1 /* 2 * Copyright (c) 2006 Dave Airlie <airlied@linux.ie> 3 * Copyright © 2006-2008,2010 Intel Corporation 4 * Jesse Barnes <jesse.barnes@intel.com> 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 23 * DEALINGS IN THE SOFTWARE. 24 * 25 * Authors: 26 * Eric Anholt <eric@anholt.net> 27 * Chris Wilson <chris@chris-wilson.co.uk> 28 */ 29 30 #include <linux/export.h> 31 #include <linux/i2c-algo-bit.h> 32 #include <linux/i2c.h> 33 #include <linux/iopoll.h> 34 35 #include <drm/display/drm_hdcp_helper.h> 36 37 #include "i915_drv.h" 38 #include "i915_irq.h" 39 #include "i915_reg.h" 40 #include "intel_de.h" 41 #include "intel_display_regs.h" 42 #include "intel_display_types.h" 43 #include "intel_display_wa.h" 44 #include "intel_gmbus.h" 45 #include "intel_gmbus_regs.h" 46 47 struct intel_gmbus { 48 struct i2c_adapter adapter; 49 #define GMBUS_FORCE_BIT_RETRY (1U << 31) 50 u32 force_bit; 51 u32 reg0; 52 i915_reg_t gpio_reg; 53 struct i2c_algo_bit_data bit_algo; 54 struct intel_display *display; 55 }; 56 57 enum gmbus_gpio { 58 GPIOA, 59 GPIOB, 60 GPIOC, 61 GPIOD, 62 GPIOE, 63 GPIOF, 64 GPIOG, 65 GPIOH, 66 __GPIOI_UNUSED, 67 GPIOJ, 68 GPIOK, 69 GPIOL, 70 GPIOM, 71 GPION, 72 GPIOO, 73 }; 74 75 struct gmbus_pin { 76 const char *name; 77 enum gmbus_gpio gpio; 78 }; 79 80 /* Map gmbus pin pairs to names and registers. */ 81 static const struct gmbus_pin gmbus_pins[] = { 82 [GMBUS_PIN_SSC] = { "ssc", GPIOB }, 83 [GMBUS_PIN_VGADDC] = { "vga", GPIOA }, 84 [GMBUS_PIN_PANEL] = { "panel", GPIOC }, 85 [GMBUS_PIN_DPC] = { "dpc", GPIOD }, 86 [GMBUS_PIN_DPB] = { "dpb", GPIOE }, 87 [GMBUS_PIN_DPD] = { "dpd", GPIOF }, 88 }; 89 90 static const struct gmbus_pin gmbus_pins_bdw[] = { 91 [GMBUS_PIN_VGADDC] = { "vga", GPIOA }, 92 [GMBUS_PIN_DPC] = { "dpc", GPIOD }, 93 [GMBUS_PIN_DPB] = { "dpb", GPIOE }, 94 [GMBUS_PIN_DPD] = { "dpd", GPIOF }, 95 }; 96 97 static const struct gmbus_pin gmbus_pins_skl[] = { 98 [GMBUS_PIN_DPC] = { "dpc", GPIOD }, 99 [GMBUS_PIN_DPB] = { "dpb", GPIOE }, 100 [GMBUS_PIN_DPD] = { "dpd", GPIOF }, 101 }; 102 103 static const struct gmbus_pin gmbus_pins_bxt[] = { 104 [GMBUS_PIN_1_BXT] = { "dpb", GPIOB }, 105 [GMBUS_PIN_2_BXT] = { "dpc", GPIOC }, 106 [GMBUS_PIN_3_BXT] = { "misc", GPIOD }, 107 }; 108 109 static const struct gmbus_pin gmbus_pins_cnp[] = { 110 [GMBUS_PIN_1_BXT] = { "dpb", GPIOB }, 111 [GMBUS_PIN_2_BXT] = { "dpc", GPIOC }, 112 [GMBUS_PIN_3_BXT] = { "misc", GPIOD }, 113 [GMBUS_PIN_4_CNP] = { "dpd", GPIOE }, 114 }; 115 116 static const struct gmbus_pin gmbus_pins_icp[] = { 117 [GMBUS_PIN_1_BXT] = { "dpa", GPIOB }, 118 [GMBUS_PIN_2_BXT] = { "dpb", GPIOC }, 119 [GMBUS_PIN_3_BXT] = { "dpc", GPIOD }, 120 [GMBUS_PIN_9_TC1_ICP] = { "tc1", GPIOJ }, 121 [GMBUS_PIN_10_TC2_ICP] = { "tc2", GPIOK }, 122 [GMBUS_PIN_11_TC3_ICP] = { "tc3", GPIOL }, 123 [GMBUS_PIN_12_TC4_ICP] = { "tc4", GPIOM }, 124 [GMBUS_PIN_13_TC5_TGP] = { "tc5", GPION }, 125 [GMBUS_PIN_14_TC6_TGP] = { "tc6", GPIOO }, 126 }; 127 128 static const struct gmbus_pin gmbus_pins_dg1[] = { 129 [GMBUS_PIN_1_BXT] = { "dpa", GPIOB }, 130 [GMBUS_PIN_2_BXT] = { "dpb", GPIOC }, 131 [GMBUS_PIN_3_BXT] = { "dpc", GPIOD }, 132 [GMBUS_PIN_4_CNP] = { "dpd", GPIOE }, 133 }; 134 135 static const struct gmbus_pin gmbus_pins_dg2[] = { 136 [GMBUS_PIN_1_BXT] = { "dpa", GPIOB }, 137 [GMBUS_PIN_2_BXT] = { "dpb", GPIOC }, 138 [GMBUS_PIN_3_BXT] = { "dpc", GPIOD }, 139 [GMBUS_PIN_4_CNP] = { "dpd", GPIOE }, 140 [GMBUS_PIN_9_TC1_ICP] = { "tc1", GPIOJ }, 141 }; 142 143 static const struct gmbus_pin gmbus_pins_mtp[] = { 144 [GMBUS_PIN_1_BXT] = { "dpa", GPIOB }, 145 [GMBUS_PIN_2_BXT] = { "dpb", GPIOC }, 146 [GMBUS_PIN_3_BXT] = { "dpc", GPIOD }, 147 [GMBUS_PIN_4_CNP] = { "dpd", GPIOE }, 148 [GMBUS_PIN_5_MTP] = { "dpe", GPIOF }, 149 [GMBUS_PIN_9_TC1_ICP] = { "tc1", GPIOJ }, 150 [GMBUS_PIN_10_TC2_ICP] = { "tc2", GPIOK }, 151 [GMBUS_PIN_11_TC3_ICP] = { "tc3", GPIOL }, 152 [GMBUS_PIN_12_TC4_ICP] = { "tc4", GPIOM }, 153 }; 154 155 static const struct gmbus_pin *get_gmbus_pin(struct intel_display *display, 156 unsigned int pin) 157 { 158 const struct gmbus_pin *pins; 159 size_t size; 160 161 if (INTEL_PCH_TYPE(display) >= PCH_MTL) { 162 pins = gmbus_pins_mtp; 163 size = ARRAY_SIZE(gmbus_pins_mtp); 164 } else if (INTEL_PCH_TYPE(display) >= PCH_DG2) { 165 pins = gmbus_pins_dg2; 166 size = ARRAY_SIZE(gmbus_pins_dg2); 167 } else if (INTEL_PCH_TYPE(display) >= PCH_DG1) { 168 pins = gmbus_pins_dg1; 169 size = ARRAY_SIZE(gmbus_pins_dg1); 170 } else if (INTEL_PCH_TYPE(display) >= PCH_ICP) { 171 pins = gmbus_pins_icp; 172 size = ARRAY_SIZE(gmbus_pins_icp); 173 } else if (HAS_PCH_CNP(display)) { 174 pins = gmbus_pins_cnp; 175 size = ARRAY_SIZE(gmbus_pins_cnp); 176 } else if (display->platform.geminilake || display->platform.broxton) { 177 pins = gmbus_pins_bxt; 178 size = ARRAY_SIZE(gmbus_pins_bxt); 179 } else if (DISPLAY_VER(display) == 9) { 180 pins = gmbus_pins_skl; 181 size = ARRAY_SIZE(gmbus_pins_skl); 182 } else if (display->platform.broadwell) { 183 pins = gmbus_pins_bdw; 184 size = ARRAY_SIZE(gmbus_pins_bdw); 185 } else { 186 pins = gmbus_pins; 187 size = ARRAY_SIZE(gmbus_pins); 188 } 189 190 if (pin >= size || !pins[pin].name) 191 return NULL; 192 193 return &pins[pin]; 194 } 195 196 bool intel_gmbus_is_valid_pin(struct intel_display *display, unsigned int pin) 197 { 198 return get_gmbus_pin(display, pin); 199 } 200 201 /* Intel GPIO access functions */ 202 203 #define I2C_RISEFALL_TIME 10 204 205 static inline struct intel_gmbus * 206 to_intel_gmbus(struct i2c_adapter *i2c) 207 { 208 return container_of(i2c, struct intel_gmbus, adapter); 209 } 210 211 void 212 intel_gmbus_reset(struct intel_display *display) 213 { 214 intel_de_write(display, GMBUS0(display), 0); 215 intel_de_write(display, GMBUS4(display), 0); 216 } 217 218 static void pnv_gmbus_clock_gating(struct intel_display *display, 219 bool enable) 220 { 221 /* When using bit bashing for I2C, this bit needs to be set to 1 */ 222 intel_de_rmw(display, DSPCLK_GATE_D, 223 PNV_GMBUSUNIT_CLOCK_GATE_DISABLE, 224 !enable ? PNV_GMBUSUNIT_CLOCK_GATE_DISABLE : 0); 225 } 226 227 static void pch_gmbus_clock_gating(struct intel_display *display, 228 bool enable) 229 { 230 intel_de_rmw(display, SOUTH_DSPCLK_GATE_D, 231 PCH_GMBUSUNIT_CLOCK_GATE_DISABLE, 232 !enable ? PCH_GMBUSUNIT_CLOCK_GATE_DISABLE : 0); 233 } 234 235 static void bxt_gmbus_clock_gating(struct intel_display *display, 236 bool enable) 237 { 238 intel_de_rmw(display, GEN9_CLKGATE_DIS_4, BXT_GMBUS_GATING_DIS, 239 !enable ? BXT_GMBUS_GATING_DIS : 0); 240 } 241 242 static u32 get_reserved(struct intel_gmbus *bus) 243 { 244 struct intel_display *display = bus->display; 245 u32 preserve_bits = 0; 246 247 if (display->platform.i830 || display->platform.i845g) 248 return 0; 249 250 /* On most chips, these bits must be preserved in software. */ 251 preserve_bits |= GPIO_DATA_PULLUP_DISABLE | GPIO_CLOCK_PULLUP_DISABLE; 252 253 /* Wa_16025573575: the masks bits need to be preserved through out */ 254 if (intel_display_wa(display, 16025573575)) 255 preserve_bits |= GPIO_CLOCK_DIR_MASK | GPIO_CLOCK_VAL_MASK | 256 GPIO_DATA_DIR_MASK | GPIO_DATA_VAL_MASK; 257 258 return intel_de_read_notrace(display, bus->gpio_reg) & preserve_bits; 259 } 260 261 static int get_clock(void *data) 262 { 263 struct intel_gmbus *bus = data; 264 struct intel_display *display = bus->display; 