xref: /linux/drivers/gpu/drm/i915/display/intel_hdcp.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <seanpaul@chromium.org>
8  * Ramalingam C <ramalingam.c@intel.com>
9  */
10 
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14 
15 #include <drm/display/drm_hdcp_helper.h>
16 #include <drm/i915_component.h>
17 
18 #include "i915_drv.h"
19 #include "i915_reg.h"
20 #include "intel_connector.h"
21 #include "intel_de.h"
22 #include "intel_display_power.h"
23 #include "intel_display_power_well.h"
24 #include "intel_display_types.h"
25 #include "intel_hdcp.h"
26 #include "intel_hdcp_gsc.h"
27 #include "intel_hdcp_regs.h"
28 #include "intel_pcode.h"
29 
30 #define KEY_LOAD_TRIES	5
31 #define HDCP2_LC_RETRY_CNT			3
32 
33 static int intel_conn_to_vcpi(struct intel_atomic_state *state,
34 			      struct intel_connector *connector)
35 {
36 	struct drm_dp_mst_topology_mgr *mgr;
37 	struct drm_dp_mst_atomic_payload *payload;
38 	struct drm_dp_mst_topology_state *mst_state;
39 	int vcpi = 0;
40 
41 	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
42 	if (!connector->port)
43 		return 0;
44 	mgr = connector->port->mgr;
45 
46 	drm_modeset_lock(&mgr->base.lock, state->base.acquire_ctx);
47 	mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
48 	payload = drm_atomic_get_mst_payload_state(mst_state, connector->port);
49 	if (drm_WARN_ON(mgr->dev, !payload))
50 		goto out;
51 
52 	vcpi = payload->vcpi;
53 	if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
54 		vcpi = 0;
55 		goto out;
56 	}
57 out:
58 	return vcpi;
59 }
60 
61 /*
62  * intel_hdcp_required_content_stream selects the most highest common possible HDCP
63  * content_type for all streams in DP MST topology because security f/w doesn't
64  * have any provision to mark content_type for each stream separately, it marks
65  * all available streams with the content_type proivided at the time of port
66  * authentication. This may prohibit the userspace to use type1 content on
67  * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
68  * DP MST topology. Though it is not compulsory, security fw should change its
69  * policy to mark different content_types for different streams.
70  */
71 static int
72 intel_hdcp_required_content_stream(struct intel_atomic_state *state,
73 				   struct intel_digital_port *dig_port)
74 {
75 	struct drm_connector_list_iter conn_iter;
76 	struct intel_digital_port *conn_dig_port;
77 	struct intel_connector *connector;
78 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
79 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
80 	bool enforce_type0 = false;
81 	int k;
82 
83 	if (dig_port->hdcp_auth_status)
84 		return 0;
85 
86 	data->k = 0;
87 
88 	if (!dig_port->hdcp_mst_type1_capable)
89 		enforce_type0 = true;
90 
91 	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
92 	for_each_intel_connector_iter(connector, &conn_iter) {
93 		if (connector->base.status == connector_status_disconnected)
94 			continue;
95 
96 		if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
97 			continue;
98 
99 		conn_dig_port = intel_attached_dig_port(connector);
100 		if (conn_dig_port != dig_port)
101 			continue;
102 
103 		data->streams[data->k].stream_id =
104 			intel_conn_to_vcpi(state, connector);
105 		data->k++;
106 
107 		/* if there is only one active stream */
108 		if (dig_port->dp.active_mst_links <= 1)
109 			break;
110 	}
111 	drm_connector_list_iter_end(&conn_iter);
112 
113 	if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
114 		return -EINVAL;
115 
116 	/*
117 	 * Apply common protection level across all streams in DP MST Topology.
118 	 * Use highest supported content type for all streams in DP MST Topology.
119 	 */
120 	for (k = 0; k < data->k; k++)
121 		data->streams[k].stream_type =
122 			enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
123 
124 	return 0;
125 }
126 
127 static int intel_hdcp_prepare_streams(struct intel_atomic_state *state,
128 				      struct intel_connector *connector)
129 {
130 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
131 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
132 	struct intel_hdcp *hdcp = &connector->hdcp;
133 
134 	if (intel_encoder_is_mst(intel_attached_encoder(connector)))
135 		return intel_hdcp_required_content_stream(state, dig_port);
136 
137 	data->k = 1;
138 	data->streams[0].stream_id = 0;
139 	data->streams[0].stream_type = hdcp->content_type;
140 
141 	return 0;
142 }
143 
144 static
145 bool intel_hdcp_is_ksv_valid(u8 *ksv)
146 {
147 	int i, ones = 0;
148 	/* KSV has 20 1's and 20 0's */
149 	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
150 		ones += hweight8(ksv[i]);
151 	if (ones != 20)
152 		return false;
153 
154 	return true;
155 }
156 
157 static
158 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
159 			       const struct intel_hdcp_shim *shim, u8 *bksv)
160 {
161 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
162 	int ret, i, tries = 2;
163 
164 	/* HDCP spec states that we must retry the bksv if it is invalid */
165 	for (i = 0; i < tries; i++) {
166 		ret = shim->read_bksv(dig_port, bksv);
167 		if (ret)
168 			return ret;
169 		if (intel_hdcp_is_ksv_valid(bksv))
170 			break;
171 	}
172 	if (i == tries) {
173 		drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
174 		return -ENODEV;
175 	}
176 
177 	return 0;
178 }
179 
180 /* Is HDCP1.4 capable on Platform and Sink */
181 bool intel_hdcp_get_capability(struct intel_connector *connector)
182 {
183 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
184 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
185 	bool capable = false;
186 	u8 bksv[5];
187 
188 	if (!shim)
189 		return capable;
190 
191 	if (shim->hdcp_get_capability) {
192 		shim->hdcp_get_capability(dig_port, &capable);
193 	} else {
194 		if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
195 			capable = true;
196 	}
197 
198 	return capable;
199 }
200 
201 /*
202  * Check if the source has all the building blocks ready to make
203  * HDCP 2.2 work
204  */
205 static bool intel_hdcp2_prerequisite(struct intel_connector *connector)
206 {
207 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
208 	struct intel_hdcp *hdcp = &connector->hdcp;
209 
210 	/* I915 support for HDCP2.2 */
211 	if (!hdcp->hdcp2_supported)
212 		return false;
213 
214 	/* If MTL+ make sure gsc is loaded and proxy is setup */
215 	if (intel_hdcp_gsc_cs_required(i915)) {
216 		if (!intel_hdcp_gsc_check_status(i915))
217 			return false;
218 	}
219 
220 	/* MEI/GSC interface is solid depending on which is used */
221 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
222 	if (!i915->display.hdcp.comp_added ||  !i915->display.hdcp.arbiter) {
223 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
224 		return false;
225 	}
226 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
227 
228 	return true;
229 }
230 
231 /* Is HDCP2.2 capable on Platform and Sink */
232 bool intel_hdcp2_get_capability(struct intel_connector *connector)
233 {
234 	struct intel_hdcp *hdcp = &connector->hdcp;
235 	bool capable = false;
236 
237 	if (!intel_hdcp2_prerequisite(connector))
238 		return false;
239 
240 	/* Sink's capability for HDCP2.2 */
241 	hdcp->shim->hdcp_2_2_get_capability(connector, &capable);
242 
243 	return capable;
244 }
245 
246 void intel_hdcp_get_remote_capability(struct intel_connector *connector,
247 				      bool *hdcp_capable,
248 				      bool *hdcp2_capable)
249 {
250 	struct intel_hdcp *hdcp = &connector->hdcp;
251 
252 	if (!hdcp->shim->get_remote_hdcp_capability)
253 		return;
254 
255 	hdcp->shim->get_remote_hdcp_capability(connector, hdcp_capable,
256 					       hdcp2_capable);
257 
258 	if (!intel_hdcp2_prerequisite(connector))
259 		*hdcp2_capable = false;
260 }
261 
262 static bool intel_hdcp_in_use(struct drm_i915_private *i915,
263 			      enum transcoder cpu_transcoder, enum port port)
264 {
265 	return intel_de_read(i915,
266 			     HDCP_STATUS(i915, cpu_transcoder, port)) &
267 		HDCP_STATUS_ENC;
268 }
269 
270 static bool intel_hdcp2_in_use(struct drm_i915_private *i915,
271 			       enum transcoder cpu_transcoder, enum port port)
272 {
273 	return intel_de_read(i915,
274 			     HDCP2_STATUS(i915, cpu_transcoder, port)) &
275 		LINK_ENCRYPTION_STATUS;
276 }
277 
278 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
279 				    const struct intel_hdcp_shim *shim)
280 {
281 	int ret, read_ret;
282 	bool ksv_ready;
283 
284 	/* Poll for ksv list ready (spec says max time allowed is 5s) */
285 	ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
286 							 &ksv_ready),
287 			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
288 			 100 * 1000);
289 	if (ret)
290 		return ret;
291 	if (read_ret)
292 		return read_ret;
293 	if (!ksv_ready)
294 		return -ETIMEDOUT;
295 
296 	return 0;
297 }
298 
299 static bool hdcp_key_loadable(struct drm_i915_private *i915)
300 {
301 	enum i915_power_well_id id;
302 	intel_wakeref_t wakeref;
303 	bool enabled = false;
304 
305 	/*
306 	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
307 	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
308 	 */
309 	if (IS_HASWELL(i915) || IS_BROADWELL(i915))
310 		id = HSW_DISP_PW_GLOBAL;
311 	else
312 		id = SKL_DISP_PW_1;
313 
314 	/* PG1 (power well #1) needs to be enabled */
315 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
316 		enabled = intel_display_power_well_is_enabled(i915, id);
317 
318 	/*
319 	 * Another req for hdcp key loadability is enabled state of pll for
320 	 * cdclk. Without active crtc we wont land here. So we are assuming that
321 	 * cdclk is already on.
322 	 */
323 
324 	return enabled;
325 }
326 
327 static void intel_hdcp_clear_keys(struct drm_i915_private *i915)
328 {
329 	intel_de_write(i915, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
330 	intel_de_write(i915, HDCP_KEY_STATUS,
331 		       HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
332 }
333 
334 static int intel_hdcp_load_keys(struct drm_i915_private *i915)
335 {
336 	int ret;
337 	u32 val;
338 
339 	val = intel_de_read(i915, HDCP_KEY_STATUS);
340 	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
341 		return 0;
342 
343 	/*
344 	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
345 	 * out of reset. So if Key is not already loaded, its an error state.
346 	 */
347 	if (IS_HASWELL(i915) || IS_BROADWELL(i915))
348 		if (!(intel_de_read(i915, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
349 			return -ENXIO;
350 
351 	/*
352 	 * Initiate loading the HDCP key from fuses.
353 	 *
354 	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
355 	 * version 9 platforms (minus BXT) differ in the key load trigger
356 	 * process from other platforms. These platforms use the GT Driver
357 	 * Mailbox interface.
