xref: /linux/drivers/gpu/drm/i915/display/intel_frontbuffer.c (revision 13d68a16430312fc21990f48326366eb73891202)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Daniel Vetter <daniel.vetter@ffwll.ch>
25  */
26 
27 /**
28  * DOC: frontbuffer tracking
29  *
30  * Many features require us to track changes to the currently active
31  * frontbuffer, especially rendering targeted at the frontbuffer.
32  *
33  * To be able to do so we track frontbuffers using a bitmask for all possible
34  * frontbuffer slots through intel_frontbuffer_track(). The functions in this
35  * file are then called when the contents of the frontbuffer are invalidated,
36  * when frontbuffer rendering has stopped again to flush out all the changes
37  * and when the frontbuffer is exchanged with a flip. Subsystems interested in
38  * frontbuffer changes (e.g. PSR, FBC, DRRS) should directly put their callbacks
39  * into the relevant places and filter for the frontbuffer slots that they are
40  * interested int.
41  *
42  * On a high level there are two types of powersaving features. The first one
43  * work like a special cache (FBC and PSR) and are interested when they should
44  * stop caching and when to restart caching. This is done by placing callbacks
45  * into the invalidate and the flush functions: At invalidate the caching must
46  * be stopped and at flush time it can be restarted. And maybe they need to know
47  * when the frontbuffer changes (e.g. when the hw doesn't initiate an invalidate
48  * and flush on its own) which can be achieved with placing callbacks into the
49  * flip functions.
50  *
51  * The other type of display power saving feature only cares about busyness
52  * (e.g. DRRS). In that case all three (invalidate, flush and flip) indicate
53  * busyness. There is no direct way to detect idleness. Instead an idle timer
54  * work delayed work should be started from the flush and flip functions and
55  * cancelled as soon as busyness is detected.
56  */
57 
58 #include "gem/i915_gem_object_frontbuffer.h"
59 #include "i915_active.h"
60 #include "i915_drv.h"
61 #include "intel_display_trace.h"
62 #include "intel_display_types.h"
63 #include "intel_dp.h"
64 #include "intel_drrs.h"
65 #include "intel_fbc.h"
66 #include "intel_frontbuffer.h"
67 #include "intel_psr.h"
68 #include "intel_tdf.h"
69 
70 /**
71  * frontbuffer_flush - flush frontbuffer
72  * @i915: i915 device
73  * @frontbuffer_bits: frontbuffer plane tracking bits
74  * @origin: which operation caused the flush
75  *
76  * This function gets called every time rendering on the given planes has
77  * completed and frontbuffer caching can be started again. Flushes will get
78  * delayed if they're blocked by some outstanding asynchronous rendering.
79  *
80  * Can be called without any locks held.
81  */
82 static void frontbuffer_flush(struct drm_i915_private *i915,
83 			      unsigned int frontbuffer_bits,
84 			      enum fb_op_origin origin)
85 {
86 	struct intel_display *display = &i915->display;
87 
88 	/* Delay flushing when rings are still busy.*/
89 	spin_lock(&i915->display.fb_tracking.lock);
90 	frontbuffer_bits &= ~i915->display.fb_tracking.busy_bits;
91 	spin_unlock(&i915->display.fb_tracking.lock);
92 
93 	if (!frontbuffer_bits)
94 		return;
95 
96 	trace_intel_frontbuffer_flush(i915, frontbuffer_bits, origin);
97 
98 	might_sleep();
99 	intel_td_flush(i915);
100 	intel_drrs_flush(i915, frontbuffer_bits);
101 	intel_psr_flush(display, frontbuffer_bits, origin);
102 	intel_fbc_flush(i915, frontbuffer_bits, origin);
103 }
104 
105 /**
106  * intel_frontbuffer_flip_prepare - prepare asynchronous frontbuffer flip
107  * @i915: i915 device
108  * @frontbuffer_bits: frontbuffer plane tracking bits
109  *
110  * This function gets called after scheduling a flip on @obj. The actual
111  * frontbuffer flushing will be delayed until completion is signalled with
112  * intel_frontbuffer_flip_complete. If an invalidate happens in between this
113  * flush will be cancelled.
114  *
115  * Can be called without any locks held.
116  */
117 void intel_frontbuffer_flip_prepare(struct drm_i915_private *i915,
118 				    unsigned frontbuffer_bits)
119 {
120 	spin_lock(&i915->display.fb_tracking.lock);
121 	i915->display.fb_tracking.flip_bits |= frontbuffer_bits;
122 	/* Remove stale busy bits due to the old buffer. */
123 	i915->display.fb_tracking.busy_bits &= ~frontbuffer_bits;
124 	spin_unlock(&i915->display.fb_tracking.lock);
125 }
126 
127 /**
128  * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flip
129  * @i915: i915 device
130  * @frontbuffer_bits: frontbuffer plane tracking bits
131  *
132  * This function gets called after the flip has been latched and will complete
133  * on the next vblank. It will execute the flush if it hasn't been cancelled yet.
