1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 * 5 */ 6 7 #include <drm/drm_vblank.h> 8 9 #include "i915_drv.h" 10 #include "i915_irq.h" 11 #include "i915_reg.h" 12 #include "intel_crtc.h" 13 #include "intel_de.h" 14 #include "intel_display_types.h" 15 #include "intel_dsb.h" 16 #include "intel_dsb_buffer.h" 17 #include "intel_dsb_regs.h" 18 #include "intel_vblank.h" 19 #include "intel_vrr.h" 20 #include "skl_watermark.h" 21 22 #define CACHELINE_BYTES 64 23 24 struct intel_dsb { 25 enum intel_dsb_id id; 26 27 struct intel_dsb_buffer dsb_buf; 28 struct intel_crtc *crtc; 29 30 /* 31 * maximum number of dwords the buffer will hold. 32 */ 33 unsigned int size; 34 35 /* 36 * free_pos will point the first free dword and 37 * help in calculating tail of command buffer. 38 */ 39 unsigned int free_pos; 40 41 /* 42 * Previously emitted DSB instruction. Used to 43 * identify/adjust the instruction for indexed 44 * register writes. 45 */ 46 u32 ins[2]; 47 48 /* 49 * Start of the previously emitted DSB instruction. 50 * Used to adjust the instruction for indexed 51 * register writes. 52 */ 53 unsigned int ins_start_offset; 54 55 u32 chicken; 56 int hw_dewake_scanline; 57 }; 58 59 /** 60 * DOC: DSB 61 * 62 * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory 63 * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA 64 * engine that can be programmed to download the DSB from memory. 65 * It allows driver to batch submit display HW programming. This helps to 66 * reduce loading time and CPU activity, thereby making the context switch 67 * faster. DSB Support added from Gen12 Intel graphics based platform. 68 * 69 * DSB's can access only the pipe, plane, and transcoder Data Island Packet 70 * registers. 71 * 72 * DSB HW can support only register writes (both indexed and direct MMIO 73 * writes). There are no registers reads possible with DSB HW engine. 74 */ 75 76 /* DSB opcodes. */ 77 #define DSB_OPCODE_SHIFT 24 78 #define DSB_OPCODE_NOOP 0x0 79 #define DSB_OPCODE_MMIO_WRITE 0x1 80 #define DSB_BYTE_EN 0xf 81 #define DSB_BYTE_EN_SHIFT 20 82 #define DSB_REG_VALUE_MASK 0xfffff 83 #define DSB_OPCODE_WAIT_USEC 0x2 84 #define DSB_OPCODE_WAIT_SCANLINE 0x3 85 #define DSB_OPCODE_WAIT_VBLANKS 0x4 86 #define DSB_OPCODE_WAIT_DSL_IN 0x5 87 #define DSB_OPCODE_WAIT_DSL_OUT 0x6 88 #define DSB_SCANLINE_UPPER_SHIFT 20 89 #define DSB_SCANLINE_LOWER_SHIFT 0 90 #define DSB_OPCODE_INTERRUPT 0x7 91 #define DSB_OPCODE_INDEXED_WRITE 0x9 92 /* see DSB_REG_VALUE_MASK */ 93 #define DSB_OPCODE_POLL 0xA 94 /* see DSB_REG_VALUE_MASK */ 95 96 static bool pre_commit_is_vrr_active(struct intel_atomic_state *state, 97 struct intel_crtc *crtc) 98 { 99 const struct intel_crtc_state *old_crtc_state = 100 intel_atomic_get_old_crtc_state(state, crtc); 101 const struct intel_crtc_state *new_crtc_state = 102 intel_atomic_get_new_crtc_state(state, crtc); 103 104 /* VRR will be enabled afterwards, if necessary */ 105 if (intel_crtc_needs_modeset(new_crtc_state)) 106 return false; 107 108 /* VRR will have been disabled during intel_pre_plane_update() */ 109 return old_crtc_state->vrr.enable && !intel_crtc_vrr_disabling(state, crtc); 110 } 111 112 static int dsb_vblank_delay(struct intel_atomic_state *state, 113 struct intel_crtc *crtc) 114 { 115 const struct intel_crtc_state *crtc_state = 116 intel_pre_commit_crtc_state(state, crtc); 117 118 if (pre_commit_is_vrr_active(state, crtc)) 119 return intel_vrr_vblank_delay(crtc_state); 120 else 121 return intel_mode_vblank_delay(&crtc_state->hw.adjusted_mode); 122 } 123 124 static int dsb_vtotal(struct intel_atomic_state *state, 125 struct intel_crtc *crtc) 126 { 127 const struct intel_crtc_state *crtc_state = 128 intel_pre_commit_crtc_state(state, crtc); 129 130 if (pre_commit_is_vrr_active(state, crtc)) 131 return intel_vrr_vmax_vtotal(crtc_state); 132 else 133 return intel_mode_vtotal(&crtc_state->hw.adjusted_mode); 134 } 135 136 static int dsb_dewake_scanline_start(struct intel_atomic_state *state, 137 struct intel_crtc *crtc) 138 { 139 const struct intel_crtc_state *crtc_state = 140 intel_pre_commit_crtc_state(state, crtc); 141 struct drm_i915_private *i915 = to_i915(state->base.dev); 142 unsigned int latency = skl_watermark_max_latency(i915, 0); 143 144 return intel_mode_vdisplay(&crtc_state->hw.adjusted_mode) - 145 intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode, latency); 146 } 147 148 static int dsb_dewake_scanline_end(struct intel_atomic_state *state, 149 struct intel_crtc *crtc) 150 { 151 const struct intel_crtc_state *crtc_state = 152 intel_pre_commit_crtc_state(state, crtc); 153 154 return intel_mode_vdisplay(&crtc_state->hw.adjusted_mode); 155 } 156 157 static int dsb_scanline_to_hw(struct intel_atomic_state *state, 158 struct intel_crtc *crtc, int scanline) 159 { 160 const struct intel_crtc_state *crtc_state = 161 intel_pre_commit_crtc_state(state, crtc); 162 int vtotal = dsb_vtotal(state, crtc); 163 164 return (scanline + vtotal - intel_crtc_scanline_offset(crtc_state)) % vtotal; 165 } 166 167 static u32 dsb_chicken(struct intel_atomic_state *state, 168 struct intel_crtc *crtc) 169 { 170 if (pre_commit_is_vrr_active(state, crtc)) 171 return DSB_SKIP_WAITS_EN | 172 DSB_CTRL_WAIT_SAFE_WINDOW | 173 DSB_CTRL_NO_WAIT_VBLANK | 174 DSB_INST_WAIT_SAFE_WINDOW | 175 DSB_INST_NO_WAIT_VBLANK; 176 else 177 return DSB_SKIP_WAITS_EN; 178 } 179 180 static bool assert_dsb_has_room(struct intel_dsb *dsb) 181 { 182 struct intel_crtc *crtc = dsb->crtc; 183 struct intel_display *display = to_intel_display(crtc->base.dev); 184 185 /* each instruction is 2 dwords */ 186 return !drm_WARN(display->drm, dsb->free_pos > dsb->size - 2, 187 "[CRTC:%d:%s] DSB %d buffer overflow\n", 188 crtc->base.base.id, crtc->base.name, dsb->id); 189 } 190 191 static void intel_dsb_dump(struct intel_dsb *dsb) 192 { 193 struct intel_crtc *crtc = dsb->crtc; 194 struct intel_display *display = to_intel_display(crtc->base.dev); 195 int i; 196 197 drm_dbg_kms(display->drm, "[CRTC:%d:%s] DSB %d commands {\n", 198 crtc->base.base.id, crtc->base.name, dsb->id); 199 for (i = 0; i < ALIGN(dsb->free_pos, 64 / 4); i += 4) 200 drm_dbg_kms(display->drm, 201 " 0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4, 202 intel_dsb_buffer_read(&dsb->dsb_buf, i), 203 intel_dsb_buffer_read(&dsb->dsb_buf, i + 1), 204 intel_dsb_buffer_read(&dsb->dsb_buf, i + 2), 205 intel_dsb_buffer_read(&dsb->dsb_buf, i + 3)); 206 drm_dbg_kms(display->drm, "}\n"); 207 } 208 209 static bool is_dsb_busy(struct