265 u32 reserved = get_reserved(bus); 266 267 intel_de_write_notrace(display, bus->gpio_reg, reserved | GPIO_CLOCK_DIR_MASK); 268 intel_de_write_notrace(display, bus->gpio_reg, reserved); 269 270 return (intel_de_read_notrace(display, bus->gpio_reg) & GPIO_CLOCK_VAL_IN) != 0; 271 } 272 273 static int get_data(void *data) 274 { 275 struct intel_gmbus *bus = data; 276 struct intel_display *display = bus->display; 277 u32 reserved = get_reserved(bus); 278 279 intel_de_write_notrace(display, bus->gpio_reg, reserved | GPIO_DATA_DIR_MASK); 280 intel_de_write_notrace(display, bus->gpio_reg, reserved); 281 282 return (intel_de_read_notrace(display, bus->gpio_reg) & GPIO_DATA_VAL_IN) != 0; 283 } 284 285 static void set_clock(void *data, int state_high) 286 { 287 struct intel_gmbus *bus = data; 288 struct intel_display *display = bus->display; 289 u32 reserved = get_reserved(bus); 290 u32 clock_bits; 291 292 if (state_high) 293 clock_bits = GPIO_CLOCK_DIR_IN | GPIO_CLOCK_DIR_MASK; 294 else 295 clock_bits = GPIO_CLOCK_DIR_OUT | GPIO_CLOCK_DIR_MASK | 296 GPIO_CLOCK_VAL_MASK; 297 298 intel_de_write_notrace(display, bus->gpio_reg, reserved | clock_bits); 299 intel_de_posting_read(display, bus->gpio_reg); 300 } 301 302 static void set_data(void *data, int state_high) 303 { 304 struct intel_gmbus *bus = data; 305 struct intel_display *display = bus->display; 306 u32 reserved = get_reserved(bus); 307 u32 data_bits; 308 309 if (state_high) 310 data_bits = GPIO_DATA_DIR_IN | GPIO_DATA_DIR_MASK; 311 else 312 data_bits = GPIO_DATA_DIR_OUT | GPIO_DATA_DIR_MASK | 313 GPIO_DATA_VAL_MASK; 314 315 intel_de_write_notrace(display, bus->gpio_reg, reserved | data_bits); 316 intel_de_posting_read(display, bus->gpio_reg); 317 } 318 319 static void 320 ptl_handle_mask_bits(struct intel_gmbus *bus, bool set) 321 { 322 struct intel_display *display = bus->display; 323 u32 reg_val = intel_de_read_notrace(display, bus->gpio_reg); 324 u32 mask_bits = GPIO_CLOCK_DIR_MASK | GPIO_CLOCK_VAL_MASK | 325 GPIO_DATA_DIR_MASK | GPIO_DATA_VAL_MASK; 326 if (set) 327 reg_val |= mask_bits; 328 else 329 reg_val &= ~mask_bits; 330 331 intel_de_write_notrace(display, bus->gpio_reg, reg_val); 332 intel_de_posting_read(display, bus->gpio_reg); 333 } 334 335 static int 336 intel_gpio_pre_xfer(struct i2c_adapter *adapter) 337 { 338 struct intel_gmbus *bus = to_intel_gmbus(adapter); 339 struct intel_display *display = bus->display; 340 341 intel_gmbus_reset(display); 342 343 if (display->platform.pineview) 344 pnv_gmbus_clock_gating(display, false); 345 346 if (intel_display_wa(display, 16025573575)) 347 ptl_handle_mask_bits(bus, true); 348 349 set_data(bus, 1); 350 set_clock(bus, 1); 351 udelay(I2C_RISEFALL_TIME); 352 return 0; 353 } 354 355 static void 356 intel_gpio_post_xfer(struct i2c_adapter *adapter) 357 { 358 struct intel_gmbus *bus = to_intel_gmbus(adapter); 359 struct intel_display *display = bus->display; 360 361 set_data(bus, 1); 362 set_clock(bus, 1); 363 364 if (display->platform.pineview) 365 pnv_gmbus_clock_gating(display, true); 366 367 if (intel_display_wa(display, 16025573575)) 368 ptl_handle_mask_bits(bus, false); 369 } 370 371 static void 372 intel_gpio_setup(struct intel_gmbus *bus, i915_reg_t gpio_reg) 373 { 374 struct i2c_algo_bit_data *algo; 375 376 algo = &bus->bit_algo; 377 378 bus->gpio_reg = gpio_reg; 379 bus->adapter.algo_data = algo; 380 algo->setsda = set_data; 381 algo->setscl = set_clock; 382 algo->getsda = get_data; 383 algo->getscl = get_clock; 384 algo->pre_xfer = intel_gpio_pre_xfer; 385 algo->post_xfer = intel_gpio_post_xfer; 386 algo->udelay = I2C_RISEFALL_TIME; 387 algo->timeout = usecs_to_jiffies(2200); 388 algo->data = bus; 389 } 390 391 static bool has_gmbus_irq(struct intel_display *display) 392 { 393 struct drm_i915_private *i915 = to_i915(display->drm); 394 /* 395 * encoder->shutdown() may want to use GMBUS 396 * after irqs have already been disabled. 