358 	 */
359 	if (DISPLAY_VER(i915) == 9 && !IS_BROXTON(i915)) {
360 		ret = snb_pcode_write(&i915->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
361 		if (ret) {
362 			drm_err(&i915->drm,
363 				"Failed to initiate HDCP key load (%d)\n",
364 				ret);
365 			return ret;
366 		}
367 	} else {
368 		intel_de_write(i915, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
369 	}
370 
371 	/* Wait for the keys to load (500us) */
372 	ret = intel_de_wait_custom(i915, HDCP_KEY_STATUS,
373 				   HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
374 				   10, 1, &val);
375 	if (ret)
376 		return ret;
377 	else if (!(val & HDCP_KEY_LOAD_STATUS))
378 		return -ENXIO;
379 
380 	/* Send Aksv over to PCH display for use in authentication */
381 	intel_de_write(i915, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
382 
383 	return 0;
384 }
385 
386 /* Returns updated SHA-1 index */
387 static int intel_write_sha_text(struct drm_i915_private *i915, u32 sha_text)
388 {
389 	intel_de_write(i915, HDCP_SHA_TEXT, sha_text);
390 	if (intel_de_wait_for_set(i915, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
391 		drm_err(&i915->drm, "Timed out waiting for SHA1 ready\n");
392 		return -ETIMEDOUT;
393 	}
394 	return 0;
395 }
396 
397 static
398 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *i915,
399 				enum transcoder cpu_transcoder, enum port port)
400 {
401 	if (DISPLAY_VER(i915) >= 12) {
402 		switch (cpu_transcoder) {
403 		case TRANSCODER_A:
404 			return HDCP_TRANSA_REP_PRESENT |
405 			       HDCP_TRANSA_SHA1_M0;
406 		case TRANSCODER_B:
407 			return HDCP_TRANSB_REP_PRESENT |
408 			       HDCP_TRANSB_SHA1_M0;
409 		case TRANSCODER_C:
410 			return HDCP_TRANSC_REP_PRESENT |
411 			       HDCP_TRANSC_SHA1_M0;
412 		case TRANSCODER_D:
413 			return HDCP_TRANSD_REP_PRESENT |
414 			       HDCP_TRANSD_SHA1_M0;
415 		default:
416 			drm_err(&i915->drm, "Unknown transcoder %d\n",
417 				cpu_transcoder);
418 			return 0;
419 		}
420 	}
421 
422 	switch (port) {
423 	case PORT_A:
424 		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
425 	case PORT_B:
426 		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
427 	case PORT_C:
428 		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
429 	case PORT_D:
430 		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
431 	case PORT_E:
432 		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
433 	default:
434 		drm_err(&i915->drm, "Unknown port %d\n", port);
435 		return 0;
436 	}
437 }
438 
439 static
440 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
441 				const struct intel_hdcp_shim *shim,
442 				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
443 {
444 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
445 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
446 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
447 	enum port port = dig_port->base.port;
448 	u32 vprime, sha_text, sha_leftovers, rep_ctl;
449 	int ret, i, j, sha_idx;
450 
451 	/* Process V' values from the receiver */
452 	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
453 		ret = shim->read_v_prime_part(dig_port, i, &vprime);
454 		if (ret)
455 			return ret;
456 		intel_de_write(i915, HDCP_SHA_V_PRIME(i), vprime);
457 	}
458 
459 	/*
460 	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
461 	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
462 	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
463 	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
464 	 * index will keep track of our progress through the 64 bytes as well as
465 	 * helping us work the 40-bit KSVs through our 32-bit register.
466 	 *
467 	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
468 	 */
469 	sha_idx = 0;
470 	sha_text = 0;
471 	sha_leftovers = 0;
472 	rep_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port);
473 	intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
474 	for (i = 0; i < num_downstream; i++) {
475 		unsigned int sha_empty;
476 		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
477 
478 		/* Fill up the empty slots in sha_text and write it out */
479 		sha_empty = sizeof(sha_text) - sha_leftovers;
480 		for (j = 0; j < sha_empty; j++) {
481 			u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
482 			sha_text |= ksv[j] << off;
483 		}
484 
485 		ret = intel_write_sha_text(i915, sha_text);
486 		if (ret < 0)
487 			return ret;
488 
489 		/* Programming guide writes this every 64 bytes */
490 		sha_idx += sizeof(sha_text);
491 		if (!(sha_idx % 64))
492 			intel_de_write(i915, HDCP_REP_CTL,
493 				       rep_ctl | HDCP_SHA1_TEXT_32);
494 
495 		/* Store the leftover bytes from the ksv in sha_text */
496 		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
497 		sha_text = 0;
498 		for (j = 0; j < sha_leftovers; j++)
499 			sha_text |= ksv[sha_empty + j] <<
500 					((sizeof(sha_text) - j - 1) * 8);
501 
502 		/*
503 		 * If we still have room in sha_text for more data, continue.
504 		 * Otherwise, write it out immediately.
505 		 */
506 		if (sizeof(sha_text) > sha_leftovers)
507 			continue;
508 
509 		ret = intel_write_sha_text(i915, sha_text);
510 		if (ret < 0)
511 			return ret;
512 		sha_leftovers = 0;
513 		sha_text = 0;
514 		sha_idx += sizeof(sha_text);
515 	}
516 
517 	/*
518 	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
519 	 * bytes are leftover from the last ksv, we might be able to fit them
520 	 * all in sha_text (first 2 cases), or we might need to split them up
521 	 * into 2 writes (last 2 cases).
522 	 */
523 	if (sha_leftovers == 0) {
524 		/* Write 16 bits of text, 16 bits of M0 */
525 		intel_de_write(i915, HDCP_REP_CTL,
526 			       rep_ctl | HDCP_SHA1_TEXT_16);
527 		ret = intel_write_sha_text(i915,
528 					   bstatus[0] << 8 | bstatus[1]);
529 		if (ret < 0)
530 			return ret;
531 		sha_idx += sizeof(sha_text);
532 
533 		/* Write 32 bits of M0 */
534 		intel_de_write(i915, HDCP_REP_CTL,
535 			       rep_ctl | HDCP_SHA1_TEXT_0);
536 		ret = intel_write_sha_text(i915, 0);
537 		if (ret < 0)
538 			return ret;
539 		sha_idx += sizeof(sha_text);
540 
541 		/* Write 16 bits of M0 */
542 		intel_de_write(i915, HDCP_REP_CTL,
543 			       rep_ctl | HDCP_SHA1_TEXT_16);
544 		ret = intel_write_sha_text(i915, 0);
545 		if (ret < 0)
546 			return ret;
547 		sha_idx += sizeof(sha_text);
548 
549 	} else if (sha_leftovers == 1) {
550 		/* Write 24 bits of text, 8 bits of M0 */
551 		intel_de_write(i915, HDCP_REP_CTL,
552 			       rep_ctl | HDCP_SHA1_TEXT_24);
553 		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
554 		/* Only 24-bits of data, must be in the LSB */
555 		sha_text = (sha_text & 0xffffff00) >> 8;
556 		ret = intel_write_sha_text(i915, sha_text);
557 		if (ret < 0)
558 			return ret;
559 		sha_idx += sizeof(sha_text);
560 
561 		/* Write 32 bits of M0 */
562 		intel_de_write(i915, HDCP_REP_CTL,
563 			       rep_ctl | HDCP_SHA1_TEXT_0);
564 		ret = intel_write_sha_text(i915, 0);
565 		if (ret < 0)
566 			return ret;
567 		sha_idx += sizeof(sha_text);
568 
569 		/* Write 24 bits of M0 */
570 		intel_de_write(i915, HDCP_REP_CTL,
571 			       rep_ctl | HDCP_SHA1_TEXT_8);
572 		ret = intel_write_sha_text(i915, 0);
573 		if (ret < 0)
574 			return ret;
575 		sha_idx += sizeof(sha_text);
576 
577 	} else if (sha_leftovers == 2) {
578 		/* Write 32 bits of text */
579 		intel_de_write(i915, HDCP_REP_CTL,
580 			       rep_ctl | HDCP_SHA1_TEXT_32);
581 		sha_text |= bstatus[0] << 8 | bstatus[1];
582 		ret = intel_write_sha_text(i915, sha_text);
583 		if (ret < 0)
584 			return ret;
585 		sha_idx += sizeof(sha_text);
586 
587 		/* Write 64 bits of M0 */
588 		intel_de_write(i915, HDCP_REP_CTL,
589 			       rep_ctl | HDCP_SHA1_TEXT_0);
590 		for (i = 0; i < 2; i++) {
591 			ret = intel_write_sha_text(i915, 0);
592 			if (ret < 0)
593 				return ret;
594 			sha_idx += sizeof(sha_text);
595 		}
596 
597 		/*
598 		 * Terminate the SHA-1 stream by hand. For the other leftover
599 		 * cases this is appended by the hardware.