134  *
135  * Can be called without any locks held.
136  */
137 void intel_frontbuffer_flip_complete(struct drm_i915_private *i915,
138 				     unsigned frontbuffer_bits)
139 {
140 	spin_lock(&i915->display.fb_tracking.lock);
141 	/* Mask any cancelled flips. */
142 	frontbuffer_bits &= i915->display.fb_tracking.flip_bits;
143 	i915->display.fb_tracking.flip_bits &= ~frontbuffer_bits;
144 	spin_unlock(&i915->display.fb_tracking.lock);
145 
146 	if (frontbuffer_bits)
147 		frontbuffer_flush(i915, frontbuffer_bits, ORIGIN_FLIP);
148 }
149 
150 /**
151  * intel_frontbuffer_flip - synchronous frontbuffer flip
152  * @i915: i915 device
153  * @frontbuffer_bits: frontbuffer plane tracking bits
154  *
155  * This function gets called after scheduling a flip on @obj. This is for
156  * synchronous plane updates which will happen on the next vblank and which will
157  * not get delayed by pending gpu rendering.
158  *
159  * Can be called without any locks held.
160  */
161 void intel_frontbuffer_flip(struct drm_i915_private *i915,
162 			    unsigned frontbuffer_bits)
163 {
164 	spin_lock(&i915->display.fb_tracking.lock);
165 	/* Remove stale busy bits due to the old buffer. */
166 	i915->display.fb_tracking.busy_bits &= ~frontbuffer_bits;
167 	spin_unlock(&i915->display.fb_tracking.lock);
168 
169 	frontbuffer_flush(i915, frontbuffer_bits, ORIGIN_FLIP);
170 }
171 
172 void __intel_fb_invalidate(struct intel_frontbuffer *front,
173 			   enum fb_op_origin origin,
174 			   unsigned int frontbuffer_bits)
175 {
176 	struct drm_i915_private *i915 = intel_bo_to_i915(front->obj);
177 	struct intel_display *display = &i915->display;
178 
179 	if (origin == ORIGIN_CS) {
180 		spin_lock(&i915->display.fb_tracking.lock);
181 		i915->display.fb_tracking.busy_bits |= frontbuffer_bits;
182 		i915->display.fb_tracking.flip_bits &= ~frontbuffer_bits;
183 		spin_unlock(&i915->display.fb_tracking.lock);
184 	}
185 
186 	trace_intel_frontbuffer_invalidate(i915, frontbuffer_bits, origin);
187 
188 	might_sleep();
189 	intel_psr_invalidate(display, frontbuffer_bits, origin);
190 	intel_drrs_invalidate(i915, frontbuffer_bits);
191 	intel_fbc_invalidate(i915, frontbuffer_bits, origin);
192 }
193 
194 void __intel_fb_flush(struct intel_frontbuffer *front,
195 		      enum fb_op_origin origin,
196 		      unsigned int frontbuffer_bits)
197 {
198 	struct drm_i915_private *i915 = intel_bo_to_i915(front->obj);
199 
200 	if (origin == ORIGIN_CS) {
201 		spin_lock(&i915->display.fb_tracking.lock);
202 		/* Filter out new bits since rendering started. */
203 		frontbuffer_bits &= i915->display.fb_tracking.busy_bits;
204 		i915->display.fb_tracking.busy_bits &= ~frontbuffer_bits;
205 		spin_unlock(&i915->display.fb_tracking.lock);
206 	}
207 
208 	if (frontbuffer_bits)
209 		frontbuffer_flush(i915, frontbuffer_bits, origin);
210 }
211 
212 static void intel_frontbuffer_flush_work(struct work_struct *work)
213 {
214 	struct intel_frontbuffer *front =
215 		container_of(work, struct intel_frontbuffer, flush_work);
216 
217 	i915_gem_object_flush_if_display(front->obj);
218 	intel_frontbuffer_flush(front, ORIGIN_DIRTYFB);
219 	intel_frontbuffer_put(front);
220 }
221 
222 /**
223  * intel_frontbuffer_queue_flush - queue flushing frontbuffer object
224  * @front: GEM object to flush
225  *
226  * This function is targeted for our dirty callback for queueing flush when
227  * dma fence is signales
228  */
229 void intel_frontbuffer_queue_flush(struct intel_frontbuffer *front)
230 {
231 	if (!front)
232 		return;
233 
234 	kref_get(&front->ref);
235 	if (!schedule_work(&front->flush_work))
236 		intel_frontbuffer_put(front);
237 }
238 
