dbg_kms(&dev_priv->drm,
1653 			    "Non zero Seq_num_v at first RecvId_List msg\n");
1654 		return -EINVAL;
1655 	}
1656 
1657 	if (seq_num_v < hdcp->seq_num_v) {
1658 		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1659 		drm_dbg_kms(&dev_priv->drm, "Seq_num_v roll over.\n");
1660 		return -EINVAL;
1661 	}
1662 
1663 	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1664 		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1665 	if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1666 					msgs.recvid_list.receiver_ids,
1667 					device_cnt) > 0) {
1668 		drm_err(&dev_priv->drm, "Revoked receiver ID(s) is in list\n");
1669 		return -EPERM;
1670 	}
1671 
1672 	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1673 						    &msgs.recvid_list,
1674 						    &msgs.rep_ack);
1675 	if (ret < 0)
1676 		return ret;
1677 
1678 	hdcp->seq_num_v = seq_num_v;
1679 	ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack,
1680 				  sizeof(msgs.rep_ack));
1681 	if (ret < 0)
1682 		return ret;
1683 
1684 	return 0;
1685 }
1686 
1687 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1688 {
1689 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1690 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1691 	struct intel_hdcp *hdcp = &connector->hdcp;
1692 	const struct intel_hdcp_shim *shim = hdcp->shim;
1693 	int ret;
1694 
1695 	ret = hdcp2_authentication_key_exchange(connector);
1696 	if (ret < 0) {
1697 		drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1698 		return ret;
1699 	}
1700 
1701 	ret = hdcp2_locality_check(connector);
1702 	if (ret < 0) {
1703 		drm_dbg_kms(&i915->drm,
1704 			    "Locality Check failed. Err : %d\n", ret);
1705 		return ret;
1706 	}
1707 
1708 	ret = hdcp2_session_key_exchange(connector);
1709 	if (ret < 0) {
1710 		drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1711 		return ret;
1712 	}
1713 
1714 	if (shim->config_stream_type) {
1715 		ret = shim->config_stream_type(dig_port,
1716 					       hdcp->is_repeater,
1717 					       hdcp->content_type);
1718 		if (ret < 0)
1719 			return ret;
1720 	}
1721 
1722 	if (hdcp->is_repeater) {
1723 		ret = hdcp2_authenticate_repeater_topology(connector);
1724 		if (ret < 0) {
1725 			drm_dbg_kms(&i915->drm,
1726 				    "Repeater Auth Failed. Err: %d\n", ret);
1727 			return ret;
1728 		}
1729 	}
1730 
1731 	return ret;
1732 }
1733 
1734 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1735 {
1736 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1737 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1738 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1739 	struct intel_hdcp *hdcp = &connector->hdcp;
1740 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1741 	enum port port = dig_port->base.port;
1742 	int ret = 0;
1743 
1744 	if (!(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1745 			    LINK_ENCRYPTION_STATUS)) {
1746 		drm_err(&dev_priv->drm, "[%s:%d] HDCP 2.2 Link is not encrypted\n",
1747 			connector->base.name, connector->base.base.id);
1748 		ret = -EPERM;
1749 		goto link_recover;
1750 	}
1751 
1752 	if (hdcp->shim->stream_2_2_encryption) {
1753 		ret = hdcp->shim->stream_2_2_encryption(connector, true);
1754 		if (ret) {
1755 			drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 2.2 stream enc\n",
1756 				connector->base.name, connector->base.base.id);
1757 			return ret;
1758 		}
1759 		drm_dbg_kms(&dev_priv->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1760 			    transcoder_name(hdcp->stream_transcoder));
1761 	}
1762 
1763 	return 0;
1764 
1765 link_recover:
1766 	if (hdcp2_deauthenticate_port(connector) < 0)
1767 		drm_dbg_kms(&dev_priv->drm, "Port deauth failed.\n");
1768 
1769 	dig_port->hdcp_auth_status = false;
1770 	data->k = 0;
1771 
1772 	return ret;
1773 }
1774 
1775 static int hdcp2_enable_encryption(struct intel_connector *connector)
1776 {
1777 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1778 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1779 	struct intel_hdcp *hdcp = &connector->hdcp;
1780 	enum port port = dig_port->base.port;
1781 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1782 	int ret;
1783 
1784 	drm_WARN_ON(&dev_priv->drm,
1785 		    intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1786 		    LINK_ENCRYPTION_STATUS);
1787 	if (hdcp->shim->toggle_signalling) {