600 		 */
601 		intel_de_write(i915, HDCP_REP_CTL,
602 			       rep_ctl | HDCP_SHA1_TEXT_32);
603 		sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
604 		ret = intel_write_sha_text(i915, sha_text);
605 		if (ret < 0)
606 			return ret;
607 		sha_idx += sizeof(sha_text);
608 	} else if (sha_leftovers == 3) {
609 		/* Write 32 bits of text (filled from LSB) */
610 		intel_de_write(i915, HDCP_REP_CTL,
611 			       rep_ctl | HDCP_SHA1_TEXT_32);
612 		sha_text |= bstatus[0];
613 		ret = intel_write_sha_text(i915, sha_text);
614 		if (ret < 0)
615 			return ret;
616 		sha_idx += sizeof(sha_text);
617 
618 		/* Write 8 bits of text (filled from LSB), 24 bits of M0 */
619 		intel_de_write(i915, HDCP_REP_CTL,
620 			       rep_ctl | HDCP_SHA1_TEXT_8);
621 		ret = intel_write_sha_text(i915, bstatus[1]);
622 		if (ret < 0)
623 			return ret;
624 		sha_idx += sizeof(sha_text);
625 
626 		/* Write 32 bits of M0 */
627 		intel_de_write(i915, HDCP_REP_CTL,
628 			       rep_ctl | HDCP_SHA1_TEXT_0);
629 		ret = intel_write_sha_text(i915, 0);
630 		if (ret < 0)
631 			return ret;
632 		sha_idx += sizeof(sha_text);
633 
634 		/* Write 8 bits of M0 */
635 		intel_de_write(i915, HDCP_REP_CTL,
636 			       rep_ctl | HDCP_SHA1_TEXT_24);
637 		ret = intel_write_sha_text(i915, 0);
638 		if (ret < 0)
639 			return ret;
640 		sha_idx += sizeof(sha_text);
641 	} else {
642 		drm_dbg_kms(&i915->drm, "Invalid number of leftovers %d\n",
643 			    sha_leftovers);
644 		return -EINVAL;
645 	}
646 
647 	intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
648 	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
649 	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
650 		ret = intel_write_sha_text(i915, 0);
651 		if (ret < 0)
652 			return ret;
653 		sha_idx += sizeof(sha_text);
654 	}
655 
656 	/*
657 	 * Last write gets the length of the concatenation in bits. That is:
658 	 *  - 5 bytes per device
659 	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
660 	 */
661 	sha_text = (num_downstream * 5 + 10) * 8;
662 	ret = intel_write_sha_text(i915, sha_text);
663 	if (ret < 0)
664 		return ret;
665 
666 	/* Tell the HW we're done with the hash and wait for it to ACK */
667 	intel_de_write(i915, HDCP_REP_CTL,
668 		       rep_ctl | HDCP_SHA1_COMPLETE_HASH);
669 	if (intel_de_wait_for_set(i915, HDCP_REP_CTL,
670 				  HDCP_SHA1_COMPLETE, 1)) {
671 		drm_err(&i915->drm, "Timed out waiting for SHA1 complete\n");
672 		return -ETIMEDOUT;
673 	}
674 	if (!(intel_de_read(i915, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
675 		drm_dbg_kms(&i915->drm, "SHA-1 mismatch, HDCP failed\n");
676 		return -ENXIO;
677 	}
678 
679 	return 0;
680 }
681 
682 /* Implements Part 2 of the HDCP authorization procedure */
683 static
684 int intel_hdcp_auth_downstream(struct intel_connector *connector)
685 {
686 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
687 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
688 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
689 	u8 bstatus[2], num_downstream, *ksv_fifo;
690 	int ret, i, tries = 3;
691 
692 	ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
693 	if (ret) {
694 		drm_dbg_kms(&i915->drm,
695 			    "KSV list failed to become ready (%d)\n", ret);
696 		return ret;
697 	}
698 
699 	ret = shim->read_bstatus(dig_port, bstatus);
700 	if (ret)
701 		return ret;
702 
703 	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
704 	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
705 		drm_dbg_kms(&i915->drm, "Max Topology Limit Exceeded\n");
706 		return -EPERM;
707 	}
708 
709 	/*
710 	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
711 	 * the HDCP encryption. That implies that repeater can't have its own
712 	 * display. As there is no consumption of encrypted content in the
713 	 * repeater with 0 downstream devices, we are failing the
714 	 * authentication.
715 	 */
716 	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
717 	if (num_downstream == 0) {
718 		drm_dbg_kms(&i915->drm,
719 			    "Repeater with zero downstream devices\n");
720 		return -EINVAL;
721 	}
722 
723 	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
724 	if (!ksv_fifo) {
725 		drm_dbg_kms(&i915->drm, "Out of mem: ksv_fifo\n");
726 		return -ENOMEM;
727 	}
728 
729 	ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
730 	if (ret)
731 		goto err;
732 
733 	if (drm_hdcp_check_ksvs_revoked(&i915->drm, ksv_fifo,
734 					num_downstream) > 0) {
735 		drm_err(&i915->drm, "Revoked Ksv(s) in ksv_fifo\n");
736 		ret = -EPERM;
737 		goto err;
738 	}
739 
740 	/*
741 	 * When V prime mismatches, DP Spec mandates re-read of
742 	 * V prime atleast twice.
743 	 */
744 	for (i = 0; i < tries; i++) {
745 		ret = intel_hdcp_validate_v_prime(connector, shim,
746 						  ksv_fifo, num_downstream,
747 						  bstatus);
748 		if (!ret)
749 			break;
750 	}
751 
752 	if (i == tries) {
753 		drm_dbg_kms(&i915->drm,
754 			    "V Prime validation failed.(%d)\n", ret);
755 		goto err;
756 	}
757 
758 	drm_dbg_kms(&i915->drm, "HDCP is enabled (%d downstream devices)\n",
759 		    num_downstream);
760 	ret = 0;
761 err:
762 	kfree(ksv_fifo);
763 	return ret;
764 }
765 
766 /* Implements Part 1 of the HDCP authorization procedure */
767 static int intel_hdcp_auth(struct intel_connector *connector)
768 {
769 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
770 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
771 	struct intel_hdcp *hdcp = &connector->hdcp;
772 	const struct intel_hdcp_shim *shim = hdcp->shim;
773 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
774 	enum port port = dig_port->base.port;
775 	unsigned long r0_prime_gen_start;
776 	int ret, i, tries = 2;
777 	union {
778 		u32 reg[2];
779 		u8 shim[DRM_HDCP_AN_LEN];
780 	} an;
781 	union {
782 		u32 reg[2];
783 		u8 shim[DRM_HDCP_KSV_LEN];
784 	} bksv;
785 	union {
786 		u32 reg;
787 		u8 shim[DRM_HDCP_RI_LEN];
788 	} ri;
789 	bool repeater_present, hdcp_capable;
790 
791 	/*
792 	 * Detects whether the display is HDCP capable. Although we check for
793 	 * valid Bksv below, the HDCP over DP spec requires that we check
794 	 * whether the display supports HDCP before we write An. For HDMI
795 	 * displays, this is not necessary.
796 	 */
797 	if (shim->hdcp_get_capability) {
798 		ret = shim->hdcp_get_capability(dig_port, &hdcp_capable);
799 		if (ret)
800 			return ret;
801 		if (!hdcp_capable) {
802 			drm_dbg_kms(&i915->drm,
803 				    "Panel is not HDCP capable\n");
804 			return -EINVAL;
805 		}
806 	}
807 
808 	/* Initialize An with 2 random values and acquire it */
809 	for (i = 0; i < 2; i++)
810 		intel_de_write(i915,
811 			       HDCP_ANINIT(i915, cpu_transcoder, port),
812 			       get_random_u32());
813 	intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
814 		       HDCP_CONF_CAPTURE_AN);
815 
816 	/* Wait for An to be acquired */
817 	if (intel_de_wait_for_set(i915,
818 				  HDCP_STATUS(i915, cpu_transcoder, port),
819 				  HDCP_STATUS_AN_READY, 1)) {
820 		drm_err(&i915->drm, "Timed out waiting for An\n");
821 		return -ETIMEDOUT;
822 	}
823 
824 	an.reg[0] = intel_de_read(i915,
825 				  HDCP_ANLO(i915, cpu_transcoder, port));
826 	an.reg[1] = intel_de_read(i915,
827 				  HDCP_ANHI(i915, cpu_transcoder, port));
828 	ret = shim->write_an_aksv(dig_port, an.shim);
829 	if (ret)
830 		return ret;
831 
832 	r0_prime_gen_start = jiffies;
833 
834 	memset(&bksv, 0, sizeof(bksv));
835 
836 	ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
837 	if (ret < 0)
838 		return ret;
839 
840 	if (drm_hdcp_check_ksvs_revoked(&i915->drm, bksv.shim, 1) > 0) {
841 		drm_err(&i915->drm, "BKSV is revoked\n");
842 		return -EPERM;
843 	}
844 
845 	intel_de_write(i915, HDCP_BKSVLO(i915, cpu_transcoder, port),
846 		       bksv.reg[0]);
847 	intel_de_write(i915, HDCP_BKSVHI(i915, cpu_transcoder, port),
848 		       bksv.reg[1]);
849 
850 	ret = shim->repeater_present(dig_port, &repeater_present);
851 	if (ret)
852 		return ret;
853 	if (repeater_present)
854 		intel_de_write(i915, HDCP_REP_CTL,
855 			       intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port));
856 
857 	ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
858 	if (ret)
859 		return ret;
860 
861 	intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
862 		       HDCP_CONF_AUTH_AND_ENC);
863 
864 	/* Wait for R0 ready */
865 	if (wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
866 		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
867 		drm_err(&i915->drm, "Timed out waiting for R0 ready\n");
868 		return -ETIMEDOUT;
869 	}
870 
871 	/*
872 	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
873 	 * some monitors can take longer than this. We'll set the timeout at
874 	 * 300ms just to be sure.
875 	 *
876 	 * On DP, there's an R0_READY bit available but no such bit
877 	 * exists on HDMI. Since the upper-bound is the same, we'll just do
878 	 * the stupid thing instead of polling on one and not the other.
879 	 */
880 	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
881 
882 	tries = 3;
883 
884 	/*
885 	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
886 	 * of R0 mismatch.
887 	 */
888 	for (i = 0; i < tries; i++) {
889 		ri.reg = 0;
890 		ret = shim->read_ri_prime(dig_port, ri.shim);
891 		if (ret)
892 			return ret;
893 		intel_de_write(i915,
894 			       HDCP_RPRIME(i915, cpu_transcoder, port),
895 			       ri.reg);
896 
897 		/* Wait for Ri prime match */
898 		if (!wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
899 			      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
900 			break;
901 	}
902 
903 	if (i == tries) {
904 		drm_dbg_kms(&i915->drm,
905 			    "Timed out waiting for Ri prime match (%x)\n",
906 			    intel_de_read(i915,
907 					  HDCP_STATUS(i915, cpu_transcoder, port)));
908 		return -ETIMEDOUT;
909 	}
910 
911 	/* Wait for encryption confirmation */
912 	if (intel_de_wait_for_set(i915,
913 				  HDCP_STATUS(i915, cpu_transcoder, port),
914 				  HDCP_STATUS_ENC,
915 				  HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
916 		drm_err(&i915->drm, "Timed out waiting for encryption\n");
917 		return -ETIMEDOUT;
918 	}
919 
920 	/* DP MST Auth Part 1 Step 2.a and Step 2.b */
921 	if (shim->stream_encryption) {
922 		ret = shim->stream_encryption(connector, true);
923 		if (ret) {
924 			drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 1.4 stream enc\n",
925 				connector->base.base.id, connector->base.name);
926 			return ret;
927 		}
928 		drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
929 			    transcoder_name(hdcp->stream_transcoder));
930 	}
931 
932 	if (repeater_present)
933 		return intel_hdcp_auth_downstream(connector);
934 
935 	drm_dbg_kms(&i915->drm, "HDCP is enabled (no repeater present)\n");
936 	return 0;
937 }
938 
939 static int _intel_hdcp_disable(struct intel_connector *connector)
940 {
941 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
942 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
943 	struct intel_hdcp *hdcp = &connector->hdcp;
944 	enum port port = dig_port->base.port;
945 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
946 	u32 repeater_ctl;
947 	int ret;
948 
949 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP is being disabled...\n",
950 		    connector->base.base.id, connector->base.name);
951 
952 	if (hdcp->shim->stream_encryption) {
953 		ret = hdcp->shim->stream_encryption(connector, false);
954 		if (ret) {
955 			drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 1.4 stream enc\n",
956 				connector->base.base.id, connector->base.name);
957 			return ret;
958 		}
959 		drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
960 			    transcoder_name(hdcp->stream_transcoder));
961 		/*
962 		 * If there are other connectors on this port using HDCP,
963 		 * don't disable it until it disabled HDCP encryption for
964 		 * all connectors in MST topology.