397 */ 398 return HAS_GMBUS_IRQ(display) && intel_irqs_enabled(i915); 399 } 400 401 static int gmbus_wait(struct intel_display *display, u32 status, u32 irq_en) 402 { 403 DEFINE_WAIT(wait); 404 u32 gmbus2; 405 int ret; 406 407 /* Important: The hw handles only the first bit, so set only one! Since 408 * we also need to check for NAKs besides the hw ready/idle signal, we 409 * need to wake up periodically and check that ourselves. 410 */ 411 if (!has_gmbus_irq(display)) 412 irq_en = 0; 413 414 add_wait_queue(&display->gmbus.wait_queue, &wait); 415 intel_de_write_fw(display, GMBUS4(display), irq_en); 416 417 status |= GMBUS_SATOER; 418 419 ret = poll_timeout_us_atomic(gmbus2 = intel_de_read_fw(display, GMBUS2(display)), 420 gmbus2 & status, 421 0, 2, false); 422 if (ret) 423 ret = poll_timeout_us(gmbus2 = intel_de_read_fw(display, GMBUS2(display)), 424 gmbus2 & status, 425 500, 50 * 1000, false); 426 427 intel_de_write_fw(display, GMBUS4(display), 0); 428 remove_wait_queue(&display->gmbus.wait_queue, &wait); 429 430 if (gmbus2 & GMBUS_SATOER) 431 return -ENXIO; 432 433 return ret; 434 } 435 436 static int 437 gmbus_wait_idle(struct intel_display *display) 438 { 439 DEFINE_WAIT(wait); 440 u32 irq_enable; 441 int ret; 442 443 /* Important: The hw handles only the first bit, so set only one! */ 444 irq_enable = 0; 445 if (has_gmbus_irq(display)) 446 irq_enable = GMBUS_IDLE_EN; 447 448 add_wait_queue(&display->gmbus.wait_queue, &wait); 449 intel_de_write_fw(display, GMBUS4(display), irq_enable); 450 451 ret = intel_de_wait_fw(display, GMBUS2(display), GMBUS_ACTIVE, 0, 10, NULL); 452 453 intel_de_write_fw(display, GMBUS4(display), 0); 454 remove_wait_queue(&display->gmbus.wait_queue, &wait); 455 456 return ret; 457 } 458 459 static unsigned int gmbus_max_xfer_size(struct intel_display *display) 460 { 461 return DISPLAY_VER(display) >= 9 ? GEN9_GMBUS_BYTE_COUNT_MAX : 462 GMBUS_BYTE_COUNT_MAX; 463 } 464 465 static int 466 gmbus_xfer_read_chunk(struct intel_display *display, 467 unsigned short addr, u8 *buf, unsigned int len, 468 u32 gmbus0_reg, u32 gmbus1_index) 469 { 470 unsigned int size = len; 471 bool burst_read = len > gmbus_max_xfer_size(display); 472 bool extra_byte_added = false; 473 474 if (burst_read) { 475 /* 476 * As per HW Spec, for 512Bytes need to read extra Byte and 477 * Ignore the extra byte read. 478 */ 479 if (len == 512) { 480 extra_byte_added = true; 481 len++; 482 } 483 size = len % 256 + 256; 484 intel_de_write_fw(display, GMBUS0(display), 485 gmbus0_reg | GMBUS_BYTE_CNT_OVERRIDE); 486 } 487 488 intel_de_write_fw(display, GMBUS1(display), 489 gmbus1_index | GMBUS_CYCLE_WAIT | (size << GMBUS_BYTE_COUNT_SHIFT) | (addr << GMBUS_SLAVE_ADDR_SHIFT) | GMBUS_SLAVE_READ | GMBUS_SW_RDY); 490 while (len) { 491 int ret; 492 u32 val, loop = 0; 493 494 ret = gmbus_wait(display, GMBUS_HW_RDY, GMBUS_HW_RDY_EN); 495 if (ret) 496 return ret; 497 498 val = intel_de_read_fw(display, GMBUS3(display)); 499 do { 500 if (extra_byte_added && len == 1) 501 break; 502 503 *buf++ = val & 0xff; 504 val >>= 8; 505 } while (--len && ++loop < 4); 506 507 if (burst_read && len == size - 4) 508 /* Reset the override bit */ 509 intel_de_write_fw(display, GMBUS0(display), gmbus0_reg); 510 } 511 512 return 0; 513 } 514 515 /* 516 * HW spec says that 512Bytes in Burst read need special treatment. 