1788 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1789 						    true);
1790 		if (ret) {
1791 			drm_err(&dev_priv->drm,
1792 				"Failed to enable HDCP signalling. %d\n",
1793 				ret);
1794 			return ret;
1795 		}
1796 	}
1797 
1798 	if (intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1799 	    LINK_AUTH_STATUS) {
1800 		/* Link is Authenticated. Now set for Encryption */
1801 		intel_de_write(dev_priv,
1802 			       HDCP2_CTL(dev_priv, cpu_transcoder, port),
1803 			       intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) | CTL_LINK_ENCRYPTION_REQ);
1804 	}
1805 
1806 	ret = intel_de_wait_for_set(dev_priv,
1807 				    HDCP2_STATUS(dev_priv, cpu_transcoder,
1808 						 port),
1809 				    LINK_ENCRYPTION_STATUS,
1810 				    HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1811 	dig_port->hdcp_auth_status = true;
1812 
1813 	return ret;
1814 }
1815 
1816 static int hdcp2_disable_encryption(struct intel_connector *connector)
1817 {
1818 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1819 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1820 	struct intel_hdcp *hdcp = &connector->hdcp;
1821 	enum port port = dig_port->base.port;
1822 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1823 	int ret;
1824 
1825 	drm_WARN_ON(&dev_priv->drm, !(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1826 				      LINK_ENCRYPTION_STATUS));
1827 
1828 	intel_de_write(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port),
1829 		       intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) & ~CTL_LINK_ENCRYPTION_REQ);
1830 
1831 	ret = intel_de_wait_for_clear(dev_priv,
1832 				      HDCP2_STATUS(dev_priv, cpu_transcoder,
1833 						   port),
1834 				      LINK_ENCRYPTION_STATUS,
1835 				      HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1836 	if (ret == -ETIMEDOUT)
1837 		drm_dbg_kms(&dev_priv->drm, "Disable Encryption Timedout");
1838 
1839 	if (hdcp->shim->toggle_signalling) {
1840 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1841 						    false);
1842 		if (ret) {
1843 			drm_err(&dev_priv->drm,
1844 				"Failed to disable HDCP signalling. %d\n",
1845 				ret);
1846 			return ret;
1847 		}
1848 	}
1849 
1850 	return ret;
1851 }
1852 
1853 static int
1854 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1855 {
1856 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1857 	int i, tries = 3, ret;
1858 
1859 	if (!connector->hdcp.is_repeater)
1860 		return 0;
1861 
1862 	for (i = 0; i < tries; i++) {
1863 		ret = _hdcp2_propagate_stream_management_info(connector);
1864 		if (!ret)
1865 			break;
1866 
1867 		/* Lets restart the auth incase of seq_num_m roll over */
1868 		if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1869 			drm_dbg_kms(&i915->drm,
1870 				    "seq_num_m roll over.(%d)\n", ret);
1871 			break;
1872 		}
1873 
1874 		drm_dbg_kms(&i915->drm,
1875 			    "HDCP2 stream management %d of %d Failed.(%d)\n",
1876 			    i + 1, tries, ret);
1877 	}
1878 
1879 	return ret;
1880 }
1881 
1882 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1883 {
1884 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1885 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1886 	int ret = 0, i, tries = 3;
1887 
1888 	for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1889 		ret = hdcp2_authenticate_sink(connector);
1890 		if (!ret) {
1891 			ret = intel_hdcp_prepare_streams(connector);
1892 			if (ret) {
1893 				drm_dbg_kms(&i915->drm,
1894 					    "Prepare streams failed.(%d)\n",
1895 					    ret);
1896 				break;
1897 			}
1898 
1899 			ret = hdcp2_propagate_stream_management_info(connector);
1900 			if (ret) {
1901 				drm_dbg_kms(&i915->drm,
1902 					    "Stream management failed.(%d)\n",
1903 					    ret);
1904 				break;
1905 			}
1906 
1907 			ret = hdcp2_authenticate_port(connector);
1908 			if (!ret)
1909 				break;
1910 			drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1911 				    ret);
1912 		}
1913 
1914 		/* Clearing the mei hdcp session */
1915 		drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1916 			    i + 1, tries, ret);
1917 		if (hdcp2_deauthenticate_port(connector) < 0)
1918 			drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1919 	}
1920 
1921 	if (!ret && !dig_port->hdcp_auth_status) {
1922 		/*
1923 		 * Ensuring the required 200mSec min time interval between
1924 		 * Session Key Exchange and encryption.