965 		 */
966 		if (dig_port->num_hdcp_streams > 0)
967 			return 0;
968 	}
969 
970 	hdcp->hdcp_encrypted = false;
971 	intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port), 0);
972 	if (intel_de_wait_for_clear(i915,
973 				    HDCP_STATUS(i915, cpu_transcoder, port),
974 				    ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
975 		drm_err(&i915->drm,
976 			"Failed to disable HDCP, timeout clearing status\n");
977 		return -ETIMEDOUT;
978 	}
979 
980 	repeater_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder,
981 						   port);
982 	intel_de_rmw(i915, HDCP_REP_CTL, repeater_ctl, 0);
983 
984 	ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
985 	if (ret) {
986 		drm_err(&i915->drm, "Failed to disable HDCP signalling\n");
987 		return ret;
988 	}
989 
990 	drm_dbg_kms(&i915->drm, "HDCP is disabled\n");
991 	return 0;
992 }
993 
994 static int intel_hdcp1_enable(struct intel_connector *connector)
995 {
996 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
997 	struct intel_hdcp *hdcp = &connector->hdcp;
998 	int i, ret, tries = 3;
999 
1000 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP is being enabled...\n",
1001 		    connector->base.base.id, connector->base.name);
1002 
1003 	if (!hdcp_key_loadable(i915)) {
1004 		drm_err(&i915->drm, "HDCP key Load is not possible\n");
1005 		return -ENXIO;
1006 	}
1007 
1008 	for (i = 0; i < KEY_LOAD_TRIES; i++) {
1009 		ret = intel_hdcp_load_keys(i915);
1010 		if (!ret)
1011 			break;
1012 		intel_hdcp_clear_keys(i915);
1013 	}
1014 	if (ret) {
1015 		drm_err(&i915->drm, "Could not load HDCP keys, (%d)\n",
1016 			ret);
1017 		return ret;
1018 	}
1019 
1020 	/* Incase of authentication failures, HDCP spec expects reauth. */
1021 	for (i = 0; i < tries; i++) {
1022 		ret = intel_hdcp_auth(connector);
1023 		if (!ret) {
1024 			hdcp->hdcp_encrypted = true;
1025 			return 0;
1026 		}
1027 
1028 		drm_dbg_kms(&i915->drm, "HDCP Auth failure (%d)\n", ret);
1029 
1030 		/* Ensuring HDCP encryption and signalling are stopped. */
1031 		_intel_hdcp_disable(connector);
1032 	}
1033 
1034 	drm_dbg_kms(&i915->drm,
1035 		    "HDCP authentication failed (%d tries/%d)\n", tries, ret);
1036 	return ret;
1037 }
1038 
1039 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
1040 {
1041 	return container_of(hdcp, struct intel_connector, hdcp);
1042 }
1043 
1044 static void intel_hdcp_update_value(struct intel_connector *connector,
1045 				    u64 value, bool update_property)
1046 {
1047 	struct drm_device *dev = connector->base.dev;
1048 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1049 	struct intel_hdcp *hdcp = &connector->hdcp;
1050 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1051 
1052 	drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
1053 
1054 	if (hdcp->value == value)
1055 		return;
1056 
1057 	drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
1058 
1059 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1060 		if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
1061 			dig_port->num_hdcp_streams--;
1062 	} else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1063 		dig_port->num_hdcp_streams++;
1064 	}
1065 
1066 	hdcp->value = value;
1067 	if (update_property) {
1068 		drm_connector_get(&connector->base);
1069 		queue_work(i915->unordered_wq, &hdcp->prop_work);
1070 	}
1071 }
1072 
1073 /* Implements Part 3 of the HDCP authorization procedure */
1074 static int intel_hdcp_check_link(struct intel_connector *connector)
1075 {
1076 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1077 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1078 	struct intel_hdcp *hdcp = &connector->hdcp;
1079 	enum port port = dig_port->base.port;
1080 	enum transcoder cpu_transcoder;
1081 	int ret = 0;
1082 
1083 	mutex_lock(&hdcp->mutex);
1084 	mutex_lock(&dig_port->hdcp_mutex);
1085 
1086 	cpu_transcoder = hdcp->cpu_transcoder;
1087 
1088 	/* Check_link valid only when HDCP1.4 is enabled */
1089 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1090 	    !hdcp->hdcp_encrypted) {
1091 		ret = -EINVAL;
1092 		goto out;
1093 	}
1094 
1095 	if (drm_WARN_ON(&i915->drm,
1096 			!intel_hdcp_in_use(i915, cpu_transcoder, port))) {
1097 		drm_err(&i915->drm,
1098 			"[CONNECTOR:%d:%s] HDCP link stopped encryption,%x\n",
1099 			connector->base.base.id, connector->base.name,
1100 			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)));
1101 		ret = -ENXIO;
1102 		intel_hdcp_update_value(connector,
1103 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1104 					true);
1105 		goto out;
1106 	}
1107 
1108 	if (hdcp->shim->check_link(dig_port, connector)) {
1109 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1110 			intel_hdcp_update_value(connector,
1111 				DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1112 		}
1113 		goto out;
1114 	}
1115 
1116 	drm_dbg_kms(&i915->drm,
1117 		    "[CONNECTOR:%d:%s] HDCP link failed, retrying authentication\n",
1118 		    connector->base.base.id, connector->base.name);
1119 
1120 	ret = _intel_hdcp_disable(connector);
1121 	if (ret) {
1122 		drm_err(&i915->drm, "Failed to disable hdcp (%d)\n", ret);
1123 		intel_hdcp_update_value(connector,
1124 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
1125 					true);
1126 		goto out;
1127 	}
1128 
1129 	intel_hdcp_update_value(connector,
1130 				DRM_MODE_CONTENT_PROTECTION_DESIRED,
1131 				true);
1132 out:
1133 	mutex_unlock(&dig_port->hdcp_mutex);
1134 	mutex_unlock(&hdcp->mutex);
1135 	return ret;
1136 }
1137 
1138 static void intel_hdcp_prop_work(struct work_struct *work)
1139 {
1140 	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1141 					       prop_work);
1142 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1143 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1144 
1145 	drm_modeset_lock(&i915->drm.mode_config.connection_mutex, NULL);
1146 	mutex_lock(&hdcp->mutex);
1147 
1148 	/*
1149 	 * This worker is only used to flip between ENABLED/DESIRED. Either of
1150 	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1151 	 * we're running just after hdcp has been disabled, so just exit
1152 	 */
1153 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1154 		drm_hdcp_update_content_protection(&connector->base,
1155 						   hdcp->value);
1156 
1157 	mutex_unlock(&hdcp->mutex);
1158 	drm_modeset_unlock(&i915->drm.mode_config.connection_mutex);
1159 
1160 	drm_connector_put(&connector->base);
1161 }
1162 
1163 bool is_hdcp_supported(struct drm_i915_private *i915, enum port port)
1164 {
1165 	return DISPLAY_RUNTIME_INFO(i915)->has_hdcp &&
1166 		(DISPLAY_VER(i915) >= 12 || port < PORT_E);
1167 }
1168 
1169 static int
1170 hdcp2_prepare_ake_init(struct intel_connector *connector,
1171 		       struct hdcp2_ake_init *ake_data)
1172 {
1173 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1174 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1175 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1176 	struct i915_hdcp_arbiter *arbiter;
1177 	int ret;
1178 
1179 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1180 	arbiter = i915->display.hdcp.arbiter;
1181 
1182 	if (!arbiter || !arbiter->ops) {
1183 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1184 		return -EINVAL;
1185 	}
1186 
1187 	ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data);
1188 	if (ret)
1189 		drm_dbg_kms(&i915->drm, "Prepare_ake_init failed. %d\n",
1190 			    ret);
1191 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1192 
1193 	return ret;
1194 }
1195 
1196 static int
1197 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1198 				struct hdcp2_ake_send_cert *rx_cert,
1199 				bool *paired,
1200 				struct hdcp2_ake_no_stored_km *ek_pub_km,
1201 				size_t *msg_sz)
1202 {
1203 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1204 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1205 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1206 	struct i915_hdcp_arbiter *arbiter;
1207 	int ret;
1208 
1209 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1210 	arbiter = i915->display.hdcp.arbiter;
1211 
1212 	if (!arbiter || !arbiter->ops) {
1213 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1214 		return -EINVAL;
1215 	}
1216 
1217 	ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data,
1218 							 rx_cert, paired,
1219 							 ek_pub_km, msg_sz);
1220 	if (ret < 0)
1221 		drm_dbg_kms(&i915->drm, "Verify rx_cert failed. %d\n",
1222 			    ret);
1223 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1224 
1225 	return ret;
1226 }
1227 
1228 static int hdcp2_verify_hprime(struct intel_connector *connector,
1229 			       struct hdcp2_ake_send_hprime *rx_hprime)
1230 {
1231 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1232 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1233 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1234 	struct i915_hdcp_arbiter *arbiter;
1235 	int ret;
1236 
1237 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1238 	arbiter = i915->display.hdcp.arbiter;
1239 
1240 	if (!arbiter || !arbiter->ops) {
1241 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1242 		return -EINVAL;
1243 	}
1244 
1245 	ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime);
1246 	if (ret < 0)
1247 		drm_dbg_kms(&i915->drm, "Verify hprime failed. %d\n", ret);
1248 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1249 
1250 	return ret;
1251 }
1252 
1253 static int
1254 hdcp2_store_pairing_info(struct intel_connector *connector,
1255 			 struct hdcp2_ake_send_pairing_info *pairing_info)
1256 {
1257 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1258 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1259 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1260 	struct i915_hdcp_arbiter *arbiter;
1261 	int ret;
1262 
1263 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1264 	arbiter = i915->display.hdcp.arbiter;
1265 
1266 	if (!arbiter || !arbiter->ops) {
1267 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1268 		return -EINVAL;
1269 	}
1270 
1271 	ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info);
1272 	if (ret < 0)
1273 		drm_dbg_kms(&i915->drm, "Store pairing info failed. %d\n",
1274 			    ret);
1275 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1276 
1277 	return ret;
1278 }
1279 
1280 static int
1281 hdcp2_prepare_lc_init(struct intel_connector *connector,
1282 		      struct hdcp2_lc_init *lc_init)
1283 {
1284 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1285 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1286 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1287 	struct i915_hdcp_arbiter *arbiter;
1288 	int ret;
1289 
1290 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1291 	arbiter = i915->display.hdcp.arbiter;
1292 
1293 	if (!arbiter || !arbiter->ops) {