239 static int frontbuffer_active(struct i915_active *ref)
240 {
241 	struct intel_frontbuffer *front =
242 		container_of(ref, typeof(*front), write);
243 
244 	kref_get(&front->ref);
245 	return 0;
246 }
247 
248 static void frontbuffer_retire(struct i915_active *ref)
249 {
250 	struct intel_frontbuffer *front =
251 		container_of(ref, typeof(*front), write);
252 
253 	intel_frontbuffer_flush(front, ORIGIN_CS);
254 	intel_frontbuffer_put(front);
255 }
256 
257 static void frontbuffer_release(struct kref *ref)
258 	__releases(&intel_bo_to_i915(front->obj)->display.fb_tracking.lock)
259 {
260 	struct intel_frontbuffer *ret, *front =
261 		container_of(ref, typeof(*front), ref);
262 	struct drm_i915_gem_object *obj = front->obj;
263 
264 	drm_WARN_ON(&intel_bo_to_i915(obj)->drm, atomic_read(&front->bits));
265 
266 	i915_ggtt_clear_scanout(obj);
267 
268 	ret = i915_gem_object_set_frontbuffer(obj, NULL);
269 	drm_WARN_ON(&intel_bo_to_i915(obj)->drm, ret);
270 	spin_unlock(&intel_bo_to_i915(obj)->display.fb_tracking.lock);
271 
272 	i915_active_fini(&front->write);
273 	kfree_rcu(front, rcu);
274 }
275 
276 struct intel_frontbuffer *
277 intel_frontbuffer_get(struct drm_i915_gem_object *obj)
278 {
279 	struct drm_i915_private *i915 = intel_bo_to_i915(obj);
280 	struct intel_frontbuffer *front, *cur;
281 
282 	front = i915_gem_object_get_frontbuffer(obj);
283 	if (front)
284 		return front;
285 
286 	front = kmalloc(sizeof(*front), GFP_KERNEL);
287 	if (!front)
288 		return NULL;
289 
290 	front->obj = obj;
291 	kref_init(&front->ref);
292 	atomic_set(&front->bits, 0);
293 	i915_active_init(&front->write,
294 			 frontbuffer_active,
295 			 frontbuffer_retire,
296 			 I915_ACTIVE_RETIRE_SLEEPS);
297 	INIT_WORK(&front->flush_work, intel_frontbuffer_flush_work);
298 
299 	spin_lock(&i915->display.fb_tracking.lock);
300 	cur = i915_gem_object_set_frontbuffer(obj, front);
301 	spin_unlock(&i915->display.fb_tracking.lock);
302 	if (cur != front)
303 		kfree(front);
304 	return cur;
305 }
306 
307 void intel_frontbuffer_put(struct intel_frontbuffer *front)
308 {
309 	kref_put_lock(&front->ref,
310 		      frontbuffer_release,
311 		      &intel_bo_to_i915(front->obj)->display.fb_tracking.lock);
312 }
313 
314 /**
315  * intel_frontbuffer_track - update frontbuffer tracking
316  * @old: current buffer for the frontbuffer slots
317  * @new: new buffer for the frontbuffer slots
318  * @frontbuffer_bits: bitmask of frontbuffer slots
319  *
320  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
321  * from @old and setting them in @new. Both @old and @new can be NULL.
322  */
323 void intel_frontbuffer_track(struct intel_frontbuffer *old,
324 			     struct intel_frontbuffer *new,
325 			     unsigned int frontbuffer_bits)
326 {
327 	/*
328 	 * Control of individual bits within the mask are guarded by
329 	 * the owning plane->mutex, i.e. we can never see concurrent
330 	 * manipulation of individual bits. But since the bitfield as a whole
331 	 * is updated using RMW, we need to use atomics in order to update
332 	 * the bits.
333 	 */
334 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
335 		     BITS_PER_TYPE(atomic_t));
336 	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32);
337 	BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE);
338 
339 	if (old) {
340 		drm_WARN_ON(&intel_bo_to_i915(old->obj)->drm,
341 			    !(atomic_read(&old->bits) & frontbuffer_bits));
342 		atomic_andnot(frontbuffer_bits, &old->bits);
343 	}
344 
345 	if (new) {
346 		drm_WARN_ON(&intel_bo_to_i915(new->obj)->drm,
347 			    atomic_read(&new->bits) & frontbuffer_bits);
348 		atomic_or(frontbuffer_bits, &new->bits);
349 	}
350 }
351