1925 		 */
1926 		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1927 		ret = hdcp2_enable_encryption(connector);
1928 		if (ret < 0) {
1929 			drm_dbg_kms(&i915->drm,
1930 				    "Encryption Enable Failed.(%d)\n", ret);
1931 			if (hdcp2_deauthenticate_port(connector) < 0)
1932 				drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1933 		}
1934 	}
1935 
1936 	if (!ret)
1937 		ret = hdcp2_enable_stream_encryption(connector);
1938 
1939 	return ret;
1940 }
1941 
1942 static int _intel_hdcp2_enable(struct intel_connector *connector)
1943 {
1944 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1945 	struct intel_hdcp *hdcp = &connector->hdcp;
1946 	int ret;
1947 
1948 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1949 		    connector->base.name, connector->base.base.id,
1950 		    hdcp->content_type);
1951 
1952 	ret = hdcp2_authenticate_and_encrypt(connector);
1953 	if (ret) {
1954 		drm_dbg_kms(&i915->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
1955 			    hdcp->content_type, ret);
1956 		return ret;
1957 	}
1958 
1959 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
1960 		    connector->base.name, connector->base.base.id,
1961 		    hdcp->content_type);
1962 
1963 	hdcp->hdcp2_encrypted = true;
1964 	return 0;
1965 }
1966 
1967 static int
1968 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
1969 {
1970 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1971 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1972 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1973 	struct intel_hdcp *hdcp = &connector->hdcp;
1974 	int ret;
1975 
1976 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
1977 		    connector->base.name, connector->base.base.id);
1978 
1979 	if (hdcp->shim->stream_2_2_encryption) {
1980 		ret = hdcp->shim->stream_2_2_encryption(connector, false);
1981 		if (ret) {
1982 			drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 2.2 stream enc\n",
1983 				connector->base.name, connector->base.base.id);
1984 			return ret;
1985 		}
1986 		drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
1987 			    transcoder_name(hdcp->stream_transcoder));
1988 
1989 		if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
1990 			return 0;
1991 	}
1992 
1993 	ret = hdcp2_disable_encryption(connector);
1994 
1995 	if (hdcp2_deauthenticate_port(connector) < 0)
1996 		drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1997 
1998 	connector->hdcp.hdcp2_encrypted = false;
1999 	dig_port->hdcp_auth_status = false;
2000 	data->k = 0;
2001 
2002 	return ret;
2003 }
2004 
2005 /* Implements the Link Integrity Check for HDCP2.2 */
2006 static int intel_hdcp2_check_link(struct intel_connector *connector)
2007 {
2008 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2009 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2010 	struct intel_hdcp *hdcp = &connector->hdcp;
2011 	enum port port = dig_port->base.port;
2012 	enum transcoder cpu_transcoder;
2013 	int ret = 0;
2014 
2015 	mutex_lock(&hdcp->mutex);
2016 	mutex_lock(&dig_port->hdcp_mutex);
2017 	cpu_transcoder = hdcp->cpu_transcoder;
2018 
2019 	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2020 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2021 	    !hdcp->hdcp2_encrypted) {
2022 		ret = -EINVAL;
2023 		goto out;
2024 	}
2025 
2026 	if (drm_WARN_ON(&dev_priv->drm,
2027 			!intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) {
2028 		drm_err(&dev_priv->drm,
