xref: /linux/drivers/gpu/drm/i915/display/intel_frontbuffer.c (revision b50ecc5aca4d18f1f0c4942f5c797bc85edef144)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Daniel Vetter <daniel.vetter@ffwll.ch>
25  */
26 
27 /**
28  * DOC: frontbuffer tracking
29  *
30  * Many features require us to track changes to the currently active
31  * frontbuffer, especially rendering targeted at the frontbuffer.
32  *
33  * To be able to do so we track frontbuffers using a bitmask for all possible
34  * frontbuffer slots through intel_frontbuffer_track(). The functions in this
35  * file are then called when the contents of the frontbuffer are invalidated,
36  * when frontbuffer rendering has stopped again to flush out all the changes
37  * and when the frontbuffer is exchanged with a flip. Subsystems interested in
38  * frontbuffer changes (e.g. PSR, FBC, DRRS) should directly put their callbacks
39  * into the relevant places and filter for the frontbuffer slots that they are
40  * interested int.
41  *
42  * On a high level there are two types of powersaving features. The first one
43  * work like a special cache (FBC and PSR) and are interested when they should
44  * stop caching and when to restart caching. This is done by placing callbacks
45  * into the invalidate and the flush functions: At invalidate the caching must
46  * be stopped and at flush time it can be restarted. And maybe they need to know
47  * when the frontbuffer changes (e.g. when the hw doesn't initiate an invalidate
48  * and flush on its own) which can be achieved with placing callbacks into the
49  * flip functions.
50  *
51  * The other type of display power saving feature only cares about busyness
52  * (e.g. DRRS). In that case all three (invalidate, flush and flip) indicate
53  * busyness. There is no direct way to detect idleness. Instead an idle timer
54  * work delayed work should be started from the flush and flip functions and
55  * cancelled as soon as busyness is detected.
56  */
57 
58 #include <drm/drm_gem.h>
59 
60 #include "i915_active.h"
61 #include "i915_drv.h"
62 #include "intel_bo.h"
63 #include "intel_display_trace.h"
64 #include "intel_display_types.h"
65 #include "intel_dp.h"
66 #include "intel_drrs.h"
67 #include "intel_fbc.h"
68 #include "intel_frontbuffer.h"
69 #include "intel_psr.h"
70 #include "intel_tdf.h"
71 
72 /**
73  * frontbuffer_flush - flush frontbuffer
74  * @i915: i915 device
75  * @frontbuffer_bits: frontbuffer plane tracking bits
76  * @origin: which operation caused the flush
77  *
78  * This function gets called every time rendering on the given planes has
79  * completed and frontbuffer caching can be started again. Flushes will get
80  * delayed if they're blocked by some outstanding asynchronous rendering.
81  *
82  * Can be called without any locks held.
83  */
84 static void frontbuffer_flush(struct drm_i915_private *i915,
85 			      unsigned int frontbuffer_bits,
86 			      enum fb_op_origin origin)
87 {
88 	struct intel_display *display = &i915->display;
89 
90 	/* Delay flushing when rings are still busy.*/
91 	spin_lock(&i915->display.fb_tracking.lock);
92 	frontbuffer_bits &= ~i915->display.fb_tracking.busy_bits;
93 	spin_unlock(&i915->display.fb_tracking.lock);
94 
95 	if (!frontbuffer_bits)
96 		return;
97 
98 	trace_intel_frontbuffer_flush(display, frontbuffer_bits, origin);
99 
100 	might_sleep();
101 	intel_td_flush(i915);
102 	intel_drrs_flush(i915, frontbuffer_bits);
103 	intel_psr_flush(display, frontbuffer_bits, origin);
104 	intel_fbc_flush(i915, frontbuffer_bits, origin);
105 }
106 
107 /**
108  * intel_frontbuffer_flip_prepare - prepare asynchronous frontbuffer flip
109  * @i915: i915 device
110  * @frontbuffer_bits: frontbuffer plane tracking bits
111  *
112  * This function gets called after scheduling a flip on @obj. The actual
113  * frontbuffer flushing will be delayed until completion is signalled with
114  * intel_frontbuffer_flip_complete. If an invalidate happens in between this
115  * flush will be cancelled.
116  *
117  * Can be called without any locks held.
118  */
119 void intel_frontbuffer_flip_prepare(struct drm_i915_private *i915,
120 				    unsigned frontbuffer_bits)
121 {
122 	spin_lock(&i915->display.fb_tracking.lock);
123 	i915->display.fb_tracking.flip_bits |= frontbuffer_bits;
124 	/* Remove stale busy bits due to the old buffer. */
125 	i915->display.fb_tracking.busy_bits &= ~frontbuffer_bits;
126 	spin_unlock(&i915->display.fb_tracking.lock);
127 }
128 
129 /**
130  * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flip
131  * @i915: i915 device
132  * @frontbuffer_bits: frontbuffer plane tracking bits
133  *
134  * This function gets called after the flip has been latched and will complete
135  * on the next vblank. It will execute the flush if it hasn't been cancelled yet.