517 * But it doesn't talk about other multiple of 256Bytes. And couldn't locate 518 * an I2C target, which supports such a lengthy burst read too for experiments. 519 * 520 * So until things get clarified on HW support, to avoid the burst read length 521 * in fold of 256Bytes except 512, max burst read length is fixed at 767Bytes. 522 */ 523 #define INTEL_GMBUS_BURST_READ_MAX_LEN 767U 524 525 static int 526 gmbus_xfer_read(struct intel_display *display, struct i2c_msg *msg, 527 u32 gmbus0_reg, u32 gmbus1_index) 528 { 529 u8 *buf = msg->buf; 530 unsigned int rx_size = msg->len; 531 unsigned int len; 532 int ret; 533 534 do { 535 if (HAS_GMBUS_BURST_READ(display)) 536 len = min(rx_size, INTEL_GMBUS_BURST_READ_MAX_LEN); 537 else 538 len = min(rx_size, gmbus_max_xfer_size(display)); 539 540 ret = gmbus_xfer_read_chunk(display, msg->addr, buf, len, 541 gmbus0_reg, gmbus1_index); 542 if (ret) 543 return ret; 544 545 rx_size -= len; 546 buf += len; 547 } while (rx_size != 0); 548 549 return 0; 550 } 551 552 static int 553 gmbus_xfer_write_chunk(struct intel_display *display, 554 unsigned short addr, u8 *buf, unsigned int len, 555 u32 gmbus1_index) 556 { 557 unsigned int chunk_size = len; 558 u32 val, loop; 559 560 val = loop = 0; 561 while (len && loop < 4) { 562 val |= *buf++ << (8 * loop++); 563 len -= 1; 564 } 565 566 intel_de_write_fw(display, GMBUS3(display), val); 567 intel_de_write_fw(display, GMBUS1(display), 568 gmbus1_index | GMBUS_CYCLE_WAIT | (chunk_size << GMBUS_BYTE_COUNT_SHIFT) | (addr << GMBUS_SLAVE_ADDR_SHIFT) | GMBUS_SLAVE_WRITE | GMBUS_SW_RDY); 569 while (len) { 570 int ret; 571 572 val = loop = 0; 573 do { 574 val |= *buf++ << (8 * loop); 575 } while (--len && ++loop < 4); 576 577 intel_de_write_fw(display, GMBUS3(display), val); 578 579 ret = gmbus_wait(display, GMBUS_HW_RDY, GMBUS_HW_RDY_EN); 580 if (ret) 581 return ret; 582 } 583 584 return 0; 585 } 586 587 static int 588 gmbus_xfer_write(struct intel_display *display, struct i2c_msg *msg, 589 u32 gmbus1_index) 590 { 591 u8 *buf = msg->buf; 592 unsigned int tx_size = msg->len; 593 unsigned int len; 594 int ret; 595 596 do { 597 len = min(tx_size, gmbus_max_xfer_size(display)); 598 599 ret = gmbus_xfer_write_chunk(display, msg->addr, buf, len, 600 gmbus1_index); 601 if (ret) 602 return ret; 603 604 buf += len; 605 tx_size -= len; 606 } while (tx_size != 0); 607 608 return 0; 609 } 610 611 /* 612 * The gmbus controller can combine a 1 or 2 byte write with another read/write 613 * that immediately follows it by using an "INDEX" cycle. 614 */ 615 static bool 616 gmbus_is_index_xfer(struct i2c_msg *msgs, int i, int num) 617 { 618 return (i + 1 < num && 619 msgs[i].addr == msgs[i + 1].addr && 620 !(msgs[i].flags & I2C_M_RD) && 621 (msgs[i].len == 1 || msgs[i].len == 2) && 622 msgs[i + 1].len > 0); 623 } 624 625 static int 626 gmbus_index_xfer(struct intel_display *display, struct i2c_msg *msgs, 627 u32 gmbus0_reg) 628 { 629 u32 gmbus1_index = 0; 630 u32 gmbus5 = 0; 631 int ret; 632 633 if (msgs[0].len == 2) 634 gmbus5 = GMBUS_2BYTE_INDEX_EN | 635 msgs[0].buf[1] | (msgs[0].buf[0] << 8); 636 if (msgs[0].len == 1) 637 gmbus1_index = GMBUS_CYCLE_INDEX | 638 (msgs[0].buf[0] << GMBUS_SLAVE_INDEX_SHIFT); 639 640 /* GMBUS5 holds 16-bit index */ 641 if (gmbus5) 642 intel_de_write_fw(display, GMBUS5(display), gmbus5); 643 644 if (msgs[1].flags & I2C_M_RD) 645 ret = gmbus_xfer_read(display, &msgs[1], gmbus0_reg, 646 gmbus1_index); 647 else 648 ret = gmbus_xfer_write(display, &msgs[1], gmbus1_index); 649 650 /* Clear GMBUS5 after each index transfer */ 651 if (gmbus5) 652 intel_de_write_fw(display, GMBUS5(display), 0); 653 654 return ret; 655 } 656 657 static int 658 do_gmbus_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num, 