2029 			"HDCP2.2 link stopped the encryption, %x\n",
2030 			intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)));
2031 		ret = -ENXIO;
2032 		_intel_hdcp2_disable(connector, true);
2033 		intel_hdcp_update_value(connector,
2034 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2035 					true);
2036 		goto out;
2037 	}
2038 
2039 	ret = hdcp->shim->check_2_2_link(dig_port, connector);
2040 	if (ret == HDCP_LINK_PROTECTED) {
2041 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2042 			intel_hdcp_update_value(connector,
2043 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2044 					true);
2045 		}
2046 		goto out;
2047 	}
2048 
2049 	if (ret == HDCP_TOPOLOGY_CHANGE) {
2050 		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2051 			goto out;
2052 
2053 		drm_dbg_kms(&dev_priv->drm,
2054 			    "HDCP2.2 Downstream topology change\n");
2055 		ret = hdcp2_authenticate_repeater_topology(connector);
2056 		if (!ret) {
2057 			intel_hdcp_update_value(connector,
2058 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2059 					true);
2060 			goto out;
2061 		}
2062 		drm_dbg_kms(&dev_priv->drm,
2063 			    "[%s:%d] Repeater topology auth failed.(%d)\n",
2064 			    connector->base.name, connector->base.base.id,
2065 			    ret);
2066 	} else {
2067 		drm_dbg_kms(&dev_priv->drm,
2068 			    "[%s:%d] HDCP2.2 link failed, retrying auth\n",
2069 			    connector->base.name, connector->base.base.id);
2070 	}
2071 
2072 	ret = _intel_hdcp2_disable(connector, true);
2073 	if (ret) {
2074 		drm_err(&dev_priv->drm,
2075 			"[%s:%d] Failed to disable hdcp2.2 (%d)\n",
2076 			connector->base.name, connector->base.base.id, ret);
2077 		intel_hdcp_update_value(connector,
2078 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2079 		goto out;
2080 	}
2081 
2082 	ret = _intel_hdcp2_enable(connector);
2083 	if (ret) {
2084 		drm_dbg_kms(&dev_priv->drm,
2085 			    "[%s:%d] Failed to enable hdcp2.2 (%d)\n",
2086 			    connector->base.name, connector->base.base.id,
2087 			    ret);
2088 		intel_hdcp_update_value(connector,
2089 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2090 					true);
2091 		goto out;
2092 	}
2093 
2094 out:
2095 	mutex_unlock(&dig_port->hdcp_mutex);
2096 	mutex_unlock(&hdcp->mutex);
2097 	return ret;
2098 }
2099 
2100 static void intel_hdcp_check_work(struct work_struct *work)
2101 {
2102 	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2103 					       struct intel_hdcp,
2104 					       check_work);
2105 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2106 
2107 	if (drm_connector_is_unregistered(&connector->base))
2108 		return;
2109 
2110 	if (!intel_hdcp2_check_link(connector))
2111 		schedule_delayed_work(&hdcp->check_work,
2112 				      DRM_HDCP2_CHECK_PERIOD_MS);
2113 	else if (!intel_hdcp_check_link(connector))
2114 		schedule_delayed_work(&hdcp->check_work,
2115 				      DRM_HDCP_CHECK_PERIOD_MS);
2116 }
2117 
2118 static int i915_hdcp_component_bind(struct device *i915_kdev,
2119 				    struct device *mei_kdev, void *data)
2120 {
2121 	struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
2122 
2123 	drm_dbg(&dev_priv->drm, "I915 HDCP comp bind\n");
2124 	mutex_lock(&dev_priv->hdcp_comp_mutex);
2125 	dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data;
2126 	dev_priv->hdcp_master->mei_dev = mei_kdev;
2127 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
2128 
2129 	return 0;
2130 }
2131 
