xref: /linux/drivers/gpu/drm/i915/display/intel_hdcp.c (revision 0d3b051adbb72ed81956447d0d1e54d5943ee6f5)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <seanpaul@chromium.org>
8  * Ramalingam C <ramalingam.c@intel.com>
9  */
10 
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14 
15 #include <drm/drm_hdcp.h>
16 #include <drm/i915_component.h>
17 
18 #include "i915_reg.h"
19 #include "intel_display_power.h"
20 #include "intel_display_types.h"
21 #include "intel_hdcp.h"
22 #include "intel_sideband.h"
23 #include "intel_connector.h"
24 
25 #define KEY_LOAD_TRIES	5
26 #define ENCRYPT_STATUS_CHANGE_TIMEOUT_MS	50
27 #define HDCP2_LC_RETRY_CNT			3
28 
29 static
30 bool intel_hdcp_is_ksv_valid(u8 *ksv)
31 {
32 	int i, ones = 0;
33 	/* KSV has 20 1's and 20 0's */
34 	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
35 		ones += hweight8(ksv[i]);
36 	if (ones != 20)
37 		return false;
38 
39 	return true;
40 }
41 
42 static
43 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
44 			       const struct intel_hdcp_shim *shim, u8 *bksv)
45 {
46 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
47 	int ret, i, tries = 2;
48 
49 	/* HDCP spec states that we must retry the bksv if it is invalid */
50 	for (i = 0; i < tries; i++) {
51 		ret = shim->read_bksv(dig_port, bksv);
52 		if (ret)
53 			return ret;
54 		if (intel_hdcp_is_ksv_valid(bksv))
55 			break;
56 	}
57 	if (i == tries) {
58 		drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
59 		return -ENODEV;
60 	}
61 
62 	return 0;
63 }
64 
65 /* Is HDCP1.4 capable on Platform and Sink */
66 bool intel_hdcp_capable(struct intel_connector *connector)
67 {
68 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
69 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
70 	bool capable = false;
71 	u8 bksv[5];
72 
73 	if (!shim)
74 		return capable;
75 
76 	if (shim->hdcp_capable) {
77 		shim->hdcp_capable(dig_port, &capable);
78 	} else {
79 		if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
80 			capable = true;
81 	}
82 
83 	return capable;
84 }
85 
86 /* Is HDCP2.2 capable on Platform and Sink */
87 bool intel_hdcp2_capable(struct intel_connector *connector)
88 {
89 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
90 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
91 	struct intel_hdcp *hdcp = &connector->hdcp;
92 	bool capable = false;
93 
94 	/* I915 support for HDCP2.2 */
95 	if (!hdcp->hdcp2_supported)
96 		return false;
97 
98 	/* MEI interface is solid */
99 	mutex_lock(&dev_priv->hdcp_comp_mutex);
100 	if (!dev_priv->hdcp_comp_added ||  !dev_priv->hdcp_master) {
101 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
102 		return false;
103 	}
104 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
105 
106 	/* Sink's capability for HDCP2.2 */
107 	hdcp->shim->hdcp_2_2_capable(dig_port, &capable);
108 
109 	return capable;
110 }
111 
112 static bool intel_hdcp_in_use(struct drm_i915_private *dev_priv,
113 			      enum transcoder cpu_transcoder, enum port port)
114 {
115 	return intel_de_read(dev_priv,
116 	                     HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
117 	       HDCP_STATUS_ENC;
118 }
119 
120 static bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv,
121 			       enum transcoder cpu_transcoder, enum port port)
122 {
123 	return intel_de_read(dev_priv,
124 	                     HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
125 	       LINK_ENCRYPTION_STATUS;
126 }
127 
128 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
129 				    const struct intel_hdcp_shim *shim)
130 {
131 	int ret, read_ret;
132 	bool ksv_ready;
133 
134 	/* Poll for ksv list ready (spec says max time allowed is 5s) */
135 	ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
136 							 &ksv_ready),
137 			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
138 			 100 * 1000);
139 	if (ret)
140 		return ret;
141 	if (read_ret)
142 		return read_ret;
143 	if (!ksv_ready)
144 		return -ETIMEDOUT;
145 
146 	return 0;
147 }
148 
149 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
150 {
151 	enum i915_power_well_id id;
152 	intel_wakeref_t wakeref;
153 	bool enabled = false;
154 
155 	/*
156 	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
157 	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
158 	 */
159 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
160 		id = HSW_DISP_PW_GLOBAL;
161 	else
162 		id = SKL_DISP_PW_1;
163 
164 	/* PG1 (power well #1) needs to be enabled */
165 	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
166 		enabled = intel_display_power_well_is_enabled(dev_priv, id);
167 
168 	/*
169 	 * Another req for hdcp key loadability is enabled state of pll for
170 	 * cdclk. Without active crtc we wont land here. So we are assuming that
171 	 * cdclk is already on.
172 	 */
173 
174 	return enabled;
175 }
176 
177 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
178 {
179 	intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
180 	intel_de_write(dev_priv, HDCP_KEY_STATUS,
181 		       HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
182 }
183 
184 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
185 {
186 	int ret;
187 	u32 val;
188 
189 	val = intel_de_read(dev_priv, HDCP_KEY_STATUS);
190 	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
191 		return 0;
192 
193 	/*
194 	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
195 	 * out of reset. So if Key is not already loaded, its an error state.
196 	 */
197 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
198 		if (!(intel_de_read(dev_priv, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
199 			return -ENXIO;
200 
201 	/*
202 	 * Initiate loading the HDCP key from fuses.
203 	 *
204 	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only Gen 9
205 	 * platforms except BXT and GLK, differ in the key load trigger process
206 	 * from other platforms. So GEN9_BC uses the GT Driver Mailbox i/f.
207 	 */
208 	if (IS_GEN9_BC(dev_priv)) {
209 		ret = sandybridge_pcode_write(dev_priv,
210 					      SKL_PCODE_LOAD_HDCP_KEYS, 1);
211 		if (ret) {
212 			drm_err(&dev_priv->drm,
213 				"Failed to initiate HDCP key load (%d)\n",
214 				ret);
215 			return ret;
216 		}
217 	} else {
218 		intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
219 	}
220 
221 	/* Wait for the keys to load (500us) */
222 	ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
223 					HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
224 					10, 1, &val);
225 	if (ret)
226 		return ret;
227 	else if (!(val & HDCP_KEY_LOAD_STATUS))
228 		return -ENXIO;
229 
230 	/* Send Aksv over to PCH display for use in authentication */
231 	intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
232 
233 	return 0;
234 }
235 
236 /* Returns updated SHA-1 index */
237 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
238 {
239 	intel_de_write(dev_priv, HDCP_SHA_TEXT, sha_text);
240 	if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
241 		drm_err(&dev_priv->drm, "Timed out waiting for SHA1 ready\n");
242 		return -ETIMEDOUT;
243 	}
244 	return 0;
245 }
246 
247 static
248 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv,
249 				enum transcoder cpu_transcoder, enum port port)
250 {
251 	if (INTEL_GEN(dev_priv) >= 12) {
252 		switch (cpu_transcoder) {
253 		case TRANSCODER_A:
254 			return HDCP_TRANSA_REP_PRESENT |
255 			       HDCP_TRANSA_SHA1_M0;
256 		case TRANSCODER_B:
257 			return HDCP_TRANSB_REP_PRESENT |
258 			       HDCP_TRANSB_SHA1_M0;
259 		case TRANSCODER_C:
260 			return HDCP_TRANSC_REP_PRESENT |
261 			       HDCP_TRANSC_SHA1_M0;
262 		case TRANSCODER_D:
263 			return HDCP_TRANSD_REP_PRESENT |
264 			       HDCP_TRANSD_SHA1_M0;
265 		default:
266 			drm_err(&dev_priv->drm, "Unknown transcoder %d\n",
267 				cpu_transcoder);
268 			return -EINVAL;
269 		}
270 	}
271 
272 	switch (port) {
273 	case PORT_A:
274 		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
275 	case PORT_B:
276 		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
277 	case PORT_C:
278 		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
279 	case PORT_D:
280 		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
281 	case PORT_E:
282 		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
283 	default:
284 		drm_err(&dev_priv->drm, "Unknown port %d\n", port);
285 		return -EINVAL;
286 	}
287 }
288 
289 static
290 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
291 				const struct intel_hdcp_shim *shim,
292 				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
293 {
294 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
295 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
296 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
297 	enum port port = dig_port->base.port;
298 	u32 vprime, sha_text, sha_leftovers, rep_ctl;
299 	int ret, i, j, sha_idx;
300 
301 	/* Process V' values from the receiver */
302 	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
303 		ret = shim->read_v_prime_part(dig_port, i, &vprime);
304 		if (ret)
305 			return ret;
306 		intel_de_write(dev_priv, HDCP_SHA_V_PRIME(i), vprime);
307 	}
308 
309 	/*
310 	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
311 	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
312 	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
313 	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
314 	 * index will keep track of our progress through the 64 bytes as well as
315 	 * helping us work the 40-bit KSVs through our 32-bit register.