intel_display *display, enum pipe pipe, 210 enum intel_dsb_id dsb_id) 211 { 212 return intel_de_read_fw(display, DSB_CTRL(pipe, dsb_id)) & DSB_STATUS_BUSY; 213 } 214 215 static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw) 216 { 217 if (!assert_dsb_has_room(dsb)) 218 return; 219 220 /* Every instruction should be 8 byte aligned. */ 221 dsb->free_pos = ALIGN(dsb->free_pos, 2); 222 223 dsb->ins_start_offset = dsb->free_pos; 224 dsb->ins[0] = ldw; 225 dsb->ins[1] = udw; 226 227 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, dsb->ins[0]); 228 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, dsb->ins[1]); 229 } 230 231 static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb, 232 u32 opcode, i915_reg_t reg) 233 { 234 u32 prev_opcode, prev_reg; 235 236 /* 237 * Nothing emitted yet? Must check before looking 238 * at the actual data since i915_gem_object_create_internal() 239 * does *not* give you zeroed memory! 240 */ 241 if (dsb->free_pos == 0) 242 return false; 243 244 prev_opcode = dsb->ins[1] & ~DSB_REG_VALUE_MASK; 245 prev_reg = dsb->ins[1] & DSB_REG_VALUE_MASK; 246 247 return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg); 248 } 249 250 static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg) 251 { 252 return intel_dsb_prev_ins_is_write(dsb, 253 DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT, 254 reg); 255 } 256 257 /** 258 * intel_dsb_reg_write_indexed() - Emit indexed register write to the DSB context 259 * @dsb: DSB context 260 * @reg: register address. 261 * @val: value. 262 * 263 * This function is used for writing register-value pair in command 264 * buffer of DSB. 265 * 266 * Note that indexed writes are slower than normal MMIO writes 267 * for a small number (less than 5 or so) of writes to the same 268 * register. 269 */ 270 void intel_dsb_reg_write_indexed(struct intel_dsb *dsb, 271 i915_reg_t reg, u32 val) 272 { 273 /* 274 * For example the buffer will look like below for 3 dwords for auto 275 * increment register: 276 * +--------------------------------------------------------+ 277 * | size = 3 | offset &| value1 | value2 | value3 | zero | 278 * | | opcode | | | | | 279 * +--------------------------------------------------------+ 280 * + + + + + + + 281 * 0 4 8 12 16 20 24 282 * Byte 283 * 284 * As every instruction is 8 byte aligned the index of dsb instruction 285 * will start always from even number while dealing with u32 array. If 286 * we are writing odd no of dwords, Zeros will be added in the end for 287 * padding. 288 */ 289 if (!intel_dsb_prev_ins_is_indexed_write(dsb, reg)) 290 intel_dsb_emit(dsb, 0, /* count */ 291 (DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) | 292 i915_mmio_reg_offset(reg)); 293 294 if (!assert_dsb_has_room(dsb)) 295 return; 296 297 /* Update the count */ 298 dsb->ins[0]++; 299 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 0, 300 dsb->ins[0]); 301 302 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, val); 303 /* if number of data words is odd, then the last dword should be 0.