2132 static void i915_hdcp_component_unbind(struct device *i915_kdev,
2133 				       struct device *mei_kdev, void *data)
2134 {
2135 	struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
2136 
2137 	drm_dbg(&dev_priv->drm, "I915 HDCP comp unbind\n");
2138 	mutex_lock(&dev_priv->hdcp_comp_mutex);
2139 	dev_priv->hdcp_master = NULL;
2140 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
2141 }
2142 
2143 static const struct component_ops i915_hdcp_component_ops = {
2144 	.bind   = i915_hdcp_component_bind,
2145 	.unbind = i915_hdcp_component_unbind,
2146 };
2147 
2148 static enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port)
2149 {
2150 	switch (port) {
2151 	case PORT_A:
2152 		return MEI_DDI_A;
2153 	case PORT_B ... PORT_F:
2154 		return (enum mei_fw_ddi)port;
2155 	default:
2156 		return MEI_DDI_INVALID_PORT;
2157 	}
2158 }
2159 
2160 static enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder)
2161 {
2162 	switch (cpu_transcoder) {
2163 	case TRANSCODER_A ... TRANSCODER_D:
2164 		return (enum mei_fw_tc)(cpu_transcoder | 0x10);
2165 	default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2166 		return MEI_INVALID_TRANSCODER;
2167 	}
2168 }
2169 
2170 static int initialize_hdcp_port_data(struct intel_connector *connector,
2171 				     struct intel_digital_port *dig_port,
2172 				     const struct intel_hdcp_shim *shim)
2173 {
2174 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2175 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2176 	struct intel_hdcp *hdcp = &connector->hdcp;
2177 	enum port port = dig_port->base.port;
2178 
2179 	if (DISPLAY_VER(dev_priv) < 12)
2180 		data->fw_ddi = intel_get_mei_fw_ddi_index(port);
2181 	else
2182 		/*
2183 		 * As per ME FW API expectation, for GEN 12+, fw_ddi is filled
2184 		 * with zero(INVALID PORT index).
2185 		 */
2186 		data->fw_ddi = MEI_DDI_INVALID_PORT;
2187 
2188 	/*
2189 	 * As associated transcoder is set and modified at modeset, here fw_tc
2190 	 * is initialized to zero (invalid transcoder index). This will be
2191 	 * retained for <Gen12 forever.
2192 	 */
2193 	data->fw_tc = MEI_INVALID_TRANSCODER;
2194 
2195 	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2196 	data->protocol = (u8)shim->protocol;
2197 
2198 	if (!data->streams)
2199 		data->streams = kcalloc(INTEL_NUM_PIPES(dev_priv),
2200 					sizeof(struct hdcp2_streamid_type),
2201 					GFP_KERNEL);
2202 	if (!data->streams) {
2203 		drm_err(&dev_priv->drm, "Out of Memory\n");
2204 		return -ENOMEM;
2205 	}
2206 	/* For SST */
2207 	data->streams[0].stream_id = 0;
2208 	data->streams[0].stream_type = hdcp->content_type;
2209 
2210 	return 0;
2211 }
2212 
2213 static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
2214 {
2215 	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2216 		return false;
2217 
2218 	return (DISPLAY_VER(dev_priv) >= 10 ||
2219 		IS_KABYLAKE(dev_priv) ||
2220 		IS_COFFEELAKE(dev_priv) ||
2221 		IS_COMETLAKE(dev_priv));
2222 }
2223 
2224 void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
2225 {
2226 	int ret;
2227 
2228 	if (!is_hdcp2_supported(dev_priv))
2229 		return;
2230 
2231 	mutex_lock(&dev_priv->hdcp_comp_mutex);
2232 	drm_WARN_ON(&dev_priv->drm, dev_priv->hdcp_comp_added);
2233 
2234 	dev_priv->hdcp_comp_added = true;
2235 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
2236 	ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
2237 				  I915_COMPONENT_HDCP);
2238 	if (ret < 0) {