1294 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1295 		return -EINVAL;
1296 	}
1297 
1298 	ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init);
1299 	if (ret < 0)
1300 		drm_dbg_kms(&i915->drm, "Prepare lc_init failed. %d\n",
1301 			    ret);
1302 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1303 
1304 	return ret;
1305 }
1306 
1307 static int
1308 hdcp2_verify_lprime(struct intel_connector *connector,
1309 		    struct hdcp2_lc_send_lprime *rx_lprime)
1310 {
1311 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1312 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1313 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1314 	struct i915_hdcp_arbiter *arbiter;
1315 	int ret;
1316 
1317 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1318 	arbiter = i915->display.hdcp.arbiter;
1319 
1320 	if (!arbiter || !arbiter->ops) {
1321 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1322 		return -EINVAL;
1323 	}
1324 
1325 	ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime);
1326 	if (ret < 0)
1327 		drm_dbg_kms(&i915->drm, "Verify L_Prime failed. %d\n",
1328 			    ret);
1329 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1330 
1331 	return ret;
1332 }
1333 
1334 static int hdcp2_prepare_skey(struct intel_connector *connector,
1335 			      struct hdcp2_ske_send_eks *ske_data)
1336 {
1337 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1338 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1339 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1340 	struct i915_hdcp_arbiter *arbiter;
1341 	int ret;
1342 
1343 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1344 	arbiter = i915->display.hdcp.arbiter;
1345 
1346 	if (!arbiter || !arbiter->ops) {
1347 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1348 		return -EINVAL;
1349 	}
1350 
1351 	ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data);
1352 	if (ret < 0)
1353 		drm_dbg_kms(&i915->drm, "Get session key failed. %d\n",
1354 			    ret);
1355 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1356 
1357 	return ret;
1358 }
1359 
1360 static int
1361 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1362 				      struct hdcp2_rep_send_receiverid_list
1363 								*rep_topology,
1364 				      struct hdcp2_rep_send_ack *rep_send_ack)
1365 {
1366 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1367 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1368 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1369 	struct i915_hdcp_arbiter *arbiter;
1370 	int ret;
1371 
1372 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1373 	arbiter = i915->display.hdcp.arbiter;
1374 
1375 	if (!arbiter || !arbiter->ops) {
1376 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1377 		return -EINVAL;
1378 	}
1379 
1380 	ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev,
1381 							    data,
1382 							    rep_topology,
1383 							    rep_send_ack);
1384 	if (ret < 0)
1385 		drm_dbg_kms(&i915->drm,
1386 			    "Verify rep topology failed. %d\n", ret);
1387 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1388 
1389 	return ret;
1390 }
1391 
1392 static int
1393 hdcp2_verify_mprime(struct intel_connector *connector,
1394 		    struct hdcp2_rep_stream_ready *stream_ready)
1395 {
1396 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1397 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1398 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1399 	struct i915_hdcp_arbiter *arbiter;
1400 	int ret;
1401 
1402 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1403 	arbiter = i915->display.hdcp.arbiter;
1404 
1405 	if (!arbiter || !arbiter->ops) {
1406 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1407 		return -EINVAL;
1408 	}
1409 
1410 	ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready);
1411 	if (ret < 0)
1412 		drm_dbg_kms(&i915->drm, "Verify mprime failed. %d\n", ret);
1413 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1414 
1415 	return ret;
1416 }
1417 
1418 static int hdcp2_authenticate_port(struct intel_connector *connector)
1419 {
1420 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1421 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1422 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1423 	struct i915_hdcp_arbiter *arbiter;
1424 	int ret;
1425 
1426 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1427 	arbiter = i915->display.hdcp.arbiter;
1428 
1429 	if (!arbiter || !arbiter->ops) {
1430 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1431 		return -EINVAL;
1432 	}
1433 
1434 	ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data);
1435 	if (ret < 0)
1436 		drm_dbg_kms(&i915->drm, "Enable hdcp auth failed. %d\n",
1437 			    ret);
1438 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1439 
1440 	return ret;
1441 }
1442 
1443 static int hdcp2_close_session(struct intel_connector *connector)
1444 {
1445 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1446 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1447 	struct i915_hdcp_arbiter *arbiter;
1448 	int ret;
1449 
1450 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
1451 	arbiter = i915->display.hdcp.arbiter;
1452 
1453 	if (!arbiter || !arbiter->ops) {
1454 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1455 		return -EINVAL;
1456 	}
1457 
1458 	ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev,
1459 					     &dig_port->hdcp_port_data);
1460 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1461 
1462 	return ret;
1463 }
1464 
1465 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1466 {
1467 	return hdcp2_close_session(connector);
1468 }
1469 
1470 /* Authentication flow starts from here */
1471 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1472 {
1473 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1474 	struct intel_hdcp *hdcp = &connector->hdcp;
1475 	union {
1476 		struct hdcp2_ake_init ake_init;
1477 		struct hdcp2_ake_send_cert send_cert;
1478 		struct hdcp2_ake_no_stored_km no_stored_km;
1479 		struct hdcp2_ake_send_hprime send_hprime;
1480 		struct hdcp2_ake_send_pairing_info pairing_info;
1481 	} msgs;
1482 	const struct intel_hdcp_shim *shim = hdcp->shim;
1483 	size_t size;
1484 	int ret;
1485 
1486 	/* Init for seq_num */
1487 	hdcp->seq_num_v = 0;
1488 	hdcp->seq_num_m = 0;
1489 
1490 	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1491 	if (ret < 0)
1492 		return ret;
1493 
1494 	ret = shim->write_2_2_msg(connector, &msgs.ake_init,
1495 				  sizeof(msgs.ake_init));
1496 	if (ret < 0)
1497 		return ret;
1498 
1499 	ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_CERT,
1500 				 &msgs.send_cert, sizeof(msgs.send_cert));
1501 	if (ret < 0)
1502 		return ret;
1503 
1504 	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1505 		drm_dbg_kms(&i915->drm, "cert.rx_caps dont claim HDCP2.2\n");
1506 		return -EINVAL;
1507 	}
1508 
1509 	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1510 
1511 	if (drm_hdcp_check_ksvs_revoked(&i915->drm,
1512 					msgs.send_cert.cert_rx.receiver_id,
1513 					1) > 0) {
1514 		drm_err(&i915->drm, "Receiver ID is revoked\n");
1515 		return -EPERM;
1516 	}
1517 
1518 	/*
1519 	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1520 	 * stored also.
1521 	 */
1522 	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1523 					      &hdcp->is_paired,
1524 					      &msgs.no_stored_km, &size);
1525 	if (ret < 0)
1526 		return ret;
1527 
1528 	ret = shim->write_2_2_msg(connector, &msgs.no_stored_km, size);
1529 	if (ret < 0)
1530 		return ret;
1531 
1532 	ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_HPRIME,
1533 				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1534 	if (ret < 0)
1535 		return ret;
1536 
1537 	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1538 	if (ret < 0)
1539 		return ret;
1540 
1541 	if (!hdcp->is_paired) {
1542 		/* Pairing is required */
1543 		ret = shim->read_2_2_msg(connector,
1544 					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1545 					 &msgs.pairing_info,
1546 					 sizeof(msgs.pairing_info));
1547 		if (ret < 0)
1548 			return ret;
1549 
1550 		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1551 		if (ret < 0)
1552 			return ret;
1553 		hdcp->is_paired = true;
1554 	}
1555 
1556 	return 0;
1557 }
1558 
1559 static int hdcp2_locality_check(struct intel_connector *connector)
1560 {
1561 	struct intel_hdcp *hdcp = &connector->hdcp;
1562 	union {
1563 		struct hdcp2_lc_init lc_init;
1564 		struct hdcp2_lc_send_lprime send_lprime;
1565 	} msgs;
1566 	const struct intel_hdcp_shim *shim = hdcp->shim;
1567 	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1568 
1569 	for (i = 0; i < tries; i++) {
1570 		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1571 		if (ret < 0)
1572 			continue;
1573 
1574 		ret = shim->write_2_2_msg(connector, &msgs.lc_init,
1575 				      sizeof(msgs.lc_init));
1576 		if (ret < 0)
1577 			continue;
1578 
1579 		ret = shim->read_2_2_msg(connector,
1580 					 HDCP_2_2_LC_SEND_LPRIME,
1581 					 &msgs.send_lprime,
1582 					 sizeof(msgs.send_lprime));
1583 		if (ret < 0)
1584 			continue;
1585 
1586 		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1587 		if (!ret)
1588 			break;
1589 	}
1590 
1591 	return ret;
1592 }
1593 
1594 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1595 {
1596 	struct intel_hdcp *hdcp = &connector->hdcp;
1597 	struct hdcp2_ske_send_eks send_eks;
1598 	int ret;
1599 
1600 	ret = hdcp2_prepare_skey(connector, &send_eks);
1601 	if (ret < 0)
1602 		return ret;
1603 
1604 	ret = hdcp->shim->write_2_2_msg(connector, &send_eks,
1605 					sizeof(send_eks));
1606 	if (ret < 0)
1607 		return ret;
1608 
1609 	return 0;
1610 }
1611 
1612 static
1613 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1614 {
1615 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1616 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1617 	struct intel_hdcp *hdcp = &connector->hdcp;
1618 	union {
1619 		struct hdcp2_rep_stream_manage stream_manage;
1620 		struct hdcp2_rep_stream_ready stream_ready;
1621 	} msgs;
1622 	const struct intel_hdcp_shim *shim = hdcp->shim;
1623 	int ret, streams_size_delta, i;
1624 
1625 	if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1626 		return -ERANGE;
1627 
1628 	/* Prepare RepeaterAuth_Stream_Manage msg */
1629 	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1630 	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1631 
1632 	msgs.stream_manage.k = cpu_to_be16(data->k);
1633 
1634 	for (i = 0; i < data->k; i++) {
1635 		msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1636 		msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1637 	}
1638 
1639 	streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1640 				sizeof(struct hdcp2_streamid_type);