316 	 *
317 	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
318 	 */
319 	sha_idx = 0;
320 	sha_text = 0;
321 	sha_leftovers = 0;
322 	rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port);
323 	intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
324 	for (i = 0; i < num_downstream; i++) {
325 		unsigned int sha_empty;
326 		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
327 
328 		/* Fill up the empty slots in sha_text and write it out */
329 		sha_empty = sizeof(sha_text) - sha_leftovers;
330 		for (j = 0; j < sha_empty; j++) {
331 			u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
332 			sha_text |= ksv[j] << off;
333 		}
334 
335 		ret = intel_write_sha_text(dev_priv, sha_text);
336 		if (ret < 0)
337 			return ret;
338 
339 		/* Programming guide writes this every 64 bytes */
340 		sha_idx += sizeof(sha_text);
341 		if (!(sha_idx % 64))
342 			intel_de_write(dev_priv, HDCP_REP_CTL,
343 				       rep_ctl | HDCP_SHA1_TEXT_32);
344 
345 		/* Store the leftover bytes from the ksv in sha_text */
346 		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
347 		sha_text = 0;
348 		for (j = 0; j < sha_leftovers; j++)
349 			sha_text |= ksv[sha_empty + j] <<
350 					((sizeof(sha_text) - j - 1) * 8);
351 
352 		/*
353 		 * If we still have room in sha_text for more data, continue.
354 		 * Otherwise, write it out immediately.
355 		 */
356 		if (sizeof(sha_text) > sha_leftovers)
357 			continue;
358 
359 		ret = intel_write_sha_text(dev_priv, sha_text);
360 		if (ret < 0)
361 			return ret;
362 		sha_leftovers = 0;
363 		sha_text = 0;
364 		sha_idx += sizeof(sha_text);
365 	}
366 
367 	/*
368 	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
369 	 * bytes are leftover from the last ksv, we might be able to fit them
370 	 * all in sha_text (first 2 cases), or we might need to split them up
371 	 * into 2 writes (last 2 cases).
372 	 */
373 	if (sha_leftovers == 0) {
374 		/* Write 16 bits of text, 16 bits of M0 */
375 		intel_de_write(dev_priv, HDCP_REP_CTL,
376 			       rep_ctl | HDCP_SHA1_TEXT_16);
377 		ret = intel_write_sha_text(dev_priv,
378 					   bstatus[0] << 8 | bstatus[1]);
379 		if (ret < 0)
380 			return ret;
381 		sha_idx += sizeof(sha_text);
382 
383 		/* Write 32 bits of M0 */
384 		intel_de_write(dev_priv, HDCP_REP_CTL,
385 			       rep_ctl | HDCP_SHA1_TEXT_0);
386 		ret = intel_write_sha_text(dev_priv, 0);
387 		if (ret < 0)
388 			return ret;
389 		sha_idx += sizeof(sha_text);
390 
391 		/* Write 16 bits of M0 */
392 		intel_de_write(dev_priv, HDCP_REP_CTL,
393 			       rep_ctl | HDCP_SHA1_TEXT_16);
394 		ret = intel_write_sha_text(dev_priv, 0);
395 		if (ret < 0)
396 			return ret;
397 		sha_idx += sizeof(sha_text);
398 
399 	} else if (sha_leftovers == 1) {
400 		/* Write 24 bits of text, 8 bits of M0 */
401 		intel_de_write(dev_priv, HDCP_REP_CTL,
402 			       rep_ctl | HDCP_SHA1_TEXT_24);
403 		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
404 		/* Only 24-bits of data, must be in the LSB */
405 		sha_text = (sha_text & 0xffffff00) >> 8;
406 		ret = intel_write_sha_text(dev_priv, sha_text);
407 		if (ret < 0)
408 			return ret;
409 		sha_idx += sizeof(sha_text);
410 
411 		/* Write 32 bits of M0 */
412 		intel_de_write(dev_priv, HDCP_REP_CTL,
413 			       rep_ctl | HDCP_SHA1_TEXT_0);
414 		ret = intel_write_sha_text(dev_priv, 0);
415 		if (ret < 0)
416 			return ret;
417 		sha_idx += sizeof(sha_text);
418 
419 		/* Write 24 bits of M0 */
420 		intel_de_write(dev_priv, HDCP_REP_CTL,
421 			       rep_ctl | HDCP_SHA1_TEXT_8);
422 		ret = intel_write_sha_text(dev_priv, 0);
423 		if (ret < 0)
424 			return ret;
425 		sha_idx += sizeof(sha_text);
426 
427 	} else if (sha_leftovers == 2) {
428 		/* Write 32 bits of text */
429 		intel_de_write(dev_priv, HDCP_REP_CTL,
430 			       rep_ctl | HDCP_SHA1_TEXT_32);
431 		sha_text |= bstatus[0] << 8 | bstatus[1];
432 		ret = intel_write_sha_text(dev_priv, sha_text);
433 		if (ret < 0)
434 			return ret;
435 		sha_idx += sizeof(sha_text);
436 
437 		/* Write 64 bits of M0 */
438 		intel_de_write(dev_priv, HDCP_REP_CTL,
439 			       rep_ctl | HDCP_SHA1_TEXT_0);
440 		for (i = 0; i < 2; i++) {
441 			ret = intel_write_sha_text(dev_priv, 0);
442 			if (ret < 0)
443 				return ret;
444 			sha_idx += sizeof(sha_text);
445 		}
446 
447 		/*
448 		 * Terminate the SHA-1 stream by hand. For the other leftover
449 		 * cases this is appended by the hardware.
450 		 */
451 		intel_de_write(dev_priv, HDCP_REP_CTL,
452 			       rep_ctl | HDCP_SHA1_TEXT_32);
453 		sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
454 		ret = intel_write_sha_text(dev_priv, sha_text);
455 		if (ret < 0)
456 			return ret;
457 		sha_idx += sizeof(sha_text);
458 	} else if (sha_leftovers == 3) {
459 		/* Write 32 bits of text (filled from LSB) */
460 		intel_de_write(dev_priv, HDCP_REP_CTL,
461 			       rep_ctl | HDCP_SHA1_TEXT_32);
462 		sha_text |= bstatus[0];
463 		ret = intel_write_sha_text(dev_priv, sha_text);
464 		if (ret < 0)
465 			return ret;
466 		sha_idx += sizeof(sha_text);
467 
468 		/* Write 8 bits of text (filled from LSB), 24 bits of M0 */
469 		intel_de_write(dev_priv, HDCP_REP_CTL,
470 			       rep_ctl | HDCP_SHA1_TEXT_8);
471 		ret = intel_write_sha_text(dev_priv, bstatus[1]);
472 		if (ret < 0)
473 			return ret;
474 		sha_idx += sizeof(sha_text);
475 
476 		/* Write 32 bits of M0 */
477 		intel_de_write(dev_priv, HDCP_REP_CTL,
478 			       rep_ctl | HDCP_SHA1_TEXT_0);
479 		ret = intel_write_sha_text(dev_priv, 0);
480 		if (ret < 0)
481 			return ret;
482 		sha_idx += sizeof(sha_text);
483 
484 		/* Write 8 bits of M0 */
485 		intel_de_write(dev_priv, HDCP_REP_CTL,
486 			       rep_ctl | HDCP_SHA1_TEXT_24);
487 		ret = intel_write_sha_text(dev_priv, 0);
488 		if (ret < 0)
489 			return ret;
490 		sha_idx += sizeof(sha_text);
491 	} else {
492 		drm_dbg_kms(&dev_priv->drm, "Invalid number of leftovers %d\n",
493 			    sha_leftovers);
494 		return -EINVAL;
495 	}
496 
497 	intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
498 	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
499 	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
500 		ret = intel_write_sha_text(dev_priv, 0);
501 		if (ret < 0)
502 			return ret;
503 		sha_idx += sizeof(sha_text);
504 	}
505 
506 	/*
507 	 * Last write gets the length of the concatenation in bits. That is:
508 	 *  - 5 bytes per device
509 	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
510 	 */
511 	sha_text = (num_downstream * 5 + 10) * 8;
512 	ret = intel_write_sha_text(dev_priv, sha_text);
513 	if (ret < 0)
514 		return ret;
515 
516 	/* Tell the HW we're done with the hash and wait for it to ACK */
517 	intel_de_write(dev_priv, HDCP_REP_CTL,
518 		       rep_ctl | HDCP_SHA1_COMPLETE_HASH);
519 	if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
520 				  HDCP_SHA1_COMPLETE, 1)) {
521 		drm_err(&dev_priv->drm, "Timed out waiting for SHA1 complete\n");
522 		return -ETIMEDOUT;
523 	}
524 	if (!(intel_de_read(dev_priv, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
525 		drm_dbg_kms(&dev_priv->drm, "SHA-1 mismatch, HDCP failed\n");
526 		return -ENXIO;
527 	}
528 
529 	return 0;
530 }
531 
532 /* Implements Part 2 of the HDCP authorization procedure */
533 static
534 int intel_hdcp_auth_downstream(struct intel_connector *connector)
535 {
536 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
537 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
538 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
539 	u8 bstatus[2], num_downstream, *ksv_fifo;
540 	int ret, i, tries = 3;
541 
542 	ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
543 	if (ret) {
544 		drm_dbg_kms(&dev_priv->drm,
545 			    "KSV list failed to become ready (%d)\n", ret);
546 		return ret;
547 	}
548 
549 	ret = shim->read_bstatus(dig_port, bstatus);
550 	if (ret)
551 		return ret;
552 
553 	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
554 	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
555 		drm_dbg_kms(&dev_priv->drm, "Max Topology Limit Exceeded\n");
556 		return -EPERM;
557 	}
558 
559 	/*
560 	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
561 	 * the HDCP encryption. That implies that repeater can't have its own
562 	 * display. As there is no consumption of encrypted content in the
563 	 * repeater with 0 downstream devices, we are failing the
564 	 * authentication.