659 u32 gmbus0_source) 660 { 661 struct intel_gmbus *bus = to_intel_gmbus(adapter); 662 struct intel_display *display = bus->display; 663 int i = 0, inc, try = 0; 664 int ret = 0; 665 666 /* Display WA #0868: skl,bxt,kbl,cfl,glk */ 667 if (display->platform.geminilake || display->platform.broxton) 668 bxt_gmbus_clock_gating(display, false); 669 else if (HAS_PCH_SPT(display) || HAS_PCH_CNP(display)) 670 pch_gmbus_clock_gating(display, false); 671 672 retry: 673 intel_de_write_fw(display, GMBUS0(display), gmbus0_source | bus->reg0); 674 675 for (; i < num; i += inc) { 676 inc = 1; 677 if (gmbus_is_index_xfer(msgs, i, num)) { 678 ret = gmbus_index_xfer(display, &msgs[i], 679 gmbus0_source | bus->reg0); 680 inc = 2; /* an index transmission is two msgs */ 681 } else if (msgs[i].flags & I2C_M_RD) { 682 ret = gmbus_xfer_read(display, &msgs[i], 683 gmbus0_source | bus->reg0, 0); 684 } else { 685 ret = gmbus_xfer_write(display, &msgs[i], 0); 686 } 687 688 if (!ret) 689 ret = gmbus_wait(display, 690 GMBUS_HW_WAIT_PHASE, GMBUS_HW_WAIT_EN); 691 if (ret == -ETIMEDOUT) 692 goto timeout; 693 else if (ret) 694 goto clear_err; 695 } 696 697 /* Generate a STOP condition on the bus. Note that gmbus can't generata 698 * a STOP on the very first cycle. To simplify the code we 699 * unconditionally generate the STOP condition with an additional gmbus 700 * cycle. */ 701 intel_de_write_fw(display, GMBUS1(display), GMBUS_CYCLE_STOP | GMBUS_SW_RDY); 702 703 /* Mark the GMBUS interface as disabled after waiting for idle. 704 * We will re-enable it at the start of the next xfer, 705 * till then let it sleep. 706 */ 707 if (gmbus_wait_idle(display)) { 708 drm_dbg_kms(display->drm, 709 "GMBUS [%s] timed out waiting for idle\n", 710 adapter->name); 711 ret = -ETIMEDOUT; 712 } 713 intel_de_write_fw(display, GMBUS0(display), 0); 714 ret = ret ?: i; 715 goto out; 716 717 clear_err: 718 /* 719 * Wait for bus to IDLE before clearing NAK. 720 * If we clear the NAK while bus is still active, then it will stay 721 * active and the next transaction may fail. 722 * 723 * If no ACK is received during the address phase of a transaction, the 724 * adapter must report -ENXIO. It is not clear what to return if no ACK 725 * is received at other times. But we have to be careful to not return 726 * spurious -ENXIO because that will prevent i2c and drm edid functions 727 * from retrying. So return -ENXIO only when gmbus properly quiescents - 728 * timing out seems to happen when there _is_ a ddc chip present, but 729 * it's slow responding and only answers on the 2nd retry. 730 */ 731 ret = -ENXIO; 732 if (gmbus_wait_idle(display)) { 733 drm_dbg_kms(display->drm, 734 "GMBUS [%s] timed out after NAK\n", 735 adapter->name); 736 ret = -ETIMEDOUT; 737 } 738 739 /* Toggle the Software Clear Interrupt bit. This has the effect 740 * of resetting the GMBUS controller and so clearing the 741 * BUS_ERROR raised by the target's NAK. 742 */ 743 intel_de_write_fw(display, GMBUS1(display), GMBUS_SW_CLR_INT); 744 intel_de_write_fw(display, GMBUS1(display), 0); 745 intel_de_write_fw(display, GMBUS0(display), 0); 746 747 drm_dbg_kms(display->drm, "GMBUS [%s] NAK for addr: %04x %c(%d)\n", 748 adapter->name, msgs[i].addr, 749 (msgs[i].flags & I2C_M_RD) ? 'r' : 'w', msgs[i].len); 750 751 /* 752 * Passive adapters sometimes NAK the first probe. Retry the first 753 * message once on -ENXIO for GMBUS transfers; the bit banging algorithm 754 * has retries internally. See also the retry loop in 755 * drm_do_probe_ddc_edid, which bails out on the first -ENXIO. 