1641 	/* Send it to Repeater */
1642 	ret = shim->write_2_2_msg(connector, &msgs.stream_manage,
1643 				  sizeof(msgs.stream_manage) - streams_size_delta);
1644 	if (ret < 0)
1645 		goto out;
1646 
1647 	ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_STREAM_READY,
1648 				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1649 	if (ret < 0)
1650 		goto out;
1651 
1652 	data->seq_num_m = hdcp->seq_num_m;
1653 
1654 	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1655 
1656 out:
1657 	hdcp->seq_num_m++;
1658 
1659 	return ret;
1660 }
1661 
1662 static
1663 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1664 {
1665 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1666 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1667 	struct intel_hdcp *hdcp = &connector->hdcp;
1668 	union {
1669 		struct hdcp2_rep_send_receiverid_list recvid_list;
1670 		struct hdcp2_rep_send_ack rep_ack;
1671 	} msgs;
1672 	const struct intel_hdcp_shim *shim = hdcp->shim;
1673 	u32 seq_num_v, device_cnt;
1674 	u8 *rx_info;
1675 	int ret;
1676 
1677 	ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_SEND_RECVID_LIST,
1678 				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1679 	if (ret < 0)
1680 		return ret;
1681 
1682 	rx_info = msgs.recvid_list.rx_info;
1683 
1684 	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1685 	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1686 		drm_dbg_kms(&i915->drm, "Topology Max Size Exceeded\n");
1687 		return -EINVAL;
1688 	}
1689 
1690 	/*
1691 	 * MST topology is not Type 1 capable if it contains a downstream
1692 	 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1693 	 */
1694 	dig_port->hdcp_mst_type1_capable =
1695 		!HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1696 		!HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1697 
1698 	if (!dig_port->hdcp_mst_type1_capable && hdcp->content_type) {
1699 		drm_dbg_kms(&i915->drm,
1700 			    "HDCP1.x or 2.0 Legacy Device Downstream\n");
1701 		return -EINVAL;
1702 	}
1703 
1704 	/* Converting and Storing the seq_num_v to local variable as DWORD */
1705 	seq_num_v =
1706 		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1707 
1708 	if (!hdcp->hdcp2_encrypted && seq_num_v) {
1709 		drm_dbg_kms(&i915->drm,
1710 			    "Non zero Seq_num_v at first RecvId_List msg\n");
1711 		return -EINVAL;
1712 	}
1713 
1714 	if (seq_num_v < hdcp->seq_num_v) {
1715 		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1716 		drm_dbg_kms(&i915->drm, "Seq_num_v roll over.\n");
1717 		return -EINVAL;
1718 	}
1719 
1720 	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1721 		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1722 	if (drm_hdcp_check_ksvs_revoked(&i915->drm,
1723 					msgs.recvid_list.receiver_ids,
1724 					device_cnt) > 0) {
1725 		drm_err(&i915->drm, "Revoked receiver ID(s) is in list\n");
1726 		return -EPERM;
1727 	}
1728 
1729 	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1730 						    &msgs.recvid_list,
1731 						    &msgs.rep_ack);
1732 	if (ret < 0)
1733 		return ret;
1734 
1735 	hdcp->seq_num_v = seq_num_v;
1736 	ret = shim->write_2_2_msg(connector, &msgs.rep_ack,
1737 				  sizeof(msgs.rep_ack));
1738 	if (ret < 0)
1739 		return ret;
1740 
1741 	return 0;
1742 }
1743 
1744 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1745 {
1746 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1747 	struct intel_hdcp *hdcp = &connector->hdcp;
1748 	const struct intel_hdcp_shim *shim = hdcp->shim;
1749 	int ret;
1750 
1751 	ret = hdcp2_authentication_key_exchange(connector);
1752 	if (ret < 0) {
1753 		drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1754 		return ret;
1755 	}
1756 
1757 	ret = hdcp2_locality_check(connector);
1758 	if (ret < 0) {
1759 		drm_dbg_kms(&i915->drm,
1760 			    "Locality Check failed. Err : %d\n", ret);
1761 		return ret;
1762 	}
1763 
1764 	ret = hdcp2_session_key_exchange(connector);
1765 	if (ret < 0) {
1766 		drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1767 		return ret;
1768 	}
1769 
1770 	if (shim->config_stream_type) {
1771 		ret = shim->config_stream_type(connector,
1772 					       hdcp->is_repeater,
1773 					       hdcp->content_type);
1774 		if (ret < 0)
1775 			return ret;
1776 	}
1777 
1778 	if (hdcp->is_repeater) {
1779 		ret = hdcp2_authenticate_repeater_topology(connector);
1780 		if (ret < 0) {
1781 			drm_dbg_kms(&i915->drm,
1782 				    "Repeater Auth Failed. Err: %d\n", ret);
1783 			return ret;
1784 		}
1785 	}
1786 
1787 	return ret;
1788 }
1789 
1790 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1791 {
1792 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1793 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1794 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1795 	struct intel_hdcp *hdcp = &connector->hdcp;
1796 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1797 	enum port port = dig_port->base.port;
1798 	int ret = 0;
1799 
1800 	if (!(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1801 			    LINK_ENCRYPTION_STATUS)) {
1802 		drm_err(&i915->drm, "[CONNECTOR:%d:%s] HDCP 2.2 Link is not encrypted\n",
1803 			connector->base.base.id, connector->base.name);
1804 		ret = -EPERM;
1805 		goto link_recover;
1806 	}
1807 
1808 	if (hdcp->shim->stream_2_2_encryption) {
1809 		ret = hdcp->shim->stream_2_2_encryption(connector, true);
1810 		if (ret) {
1811 			drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 2.2 stream enc\n",
1812 				connector->base.base.id, connector->base.name);
1813 			return ret;
1814 		}
1815 		drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1816 			    transcoder_name(hdcp->stream_transcoder));
1817 	}
1818 
1819 	return 0;
1820 
1821 link_recover:
1822 	if (hdcp2_deauthenticate_port(connector) < 0)
1823 		drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1824 
1825 	dig_port->hdcp_auth_status = false;
1826 	data->k = 0;
1827 
1828 	return ret;
1829 }
1830 
1831 static int hdcp2_enable_encryption(struct intel_connector *connector)
1832 {
1833 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1834 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1835 	struct intel_hdcp *hdcp = &connector->hdcp;
1836 	enum port port = dig_port->base.port;
1837 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1838 	int ret;
1839 
1840 	drm_WARN_ON(&i915->drm,
1841 		    intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1842 		    LINK_ENCRYPTION_STATUS);
1843 	if (hdcp->shim->toggle_signalling) {
1844 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1845 						    true);
1846 		if (ret) {
1847 			drm_err(&i915->drm,
1848 				"Failed to enable HDCP signalling. %d\n",
1849 				ret);
1850 			return ret;
1851 		}
1852 	}
1853 
1854 	if (intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1855 	    LINK_AUTH_STATUS)
1856 		/* Link is Authenticated. Now set for Encryption */
1857 		intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1858 			     0, CTL_LINK_ENCRYPTION_REQ);
1859 
1860 	ret = intel_de_wait_for_set(i915,
1861 				    HDCP2_STATUS(i915, cpu_transcoder,
1862 						 port),
1863 				    LINK_ENCRYPTION_STATUS,
1864 				    HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1865 	dig_port->hdcp_auth_status = true;
1866 
1867 	return ret;
1868 }
1869 
1870 static int hdcp2_disable_encryption(struct intel_connector *connector)
1871 {
1872 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1873 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1874 	struct intel_hdcp *hdcp = &connector->hdcp;
1875 	enum port port = dig_port->base.port;
1876 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1877 	int ret;
1878 
1879 	drm_WARN_ON(&i915->drm, !(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1880 				      LINK_ENCRYPTION_STATUS));
1881 
1882 	intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1883 		     CTL_LINK_ENCRYPTION_REQ, 0);
1884 
1885 	ret = intel_de_wait_for_clear(i915,
1886 				      HDCP2_STATUS(i915, cpu_transcoder,
1887 						   port),
1888 				      LINK_ENCRYPTION_STATUS,
1889 				      HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1890 	if (ret == -ETIMEDOUT)
1891 		drm_dbg_kms(&i915->drm, "Disable Encryption Timedout");
1892 
1893 	if (hdcp->shim->toggle_signalling) {
1894 		ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1895 						    false);
1896 		if (ret) {
1897 			drm_err(&i915->drm,
1898 				"Failed to disable HDCP signalling. %d\n",
1899 				ret);
1900 			return ret;
1901 		}
1902 	}
1903 
1904 	return ret;
1905 }
1906 
1907 static int
1908 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1909 {
1910 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1911 	int i, tries = 3, ret;
1912 
1913 	if (!connector->hdcp.is_repeater)
1914 		return 0;
1915 
1916 	for (i = 0; i < tries; i++) {
1917 		ret = _hdcp2_propagate_stream_management_info(connector);
1918 		if (!ret)
1919 			break;
1920 
1921 		/* Lets restart the auth incase of seq_num_m roll over */
1922 		if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1923 			drm_dbg_kms(&i915->drm,
1924 				    "seq_num_m roll over.(%d)\n", ret);
1925 			break;
1926 		}
1927 
1928 		drm_dbg_kms(&i915->drm,
1929 			    "HDCP2 stream management %d of %d Failed.(%d)\n",
1930 			    i + 1, tries, ret);
1931 	}
1932 
1933 	return ret;
1934 }
1935 
1936 static int hdcp2_authenticate_and_encrypt(struct intel_atomic_state *state,
1937 					  struct intel_connector *connector)
1938 {
1939 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1940 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
1941 	int ret = 0, i, tries = 3;
1942 
1943 	for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1944 		ret = hdcp2_authenticate_sink(connector);
1945 		if (!ret) {
1946 			ret = intel_hdcp_prepare_streams(state, connector);
1947 			if (ret) {
1948 				drm_dbg_kms(&i915->drm,
1949 					    "Prepare stream failed.(%d)\n",
1950 					    ret);
1951 				break;
1952 			}
1953 
1954 			ret = hdcp2_propagate_stream_management_info(connector);
1955 			if (ret) {
1956 				drm_dbg_kms(&i915->drm,
1957 					    "Stream management failed.(%d)\n",
1958 					    ret);
1959 				break;
1960 			}
1961 
1962 			ret = hdcp2_authenticate_port(connector);
1963 			if (!ret)
1964 				break;
1965 			drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1966 				    ret);
1967 		}
1968 
1969 		/* Clearing the mei hdcp session */
1970 		drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1971 			    i + 1, tries, ret);
1972 		if (hdcp2_deauthenticate_port(connector) < 0)
1973 			drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1974 	}
1975 
1976 	if (!ret && !dig_port->hdcp_auth_status) {
1977 		/*
1978 		 * Ensuring the required 200mSec min time interval between
1979 		 * Session Key Exchange and encryption.