565 	 */
566 	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
567 	if (num_downstream == 0) {
568 		drm_dbg_kms(&dev_priv->drm,
569 			    "Repeater with zero downstream devices\n");
570 		return -EINVAL;
571 	}
572 
573 	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
574 	if (!ksv_fifo) {
575 		drm_dbg_kms(&dev_priv->drm, "Out of mem: ksv_fifo\n");
576 		return -ENOMEM;
577 	}
578 
579 	ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
580 	if (ret)
581 		goto err;
582 
583 	if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, ksv_fifo,
584 					num_downstream) > 0) {
585 		drm_err(&dev_priv->drm, "Revoked Ksv(s) in ksv_fifo\n");
586 		ret = -EPERM;
587 		goto err;
588 	}
589 
590 	/*
591 	 * When V prime mismatches, DP Spec mandates re-read of
592 	 * V prime atleast twice.
593 	 */
594 	for (i = 0; i < tries; i++) {
595 		ret = intel_hdcp_validate_v_prime(connector, shim,
596 						  ksv_fifo, num_downstream,
597 						  bstatus);
598 		if (!ret)
599 			break;
600 	}
601 
602 	if (i == tries) {
603 		drm_dbg_kms(&dev_priv->drm,
604 			    "V Prime validation failed.(%d)\n", ret);
605 		goto err;
606 	}
607 
608 	drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (%d downstream devices)\n",
609 		    num_downstream);
610 	ret = 0;
611 err:
612 	kfree(ksv_fifo);
613 	return ret;
614 }
615 
616 /* Implements Part 1 of the HDCP authorization procedure */
617 static int intel_hdcp_auth(struct intel_connector *connector)
618 {
619 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
620 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
621 	struct intel_hdcp *hdcp = &connector->hdcp;
622 	const struct intel_hdcp_shim *shim = hdcp->shim;
623 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
624 	enum port port = dig_port->base.port;
625 	unsigned long r0_prime_gen_start;
626 	int ret, i, tries = 2;
627 	union {
628 		u32 reg[2];
629 		u8 shim[DRM_HDCP_AN_LEN];
630 	} an;
631 	union {
632 		u32 reg[2];
633 		u8 shim[DRM_HDCP_KSV_LEN];
634 	} bksv;
635 	union {
636 		u32 reg;
637 		u8 shim[DRM_HDCP_RI_LEN];
638 	} ri;
639 	bool repeater_present, hdcp_capable;
640 
641 	/*
642 	 * Detects whether the display is HDCP capable. Although we check for
643 	 * valid Bksv below, the HDCP over DP spec requires that we check
644 	 * whether the display supports HDCP before we write An. For HDMI
645 	 * displays, this is not necessary.
646 	 */
647 	if (shim->hdcp_capable) {
648 		ret = shim->hdcp_capable(dig_port, &hdcp_capable);
649 		if (ret)
650 			return ret;
651 		if (!hdcp_capable) {
652 			drm_dbg_kms(&dev_priv->drm,
653 				    "Panel is not HDCP capable\n");
654 			return -EINVAL;
655 		}
656 	}
657 
658 	/* Initialize An with 2 random values and acquire it */
659 	for (i = 0; i < 2; i++)
660 		intel_de_write(dev_priv,
661 			       HDCP_ANINIT(dev_priv, cpu_transcoder, port),
662 			       get_random_u32());
663 	intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
664 		       HDCP_CONF_CAPTURE_AN);
665 
666 	/* Wait for An to be acquired */
667 	if (intel_de_wait_for_set(dev_priv,
668 				  HDCP_STATUS(dev_priv, cpu_transcoder, port),
669 				  HDCP_STATUS_AN_READY, 1)) {
670 		drm_err(&dev_priv->drm, "Timed out waiting for An\n");
671 		return -ETIMEDOUT;
672 	}
673 
674 	an.reg[0] = intel_de_read(dev_priv,
675 				  HDCP_ANLO(dev_priv, cpu_transcoder, port));
676 	an.reg[1] = intel_de_read(dev_priv,
677 				  HDCP_ANHI(dev_priv, cpu_transcoder, port));
678 	ret = shim->write_an_aksv(dig_port, an.shim);
679 	if (ret)
680 		return ret;
681 
682 	r0_prime_gen_start = jiffies;
683 
684 	memset(&bksv, 0, sizeof(bksv));
685 
686 	ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
687 	if (ret < 0)
688 		return ret;
689 
690 	if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, bksv.shim, 1) > 0) {
691 		drm_err(&dev_priv->drm, "BKSV is revoked\n");
692 		return -EPERM;
693 	}
694 
695 	intel_de_write(dev_priv, HDCP_BKSVLO(dev_priv, cpu_transcoder, port),
696 		       bksv.reg[0]);
697 	intel_de_write(dev_priv, HDCP_BKSVHI(dev_priv, cpu_transcoder, port),
698 		       bksv.reg[1]);
699 
700 	ret = shim->repeater_present(dig_port, &repeater_present);
701 	if (ret)
702 		return ret;
703 	if (repeater_present)
704 		intel_de_write(dev_priv, HDCP_REP_CTL,
705 			       intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port));
706 
707 	ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
708 	if (ret)
709 		return ret;
710 
711 	intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
712 		       HDCP_CONF_AUTH_AND_ENC);
713 
714 	/* Wait for R0 ready */
715 	if (wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
716 		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
717 		drm_err(&dev_priv->drm, "Timed out waiting for R0 ready\n");
718 		return -ETIMEDOUT;
719 	}
720 
721 	/*
722 	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
723 	 * some monitors can take longer than this. We'll set the timeout at
724 	 * 300ms just to be sure.
725 	 *
726 	 * On DP, there's an R0_READY bit available but no such bit
727 	 * exists on HDMI. Since the upper-bound is the same, we'll just do
728 	 * the stupid thing instead of polling on one and not the other.
729 	 */
730 	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
731 
732 	tries = 3;
733 
734 	/*
735 	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
736 	 * of R0 mismatch.
737 	 */
738 	for (i = 0; i < tries; i++) {
739 		ri.reg = 0;
740 		ret = shim->read_ri_prime(dig_port, ri.shim);
741 		if (ret)
742 			return ret;
743 		intel_de_write(dev_priv,
744 			       HDCP_RPRIME(dev_priv, cpu_transcoder, port),
745 			       ri.reg);
746 
747 		/* Wait for Ri prime match */
748 		if (!wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
749 			      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
750 			break;
751 	}
752 
753 	if (i == tries) {
754 		drm_dbg_kms(&dev_priv->drm,
755 			    "Timed out waiting for Ri prime match (%x)\n",
756 			    intel_de_read(dev_priv, HDCP_STATUS(dev_priv,
757 					  cpu_transcoder, port)));
758 		return -ETIMEDOUT;
759 	}
760 
761 	/* Wait for encryption confirmation */
762 	if (intel_de_wait_for_set(dev_priv,
763 				  HDCP_STATUS(dev_priv, cpu_transcoder, port),
764 				  HDCP_STATUS_ENC,
765 				  ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
766 		drm_err(&dev_priv->drm, "Timed out waiting for encryption\n");
767 		return -ETIMEDOUT;
768 	}
769 
770 	/*
771 	 * XXX: If we have MST-connected devices, we need to enable encryption
772 	 * on those as well.
773 	 */
774 
775 	if (repeater_present)
776 		return intel_hdcp_auth_downstream(connector);
777 
778 	drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (no repeater present)\n");
779 	return 0;
780 }
781 
782 static int _intel_hdcp_disable(struct intel_connector *connector)
783 {
784 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
785 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
786 	struct intel_hdcp *hdcp = &connector->hdcp;
787 	enum port port = dig_port->base.port;
788 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
789 	u32 repeater_ctl;
790 	int ret;
791 
792 	drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being disabled...\n",
793 		    connector->base.name, connector->base.base.id);
794 
795 	/*
796 	 * If there are other connectors on this port using HDCP, don't disable
797 	 * it. Instead, toggle the HDCP signalling off on that particular
798 	 * connector/pipe and exit.