756 */ 757 if (ret == -ENXIO && i == 0 && try++ == 0) { 758 drm_dbg_kms(display->drm, 759 "GMBUS [%s] NAK on first message, retry\n", 760 adapter->name); 761 goto retry; 762 } 763 764 goto out; 765 766 timeout: 767 drm_dbg_kms(display->drm, 768 "GMBUS [%s] timed out, falling back to bit banging on pin %d\n", 769 bus->adapter.name, bus->reg0 & 0xff); 770 intel_de_write_fw(display, GMBUS0(display), 0); 771 772 /* 773 * Hardware may not support GMBUS over these pins? Try GPIO bitbanging 774 * instead. Use EAGAIN to have i2c core retry. 775 */ 776 ret = -EAGAIN; 777 778 out: 779 /* Display WA #0868: skl,bxt,kbl,cfl,glk */ 780 if (display->platform.geminilake || display->platform.broxton) 781 bxt_gmbus_clock_gating(display, true); 782 else if (HAS_PCH_SPT(display) || HAS_PCH_CNP(display)) 783 pch_gmbus_clock_gating(display, true); 784 785 return ret; 786 } 787 788 static int 789 gmbus_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num) 790 { 791 struct intel_gmbus *bus = to_intel_gmbus(adapter); 792 struct intel_display *display = bus->display; 793 intel_wakeref_t wakeref; 794 int ret; 795 796 wakeref = intel_display_power_get(display, POWER_DOMAIN_GMBUS); 797 798 if (bus->force_bit) { 799 ret = i2c_bit_algo.master_xfer(adapter, msgs, num); 800 if (ret < 0) 801 bus->force_bit &= ~GMBUS_FORCE_BIT_RETRY; 802 } else { 803 ret = do_gmbus_xfer(adapter, msgs, num, 0); 804 if (ret == -EAGAIN) 805 bus->force_bit |= GMBUS_FORCE_BIT_RETRY; 806 } 807 808 intel_display_power_put(display, POWER_DOMAIN_GMBUS, wakeref); 809 810 return ret; 811 } 812 813 int intel_gmbus_output_aksv(struct i2c_adapter *adapter) 814 { 815 struct intel_gmbus *bus = to_intel_gmbus(adapter); 816 struct intel_display *display = bus->display; 817 u8 cmd = DRM_HDCP_DDC_AKSV; 818 u8 buf[DRM_HDCP_KSV_LEN] = {}; 819 struct i2c_msg msgs[] = { 820 { 821 .addr = DRM_HDCP_DDC_ADDR, 822 .flags = 0, 823 .len = sizeof(cmd), 824 .buf = &cmd, 825 }, 826 { 827 .addr = DRM_HDCP_DDC_ADDR, 828 .flags = 0, 829 .len = sizeof(buf), 830 .buf = buf, 831 } 832 }; 833 intel_wakeref_t wakeref; 834 int ret; 835 836 wakeref = intel_display_power_get(display, POWER_DOMAIN_GMBUS); 837 mutex_lock(&display->gmbus.mutex); 838 839 /* 840 * In order to output Aksv to the receiver, use an indexed write to 841 * pass the i2c command, and tell GMBUS to use the HW-provided value 842 * instead of sourcing GMBUS3 for the data. 843 */ 844 ret = do_gmbus_xfer(adapter, msgs, ARRAY_SIZE(msgs), GMBUS_AKSV_SELECT); 845 846 mutex_unlock(&display->gmbus.mutex); 847 intel_display_power_put(display, POWER_DOMAIN_GMBUS, wakeref); 848 849 return ret; 850 } 851 852 static u32 gmbus_func(struct i2c_adapter *adapter) 853 { 854 return i2c_bit_algo.functionality(adapter) & 855 (I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | 856 /* I2C_FUNC_10BIT_ADDR | */ 857 I2C_FUNC_SMBUS_READ_BLOCK_DATA | 858 I2C_FUNC_SMBUS_BLOCK_PROC_CALL); 859 } 860 861 static const struct i2c_algorithm gmbus_algorithm = { 862 .master_xfer = gmbus_xfer, 863 .functionality = gmbus_func 864 }; 865 866 static void gmbus_lock_bus(struct i2c_adapter *adapter, 867 unsigned int flags) 868 { 869 struct intel_gmbus *bus = to_intel_gmbus(adapter); 870 struct intel_display *display = bus->display; 871 872 mutex_lock(&display->gmbus.mutex); 873 } 874 875 static int gmbus_trylock_bus(struct i2c_adapter *adapter, 876 unsigned int flags) 877 { 878 struct intel_gmbus *bus = to_intel_gmbus(adapter); 879 struct intel_display *display = bus->display; 880 881 return mutex_trylock(&display->gmbus.mutex); 882 } 883 884 static void gmbus_unlock_bus(struct i2c_adapter *adapter, 885 unsigned int flags) 886 { 887 struct intel_gmbus *bus = to_intel_gmbus(adapter); 888 struct intel_display *display = bus->display; 889 