2239 		drm_dbg_kms(&dev_priv->drm, "Failed at component add(%d)\n",
2240 			    ret);
2241 		mutex_lock(&dev_priv->hdcp_comp_mutex);
2242 		dev_priv->hdcp_comp_added = false;
2243 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
2244 		return;
2245 	}
2246 }
2247 
2248 static void intel_hdcp2_init(struct intel_connector *connector,
2249 			     struct intel_digital_port *dig_port,
2250 			     const struct intel_hdcp_shim *shim)
2251 {
2252 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2253 	struct intel_hdcp *hdcp = &connector->hdcp;
2254 	int ret;
2255 
2256 	ret = initialize_hdcp_port_data(connector, dig_port, shim);
2257 	if (ret) {
2258 		drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2259 		return;
2260 	}
2261 
2262 	hdcp->hdcp2_supported = true;
2263 }
2264 
2265 int intel_hdcp_init(struct intel_connector *connector,
2266 		    struct intel_digital_port *dig_port,
2267 		    const struct intel_hdcp_shim *shim)
2268 {
2269 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2270 	struct intel_hdcp *hdcp = &connector->hdcp;
2271 	int ret;
2272 
2273 	if (!shim)
2274 		return -EINVAL;
2275 
2276 	if (is_hdcp2_supported(dev_priv))
2277 		intel_hdcp2_init(connector, dig_port, shim);
2278 
2279 	ret =
2280 	drm_connector_attach_content_protection_property(&connector->base,
2281 							 hdcp->hdcp2_supported);
2282 	if (ret) {
2283 		hdcp->hdcp2_supported = false;
2284 		kfree(dig_port->hdcp_port_data.streams);
2285 		return ret;
2286 	}
2287 
2288 	hdcp->shim = shim;
2289 	mutex_init(&hdcp->mutex);
2290 	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2291 	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2292 	init_waitqueue_head(&hdcp->cp_irq_queue);
2293 
2294 	return 0;
2295 }
2296 
2297 int intel_hdcp_enable(struct intel_connector *connector,
2298 		      const struct intel_crtc_state *pipe_config, u8 content_type)
2299 {
2300 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2301 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2302 	struct intel_hdcp *hdcp = &connector->hdcp;
2303 	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2304 	int ret = -EINVAL;
2305 
2306 	if (!hdcp->shim)
2307 		return -ENOENT;
2308 
2309 	if (!connector->encoder) {
2310 		drm_err(&dev_priv->drm, "[%s:%d] encoder is not initialized\n",
2311 			connector->base.name, connector->base.base.id);
2312 		return -ENODEV;
2313 	}
2314 
2315 	mutex_lock(&hdcp->mutex);
2316 	mutex_lock(&dig_port->hdcp_mutex);
2317 	drm_WARN_ON(&dev_priv->drm,
2318 		    hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2319 	hdcp->content_type = content_type;
2320 
2321 	if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2322 		hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2323 		hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2324 	} else {
2325 		hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2326 		hdcp->stream_transcoder = INVALID_TRANSCODER;
2327 	}
2328 
2329 	if (DISPLAY_VER(dev_priv) >= 12)
2330 		dig_port->hdcp_port_data.fw_tc = intel_get_mei_fw_tc(hdcp->cpu_transcoder);
2331 
2332 	/*
2333 	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2334 	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2335 	 */
2336 	if (intel_hdcp2_capable(connector)) {
2337 		ret = _intel_hdcp2_enable(connector);
2338 		if (!ret)
2339 			check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
2340 	}
2341 
2342 	/*
2343 	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2344 	 * be attempted.