799 	 */
800 	if (dig_port->num_hdcp_streams > 0) {
801 		ret = hdcp->shim->toggle_signalling(dig_port,
802 						    cpu_transcoder, false);
803 		if (ret)
804 			DRM_ERROR("Failed to disable HDCP signalling\n");
805 		return ret;
806 	}
807 
808 	hdcp->hdcp_encrypted = false;
809 	intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), 0);
810 	if (intel_de_wait_for_clear(dev_priv,
811 				    HDCP_STATUS(dev_priv, cpu_transcoder, port),
812 				    ~0, ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
813 		drm_err(&dev_priv->drm,
814 			"Failed to disable HDCP, timeout clearing status\n");
815 		return -ETIMEDOUT;
816 	}
817 
818 	repeater_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder,
819 						   port);
820 	intel_de_write(dev_priv, HDCP_REP_CTL,
821 		       intel_de_read(dev_priv, HDCP_REP_CTL) & ~repeater_ctl);
822 
823 	ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
824 	if (ret) {
825 		drm_err(&dev_priv->drm, "Failed to disable HDCP signalling\n");
826 		return ret;
827 	}
828 
829 	drm_dbg_kms(&dev_priv->drm, "HDCP is disabled\n");
830 	return 0;
831 }
832 
833 static int _intel_hdcp_enable(struct intel_connector *connector)
834 {
835 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
836 	struct intel_hdcp *hdcp = &connector->hdcp;
837 	int i, ret, tries = 3;
838 
839 	drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being enabled...\n",
840 		    connector->base.name, connector->base.base.id);
841 
842 	if (!hdcp_key_loadable(dev_priv)) {
843 		drm_err(&dev_priv->drm, "HDCP key Load is not possible\n");
844 		return -ENXIO;
845 	}
846 
847 	for (i = 0; i < KEY_LOAD_TRIES; i++) {
848 		ret = intel_hdcp_load_keys(dev_priv);
849 		if (!ret)
850 			break;
851 		intel_hdcp_clear_keys(dev_priv);
852 	}
853 	if (ret) {
854 		drm_err(&dev_priv->drm, "Could not load HDCP keys, (%d)\n",
855 			ret);
856 		return ret;
857 	}
858 
859 	/* Incase of authentication failures, HDCP spec expects reauth. */
860 	for (i = 0; i < tries; i++) {
861 		ret = intel_hdcp_auth(connector);
862 		if (!ret) {
863 			hdcp->hdcp_encrypted = true;
864 			return 0;
865 		}
866 
867 		drm_dbg_kms(&dev_priv->drm, "HDCP Auth failure (%d)\n", ret);
868 
869 		/* Ensuring HDCP encryption and signalling are stopped. */
870 		_intel_hdcp_disable(connector);
871 	}
872 
873 	drm_dbg_kms(&dev_priv->drm,
874 		    "HDCP authentication failed (%d tries/%d)\n", tries, ret);
875 	return ret;
876 }
877 
878 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
879 {
880 	return container_of(hdcp, struct intel_connector, hdcp);
881 }
882 
883 static void intel_hdcp_update_value(struct intel_connector *connector,
884 				    u64 value, bool update_property)
885 {
886 	struct drm_device *dev = connector->base.dev;
887 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
888 	struct intel_hdcp *hdcp = &connector->hdcp;
889 
890 	drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
891 
892 	if (hdcp->value == value)
893 		return;
894 
895 	drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
896 
897 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
898 		if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
899 			dig_port->num_hdcp_streams--;
900 	} else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
901 		dig_port->num_hdcp_streams++;
902 	}
903 
904 	hdcp->value = value;
905 	if (update_property) {
906 		drm_connector_get(&connector->base);
907 		schedule_work(&hdcp->prop_work);
908 	}
909 }
910 
911 /* Implements Part 3 of the HDCP authorization procedure */
912 static int intel_hdcp_check_link(struct intel_connector *connector)
913 {
914 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
915 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
916 	struct intel_hdcp *hdcp = &connector->hdcp;
917 	enum port port = dig_port->base.port;
918 	enum transcoder cpu_transcoder;
919 	int ret = 0;
920 
921 	mutex_lock(&hdcp->mutex);
922 	mutex_lock(&dig_port->hdcp_mutex);
923 
924 	cpu_transcoder = hdcp->cpu_transcoder;
925 
926 	/* Check_link valid only when HDCP1.4 is enabled */
927 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
928 	    !hdcp->hdcp_encrypted) {
929 		ret = -EINVAL;
930 		goto out;
931 	}
932 
933 	if (drm_WARN_ON(&dev_priv->drm,
934 			!intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) {
935 		drm_err(&dev_priv->drm,
936 			"%s:%d HDCP link stopped encryption,%x\n",
937 			connector->base.name, connector->base.base.id,
938 			intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)));
939 		ret = -ENXIO;
940 		intel_hdcp_update_value(connector,
941 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
942 					true);
943 		goto out;
944 	}
945 
946 	if (hdcp->shim->check_link(dig_port, connector)) {
947 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
948 			intel_hdcp_update_value(connector,
949 				DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
950 		}
951 		goto out;
952 	}
953 
954 	drm_dbg_kms(&dev_priv->drm,
955 		    "[%s:%d] HDCP link failed, retrying authentication\n",
956 		    connector->base.name, connector->base.base.id);
957 
958 	ret = _intel_hdcp_disable(connector);
959 	if (ret) {
960 		drm_err(&dev_priv->drm, "Failed to disable hdcp (%d)\n", ret);
961 		intel_hdcp_update_value(connector,
962 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
963 					true);
964 		goto out;
965 	}
966 
967 	ret = _intel_hdcp_enable(connector);
968 	if (ret) {
969 		drm_err(&dev_priv->drm, "Failed to enable hdcp (%d)\n", ret);
970 		intel_hdcp_update_value(connector,
971 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
972 					true);
973 		goto out;
974 	}
975 
976 out:
977 	mutex_unlock(&dig_port->hdcp_mutex);
978 	mutex_unlock(&hdcp->mutex);
979 	return ret;
980 }
981 
982 static void intel_hdcp_prop_work(struct work_struct *work)
983 {
984 	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
985 					       prop_work);
986 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
987 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
988 
989 	drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, NULL);
990 	mutex_lock(&hdcp->mutex);
991 
992 	/*
993 	 * This worker is only used to flip between ENABLED/DESIRED. Either of
994 	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
995 	 * we're running just after hdcp has been disabled, so just exit
996 	 */
997 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
998 		drm_hdcp_update_content_protection(&connector->base,
999 						   hdcp->value);
1000 
1001 	mutex_unlock(&hdcp->mutex);
1002 	drm_modeset_unlock(&dev_priv->drm.mode_config.connection_mutex);
1003 
1004 	drm_connector_put(&connector->base);
1005 }
1006 
1007 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
1008 {
1009 	return INTEL_INFO(dev_priv)->display.has_hdcp &&
1010 			(INTEL_GEN(dev_priv) >= 12 || port < PORT_E);
1011 }
1012 
1013 static int
1014 hdcp2_prepare_ake_init(struct intel_connector *connector,
1015 		       struct hdcp2_ake_init *ake_data)
1016 {
1017 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1018 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1019 	struct i915_hdcp_comp_master *comp;
1020 	int ret;
1021 
1022 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1023 	comp = dev_priv->hdcp_master;
1024 
1025 	if (!comp || !comp->ops) {
1026 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1027 		return -EINVAL;
1028 	}
1029 
1030 	ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
1031 	if (ret)
1032 		drm_dbg_kms(&dev_priv->drm, "Prepare_ake_init failed. %d\n",
1033 			    ret);
1034 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1035 
1036 	return ret;
1037 }
1038 
1039 static int
1040 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1041 				struct hdcp2_ake_send_cert *rx_cert,
1042 				bool *paired,
1043 				struct hdcp2_ake_no_stored_km *ek_pub_km,
1044 				size_t *msg_sz)
1045 {
1046 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1047 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1048 	struct i915_hdcp_comp_master *comp;
1049 	int ret;
1050 
1051 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1052 	comp = dev_priv->hdcp_master;
1053 
1054 	if (!comp || !comp->ops) {
1055 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1056 		return -EINVAL;
1057 	}
1058 
1059 	ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
1060 							 rx_cert, paired,
1061 							 ek_pub_km, msg_sz);
1062 	if (ret < 0)
1063 		drm_dbg_kms(&dev_priv->drm, "Verify rx_cert failed. %d\n",
1064 			    ret);
1065 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1066 
1067 	return ret;
1068 }
1069 
1070 static int hdcp2_verify_hprime(struct intel_connector *connector,
1071 			       struct hdcp2_ake_send_hprime *rx_hprime)
1072 {
1073 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1074 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1075 	struct i915_hdcp_comp_master *comp;
1076 	int ret;
1077 
1078 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1079 	comp = dev_priv->hdcp_master;
1080 
1081 	if (!comp || !comp->ops) {
1082 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1083 		return -EINVAL;
1084 	}
1085 
1086 	ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
1087 	if (ret < 0)
1088 		drm_dbg_kms(&dev_priv->drm, "Verify hprime failed. %d\n", ret);
1089 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1090 
1091 	return ret;
1092 }
1093 
1094 static int
1095 hdcp2_store_pairing_info(struct intel_connector *connector,
1096 			 struct hdcp2_ake_send_pairing_info *pairing_info)
1097 {
1098 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1099 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1100 	struct i915_hdcp_comp_master *comp;
1101 	int ret;
1102 
1103 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1104 	comp = dev_priv->hdcp_master;
1105 
1106 	if (!comp || !comp->ops) {
1107 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1108 		return -EINVAL;
1109 	}
1110 