*/ 304 if (dsb->free_pos & 0x1) 305 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos, 0); 306 } 307 308 void intel_dsb_reg_write(struct intel_dsb *dsb, 309 i915_reg_t reg, u32 val) 310 { 311 intel_dsb_emit(dsb, val, 312 (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | 313 (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) | 314 i915_mmio_reg_offset(reg)); 315 } 316 317 static u32 intel_dsb_mask_to_byte_en(u32 mask) 318 { 319 return (!!(mask & 0xff000000) << 3 | 320 !!(mask & 0x00ff0000) << 2 | 321 !!(mask & 0x0000ff00) << 1 | 322 !!(mask & 0x000000ff) << 0); 323 } 324 325 /* Note: mask implemented via byte enables! */ 326 void intel_dsb_reg_write_masked(struct intel_dsb *dsb, 327 i915_reg_t reg, u32 mask, u32 val) 328 { 329 intel_dsb_emit(dsb, val, 330 (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | 331 (intel_dsb_mask_to_byte_en(mask) << DSB_BYTE_EN_SHIFT) | 332 i915_mmio_reg_offset(reg)); 333 } 334 335 void intel_dsb_noop(struct intel_dsb *dsb, int count) 336 { 337 int i; 338 339 for (i = 0; i < count; i++) 340 intel_dsb_emit(dsb, 0, 341 DSB_OPCODE_NOOP << DSB_OPCODE_SHIFT); 342 } 343 344 void intel_dsb_nonpost_start(struct intel_dsb *dsb) 345 { 346 struct intel_crtc *crtc = dsb->crtc; 347 enum pipe pipe = crtc->pipe; 348 349 intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id), 350 DSB_NON_POSTED, DSB_NON_POSTED); 351 intel_dsb_noop(dsb, 4); 352 } 353 354 void intel_dsb_nonpost_end(struct intel_dsb *dsb) 355 { 356 struct intel_crtc *crtc = dsb->crtc; 357 enum pipe pipe = crtc->pipe; 358 359 intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id), 360 DSB_NON_POSTED, 0); 361 intel_dsb_noop(dsb, 4); 362 } 363 364 void intel_dsb_interrupt(struct intel_dsb *dsb) 365 { 366 intel_dsb_emit(dsb, 0, 367 DSB_OPCODE_INTERRUPT << DSB_OPCODE_SHIFT); 368 } 369 370 void intel_dsb_wait_usec(struct intel_dsb *dsb, int count) 371 { 372 intel_dsb_emit(dsb, count, 373 DSB_OPCODE_WAIT_USEC << DSB_OPCODE_SHIFT); 374 } 375 376 void intel_dsb_wait_vblanks(struct intel_dsb *dsb, int count) 377 { 378 intel_dsb_emit(dsb, count, 379 DSB_OPCODE_WAIT_VBLANKS << DSB_OPCODE_SHIFT); 380 } 381 382 static void intel_dsb_emit_wait_dsl(struct intel_dsb *dsb, 383 u32 opcode, int lower, int upper) 384 { 385 u64 window = ((u64)upper << DSB_SCANLINE_UPPER_SHIFT) | 386 ((u64)lower << DSB_SCANLINE_LOWER_SHIFT); 387 388 intel_dsb_emit(dsb, lower_32_bits(window), 389 (opcode << DSB_OPCODE_SHIFT) | 390 upper_32_bits(window)); 391 } 392 393 static void intel_dsb_wait_dsl(struct intel_atomic_state *state, 394 struct intel_dsb *dsb, 395 int lower_in, int upper_in, 396 int lower_out, int upper_out) 397 { 398 struct intel_crtc *crtc = dsb->crtc; 399 400 lower_in = dsb_scanline_to_hw(state, crtc, lower_in); 401 upper_in = dsb_scanline_to_hw(state, crtc, upper_in); 402 403 lower_out = dsb_scanline_to_hw(state, crtc, lower_out); 404 upper_out = dsb_scanline_to_hw(state, crtc, upper_out); 405 406 if (upper_in >= lower_in) 407 intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_IN, 408 lower_in, upper_in); 409 else if (upper_out >= lower_out) 410 intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_OUT, 411 lower_out, upper_out); 412 else 413 drm_WARN_ON(crtc->base.dev, 1); /* assert_dsl_ok() should have caught it already */ 414 } 415 416 static void assert_dsl_ok(struct intel_atomic_state *state, 417 struct intel_dsb *dsb, 418 int start, int end) 419 { 420 struct intel_crtc *crtc = dsb->crtc; 421 int vtotal = dsb_vtotal(state, crtc); 422 423 /* 424 * Waiting for the entire frame doesn't make sense, 425 * (IN==don't wait, OUT=wait forever). 