1980 		 */
1981 		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1982 		ret = hdcp2_enable_encryption(connector);
1983 		if (ret < 0) {
1984 			drm_dbg_kms(&i915->drm,
1985 				    "Encryption Enable Failed.(%d)\n", ret);
1986 			if (hdcp2_deauthenticate_port(connector) < 0)
1987 				drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1988 		}
1989 	}
1990 
1991 	if (!ret)
1992 		ret = hdcp2_enable_stream_encryption(connector);
1993 
1994 	return ret;
1995 }
1996 
1997 static int _intel_hdcp2_enable(struct intel_atomic_state *state,
1998 			       struct intel_connector *connector)
1999 {
2000 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2001 	struct intel_hdcp *hdcp = &connector->hdcp;
2002 	int ret;
2003 
2004 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being enabled. Type: %d\n",
2005 		    connector->base.base.id, connector->base.name,
2006 		    hdcp->content_type);
2007 
2008 	ret = hdcp2_authenticate_and_encrypt(state, connector);
2009 	if (ret) {
2010 		drm_dbg_kms(&i915->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
2011 			    hdcp->content_type, ret);
2012 		return ret;
2013 	}
2014 
2015 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP2.2 is enabled. Type %d\n",
2016 		    connector->base.base.id, connector->base.name,
2017 		    hdcp->content_type);
2018 
2019 	hdcp->hdcp2_encrypted = true;
2020 	return 0;
2021 }
2022 
2023 static int
2024 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
2025 {
2026 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2027 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2028 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2029 	struct intel_hdcp *hdcp = &connector->hdcp;
2030 	int ret;
2031 
2032 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being Disabled\n",
2033 		    connector->base.base.id, connector->base.name);
2034 
2035 	if (hdcp->shim->stream_2_2_encryption) {
2036 		ret = hdcp->shim->stream_2_2_encryption(connector, false);
2037 		if (ret) {
2038 			drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 2.2 stream enc\n",
2039 				connector->base.base.id, connector->base.name);
2040 			return ret;
2041 		}
2042 		drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
2043 			    transcoder_name(hdcp->stream_transcoder));
2044 
2045 		if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
2046 			return 0;
2047 	}
2048 
2049 	ret = hdcp2_disable_encryption(connector);
2050 
2051 	if (hdcp2_deauthenticate_port(connector) < 0)
2052 		drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
2053 
2054 	connector->hdcp.hdcp2_encrypted = false;
2055 	dig_port->hdcp_auth_status = false;
2056 	data->k = 0;
2057 
2058 	return ret;
2059 }
2060 
2061 /* Implements the Link Integrity Check for HDCP2.2 */
2062 static int intel_hdcp2_check_link(struct intel_connector *connector)
2063 {
2064 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2065 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2066 	struct intel_hdcp *hdcp = &connector->hdcp;
2067 	enum port port = dig_port->base.port;
2068 	enum transcoder cpu_transcoder;
2069 	int ret = 0;
2070 
2071 	mutex_lock(&hdcp->mutex);
2072 	mutex_lock(&dig_port->hdcp_mutex);
2073 	cpu_transcoder = hdcp->cpu_transcoder;
2074 
2075 	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2076 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2077 	    !hdcp->hdcp2_encrypted) {
2078 		ret = -EINVAL;
2079 		goto out;
2080 	}
2081 
2082 	if (drm_WARN_ON(&i915->drm,
2083 			!intel_hdcp2_in_use(i915, cpu_transcoder, port))) {
2084 		drm_err(&i915->drm,
2085 			"HDCP2.2 link stopped the encryption, %x\n",
2086 			intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)));
2087 		ret = -ENXIO;
2088 		_intel_hdcp2_disable(connector, true);
2089 		intel_hdcp_update_value(connector,
2090 					DRM_MODE_CONTENT_PROTECTION_DESIRED,
2091 					true);
2092 		goto out;
2093 	}
2094 
2095 	ret = hdcp->shim->check_2_2_link(dig_port, connector);
2096 	if (ret == HDCP_LINK_PROTECTED) {
2097 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2098 			intel_hdcp_update_value(connector,
2099 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2100 					true);
2101 		}
2102 		goto out;
2103 	}
2104 
2105 	if (ret == HDCP_TOPOLOGY_CHANGE) {
2106 		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2107 			goto out;
2108 
2109 		drm_dbg_kms(&i915->drm,
2110 			    "HDCP2.2 Downstream topology change\n");
2111 	} else {
2112 		drm_dbg_kms(&i915->drm,
2113 			    "[CONNECTOR:%d:%s] HDCP2.2 link failed, retrying auth\n",
2114 			    connector->base.base.id, connector->base.name);
2115 	}
2116 
2117 	ret = _intel_hdcp2_disable(connector, true);
2118 	if (ret) {
2119 		drm_err(&i915->drm,
2120 			"[CONNECTOR:%d:%s] Failed to disable hdcp2.2 (%d)\n",
2121 			connector->base.base.id, connector->base.name, ret);
2122 		intel_hdcp_update_value(connector,
2123 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2124 		goto out;
2125 	}
2126 
2127 	intel_hdcp_update_value(connector,
2128 				DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2129 out:
2130 	mutex_unlock(&dig_port->hdcp_mutex);
2131 	mutex_unlock(&hdcp->mutex);
2132 	return ret;
2133 }
2134 
2135 static void intel_hdcp_check_work(struct work_struct *work)
2136 {
2137 	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2138 					       struct intel_hdcp,
2139 					       check_work);
2140 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2141 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2142 
2143 	if (drm_connector_is_unregistered(&connector->base))
2144 		return;
2145 
2146 	if (!intel_hdcp2_check_link(connector))
2147 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2148 				   DRM_HDCP2_CHECK_PERIOD_MS);
2149 	else if (!intel_hdcp_check_link(connector))
2150 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2151 				   DRM_HDCP_CHECK_PERIOD_MS);
2152 }
2153 
2154 static int i915_hdcp_component_bind(struct device *i915_kdev,
2155 				    struct device *mei_kdev, void *data)
2156 {
2157 	struct drm_i915_private *i915 = kdev_to_i915(i915_kdev);
2158 
2159 	drm_dbg(&i915->drm, "I915 HDCP comp bind\n");
2160 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2161 	i915->display.hdcp.arbiter = (struct i915_hdcp_arbiter *)data;
2162 	i915->display.hdcp.arbiter->hdcp_dev = mei_kdev;
2163 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2164 
2165 	return 0;
2166 }
2167 
2168 static void i915_hdcp_component_unbind(struct device *i915_kdev,
2169 				       struct device *mei_kdev, void *data)
2170 {
2171 	struct drm_i915_private *i915 = kdev_to_i915(i915_kdev);
2172 
2173 	drm_dbg(&i915->drm, "I915 HDCP comp unbind\n");
2174 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2175 	i915->display.hdcp.arbiter = NULL;
2176 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2177 }
2178 
2179 static const struct component_ops i915_hdcp_ops = {
2180 	.bind   = i915_hdcp_component_bind,
2181 	.unbind = i915_hdcp_component_unbind,
2182 };
2183 
2184 static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port)
2185 {
2186 	switch (port) {
2187 	case PORT_A:
2188 		return HDCP_DDI_A;
2189 	case PORT_B ... PORT_F:
2190 		return (enum hdcp_ddi)port;
2191 	default:
2192 		return HDCP_DDI_INVALID_PORT;
2193 	}
2194 }
2195 
2196 static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)
2197 {
2198 	switch (cpu_transcoder) {
2199 	case TRANSCODER_A ... TRANSCODER_D:
2200 		return (enum hdcp_transcoder)(cpu_transcoder | 0x10);
2201 	default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2202 		return HDCP_INVALID_TRANSCODER;
2203 	}
2204 }
2205 
2206 static int initialize_hdcp_port_data(struct intel_connector *connector,
2207 				     struct intel_digital_port *dig_port,
2208 				     const struct intel_hdcp_shim *shim)
2209 {
2210 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2211 	struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2212 	enum port port = dig_port->base.port;
2213 
2214 	if (DISPLAY_VER(i915) < 12)
2215 		data->hdcp_ddi = intel_get_hdcp_ddi_index(port);
2216 	else
2217 		/*
2218 		 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled
2219 		 * with zero(INVALID PORT index).
2220 		 */
2221 		data->hdcp_ddi = HDCP_DDI_INVALID_PORT;
2222 
2223 	/*
2224 	 * As associated transcoder is set and modified at modeset, here hdcp_transcoder
2225 	 * is initialized to zero (invalid transcoder index). This will be
2226 	 * retained for <Gen12 forever.
2227 	 */
2228 	data->hdcp_transcoder = HDCP_INVALID_TRANSCODER;
2229 
2230 	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2231 	data->protocol = (u8)shim->protocol;
2232 
2233 	if (!data->streams)
2234 		data->streams = kcalloc(INTEL_NUM_PIPES(i915),
2235 					sizeof(struct hdcp2_streamid_type),
2236 					GFP_KERNEL);
2237 	if (!data->streams) {
2238 		drm_err(&i915->drm, "Out of Memory\n");
2239 		return -ENOMEM;
2240 	}
2241 
2242 	return 0;
2243 }
2244 
2245 static bool is_hdcp2_supported(struct drm_i915_private *i915)
2246 {
2247 	if (intel_hdcp_gsc_cs_required(i915))
2248 		return true;
2249 
2250 	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2251 		return false;
2252 
2253 	return (DISPLAY_VER(i915) >= 10 ||
2254 		IS_KABYLAKE(i915) ||
2255 		IS_COFFEELAKE(i915) ||
2256 		IS_COMETLAKE(i915));
2257 }
2258 
2259 void intel_hdcp_component_init(struct drm_i915_private *i915)
2260 {
2261 	int ret;
2262 
2263 	if (!is_hdcp2_supported(i915))
2264 		return;
2265 
2266 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2267 	drm_WARN_ON(&i915->drm, i915->display.hdcp.comp_added);
2268 
2269 	i915->display.hdcp.comp_added = true;
2270 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2271 	if (intel_hdcp_gsc_cs_required(i915))
2272 		ret = intel_hdcp_gsc_init(i915);
2273 	else
2274 		ret = component_add_typed(i915->drm.dev, &i915_hdcp_ops,
2275 					  I915_COMPONENT_HDCP);
2276 
2277 	if (ret < 0) {
2278 		drm_dbg_kms(&i915->drm, "Failed at fw component add(%d)\n",
2279 			    ret);
2280 		mutex_lock(&i915->display.hdcp.hdcp_mutex);
2281 		i915->display.hdcp.comp_added = false;
2282 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2283 		return;
2284 	}
2285 }
2286 
2287 static void intel_hdcp2_init(struct intel_connector *connector,
2288 			     struct intel_digital_port *dig_port,
2289 			     const struct intel_hdcp_shim *shim)
2290 {
2291 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2292 	struct intel_hdcp *hdcp = &connector->hdcp;
2293 	int ret;
2294 
2295 	ret = initialize_hdcp_port_data(connector, dig_port, shim);
2296 	if (ret) {
2297 		drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2298 		return;
2299 	}
2300 
2301 	hdcp->hdcp2_supported = true;
2302 }
2303 
2304 int intel_hdcp_init(struct intel_connector *connector,
2305 		    struct intel_digital_port *dig_port,
2306 		    const struct intel_hdcp_shim *shim)
2307 {
2308 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2309 	struct intel_hdcp *hdcp = &connector->hdcp;
2310 	int ret;
2311 
2312 	if (!shim)
2313 		return -EINVAL;
2314 
2315 	if (is_hdcp2_supported(i915))
2316 		intel_hdcp2_init(connector, dig_port, shim);
2317 
2318 	ret =
2319 	drm_connector_attach_content_protection_property(&connector->base,
2320 							 hdcp->hdcp2_supported);
2321 	if (ret) {
2322 		hdcp->hdcp2_supported = false;
2323 		kfree(dig_port->hdcp_port_data.streams);
2324 		return ret;
2325 	}
2326 
2327 	hdcp->shim = shim;
2328 	mutex_init(&hdcp->mutex);
2329 	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2330 	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2331 	init_waitqueue_head(&hdcp->cp_irq_queue);
2332 
2333 	return 0;
2334 }
2335 
2336 static int _intel_hdcp_enable(struct intel_atomic_state *state,
2337 			      struct intel_encoder *encoder,
2338 			      const struct intel_crtc_state *pipe_config,
2339 			      const struct drm_connector_state *conn_state)
2340 {
2341 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2342 	struct intel_connector *connector =
2343 		to_intel_connector(conn_state->connector);
2344 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2345 	struct intel_hdcp *hdcp = &connector->hdcp;
2346 	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2347 	int ret = -EINVAL;
2348 
2349 	if (!hdcp->shim)
2350 		return -ENOENT;
2351 
2352 	if (!connector->encoder) {
2353 		drm_err(&i915->drm, "[CONNECTOR:%d:%s] encoder is not initialized\n",
2354 			connector->base.base.id, connector->base.name);
2355 		return -ENODEV;
2356 	}
2357 
2358 	mutex_lock(&hdcp->mutex);
2359 	mutex_lock(&dig_port->hdcp_mutex);
2360 	drm_WARN_ON(&i915->drm,
2361 		    hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2362 	hdcp->content_type = (u8)conn_state->hdcp_content_type;
2363 
2364 	if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2365 		hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2366 		hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2367 	} else {
2368 		hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2369 		hdcp->stream_transcoder = INVALID_TRANSCODER;
2370 	}
2371 
2372 	if (DISPLAY_VER(i915) >= 12)
2373 		dig_port->hdcp_port_data.hdcp_transcoder =
2374 			intel_get_hdcp_transcoder(hdcp->cpu_transcoder);
2375 
2376 	/*
2377 	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2378 	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2379 	 */
2380 	if (intel_hdcp2_get_capability(connector)) {
2381 		ret = _intel_hdcp2_enable(state, connector);
2382 		if (!ret)
2383 			check_link_interval =
2384 				DRM_HDCP2_CHECK_PERIOD_MS;
2385 	}
2386 
2387 	/*
2388 	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2389 	 * be attempted.