1111 	ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
1112 	if (ret < 0)
1113 		drm_dbg_kms(&dev_priv->drm, "Store pairing info failed. %d\n",
1114 			    ret);
1115 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1116 
1117 	return ret;
1118 }
1119 
1120 static int
1121 hdcp2_prepare_lc_init(struct intel_connector *connector,
1122 		      struct hdcp2_lc_init *lc_init)
1123 {
1124 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1125 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1126 	struct i915_hdcp_comp_master *comp;
1127 	int ret;
1128 
1129 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1130 	comp = dev_priv->hdcp_master;
1131 
1132 	if (!comp || !comp->ops) {
1133 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1134 		return -EINVAL;
1135 	}
1136 
1137 	ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1138 	if (ret < 0)
1139 		drm_dbg_kms(&dev_priv->drm, "Prepare lc_init failed. %d\n",
1140 			    ret);
1141 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1142 
1143 	return ret;
1144 }
1145 
1146 static int
1147 hdcp2_verify_lprime(struct intel_connector *connector,
1148 		    struct hdcp2_lc_send_lprime *rx_lprime)
1149 {
1150 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1151 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1152 	struct i915_hdcp_comp_master *comp;
1153 	int ret;
1154 
1155 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1156 	comp = dev_priv->hdcp_master;
1157 
1158 	if (!comp || !comp->ops) {
1159 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1160 		return -EINVAL;
1161 	}
1162 
1163 	ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1164 	if (ret < 0)
1165 		drm_dbg_kms(&dev_priv->drm, "Verify L_Prime failed. %d\n",
1166 			    ret);
1167 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1168 
1169 	return ret;
1170 }
1171 
1172 static int hdcp2_prepare_skey(struct intel_connector *connector,
1173 			      struct hdcp2_ske_send_eks *ske_data)
1174 {
1175 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1176 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1177 	struct i915_hdcp_comp_master *comp;
1178 	int ret;
1179 
1180 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1181 	comp = dev_priv->hdcp_master;
1182 
1183 	if (!comp || !comp->ops) {
1184 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1185 		return -EINVAL;
1186 	}
1187 
1188 	ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1189 	if (ret < 0)
1190 		drm_dbg_kms(&dev_priv->drm, "Get session key failed. %d\n",
1191 			    ret);
1192 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1193 
1194 	return ret;
1195 }
1196 
1197 static int
1198 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1199 				      struct hdcp2_rep_send_receiverid_list
1200 								*rep_topology,
1201 				      struct hdcp2_rep_send_ack *rep_send_ack)
1202 {
1203 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1204 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1205 	struct i915_hdcp_comp_master *comp;
1206 	int ret;
1207 
1208 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1209 	comp = dev_priv->hdcp_master;
1210 
1211 	if (!comp || !comp->ops) {
1212 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1213 		return -EINVAL;
1214 	}
1215 
1216 	ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1217 							 rep_topology,
1218 							 rep_send_ack);
1219 	if (ret < 0)
1220 		drm_dbg_kms(&dev_priv->drm,
1221 			    "Verify rep topology failed. %d\n", ret);
1222 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1223 
1224 	return ret;
1225 }
1226 
1227 static int
1228 hdcp2_verify_mprime(struct intel_connector *connector,
1229 		    struct hdcp2_rep_stream_ready *stream_ready)
1230 {
1231 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1232 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1233 	struct i915_hdcp_comp_master *comp;
1234 	int ret;
1235 
1236 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1237 	comp = dev_priv->hdcp_master;
1238 
1239 	if (!comp || !comp->ops) {
1240 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1241 		return -EINVAL;
1242 	}
1243 
1244 	ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1245 	if (ret < 0)
1246 		drm_dbg_kms(&dev_priv->drm, "Verify mprime failed. %d\n", ret);
1247 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1248 
1249 	return ret;
1250 }
1251 
1252 static int hdcp2_authenticate_port(struct intel_connector *connector)
1253 {
1254 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1255 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1256 	struct i915_hdcp_comp_master *comp;
1257 	int ret;
1258 
1259 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1260 	comp = dev_priv->hdcp_master;
1261 
1262 	if (!comp || !comp->ops) {
1263 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1264 		return -EINVAL;
1265 	}
1266 
1267 	ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1268 	if (ret < 0)
1269 		drm_dbg_kms(&dev_priv->drm, "Enable hdcp auth failed. %d\n",
1270 			    ret);
1271 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1272 
1273 	return ret;
1274 }
1275 
1276 static int hdcp2_close_mei_session(struct intel_connector *connector)
1277 {
1278 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1279 	struct i915_hdcp_comp_master *comp;
1280 	int ret;
1281 
1282 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1283 	comp = dev_priv->hdcp_master;
1284 
1285 	if (!comp || !comp->ops) {
1286 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1287 		return -EINVAL;
1288 	}
1289 
1290 	ret = comp->ops->close_hdcp_session(comp->mei_dev,
1291 					     &connector->hdcp.port_data);
1292 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1293 
1294 	return ret;
1295 }
1296 
1297 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1298 {
1299 	return hdcp2_close_mei_session(connector);
1300 }
1301 
1302 /* Authentication flow starts from here */
1303 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1304 {
1305 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1306 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1307 	struct intel_hdcp *hdcp = &connector->hdcp;
1308 	union {
1309 		struct hdcp2_ake_init ake_init;
1310 		struct hdcp2_ake_send_cert send_cert;
1311 		struct hdcp2_ake_no_stored_km no_stored_km;
1312 		struct hdcp2_ake_send_hprime send_hprime;
1313 		struct hdcp2_ake_send_pairing_info pairing_info;
1314 	} msgs;
1315 	const struct intel_hdcp_shim *shim = hdcp->shim;
1316 	size_t size;
1317 	int ret;
1318 
1319 	/* Init for seq_num */
1320 	hdcp->seq_num_v = 0;
1321 	hdcp->seq_num_m = 0;
1322 
1323 	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1324 	if (ret < 0)
1325 		return ret;
1326 
1327 	ret = shim->write_2_2_msg(dig_port, &msgs.ake_init,
1328 				  sizeof(msgs.ake_init));
1329 	if (ret < 0)
1330 		return ret;
1331 
1332 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT,
1333 				 &msgs.send_cert, sizeof(msgs.send_cert));
1334 	if (ret < 0)
1335 		return ret;
1336 
1337 	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1338 		drm_dbg_kms(&dev_priv->drm, "cert.rx_caps dont claim HDCP2.2\n");
1339 		return -EINVAL;
1340 	}
1341 
1342 	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1343 
1344 	if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1345 					msgs.send_cert.cert_rx.receiver_id,
1346 					1) > 0) {
1347 		drm_err(&dev_priv->drm, "Receiver ID is revoked\n");
1348 		return -EPERM;
1349 	}
1350 
1351 	/*
1352 	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1353 	 * stored also.
1354 	 */
1355 	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1356 					      &hdcp->is_paired,
1357 					      &msgs.no_stored_km, &size);
1358 	if (ret < 0)
1359 		return ret;
1360 
1361 	ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size);
1362 	if (ret < 0)
1363 		return ret;
1364 
1365 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1366 				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1367 	if (ret < 0)
1368 		return ret;
1369 
1370 	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1371 	if (ret < 0)
1372 		return ret;
1373 
1374 	if (!hdcp->is_paired) {
1375 		/* Pairing is required */
1376 		ret = shim->read_2_2_msg(dig_port,
1377 					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1378 					 &msgs.pairing_info,
1379 					 sizeof(msgs.pairing_info));
1380 		if (ret < 0)
1381 			return ret;
1382 
1383 		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1384 		if (ret < 0)
1385 			return ret;
1386 		hdcp->is_paired = true;
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 static int hdcp2_locality_check(struct intel_connector *connector)
1393 {
1394 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1395 	struct intel_hdcp *hdcp = &connector->hdcp;
1396 	union {
1397 		struct hdcp2_lc_init lc_init;
1398 		struct hdcp2_lc_send_lprime send_lprime;
1399 	} msgs;
1400 	const struct intel_hdcp_shim *shim = hdcp->shim;
1401 	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1402 
1403 	for (i = 0; i < tries; i++) {
1404 		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1405 		if (ret < 0)
1406 			continue;
1407 
1408 		ret = shim->write_2_2_msg(dig_port, &msgs.lc_init,
1409 				      sizeof(msgs.lc_init));
1410 		if (ret < 0)
1411 			continue;
1412 
1413 		ret = shim->read_2_2_msg(dig_port,
1414 					 HDCP_2_2_LC_SEND_LPRIME,
1415 					 &msgs.send_lprime,
1416 					 sizeof(msgs.send_lprime));
1417 		if (ret < 0)
1418 			continue;
1419 
1420 		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1421 		if (!ret)
1422 			break;
1423 	}
1424 
1425 	return ret;
1426 }
1427 
1428 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1429 {
1430 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1431 	struct intel_hdcp *hdcp = &connector->hdcp;
1432 	struct hdcp2_ske_send_eks send_eks;
1433 	int ret;
1434 
1435 	ret = hdcp2_prepare_skey(connector, &send_eks);
1436 	if (ret < 0)
1437 		return ret;
1438 