426 */ 427 drm_WARN(crtc->base.dev, (end - start + vtotal) % vtotal == vtotal - 1, 428 "[CRTC:%d:%s] DSB %d bad scanline window wait: %d-%d (vt=%d)\n", 429 crtc->base.base.id, crtc->base.name, dsb->id, 430 start, end, vtotal); 431 } 432 433 void intel_dsb_wait_scanline_in(struct intel_atomic_state *state, 434 struct intel_dsb *dsb, 435 int start, int end) 436 { 437 assert_dsl_ok(state, dsb, start, end); 438 439 intel_dsb_wait_dsl(state, dsb, 440 start, end, 441 end + 1, start - 1); 442 } 443 444 void intel_dsb_wait_scanline_out(struct intel_atomic_state *state, 445 struct intel_dsb *dsb, 446 int start, int end) 447 { 448 assert_dsl_ok(state, dsb, start, end); 449 450 intel_dsb_wait_dsl(state, dsb, 451 end + 1, start - 1, 452 start, end); 453 } 454 455 static void intel_dsb_align_tail(struct intel_dsb *dsb) 456 { 457 u32 aligned_tail, tail; 458 459 tail = dsb->free_pos * 4; 460 aligned_tail = ALIGN(tail, CACHELINE_BYTES); 461 462 if (aligned_tail > tail) 463 intel_dsb_buffer_memset(&dsb->dsb_buf, dsb->free_pos, 0, 464 aligned_tail - tail); 465 466 dsb->free_pos = aligned_tail / 4; 467 } 468 469 void intel_dsb_finish(struct intel_dsb *dsb) 470 { 471 struct intel_crtc *crtc = dsb->crtc; 472 473 /* 474 * DSB_FORCE_DEWAKE remains active even after DSB is 475 * disabled, so make sure to clear it (if set during 476 * intel_dsb_commit()). And clear DSB_ENABLE_DEWAKE as 477 * well for good measure. 478 */ 479 intel_dsb_reg_write(dsb, DSB_PMCTRL(crtc->pipe, dsb->id), 0); 480 intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(crtc->pipe, dsb->id), 481 DSB_FORCE_DEWAKE, 0); 482 483 intel_dsb_align_tail(dsb); 484 485 intel_dsb_buffer_flush_map(&dsb->dsb_buf); 486 } 487 488 static u32 dsb_error_int_status(struct intel_display *display) 489 { 490 u32 errors; 491 492 errors = DSB_GTT_FAULT_INT_STATUS | 493 DSB_RSPTIMEOUT_INT_STATUS | 494 DSB_POLL_ERR_INT_STATUS; 495 496 /* 497 * All the non-existing status bits operate as 498 * normal r/w bits, so any attempt to clear them 499 * will just end up setting them. Never do that so 500 * we won't mistake them for actual error interrupts. 501 */ 502 if (DISPLAY_VER(display) >= 14) 503 errors |= DSB_ATS_FAULT_INT_STATUS; 504 505 return errors; 506 } 507 508 static u32 dsb_error_int_en(struct intel_display *display) 509 { 510 u32 errors; 511 512 errors = DSB_GTT_FAULT_INT_EN | 513 DSB_RSPTIMEOUT_INT_EN | 514 DSB_POLL_ERR_INT_EN; 515 516 if (DISPLAY_VER(display) >= 14) 517 errors |= DSB_ATS_FAULT_INT_EN; 518 519 return errors; 520 } 521 522 void intel_dsb_vblank_evade(struct intel_atomic_state *state, 523 struct intel_dsb *dsb) 524 { 525 struct intel_crtc *crtc = dsb->crtc; 526 const struct intel_crtc_state *crtc_state = 527 intel_pre_commit_crtc_state(state, crtc); 528 /* FIXME calibrate sensibly */ 529 int latency = intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode, 20); 530 int start, end; 531 532 if (pre_commit_is_vrr_active(state, crtc)) { 533 int vblank_delay = intel_vrr_vblank_delay(crtc_state); 534 535 end = intel_vrr_vmin_vblank_start(crtc_state); 536 start = end - vblank_delay - latency; 537 intel_dsb_wait_scanline_out(state, dsb, start, end); 538 539 end = intel_vrr_vmax_vblank_start(crtc_state); 540 start = end - vblank_delay - latency; 541 intel_dsb_wait_scanline_out(state, dsb, start, end); 542 } else { 543 int vblank_delay = intel_mode_vblank_delay(&crtc_state->hw.adjusted_mode); 544 545 end = intel_mode_vblank_start(&crtc_state->hw.adjusted_mode); 546 start = end - vblank_delay - latency; 547 intel_dsb_wait_scanline_out(state, dsb, start, end); 548 } 549 } 550 551 static void _intel_dsb_chain(struct intel_atomic_state *state, 552 struct intel_dsb *dsb, 553 struct intel_dsb *chained_dsb, 554 u32 ctrl) 555 { 556 struct intel_display *display = to_intel_display(state->base.dev); 557 struct intel_crtc *crtc = dsb->crtc; 558 enum pipe pipe = crtc->pipe; 559 u32 tail; 560 561 if (drm_WARN_ON(display->drm, dsb->id == chained_dsb->id)) 562 return; 563 564 tail = chained_dsb->free_pos * 4; 565 if (drm_WARN_ON(display->drm, !IS_ALIGNED(tail, CACHELINE_BYTES))) 566 return; 567 568 intel_dsb_reg_write(dsb, DSB_CTRL(pipe, chained_dsb->id), 569 ctrl | DSB_ENABLE); 570 571 intel_dsb_reg_write(dsb, DSB_CHICKEN(pipe, chained_dsb->id), 572 dsb_chicken(state, crtc)); 573 574 intel_dsb_reg_write(dsb, DSB_INTERRUPT(pipe, chained_dsb->id), 575 dsb_error_int_status(display) | DSB_PROG_INT_STATUS | 576 dsb_error_int_en(display) | DSB_PROG_INT_EN); 577 578 if (ctrl & DSB_WAIT_FOR_VBLANK) { 579 int dewake_scanline = dsb_dewake_scanline_start(state, crtc); 580 int hw_dewake_scanline = dsb_scanline_to_hw(state, crtc, dewake_scanline); 581 582 intel_dsb_reg_write(dsb, DSB_PMCTRL(pipe, chained_dsb->id), 583 DSB_ENABLE_DEWAKE | 584 DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline)); 585 } 586 587 intel_dsb_reg_write(dsb, DSB_HEAD(pipe, chained_dsb->id), 588 intel_dsb_buffer_ggtt_offset(&chained_dsb->dsb_buf)); 589 590 intel_dsb_reg_write(dsb, DSB_TAIL(pipe, chained_dsb->id), 591 intel_dsb_buffer_ggtt_offset(&chained_dsb->dsb_buf) + tail); 592 593 if (ctrl & DSB_WAIT_FOR_VBLANK) { 594 /* 595 * Keep DEwake alive via the first DSB, in 596 * case we're already past dewake_scanline, 597 * and thus DSB_ENABLE_DEWAKE on the second 598 * DSB won't do its job. 599 */ 600 intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(pipe, dsb->id), 601 DSB_FORCE_DEWAKE, DSB_FORCE_DEWAKE); 602 603 intel_dsb_wait_scanline_out(state, dsb, 604 dsb_dewake_scanline_start(state, crtc), 605 dsb_dewake_scanline_end(state, crtc)); 606 } 607 } 608 609 void intel_dsb_chain(struct intel_atomic_state *state, 610 struct intel_dsb *dsb, 611 struct intel_dsb *chained_dsb, 612 bool wait_for_vblank) 613 { 614 _intel_dsb_chain(state, dsb, chained_dsb, 615 wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0); 616 } 617 618 void intel_dsb_wait_vblank_delay(struct intel_atomic_state *state, 619 struct intel_dsb *dsb) 620 { 621 struct intel_crtc *crtc = dsb->crtc; 622 const struct intel_crtc_state *crtc_state = 623 intel_pre_commit_crtc_state(state, crtc); 624 int usecs = intel_scanlines_to_usecs(&crtc_state->hw.adjusted_mode, 625 dsb_vblank_delay(state, crtc)) + 1; 626 627 intel_dsb_wait_usec(dsb, usecs); 628 } 629 630 static void _intel_dsb_commit(struct intel_dsb *dsb, u32 ctrl, 631 int hw_dewake_scanline) 