136  *
137  * Can be called without any locks held.
138  */
139 void intel_frontbuffer_flip_complete(struct drm_i915_private *i915,
140 				     unsigned frontbuffer_bits)
141 {
142 	spin_lock(&i915->display.fb_tracking.lock);
143 	/* Mask any cancelled flips. */
144 	frontbuffer_bits &= i915->display.fb_tracking.flip_bits;
145 	i915->display.fb_tracking.flip_bits &= ~frontbuffer_bits;
146 	spin_unlock(&i915->display.fb_tracking.lock);
147 
148 	if (frontbuffer_bits)
149 		frontbuffer_flush(i915, frontbuffer_bits, ORIGIN_FLIP);
150 }
151 
152 /**
153  * intel_frontbuffer_flip - synchronous frontbuffer flip
154  * @i915: i915 device
155  * @frontbuffer_bits: frontbuffer plane tracking bits
156  *
157  * This function gets called after scheduling a flip on @obj. This is for
158  * synchronous plane updates which will happen on the next vblank and which will
159  * not get delayed by pending gpu rendering.
160  *
161  * Can be called without any locks held.
162  */
163 void intel_frontbuffer_flip(struct drm_i915_private *i915,
164 			    unsigned frontbuffer_bits)
165 {
166 	spin_lock(&i915->display.fb_tracking.lock);
167 	/* Remove stale busy bits due to the old buffer. */
168 	i915->display.fb_tracking.busy_bits &= ~frontbuffer_bits;
169 	spin_unlock(&i915->display.fb_tracking.lock);
170 
171 	frontbuffer_flush(i915, frontbuffer_bits, ORIGIN_FLIP);
172 }
173 
174 void __intel_fb_invalidate(struct intel_frontbuffer *front,
175 			   enum fb_op_origin origin,
176 			   unsigned int frontbuffer_bits)
177 {
178 	struct intel_display *display = to_intel_display(front->obj->dev);
179 	struct drm_i915_private *i915 = to_i915(display->drm);
180 
181 	if (origin == ORIGIN_CS) {
182 		spin_lock(&display->fb_tracking.lock);
183 		display->fb_tracking.busy_bits |= frontbuffer_bits;
184 		display->fb_tracking.flip_bits &= ~frontbuffer_bits;
185 		spin_unlock(&display->fb_tracking.lock);
186 	}
187 
188 	trace_intel_frontbuffer_invalidate(display, frontbuffer_bits, origin);
189 
190 	might_sleep();
191 	intel_psr_invalidate(display, frontbuffer_bits, origin);
192 	intel_drrs_invalidate(i915, frontbuffer_bits);
193 	intel_fbc_invalidate(i915, frontbuffer_bits, origin);
194 }
195 
196 void __intel_fb_flush(struct intel_frontbuffer *front,
197 		      enum fb_op_origin origin,
198 		      unsigned int frontbuffer_bits)
199 {
200 	struct intel_display *display = to_intel_display(front->obj->dev);
201 	struct drm_i915_private *i915 = to_i915(display->drm);
202 
203 	if (origin == ORIGIN_CS) {
204 		spin_lock(&display->fb_tracking.lock);
205 		/* Filter out new bits since rendering started. */
206 		frontbuffer_bits &= display->fb_tracking.busy_bits;
207 		display->fb_tracking.busy_bits &= ~frontbuffer_bits;
208 		spin_unlock(&display->fb_tracking.lock);
209 	}
210 
211 	if (frontbuffer_bits)
212 		frontbuffer_flush(i915, frontbuffer_bits, origin);
213 }
214 
215 static void intel_frontbuffer_flush_work(struct work_struct *work)
216 {
217 	struct intel_frontbuffer *front =
218 		container_of(work, struct intel_frontbuffer, flush_work);
219 
220 	intel_bo_flush_if_display(front->obj);
221 	intel_frontbuffer_flush(front, ORIGIN_DIRTYFB);
222 	intel_frontbuffer_put(front);
223 }
224 
225 /**
226  * intel_frontbuffer_queue_flush - queue flushing frontbuffer object
227  * @front: GEM object to flush
228  *
229  * This function is targeted for our dirty callback for queueing flush when
230  * dma fence is signales
231  */
232 void intel_frontbuffer_queue_flush(struct intel_frontbuffer *front)
233 {
234 	if (!front)
235 		return;
236 
237 	kref_get(&front->ref);
238 	if (!schedule_work(&front->flush_work))
239 		intel_frontbuffer_put(front);
240 }
241 
242 static int frontbuffer_active(struct i915_active *ref)