2345 	 */
2346 	if (ret && intel_hdcp_capable(connector) &&
2347 	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2348 		ret = _intel_hdcp_enable(connector);
2349 	}
2350 
2351 	if (!ret) {
2352 		schedule_delayed_work(&hdcp->check_work, check_link_interval);
2353 		intel_hdcp_update_value(connector,
2354 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2355 					true);
2356 	}
2357 
2358 	mutex_unlock(&dig_port->hdcp_mutex);
2359 	mutex_unlock(&hdcp->mutex);
2360 	return ret;
2361 }
2362 
2363 int intel_hdcp_disable(struct intel_connector *connector)
2364 {
2365 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2366 	struct intel_hdcp *hdcp = &connector->hdcp;
2367 	int ret = 0;
2368 
2369 	if (!hdcp->shim)
2370 		return -ENOENT;
2371 
2372 	mutex_lock(&hdcp->mutex);
2373 	mutex_lock(&dig_port->hdcp_mutex);
2374 
2375 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2376 		goto out;
2377 
2378 	intel_hdcp_update_value(connector,
2379 				DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2380 	if (hdcp->hdcp2_encrypted)
2381 		ret = _intel_hdcp2_disable(connector, false);
2382 	else if (hdcp->hdcp_encrypted)
2383 		ret = _intel_hdcp_disable(connector);
2384 
2385 out:
2386 	mutex_unlock(&dig_port->hdcp_mutex);
2387 	mutex_unlock(&hdcp->mutex);
2388 	cancel_delayed_work_sync(&hdcp->check_work);
2389 	return ret;
2390 }
2391 
2392 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2393 			    struct intel_encoder *encoder,
2394 			    const struct intel_crtc_state *crtc_state,
2395 			    const struct drm_connector_state *conn_state)
2396 {
2397 	struct intel_connector *connector =
2398 				to_intel_connector(conn_state->connector);
2399 	struct intel_hdcp *hdcp = &connector->hdcp;
2400 	bool content_protection_type_changed, desired_and_not_enabled = false;
2401 
2402 	if (!connector->hdcp.shim)
2403 		return;
2404 
2405 	content_protection_type_changed =
2406 		(conn_state->hdcp_content_type != hdcp->content_type &&
2407 		 conn_state->content_protection !=
2408 		 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2409 
2410 	/*
2411 	 * During the HDCP encryption session if Type change is requested,
2412 	 * disable the HDCP and reenable it with new TYPE value.
2413 	 */
2414 	if (conn_state->content_protection ==
2415 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2416 	    content_protection_type_changed)
2417 		intel_hdcp_disable(connector);
2418 
2419 	/*
2420 	 * Mark the hdcp state as DESIRED after the hdcp disable of type
2421 	 * change procedure.
2422 	 */
2423 	if (content_protection_type_changed) {
2424 		mutex_lock(&hdcp->mutex);
2425 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2426 		drm_connector_get(&connector->base);
2427 		schedule_work(&hdcp->prop_work);
2428 		mutex_unlock(&hdcp->mutex);
2429 	}
2430 
2431 	if (conn_state->content_protection ==
2432 	    DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2433 		mutex_lock(&hdcp->mutex);
2434 		/* Avoid enabling hdcp, if it already ENABLED */
2435 		desired_and_not_enabled =
2436 			hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2437 		mutex_unlock(&hdcp->mutex);
2438 		/*
2439 		 * If HDCP already ENABLED and CP property is DESIRED, schedule
2440 		 * prop_work to update correct CP property to user space.