632 { 633 struct intel_crtc *crtc = dsb->crtc; 634 struct intel_display *display = to_intel_display(crtc->base.dev); 635 enum pipe pipe = crtc->pipe; 636 u32 tail; 637 638 tail = dsb->free_pos * 4; 639 if (drm_WARN_ON(display->drm, !IS_ALIGNED(tail, CACHELINE_BYTES))) 640 return; 641 642 if (is_dsb_busy(display, pipe, dsb->id)) { 643 drm_err(display->drm, "[CRTC:%d:%s] DSB %d is busy\n", 644 crtc->base.base.id, crtc->base.name, dsb->id); 645 return; 646 } 647 648 intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), 649 ctrl | DSB_ENABLE); 650 651 intel_de_write_fw(display, DSB_CHICKEN(pipe, dsb->id), 652 dsb->chicken); 653 654 intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb->id), 655 dsb_error_int_status(display) | DSB_PROG_INT_STATUS | 656 dsb_error_int_en(display) | DSB_PROG_INT_EN); 657 658 intel_de_write_fw(display, DSB_HEAD(pipe, dsb->id), 659 intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf)); 660 661 if (hw_dewake_scanline >= 0) { 662 int diff, position; 663 664 intel_de_write_fw(display, DSB_PMCTRL(pipe, dsb->id), 665 DSB_ENABLE_DEWAKE | 666 DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline)); 667 668 /* 669 * Force DEwake immediately if we're already past 670 * or close to racing past the target scanline. 671 */ 672 position = intel_de_read_fw(display, PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK; 673 674 diff = hw_dewake_scanline - position; 675 intel_de_write_fw(display, DSB_PMCTRL_2(pipe, dsb->id), 676 (diff >= 0 && diff < 5 ? DSB_FORCE_DEWAKE : 0) | 677 DSB_BLOCK_DEWAKE_EXTENSION); 678 } 679 680 intel_de_write_fw(display, DSB_TAIL(pipe, dsb->id), 681 intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf) + tail); 682 } 683 684 /** 685 * intel_dsb_commit() - Trigger workload execution of DSB. 686 * @dsb: DSB context 687 * @wait_for_vblank: wait for vblank before executing 688 * 689 * This function is used to do actual write to hardware using DSB. 690 */ 691 void intel_dsb_commit(struct intel_dsb *dsb, 692 bool wait_for_vblank) 693 { 694 _intel_dsb_commit(dsb, 695 wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0, 696 wait_for_vblank ? dsb->hw_dewake_scanline : -1); 697 } 698 699 void intel_dsb_wait(struct intel_dsb *dsb) 700 { 701 struct intel_crtc *crtc = dsb->crtc; 702 struct intel_display *display = to_intel_display(crtc->base.dev); 703 enum pipe pipe = crtc->pipe; 704 705 if (wait_for(!is_dsb_busy(display, pipe, dsb->id), 1)) { 706 u32 offset = intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf); 707 708 intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), 709 DSB_ENABLE | DSB_HALT); 710 711 drm_err(display->drm, 712 "[CRTC:%d:%s] DSB %d timed out waiting for idle (current head=0x%x, head=0x%x, tail=0x%x)\n", 713 crtc->base.base.id, crtc->base.name, dsb->id, 714 intel_de_read_fw(display, DSB_CURRENT_HEAD(pipe, dsb->id)) - offset, 715 intel_de_read_fw(display, DSB_HEAD(pipe, dsb->id)) - offset, 716 intel_de_read_fw(display, DSB_TAIL(pipe, dsb->id)) - offset); 717 718 intel_dsb_dump(dsb); 719 } 720 721 /* Attempt to reset it */ 722 dsb->free_pos = 0; 723 dsb->ins_start_offset = 0; 724 dsb->ins[0] = 0; 725 dsb->ins[1] = 0; 726 727 intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), 0); 728 