1439 	ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks,
1440 					sizeof(send_eks));
1441 	if (ret < 0)
1442 		return ret;
1443 
1444 	return 0;
1445 }
1446 
1447 static
1448 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1449 {
1450 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1451 	struct intel_hdcp *hdcp = &connector->hdcp;
1452 	union {
1453 		struct hdcp2_rep_stream_manage stream_manage;
1454 		struct hdcp2_rep_stream_ready stream_ready;
1455 	} msgs;
1456 	const struct intel_hdcp_shim *shim = hdcp->shim;
1457 	int ret;
1458 
1459 	if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1460 		return -ERANGE;
1461 
1462 	/* Prepare RepeaterAuth_Stream_Manage msg */
1463 	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1464 	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1465 
1466 	/* K no of streams is fixed as 1. Stored as big-endian. */
1467 	msgs.stream_manage.k = cpu_to_be16(1);
1468 
1469 	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
1470 	msgs.stream_manage.streams[0].stream_id = 0;
1471 	msgs.stream_manage.streams[0].stream_type = hdcp->content_type;
1472 
1473 	/* Send it to Repeater */
1474 	ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage,
1475 				  sizeof(msgs.stream_manage));
1476 	if (ret < 0)
1477 		goto out;
1478 
1479 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY,
1480 				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1481 	if (ret < 0)
1482 		goto out;
1483 
1484 	hdcp->port_data.seq_num_m = hdcp->seq_num_m;
1485 	hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1486 	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1487 
1488 out:
1489 	hdcp->seq_num_m++;
1490 
1491 	return ret;
1492 }
1493 
1494 static
1495 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1496 {
1497 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1498 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1499 	struct intel_hdcp *hdcp = &connector->hdcp;
1500 	union {
1501 		struct hdcp2_rep_send_receiverid_list recvid_list;
1502 		struct hdcp2_rep_send_ack rep_ack;
1503 	} msgs;
1504 	const struct intel_hdcp_shim *shim = hdcp->shim;
1505 	u32 seq_num_v, device_cnt;
1506 	u8 *rx_info;
1507 	int ret;
1508 
1509 	ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1510 				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1511 	if (ret < 0)
1512 		return ret;
1513 
1514 	rx_info = msgs.recvid_list.rx_info;
1515 
1516 	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1517 	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1518 		drm_dbg_kms(&dev_priv->drm, "Topology Max Size Exceeded\n");
1519 		return -EINVAL;
1520 	}
1521 
1522 	/* Converting and Storing the seq_num_v to local variable as DWORD */
1523 	seq_num_v =
1524 		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1525 
1526 	if (!hdcp->hdcp2_encrypted && seq_num_v) {
1527 		drm_dbg_kms(&dev_priv->drm,
1528 			    "Non zero Seq_num_v at first RecvId_List msg\n");
1529 		return -EINVAL;
1530 	}
1531 
1532 	if (seq_num_v < hdcp->seq_num_v) {
1533 		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1534 		drm_dbg_kms(&dev_priv->drm, "Seq_num_v roll over.\n");
1535 		return -EINVAL;
1536 	}
1537 
1538 	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1539 		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1540 	if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1541 					msgs.recvid_list.receiver_ids,
1542 					device_cnt) > 0) {
1543 		drm_err(&dev_priv->drm, "Revoked receiver ID(s) is in list\n");
1544 		return -EPERM;
1545 	}
1546 
1547 	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1548 						    &msgs.recvid_list,
1549 						    &msgs.rep_ack);
1550 	if (ret < 0)
1551 		return ret;
1552 
1553 	hdcp->seq_num_v = seq_num_v;
1554 	ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack,
1555 				  sizeof(msgs.rep_ack));
1556 	if (ret < 0)
1557 		return ret;
1558 
1559 	return 0;
1560 }
1561 
1562 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1563 {
1564 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1565 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1566 	struct intel_hdcp *hdcp = &connector->hdcp;
1567 	const struct intel_hdcp_shim *shim = hdcp->shim;
1568 	int ret;
1569 
1570 	ret = hdcp2_authentication_key_exchange(connector);
1571 	if (ret < 0) {
1572 		drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1573 		return ret;
1574 	}
1575 
1576 	ret = hdcp2_locality_check(connector);
1577 	if (ret < 0) {
1578 		drm_dbg_kms(&i915->drm,
1579 			    "Locality Check failed. Err : %d\n", ret);
1580 		return ret;
1581 	}
1582 
1583 	ret = hdcp2_session_key_exchange(connector);
1584 	if (ret < 0) {
1585 		drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1586 		return ret;
1587 	}
1588 
1589 	if (shim->config_stream_type) {
1590 		ret = shim->config_stream_type(dig_port,
1591 					       hdcp->is_repeater,
1592 					       hdcp->content_type);
1593 		if (ret < 0)
1594 			return ret;
1595 	}
1596 
1597 	if (hdcp->is_repeater) {
1598 		ret = hdcp2_authenticate_repeater_topology(connector);
1599 		if (ret < 0) {
1600 			drm_dbg_kms(&i915->drm,
1601 				    "Repeater Auth Failed. Err: %d\n", ret);
1602 			return ret;
1603 		}
1604 	}
1605 
1606 	return ret;
1607 }
1608 
1609 static int hdcp2_enable_encryption(struct intel_connector *connector)
1610 {
1611 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1612 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1613 	struct intel_hdcp *hdcp = &connector->hdcp;
1614 	enum port port = dig_port->base.port;
1615 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1616 	int ret;
1617 
1618 	drm_WARN_ON(&dev_priv->drm,
1619 		    intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1620 		    LINK_ENCRYPTION_STATUS);
1621 	if (hdcp->shim->toggle_signalling) {
1622 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1623 						    true);
1624 		if (ret) {
1625 			drm_err(&dev_priv->drm,
1626 				"Failed to enable HDCP signalling. %d\n",
1627 				ret);
1628 			return ret;
1629 		}
1630 	}
1631 
1632 	if (intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1633 	    LINK_AUTH_STATUS) {
1634 		/* Link is Authenticated. Now set for Encryption */
1635 		intel_de_write(dev_priv,
1636 			       HDCP2_CTL(dev_priv, cpu_transcoder, port),
1637 			       intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) | CTL_LINK_ENCRYPTION_REQ);
1638 	}
1639 
1640 	ret = intel_de_wait_for_set(dev_priv,
1641 				    HDCP2_STATUS(dev_priv, cpu_transcoder,
1642 						 port),
1643 				    LINK_ENCRYPTION_STATUS,
1644 				    ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1645 
1646 	return ret;
1647 }
1648 
1649 static int hdcp2_disable_encryption(struct intel_connector *connector)
1650 {
1651 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1652 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1653 	struct intel_hdcp *hdcp = &connector->hdcp;
1654 	enum port port = dig_port->base.port;
1655 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1656 	int ret;
1657 
1658 	drm_WARN_ON(&dev_priv->drm, !(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1659 				      LINK_ENCRYPTION_STATUS));
1660 
1661 	intel_de_write(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port),
1662 		       intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) & ~CTL_LINK_ENCRYPTION_REQ);
1663 
1664 	ret = intel_de_wait_for_clear(dev_priv,
1665 				      HDCP2_STATUS(dev_priv, cpu_transcoder,
1666 						   port),
1667 				      LINK_ENCRYPTION_STATUS,
1668 				      ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1669 	if (ret == -ETIMEDOUT)
1670 		drm_dbg_kms(&dev_priv->drm, "Disable Encryption Timedout");
1671 
1672 	if (hdcp->shim->toggle_signalling) {
1673 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1674 						    false);
1675 		if (ret) {
1676 			drm_err(&dev_priv->drm,
1677 				"Failed to disable HDCP signalling. %d\n",
1678 				ret);
1679 			return ret;
1680 		}
1681 	}
1682 
1683 	return ret;
1684 }
1685 
1686 static int
1687 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1688 {
1689 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1690 	int i, tries = 3, ret;
1691 
1692 	if (!connector->hdcp.is_repeater)
1693 		return 0;
1694 
1695 	for (i = 0; i < tries; i++) {
1696 		ret = _hdcp2_propagate_stream_management_info(connector);
1697 		if (!ret)
1698 			break;
1699 
1700 		/* Lets restart the auth incase of seq_num_m roll over */
1701 		if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1702 			drm_dbg_kms(&i915->drm,
1703 				    "seq_num_m roll over.(%d)\n", ret);
1704 			break;
1705 		}
1706 
1707 		drm_dbg_kms(&i915->drm,
1708 			    "HDCP2 stream management %d of %d Failed.(%d)\n",
1709 			    i + 1, tries, ret);
1710 	}
1711 
1712 	return ret;
1713 }
1714 
1715 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1716 {
1717 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1718 	struct intel_hdcp *hdcp = &connector->hdcp;
1719 	int ret, i, tries = 3;
1720 
1721 	for (i = 0; i < tries; i++) {
1722 		ret = hdcp2_authenticate_sink(connector);
1723 		if (!ret) {
1724 			ret = hdcp2_propagate_stream_management_info(connector);
1725 			if (ret) {
1726 				drm_dbg_kms(&i915->drm,
1727 					    "Stream management failed.(%d)\n",
1728 					    ret);
1729 				break;
1730 			}
1731 			hdcp->port_data.streams[0].stream_type =
1732 							hdcp->content_type;
1733 			ret = hdcp2_authenticate_port(connector);
1734 			if (!ret)
1735 				break;
1736 			drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1737 				    ret);
1738 		}
1739 
1740 		/* Clearing the mei hdcp session */
1741 		drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1742 			    i + 1, tries, ret);
1743 		if (hdcp2_deauthenticate_port(connector) < 0)
1744 			drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1745 	}
1746 
1747 	if (!ret) {
1748 		/*
1749 		 * Ensuring the required 200mSec min time interval between
1750 		 * Session Key Exchange and encryption.