890 mutex_unlock(&display->gmbus.mutex); 891 } 892 893 static const struct i2c_lock_operations gmbus_lock_ops = { 894 .lock_bus = gmbus_lock_bus, 895 .trylock_bus = gmbus_trylock_bus, 896 .unlock_bus = gmbus_unlock_bus, 897 }; 898 899 /** 900 * intel_gmbus_setup - instantiate all Intel i2c GMBuses 901 * @display: display device 902 */ 903 int intel_gmbus_setup(struct intel_display *display) 904 { 905 struct pci_dev *pdev = to_pci_dev(display->drm->dev); 906 unsigned int pin; 907 int ret; 908 909 if (display->platform.valleyview || display->platform.cherryview) 910 display->gmbus.mmio_base = VLV_DISPLAY_BASE; 911 else if (!HAS_GMCH(display)) 912 /* 913 * Broxton uses the same PCH offsets for South Display Engine, 914 * even though it doesn't have a PCH. 915 */ 916 display->gmbus.mmio_base = PCH_DISPLAY_BASE; 917 918 mutex_init(&display->gmbus.mutex); 919 init_waitqueue_head(&display->gmbus.wait_queue); 920 921 for (pin = 0; pin < ARRAY_SIZE(display->gmbus.bus); pin++) { 922 const struct gmbus_pin *gmbus_pin; 923 struct intel_gmbus *bus; 924 925 gmbus_pin = get_gmbus_pin(display, pin); 926 if (!gmbus_pin) 927 continue; 928 929 bus = kzalloc(sizeof(*bus), GFP_KERNEL); 930 if (!bus) { 931 ret = -ENOMEM; 932 goto err; 933 } 934 935 bus->adapter.owner = THIS_MODULE; 936 snprintf(bus->adapter.name, 937 sizeof(bus->adapter.name), 938 "i915 gmbus %s", gmbus_pin->name); 939 940 bus->adapter.dev.parent = &pdev->dev; 941 bus->display = display; 942 943 bus->adapter.algo = &gmbus_algorithm; 944 bus->adapter.lock_ops = &gmbus_lock_ops; 945 946 /* 947 * We wish to retry with bit banging 948 * after a timed out GMBUS attempt. 949 */ 950 bus->adapter.retries = 1; 951 952 /* By default use a conservative clock rate */ 953 bus->reg0 = pin | GMBUS_RATE_100KHZ; 954 955 /* gmbus seems to be broken on i830 */ 956 if (display->platform.i830) 957 bus->force_bit = 1; 958 959 intel_gpio_setup(bus, GPIO(display, gmbus_pin->gpio)); 960 961 ret = i2c_add_adapter(&bus->adapter); 962 if (ret) { 963 kfree(bus); 964 goto err; 965 } 966 967 display->gmbus.bus[pin] = bus; 968 } 969 970 intel_gmbus_reset(display); 971 972 return 0; 973 974 err: 975 intel_gmbus_teardown(display); 976 977 return ret; 978 } 979 980 struct i2c_adapter *intel_gmbus_get_adapter(struct intel_display *display, 981 unsigned int pin) 982 { 983 if (drm_WARN_ON(display->drm, pin >= ARRAY_SIZE(display->gmbus.bus) || 984 !display->gmbus.bus[pin])) 985 return NULL; 986 987 return &display->gmbus.bus[pin]->adapter; 988 } 989 990 void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit) 991 { 992 struct intel_gmbus *bus = to_intel_gmbus(adapter); 993 struct intel_display *display = bus->display; 994 995 mutex_lock(&display->gmbus.mutex); 996 997 bus->force_bit += force_bit ? 1 : -1; 998 drm_dbg_kms(display->drm, 999 "%sabling bit-banging on %s. force bit now %d\n", 1000 force_bit ? "en" : "dis", adapter->name, 1001 bus->force_bit); 1002 1003 mutex_unlock(&display->gmbus.mutex); 1004 } 1005 1006 bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) 1007 { 1008 struct intel_gmbus *bus = to_intel_gmbus(adapter); 1009 1010 return bus->force_bit; 1011 } 1012 1013 void intel_gmbus_teardown(struct intel_display *display) 1014 { 1015 unsigned int pin; 1016 1017 for (pin = 0; pin < ARRAY_SIZE(display->gmbus.bus); pin++) { 1018 struct intel_gmbus *bus; 1019 1020 bus = display->gmbus.bus[pin]; 1021 if (!bus) 1022 continue; 1023 1024 i2c_del_adapter(&bus->adapter); 1025 1026 kfree(bus); 1027 display->gmbus.bus[pin] = NULL; 1028 } 1029 } 1030 1031 void intel_gmbus_irq_handler(struct intel_display *display) 1032 { 1033 wake_up_all(&display->gmbus.wait_queue); 1034 } 1035