729 intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb->id), 730 dsb_error_int_status(display) | DSB_PROG_INT_STATUS); 731 } 732 733 /** 734 * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer. 735 * @state: the atomic state 736 * @crtc: the CRTC 737 * @dsb_id: the DSB engine to use 738 * @max_cmds: number of commands we need to fit into command buffer 739 * 740 * This function prepare the command buffer which is used to store dsb 741 * instructions with data. 742 * 743 * Returns: 744 * DSB context, NULL on failure 745 */ 746 struct intel_dsb *intel_dsb_prepare(struct intel_atomic_state *state, 747 struct intel_crtc *crtc, 748 enum intel_dsb_id dsb_id, 749 unsigned int max_cmds) 750 { 751 struct drm_i915_private *i915 = to_i915(state->base.dev); 752 intel_wakeref_t wakeref; 753 struct intel_dsb *dsb; 754 unsigned int size; 755 756 if (!HAS_DSB(i915)) 757 return NULL; 758 759 if (!i915->display.params.enable_dsb) 760 return NULL; 761 762 dsb = kzalloc(sizeof(*dsb), GFP_KERNEL); 763 if (!dsb) 764 goto out; 765 766 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 767 768 /* ~1 qword per instruction, full cachelines */ 769 size = ALIGN(max_cmds * 8, CACHELINE_BYTES); 770 771 if (!intel_dsb_buffer_create(crtc, &dsb->dsb_buf, size)) 772 goto out_put_rpm; 773 774 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 775 776 dsb->id = dsb_id; 777 dsb->crtc = crtc; 778 dsb->size = size / 4; /* in dwords */ 779 780 dsb->chicken = dsb_chicken(state, crtc); 781 dsb->hw_dewake_scanline = 782 dsb_scanline_to_hw(state, crtc, dsb_dewake_scanline_start(state, crtc)); 783 784 return dsb; 785 786 out_put_rpm: 787 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 788 kfree(dsb); 789 out: 790 drm_info_once(&i915->drm, 791 "[CRTC:%d:%s] DSB %d queue setup failed, will fallback to MMIO for display HW programming\n", 792 crtc->base.base.id, crtc->base.name, dsb_id); 793 794 return NULL; 795 } 796 797 /** 798 * intel_dsb_cleanup() - To cleanup DSB context. 799 * @dsb: DSB context 800 * 801 * This function cleanup the DSB context by unpinning and releasing 802 * the VMA object associated with it. 803 */ 804 void intel_dsb_cleanup(struct intel_dsb *dsb) 805 { 806 intel_dsb_buffer_cleanup(&dsb->dsb_buf); 807 kfree(dsb); 808 } 809 810 void intel_dsb_irq_handler(struct intel_display *display, 811 enum pipe pipe, enum intel_dsb_id dsb_id) 812 { 813 struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe); 814 u32 tmp, errors; 815 816 tmp = intel_de_read_fw(display, DSB_INTERRUPT(pipe, dsb_id)); 817 intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb_id), tmp); 818 819 if (tmp & DSB_PROG_INT_STATUS) { 820 spin_lock(&display->drm->event_lock); 821 822 if (crtc->dsb_event) { 823 /* 824 * Update vblank counter/timestmap in case it 825 * hasn't been done yet for this frame. 826 */ 827 drm_crtc_accurate_vblank_count(&crtc->base); 828 829 drm_crtc_send_vblank_event(&crtc->base, crtc->dsb_event); 830 crtc->dsb_event = NULL; 831 } 832 833 spin_unlock(&display->drm->event_lock); 834 } 835 836 errors = tmp & dsb_error_int_status(display); 837 if (errors) 838 drm_err(display->drm, "[CRTC:%d:%s] DSB %d error interrupt: 0x%x\n", 839 crtc->base.base.id, crtc->base.name, dsb_id, errors); 840 } 841