243 {
244 	struct intel_frontbuffer *front =
245 		container_of(ref, typeof(*front), write);
246 
247 	kref_get(&front->ref);
248 	return 0;
249 }
250 
251 static void frontbuffer_retire(struct i915_active *ref)
252 {
253 	struct intel_frontbuffer *front =
254 		container_of(ref, typeof(*front), write);
255 
256 	intel_frontbuffer_flush(front, ORIGIN_CS);
257 	intel_frontbuffer_put(front);
258 }
259 
260 static void frontbuffer_release(struct kref *ref)
261 	__releases(&to_intel_display(front->obj->dev)->fb_tracking.lock)
262 {
263 	struct intel_frontbuffer *ret, *front =
264 		container_of(ref, typeof(*front), ref);
265 	struct drm_gem_object *obj = front->obj;
266 	struct intel_display *display = to_intel_display(obj->dev);
267 
268 	drm_WARN_ON(display->drm, atomic_read(&front->bits));
269 
270 	i915_ggtt_clear_scanout(to_intel_bo(obj));
271 
272 	ret = intel_bo_set_frontbuffer(obj, NULL);
273 	drm_WARN_ON(display->drm, ret);
274 	spin_unlock(&display->fb_tracking.lock);
275 
276 	i915_active_fini(&front->write);
277 	kfree_rcu(front, rcu);
278 }
279 
280 struct intel_frontbuffer *
281 intel_frontbuffer_get(struct drm_gem_object *obj)
282 {
283 	struct drm_i915_private *i915 = to_i915(obj->dev);
284 	struct intel_frontbuffer *front, *cur;
285 
286 	front = intel_bo_get_frontbuffer(obj);
287 	if (front)
288 		return front;
289 
290 	front = kmalloc(sizeof(*front), GFP_KERNEL);
291 	if (!front)
292 		return NULL;
293 
294 	front->obj = obj;
295 	kref_init(&front->ref);
296 	atomic_set(&front->bits, 0);
297 	i915_active_init(&front->write,
298 			 frontbuffer_active,
299 			 frontbuffer_retire,
300 			 I915_ACTIVE_RETIRE_SLEEPS);
301 	INIT_WORK(&front->flush_work, intel_frontbuffer_flush_work);
302 
303 	spin_lock(&i915->display.fb_tracking.lock);
304 	cur = intel_bo_set_frontbuffer(obj, front);
305 	spin_unlock(&i915->display.fb_tracking.lock);
306 	if (cur != front)
307 		kfree(front);
308 	return cur;
309 }
310 
311 void intel_frontbuffer_put(struct intel_frontbuffer *front)
312 {
313 	kref_put_lock(&front->ref,
314 		      frontbuffer_release,
315 		      &to_intel_display(front->obj->dev)->fb_tracking.lock);
316 }
317 
318 /**
319  * intel_frontbuffer_track - update frontbuffer tracking
320  * @old: current buffer for the frontbuffer slots
321  * @new: new buffer for the frontbuffer slots
322  * @frontbuffer_bits: bitmask of frontbuffer slots
323  *
324  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
325  * from @old and setting them in @new. Both @old and @new can be NULL.
326  */
327 void intel_frontbuffer_track(struct intel_frontbuffer *old,
328 			     struct intel_frontbuffer *new,
329 			     unsigned int frontbuffer_bits)
330 {
331 	/*
332 	 * Control of individual bits within the mask are guarded by
333 	 * the owning plane->mutex, i.e. we can never see concurrent
334 	 * manipulation of individual bits. But since the bitfield as a whole
335 	 * is updated using RMW, we need to use atomics in order to update
336 	 * the bits.
337 	 */
338 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
339 		     BITS_PER_TYPE(atomic_t));
340 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32);
341 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE);
342 
343 	if (old) {
344 		struct intel_display *display = to_intel_display(old->obj->dev);
345 
346 		drm_WARN_ON(display->drm,
347 			    !(atomic_read(&old->bits) & frontbuffer_bits));
348 		atomic_andnot(frontbuffer_bits, &old->bits);
349 	}
350 
351 	if (new) {
352 		struct intel_display *display = to_intel_display(new->obj->dev);
353 
354 		drm_WARN_ON(display->drm,
355 			    atomic_read(&new->bits) & frontbuffer_bits);
356 		atomic_or(frontbuffer_bits, &new->bits);
357 	}
358 }
359