1751 		 */
1752 		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1753 		ret = hdcp2_enable_encryption(connector);
1754 		if (ret < 0) {
1755 			drm_dbg_kms(&i915->drm,
1756 				    "Encryption Enable Failed.(%d)\n", ret);
1757 			if (hdcp2_deauthenticate_port(connector) < 0)
1758 				drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1759 		}
1760 	}
1761 
1762 	return ret;
1763 }
1764 
1765 static int _intel_hdcp2_enable(struct intel_connector *connector)
1766 {
1767 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1768 	struct intel_hdcp *hdcp = &connector->hdcp;
1769 	int ret;
1770 
1771 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1772 		    connector->base.name, connector->base.base.id,
1773 		    hdcp->content_type);
1774 
1775 	ret = hdcp2_authenticate_and_encrypt(connector);
1776 	if (ret) {
1777 		drm_dbg_kms(&i915->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
1778 			    hdcp->content_type, ret);
1779 		return ret;
1780 	}
1781 
1782 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
1783 		    connector->base.name, connector->base.base.id,
1784 		    hdcp->content_type);
1785 
1786 	hdcp->hdcp2_encrypted = true;
1787 	return 0;
1788 }
1789 
1790 static int _intel_hdcp2_disable(struct intel_connector *connector)
1791 {
1792 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1793 	int ret;
1794 
1795 	drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
1796 		    connector->base.name, connector->base.base.id);
1797 
1798 	ret = hdcp2_disable_encryption(connector);
1799 
1800 	if (hdcp2_deauthenticate_port(connector) < 0)
1801 		drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1802 
1803 	connector->hdcp.hdcp2_encrypted = false;
1804 
1805 	return ret;
1806 }
1807 
1808 /* Implements the Link Integrity Check for HDCP2.2 */
1809 static int intel_hdcp2_check_link(struct intel_connector *connector)
1810 {
1811 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1812 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1813 	struct intel_hdcp *hdcp = &connector->hdcp;
1814 	enum port port = dig_port->base.port;
1815 	enum transcoder cpu_transcoder;
1816 	int ret = 0;
1817 
1818 	mutex_lock(&hdcp->mutex);
1819 	cpu_transcoder = hdcp->cpu_transcoder;
1820 
1821 	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
1822 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1823 	    !hdcp->hdcp2_encrypted) {
1824 		ret = -EINVAL;
1825 		goto out;
1826 	}
1827 
1828 	if (drm_WARN_ON(&dev_priv->drm,
1829 			!intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) {
1830 		drm_err(&dev_priv->drm,
1831 			"HDCP2.2 link stopped the encryption, %x\n",
1832 			intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)));
1833 		ret = -ENXIO;
1834 		intel_hdcp_update_value(connector,
1835 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1836 					true);
1837 		goto out;
1838 	}
1839 
1840 	ret = hdcp->shim->check_2_2_link(dig_port);
1841 	if (ret == HDCP_LINK_PROTECTED) {
1842 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1843 			intel_hdcp_update_value(connector,
1844 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
1845 					true);
1846 		}
1847 		goto out;
1848 	}
1849 
1850 	if (ret == HDCP_TOPOLOGY_CHANGE) {
1851 		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1852 			goto out;
1853 
1854 		drm_dbg_kms(&dev_priv->drm,
1855 			    "HDCP2.2 Downstream topology change\n");
1856 		ret = hdcp2_authenticate_repeater_topology(connector);
1857 		if (!ret) {
1858 			intel_hdcp_update_value(connector,
1859 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
1860 					true);
1861 			goto out;
1862 		}
1863 		drm_dbg_kms(&dev_priv->drm,
1864 			    "[%s:%d] Repeater topology auth failed.(%d)\n",
1865 			    connector->base.name, connector->base.base.id,
1866 			    ret);
1867 	} else {
1868 		drm_dbg_kms(&dev_priv->drm,
1869 			    "[%s:%d] HDCP2.2 link failed, retrying auth\n",
1870 			    connector->base.name, connector->base.base.id);
1871 	}
1872 
1873 	ret = _intel_hdcp2_disable(connector);
1874 	if (ret) {
1875 		drm_err(&dev_priv->drm,
1876 			"[%s:%d] Failed to disable hdcp2.2 (%d)\n",
1877 			connector->base.name, connector->base.base.id, ret);
1878 		intel_hdcp_update_value(connector,
1879 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
1880 		goto out;
1881 	}
1882 
1883 	ret = _intel_hdcp2_enable(connector);
1884 	if (ret) {
1885 		drm_dbg_kms(&dev_priv->drm,
1886 			    "[%s:%d] Failed to enable hdcp2.2 (%d)\n",
1887 			    connector->base.name, connector->base.base.id,
1888 			    ret);
1889 		intel_hdcp_update_value(connector,
1890 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1891 					true);
1892 		goto out;
1893 	}
1894 
1895 out:
1896 	mutex_unlock(&hdcp->mutex);
1897 	return ret;
1898 }
1899 
1900 static void intel_hdcp_check_work(struct work_struct *work)
1901 {
1902 	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
1903 					       struct intel_hdcp,
1904 					       check_work);
1905 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1906 
1907 	if (drm_connector_is_unregistered(&connector->base))
1908 		return;
1909 
1910 	if (!intel_hdcp2_check_link(connector))
1911 		schedule_delayed_work(&hdcp->check_work,
1912 				      DRM_HDCP2_CHECK_PERIOD_MS);
1913 	else if (!intel_hdcp_check_link(connector))
1914 		schedule_delayed_work(&hdcp->check_work,
1915 				      DRM_HDCP_CHECK_PERIOD_MS);
1916 }
1917 
1918 static int i915_hdcp_component_bind(struct device *i915_kdev,
1919 				    struct device *mei_kdev, void *data)
1920 {
1921 	struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1922 
1923 	drm_dbg(&dev_priv->drm, "I915 HDCP comp bind\n");
1924 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1925 	dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data;
1926 	dev_priv->hdcp_master->mei_dev = mei_kdev;
1927 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1928 
1929 	return 0;
1930 }
1931 
1932 static void i915_hdcp_component_unbind(struct device *i915_kdev,
1933 				       struct device *mei_kdev, void *data)
1934 {
1935 	struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1936 
1937 	drm_dbg(&dev_priv->drm, "I915 HDCP comp unbind\n");
1938 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1939 	dev_priv->hdcp_master = NULL;
1940 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1941 }
1942 
1943 static const struct component_ops i915_hdcp_component_ops = {
1944 	.bind   = i915_hdcp_component_bind,
1945 	.unbind = i915_hdcp_component_unbind,
1946 };
1947 
1948 static enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port)
1949 {
1950 	switch (port) {
1951 	case PORT_A:
1952 		return MEI_DDI_A;
1953 	case PORT_B ... PORT_F:
1954 		return (enum mei_fw_ddi)port;
1955 	default:
1956 		return MEI_DDI_INVALID_PORT;
1957 	}
1958 }
1959 
1960 static enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder)
1961 {
1962 	switch (cpu_transcoder) {
1963 	case TRANSCODER_A ... TRANSCODER_D:
1964 		return (enum mei_fw_tc)(cpu_transcoder | 0x10);
1965 	default: /* eDP, DSI TRANSCODERS are non HDCP capable */
1966 		return MEI_INVALID_TRANSCODER;
1967 	}
1968 }
1969 
1970 static int initialize_hdcp_port_data(struct intel_connector *connector,
1971 				     enum port port,
1972 				     const struct intel_hdcp_shim *shim)
1973 {
1974 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1975 	struct intel_hdcp *hdcp = &connector->hdcp;
1976 	struct hdcp_port_data *data = &hdcp->port_data;
1977 
1978 	if (INTEL_GEN(dev_priv) < 12)
1979 		data->fw_ddi = intel_get_mei_fw_ddi_index(port);
1980 	else
1981 		/*
1982 		 * As per ME FW API expectation, for GEN 12+, fw_ddi is filled
1983 		 * with zero(INVALID PORT index).
1984 		 */
1985 		data->fw_ddi = MEI_DDI_INVALID_PORT;
1986 
1987 	/*
1988 	 * As associated transcoder is set and modified at modeset, here fw_tc
1989 	 * is initialized to zero (invalid transcoder index). This will be
1990 	 * retained for <Gen12 forever.
1991 	 */
1992 	data->fw_tc = MEI_INVALID_TRANSCODER;
1993 
1994 	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
1995 	data->protocol = (u8)shim->protocol;
1996 
1997 	data->k = 1;
1998 	if (!data->streams)
1999 		data->streams = kcalloc(data->k,
2000 					sizeof(struct hdcp2_streamid_type),
2001 					GFP_KERNEL);
2002 	if (!data->streams) {
2003 		drm_err(&dev_priv->drm, "Out of Memory\n");
2004 		return -ENOMEM;
2005 	}
2006 
2007 	data->streams[0].stream_id = 0;
2008 	data->streams[0].stream_type = hdcp->content_type;
2009 
2010 	return 0;
2011 }
2012 
2013 static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
2014 {
2015 	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2016 		return false;
2017 
2018 	return (INTEL_GEN(dev_priv) >= 10 ||
2019 		IS_GEMINILAKE(dev_priv) ||
2020 		IS_KABYLAKE(dev_priv) ||
2021 		IS_COFFEELAKE(dev_priv) ||
2022 		IS_COMETLAKE(dev_priv));
2023 }
2024 
2025 void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
2026 {
2027 	int ret;
2028 
2029 	if (!is_hdcp2_supported(dev_priv))
2030 		return;
2031 
2032 	mutex_lock(&dev_priv->hdcp_comp_mutex);
2033 	drm_WARN_ON(&dev_priv->drm, dev_priv->hdcp_comp_added);
2034 
2035 	dev_priv->hdcp_comp_added = true;
2036 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
2037 	ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
2038 				  I915_COMPONENT_HDCP);
2039 	if (ret < 0) {
2040 		drm_dbg_kms(&dev_priv->drm, "Failed at component add(%d)\n",
2041 			    ret);
2042 		mutex_lock(&dev_priv->hdcp_comp_mutex);
2043 		dev_priv->hdcp_comp_added = false;
2044 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
2045 		return;
2046 	}
2047 }
2048 
2049 static void intel_hdcp2_init(struct intel_connector *connector, enum port port,
2050 			     const struct intel_hdcp_shim *shim)
2051 {
2052 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2053 	struct intel_hdcp *hdcp = &connector->hdcp;
2054 	int ret;
2055 
2056 	ret = initialize_hdcp_port_data(connector, port, shim);
2057 	if (ret) {
2058 		drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2059 		return;
2060 	}
2061 
2062 	hdcp->hdcp2_supported = true;
2063 }
2064 
2065 int intel_hdcp_init(struct intel_connector *connector,
2066 		    enum port port,
2067 		    const struct intel_hdcp_shim *shim)
2068 {
2069 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2070 	struct intel_hdcp *hdcp = &connector->hdcp;
2071 	int ret;
2072 
2073 	if (!shim)
2074 		return -EINVAL;
2075 
2076 	if (is_hdcp2_supported(dev_priv) && !connector->mst_port)
2077 		intel_hdcp2_init(connector, port, shim);
2078 
2079 	ret =
2080 	drm_connector_attach_content_protection_property(&connector->base,
2081 							 hdcp->hdcp2_supported);
2082 	if (ret) {
2083 		hdcp->hdcp2_supported = false;
2084 		kfree(hdcp->port_data.streams);
2085 		return ret;
2086 	}
2087 
2088 	hdcp->shim = shim;
2089 	mutex_init(&hdcp->mutex);
2090 	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2091 	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2092 	init_waitqueue_head(&hdcp->cp_irq_queue);
2093 
2094 	return 0;
2095 }
2096 
2097 int intel_hdcp_enable(struct intel_connector *connector,
2098 		      enum transcoder cpu_transcoder, u8 content_type)
2099 {
2100 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2101 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2102 	struct intel_hdcp *hdcp = &connector->hdcp;
2103 	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2104 	int ret = -EINVAL;
2105 
2106 	if (!hdcp->shim)
2107 		return -ENOENT;
2108 
2109 	mutex_lock(&hdcp->mutex);
2110 	mutex_lock(&dig_port->hdcp_mutex);
2111 	drm_WARN_ON(&dev_priv->drm,
2112 		    hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2113 	hdcp->content_type = content_type;
2114 	hdcp->cpu_transcoder = cpu_transcoder;
2115 
2116 	if (INTEL_GEN(dev_priv) >= 12)
2117 		hdcp->port_data.fw_tc = intel_get_mei_fw_tc(cpu_transcoder);
2118 
2119 	/*
2120 	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2121 	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2122 	 */
2123 	if (intel_hdcp2_capable(connector)) {
2124 		ret = _intel_hdcp2_enable(connector);
2125 		if (!ret)
2126 			check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
2127 	}
2128 
2129 	/*
2130 	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2131 	 * be attempted.