2390 	 */
2391 	if (ret && intel_hdcp_get_capability(connector) &&
2392 	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2393 		ret = intel_hdcp1_enable(connector);
2394 	}
2395 
2396 	if (!ret) {
2397 		queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2398 				   check_link_interval);
2399 		intel_hdcp_update_value(connector,
2400 					DRM_MODE_CONTENT_PROTECTION_ENABLED,
2401 					true);
2402 	}
2403 
2404 	mutex_unlock(&dig_port->hdcp_mutex);
2405 	mutex_unlock(&hdcp->mutex);
2406 	return ret;
2407 }
2408 
2409 void intel_hdcp_enable(struct intel_atomic_state *state,
2410 		       struct intel_encoder *encoder,
2411 		       const struct intel_crtc_state *crtc_state,
2412 		       const struct drm_connector_state *conn_state)
2413 {
2414 	struct intel_connector *connector =
2415 		to_intel_connector(conn_state->connector);
2416 	struct intel_hdcp *hdcp = &connector->hdcp;
2417 
2418 	/*
2419 	 * Enable hdcp if it's desired or if userspace is enabled and
2420 	 * driver set its state to undesired
2421 	 */
2422 	if (conn_state->content_protection ==
2423 	    DRM_MODE_CONTENT_PROTECTION_DESIRED ||
2424 	    (conn_state->content_protection ==
2425 	    DRM_MODE_CONTENT_PROTECTION_ENABLED && hdcp->value ==
2426 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2427 		_intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2428 }
2429 
2430 int intel_hdcp_disable(struct intel_connector *connector)
2431 {
2432 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2433 	struct intel_hdcp *hdcp = &connector->hdcp;
2434 	int ret = 0;
2435 
2436 	if (!hdcp->shim)
2437 		return -ENOENT;
2438 
2439 	mutex_lock(&hdcp->mutex);
2440 	mutex_lock(&dig_port->hdcp_mutex);
2441 
2442 	if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2443 		goto out;
2444 
2445 	intel_hdcp_update_value(connector,
2446 				DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2447 	if (hdcp->hdcp2_encrypted)
2448 		ret = _intel_hdcp2_disable(connector, false);
2449 	else if (hdcp->hdcp_encrypted)
2450 		ret = _intel_hdcp_disable(connector);
2451 
2452 out:
2453 	mutex_unlock(&dig_port->hdcp_mutex);
2454 	mutex_unlock(&hdcp->mutex);
2455 	cancel_delayed_work_sync(&hdcp->check_work);
2456 	return ret;
2457 }
2458 
2459 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2460 			    struct intel_encoder *encoder,
2461 			    const struct intel_crtc_state *crtc_state,
2462 			    const struct drm_connector_state *conn_state)
2463 {
2464 	struct intel_connector *connector =
2465 				to_intel_connector(conn_state->connector);
2466 	struct intel_hdcp *hdcp = &connector->hdcp;
2467 	bool content_protection_type_changed, desired_and_not_enabled = false;
2468 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2469 
2470 	if (!connector->hdcp.shim)
2471 		return;
2472 
2473 	content_protection_type_changed =
2474 		(conn_state->hdcp_content_type != hdcp->content_type &&
2475 		 conn_state->content_protection !=
2476 		 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2477 
2478 	/*
2479 	 * During the HDCP encryption session if Type change is requested,
2480 	 * disable the HDCP and reenable it with new TYPE value.
2481 	 */
2482 	if (conn_state->content_protection ==
2483 	    DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2484 	    content_protection_type_changed)
2485 		intel_hdcp_disable(connector);
2486 
2487 	/*
2488 	 * Mark the hdcp state as DESIRED after the hdcp disable of type
2489 	 * change procedure.
2490 	 */
2491 	if (content_protection_type_changed) {
2492 		mutex_lock(&hdcp->mutex);
2493 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2494 		drm_connector_get(&connector->base);
2495 		queue_work(i915->unordered_wq, &hdcp->prop_work);
2496 		mutex_unlock(&hdcp->mutex);
2497 	}
2498 
2499 	if (conn_state->content_protection ==
2500 	    DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2501 		mutex_lock(&hdcp->mutex);
2502 		/* Avoid enabling hdcp, if it already ENABLED */
2503 		desired_and_not_enabled =
2504 			hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2505 		mutex_unlock(&hdcp->mutex);
2506 		/*
2507 		 * If HDCP already ENABLED and CP property is DESIRED, schedule
2508 		 * prop_work to update correct CP property to user space.
2509 		 */
2510 		if (!desired_and_not_enabled && !content_protection_type_changed) {
2511 			drm_connector_get(&connector->base);
2512 			queue_work(i915->unordered_wq, &hdcp->prop_work);
2513 		}
2514 	}
2515 
2516 	if (desired_and_not_enabled || content_protection_type_changed)
2517 		_intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2518 }
2519 
2520 void intel_hdcp_component_fini(struct drm_i915_private *i915)
2521 {
2522 	mutex_lock(&i915->display.hdcp.hdcp_mutex);
2523 	if (!i915->display.hdcp.comp_added) {
2524 		mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2525 		return;
2526 	}
2527 
2528 	i915->display.hdcp.comp_added = false;
2529 	mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2530 
2531 	if (intel_hdcp_gsc_cs_required(i915))
2532 		intel_hdcp_gsc_fini(i915);
2533 	else
2534 		component_del(i915->drm.dev, &i915_hdcp_ops);
2535 }
2536 
2537 void intel_hdcp_cleanup(struct intel_connector *connector)
2538 {
2539 	struct intel_hdcp *hdcp = &connector->hdcp;
2540 
2541 	if (!hdcp->shim)
2542 		return;
2543 
2544 	/*
2545 	 * If the connector is registered, it's possible userspace could kick
2546 	 * off another HDCP enable, which would re-spawn the workers.
2547 	 */
2548 	drm_WARN_ON(connector->base.dev,
2549 		connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2550 
2551 	/*
2552 	 * Now that the connector is not registered, check_work won't be run,
2553 	 * but cancel any outstanding instances of it
2554 	 */
2555 	cancel_delayed_work_sync(&hdcp->check_work);
2556 
2557 	/*
2558 	 * We don't cancel prop_work in the same way as check_work since it
2559 	 * requires connection_mutex which could be held while calling this
2560 	 * function. Instead, we rely on the connector references grabbed before
2561 	 * scheduling prop_work to ensure the connector is alive when prop_work
2562 	 * is run. So if we're in the destroy path (which is where this
2563 	 * function should be called), we're "guaranteed" that prop_work is not
2564 	 * active (tl;dr This Should Never Happen).
2565 	 */
2566 	drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2567 
2568 	mutex_lock(&hdcp->mutex);
2569 	hdcp->shim = NULL;
2570 	mutex_unlock(&hdcp->mutex);
2571 }
2572 
2573 void intel_hdcp_atomic_check(struct drm_connector *connector,
2574 			     struct drm_connector_state *old_state,
2575 			     struct drm_connector_state *new_state)
2576 {
2577 	u64 old_cp = old_state->content_protection;
2578 	u64 new_cp = new_state->content_protection;
2579 	struct drm_crtc_state *crtc_state;
2580 
2581 	if (!new_state->crtc) {
2582 		/*
2583 		 * If the connector is being disabled with CP enabled, mark it
2584 		 * desired so it's re-enabled when the connector is brought back
2585 		 */
2586 		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2587 			new_state->content_protection =
2588 				DRM_MODE_CONTENT_PROTECTION_DESIRED;
2589 		return;
2590 	}
2591 
2592 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2593 						   new_state->crtc);
2594 	/*
2595 	 * Fix the HDCP uapi content protection state in case of modeset.
2596 	 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2597 	 * need to be sent if there is transition from ENABLED->DESIRED.
2598 	 */
2599 	if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2600 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2601 	    new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2602 		new_state->content_protection =
2603 			DRM_MODE_CONTENT_PROTECTION_DESIRED;
2604 
2605 	/*
2606 	 * Nothing to do if the state didn't change, or HDCP was activated since
2607 	 * the last commit. And also no change in hdcp content type.
2608 	 */
2609 	if (old_cp == new_cp ||
2610 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2611 	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2612 		if (old_state->hdcp_content_type ==
2613 				new_state->hdcp_content_type)
2614 			return;
2615 	}
2616 
2617 	crtc_state->mode_changed = true;
2618 }
2619 
2620 /* Handles the CP_IRQ raised from the DP HDCP sink */
2621 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2622 {
2623 	struct intel_hdcp *hdcp = &connector->hdcp;
2624 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2625 
2626 	if (!hdcp->shim)
2627 		return;
2628 
2629 	atomic_inc(&connector->hdcp.cp_irq_count);
2630 	wake_up_all(&connector->hdcp.cp_irq_queue);
2631 
2632 	queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 0);
2633 }
2634