2441 		 */
2442 		if (!desired_and_not_enabled && !content_protection_type_changed) {
2443 			drm_connector_get(&connector->base);
2444 			schedule_work(&hdcp->prop_work);
2445 		}
2446 	}
2447 
2448 	if (desired_and_not_enabled || content_protection_type_changed)
2449 		intel_hdcp_enable(connector,
2450 				  crtc_state,
2451 				  (u8)conn_state->hdcp_content_type);
2452 }
2453 
2454 void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
2455 {
2456 	mutex_lock(&dev_priv->hdcp_comp_mutex);
2457 	if (!dev_priv->hdcp_comp_added) {
2458 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
2459 		return;
2460 	}
2461 
2462 	dev_priv->hdcp_comp_added = false;
2463 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
2464 
2465 	component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
2466 }
2467 
2468 void intel_hdcp_cleanup(struct intel_connector *connector)
2469 {
2470 	struct intel_hdcp *hdcp = &connector->hdcp;
2471 
2472 	if (!hdcp->shim)
2473 		return;
2474 
2475 	/*
2476 	 * If the connector is registered, it's possible userspace could kick
2477 	 * off another HDCP enable, which would re-spawn the workers.
2478 	 */
2479 	drm_WARN_ON(connector->base.dev,
2480 		connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2481 
2482 	/*
2483 	 * Now that the connector is not registered, check_work won't be run,
2484 	 * but cancel any outstanding instances of it
2485 	 */
2486 	cancel_delayed_work_sync(&hdcp->check_work);
2487 
2488 	/*
2489 	 * We don't cancel prop_work in the same way as check_work since it
2490 	 * requires connection_mutex which could be held while calling this
2491 	 * function. Instead, we rely on the connector references grabbed before
2492 	 * scheduling prop_work to ensure the connector is alive when prop_work
2493 	 * is run. So if we're in the destroy path (which is where this
2494 	 * function should be called), we're "guaranteed" that prop_work is not
2495 	 * active (tl;dr This Should Never Happen).
2496 	 */
2497 	drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2498 
2499 	mutex_lock(&hdcp->mutex);
2500 	hdcp->shim = NULL;
2501 	mutex_unlock(&hdcp->mutex);
2502 }
2503 
2504 void intel_hdcp_atomic_check(struct drm_connector *connector,
2505 			     struct drm_connector_state *old_state,
2506 			     struct drm_connector_state *new_state)
2507 {
2508 	u64 old_cp = old_state->content_protection;
2509 	u64 new_cp = new_state->content_protection;
2510 	struct drm_crtc_state *crtc_state;
2511 
2512 	if (!new_state->crtc) {
2513 		/*
2514 		 * If the connector is being disabled with CP enabled, mark it
2515 		 * desired so it's re-enabled when the connector is brought back
2516 		 */
2517 		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2518 			new_state->content_protection =
2519 				DRM_MODE_CONTENT_PROTECTION_DESIRED;
2520 		return;
2521 	}
2522 
2523 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2524 						   new_state->crtc);
2525 	/*
2526 	 * Fix the HDCP uapi content protection state in case of modeset.
2527 	 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2528 	 * need to be sent if there is transition from ENABLED->DESIRED.
2529 	 */
2530 	if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2531 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2532 	    new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2533 		new_state->content_protection =
2534 			DRM_MODE_CONTENT_PROTECTION_DESIRED;
2535 
2536 	/*
2537 	 * Nothing to do if the state didn't change, or HDCP was activated since
2538 	 * the last commit. And also no change in hdcp content type.
2539 	 */
2540 	if (old_cp == new_cp ||
2541 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2542 	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2543 		if (old_state->hdcp_content_type ==
2544 				new_state->hdcp_content_type)
2545 			return;
2546 	}
2547 
2548 	crtc_state->mode_changed = true;
2549 }
2550 
2551 /* Handles the CP_IRQ raised from the DP HDCP sink */
2552 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2553 {
2554 	struct intel_hdcp *hdcp = &connector->hdcp;
2555 
2556 	if (!hdcp->shim)
2557 		return;
2558 
2559 	atomic_inc(&connector->hdcp.cp_irq_count);
2560 	wake_up_all(&connector->hdcp.cp_irq_queue);
2561 
2562 	schedule_delayed_work(&hdcp->check_work, 0);
2563 }
2564