2132 	 */
2133 	if (ret && intel_hdcp_capable(connector) &&
2134 	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2135 		ret = _intel_hdcp_enable(connector);
2136 	}
2137 
2138 	if (!ret) {
2139 		schedule_delayed_work(&hdcp->check_work, check_link_interval);
2140 		intel_hdcp_update_value(connector,
2141 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2142 					true);
2143 	}
2144 
2145 	mutex_unlock(&dig_port->hdcp_mutex);
2146 	mutex_unlock(&hdcp->mutex);
2147 	return ret;
2148 }
2149 
2150 int intel_hdcp_disable(struct intel_connector *connector)
2151 {
2152 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2153 	struct intel_hdcp *hdcp = &connector->hdcp;
2154 	int ret = 0;
2155 
2156 	if (!hdcp->shim)
2157 		return -ENOENT;
2158 
2159 	mutex_lock(&hdcp->mutex);
2160 	mutex_lock(&dig_port->hdcp_mutex);
2161 
2162 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2163 		goto out;
2164 
2165 	intel_hdcp_update_value(connector,
2166 				DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2167 	if (hdcp->hdcp2_encrypted)
2168 		ret = _intel_hdcp2_disable(connector);
2169 	else if (hdcp->hdcp_encrypted)
2170 		ret = _intel_hdcp_disable(connector);
2171 
2172 out:
2173 	mutex_unlock(&dig_port->hdcp_mutex);
2174 	mutex_unlock(&hdcp->mutex);
2175 	cancel_delayed_work_sync(&hdcp->check_work);
2176 	return ret;
2177 }
2178 
2179 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2180 			    struct intel_encoder *encoder,
2181 			    const struct intel_crtc_state *crtc_state,
2182 			    const struct drm_connector_state *conn_state)
2183 {
2184 	struct intel_connector *connector =
2185 				to_intel_connector(conn_state->connector);
2186 	struct intel_hdcp *hdcp = &connector->hdcp;
2187 	bool content_protection_type_changed, desired_and_not_enabled = false;
2188 
2189 	if (!connector->hdcp.shim)
2190 		return;
2191 
2192 	content_protection_type_changed =
2193 		(conn_state->hdcp_content_type != hdcp->content_type &&
2194 		 conn_state->content_protection !=
2195 		 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2196 
2197 	/*
2198 	 * During the HDCP encryption session if Type change is requested,
2199 	 * disable the HDCP and reenable it with new TYPE value.
2200 	 */
2201 	if (conn_state->content_protection ==
2202 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2203 	    content_protection_type_changed)
2204 		intel_hdcp_disable(connector);
2205 
2206 	/*
2207 	 * Mark the hdcp state as DESIRED after the hdcp disable of type
2208 	 * change procedure.
2209 	 */
2210 	if (content_protection_type_changed) {
2211 		mutex_lock(&hdcp->mutex);
2212 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2213 		schedule_work(&hdcp->prop_work);
2214 		mutex_unlock(&hdcp->mutex);
2215 	}
2216 
2217 	if (conn_state->content_protection ==
2218 	    DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2219 		mutex_lock(&hdcp->mutex);
2220 		/* Avoid enabling hdcp, if it already ENABLED */
2221 		desired_and_not_enabled =
2222 			hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2223 		mutex_unlock(&hdcp->mutex);
2224 	}
2225 
2226 	if (desired_and_not_enabled || content_protection_type_changed)
2227 		intel_hdcp_enable(connector,
2228 				  crtc_state->cpu_transcoder,
2229 				  (u8)conn_state->hdcp_content_type);
2230 }
2231 
2232 void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
2233 {
2234 	mutex_lock(&dev_priv->hdcp_comp_mutex);
2235 	if (!dev_priv->hdcp_comp_added) {
2236 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
2237 		return;
2238 	}
2239 
2240 	dev_priv->hdcp_comp_added = false;
2241 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
2242 
2243 	component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
2244 }
2245 
2246 void intel_hdcp_cleanup(struct intel_connector *connector)
2247 {
2248 	struct intel_hdcp *hdcp = &connector->hdcp;
2249 
2250 	if (!hdcp->shim)
2251 		return;
2252 
2253 	/*
2254 	 * If the connector is registered, it's possible userspace could kick
2255 	 * off another HDCP enable, which would re-spawn the workers.
2256 	 */
2257 	drm_WARN_ON(connector->base.dev,
2258 		connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2259 
2260 	/*
2261 	 * Now that the connector is not registered, check_work won't be run,
2262 	 * but cancel any outstanding instances of it
2263 	 */
2264 	cancel_delayed_work_sync(&hdcp->check_work);
2265 
2266 	/*
2267 	 * We don't cancel prop_work in the same way as check_work since it
2268 	 * requires connection_mutex which could be held while calling this
2269 	 * function. Instead, we rely on the connector references grabbed before
2270 	 * scheduling prop_work to ensure the connector is alive when prop_work
2271 	 * is run. So if we're in the destroy path (which is where this
2272 	 * function should be called), we're "guaranteed" that prop_work is not
2273 	 * active (tl;dr This Should Never Happen).
2274 	 */
2275 	drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2276 
2277 	mutex_lock(&hdcp->mutex);
2278 	kfree(hdcp->port_data.streams);
2279 	hdcp->shim = NULL;
2280 	mutex_unlock(&hdcp->mutex);
2281 }
2282 
2283 void intel_hdcp_atomic_check(struct drm_connector *connector,
2284 			     struct drm_connector_state *old_state,
2285 			     struct drm_connector_state *new_state)
2286 {
2287 	u64 old_cp = old_state->content_protection;
2288 	u64 new_cp = new_state->content_protection;
2289 	struct drm_crtc_state *crtc_state;
2290 
2291 	if (!new_state->crtc) {
2292 		/*
2293 		 * If the connector is being disabled with CP enabled, mark it
2294 		 * desired so it's re-enabled when the connector is brought back
2295 		 */
2296 		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2297 			new_state->content_protection =
2298 				DRM_MODE_CONTENT_PROTECTION_DESIRED;
2299 		return;
2300 	}
2301 
2302 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2303 						   new_state->crtc);
2304 	/*
2305 	 * Fix the HDCP uapi content protection state in case of modeset.
2306 	 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2307 	 * need to be sent if there is transition from ENABLED->DESIRED.
2308 	 */
2309 	if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2310 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2311 	    new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2312 		new_state->content_protection =
2313 			DRM_MODE_CONTENT_PROTECTION_DESIRED;
2314 
2315 	/*
2316 	 * Nothing to do if the state didn't change, or HDCP was activated since
2317 	 * the last commit. And also no change in hdcp content type.
2318 	 */
2319 	if (old_cp == new_cp ||
2320 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2321 	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2322 		if (old_state->hdcp_content_type ==
2323 				new_state->hdcp_content_type)
2324 			return;
2325 	}
2326 
2327 	crtc_state->mode_changed = true;
2328 }
2329 
2330 /* Handles the CP_IRQ raised from the DP HDCP sink */
2331 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2332 {
2333 	struct intel_hdcp *hdcp = &connector->hdcp;
2334 
2335 	if (!hdcp->shim)
2336 		return;
2337 
2338 	atomic_inc(&connector->hdcp.cp_irq_count);
2339 	wake_up_all(&connector->hdcp.cp_irq_queue);
2340 
2341 	schedule_delayed_work(&hdcp->check_work, 0);
2342 }
2343