1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 * 5 */ 6 7 #include "i915_drv.h" 8 #include "i915_irq.h" 9 #include "intel_crtc.h" 10 #include "intel_de.h" 11 #include "intel_display_types.h" 12 #include "intel_dsb.h" 13 #include "intel_dsb_buffer.h" 14 #include "intel_dsb_regs.h" 15 #include "intel_vblank.h" 16 #include "intel_vrr.h" 17 #include "skl_watermark.h" 18 19 #define CACHELINE_BYTES 64 20 21 struct intel_dsb { 22 enum intel_dsb_id id; 23 24 struct intel_dsb_buffer dsb_buf; 25 struct intel_crtc *crtc; 26 27 /* 28 * maximum number of dwords the buffer will hold. 29 */ 30 unsigned int size; 31 32 /* 33 * free_pos will point the first free dword and 34 * help in calculating tail of command buffer. 35 */ 36 unsigned int free_pos; 37 38 /* 39 * ins_start_offset will help to store start dword of the dsb 40 * instuction and help in identifying the batch of auto-increment 41 * register. 42 */ 43 unsigned int ins_start_offset; 44 45 int dewake_scanline; 46 }; 47 48 /** 49 * DOC: DSB 50 * 51 * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory 52 * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA 53 * engine that can be programmed to download the DSB from memory. 54 * It allows driver to batch submit display HW programming. This helps to 55 * reduce loading time and CPU activity, thereby making the context switch 56 * faster. DSB Support added from Gen12 Intel graphics based platform. 57 * 58 * DSB's can access only the pipe, plane, and transcoder Data Island Packet 59 * registers. 60 * 61 * DSB HW can support only register writes (both indexed and direct MMIO 62 * writes). There are no registers reads possible with DSB HW engine. 63 */ 64 65 /* DSB opcodes. */ 66 #define DSB_OPCODE_SHIFT 24 67 #define DSB_OPCODE_NOOP 0x0 68 #define DSB_OPCODE_MMIO_WRITE 0x1 69 #define DSB_BYTE_EN 0xf 70 #define DSB_BYTE_EN_SHIFT 20 71 #define DSB_REG_VALUE_MASK 0xfffff 72 #define DSB_OPCODE_WAIT_USEC 0x2 73 #define DSB_OPCODE_WAIT_SCANLINE 0x3 74 #define DSB_OPCODE_WAIT_VBLANKS 0x4 75 #define DSB_OPCODE_WAIT_DSL_IN 0x5 76 #define DSB_OPCODE_WAIT_DSL_OUT 0x6 77 #define DSB_SCANLINE_UPPER_SHIFT 20 78 #define DSB_SCANLINE_LOWER_SHIFT 0 79 #define DSB_OPCODE_INTERRUPT 0x7 80 #define DSB_OPCODE_INDEXED_WRITE 0x9 81 /* see DSB_REG_VALUE_MASK */ 82 #define DSB_OPCODE_POLL 0xA 83 /* see DSB_REG_VALUE_MASK */ 84 85 static bool assert_dsb_has_room(struct intel_dsb *dsb) 86 { 87 struct intel_crtc *crtc = dsb->crtc; 88 struct intel_display *display = to_intel_display(crtc->base.dev); 89 90 /* each instruction is 2 dwords */ 91 return !drm_WARN(display->drm, dsb->free_pos > dsb->size - 2, 92 "[CRTC:%d:%s] DSB %d buffer overflow\n", 93 crtc->base.base.id, crtc->base.name, dsb->id); 94 } 95 96 static void intel_dsb_dump(struct intel_dsb *dsb) 97 { 98 struct intel_crtc *crtc = dsb->crtc; 99 struct intel_display *display = to_intel_display(crtc->base.dev); 100 int i; 101 102 drm_dbg_kms(display->drm, "[CRTC:%d:%s] DSB %d commands {\n", 103 crtc->base.base.id, crtc->base.name, dsb->id); 104 for (i = 0; i < ALIGN(dsb->free_pos, 64 / 4); i += 4) 105 drm_dbg_kms(display->drm, 106 " 0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4, 107 intel_dsb_buffer_read(&dsb->dsb_buf, i), 108 intel_dsb_buffer_read(&dsb->dsb_buf, i + 1), 109 intel_dsb_buffer_read(&dsb->dsb_buf, i + 2), 110 intel_dsb_buffer_read(&dsb->dsb_buf, i + 3)); 111 drm_dbg_kms(display->drm, "}\n"); 112 } 113 114 static bool is_dsb_busy(struct intel_display *display, enum pipe pipe, 115 enum intel_dsb_id dsb_id) 116 { 117 return intel_de_read_fw(display, DSB_CTRL(pipe, dsb_id)) & DSB_STATUS_BUSY; 118 } 119 120 static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw) 121 { 122 if (!assert_dsb_has_room(dsb)) 123 return; 124 125 /* Every instruction should be 8 byte aligned. */ 126 dsb->free_pos = ALIGN(dsb->free_pos, 2); 127 128 dsb->ins_start_offset = dsb->free_pos; 129 130 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, ldw); 131 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, udw); 132 } 133 134 static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb, 135 u32 opcode, i915_reg_t reg) 136 { 137 u32 prev_opcode, prev_reg; 138 139 /* 140 * Nothing emitted yet? Must check before looking 141 * at the actual data since i915_gem_object_create_internal() 142 * does *not* give you zeroed memory! 143 */ 144 if (dsb->free_pos == 0) 145 return false; 146 147 prev_opcode = intel_dsb_buffer_read(&dsb->dsb_buf, 148 dsb->ins_start_offset + 1) & ~DSB_REG_VALUE_MASK; 149 prev_reg = intel_dsb_buffer_read(&dsb->dsb_buf, 150 dsb->ins_start_offset + 1) & DSB_REG_VALUE_MASK; 151 152 return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg); 153 } 154 155 static bool intel_dsb_prev_ins_is_mmio_write(struct intel_dsb *dsb, i915_reg_t reg) 156 { 157 /* only full byte-enables can be converted to indexed writes */ 158 return intel_dsb_prev_ins_is_write(dsb, 159 DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT | 160 DSB_BYTE_EN << DSB_BYTE_EN_SHIFT, 161 reg); 162 } 163 164 static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg) 165 { 166 return intel_dsb_prev_ins_is_write(dsb, 167 DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT, 168 reg); 169 } 170 171 /** 172 * intel_dsb_reg_write() - Emit register wriite to the DSB context 173 * @dsb: DSB context 174 * @reg: register address. 175 * @val: value. 176 * 177 * This function is used for writing register-value pair in command 178 * buffer of DSB. 179 */ 180 void intel_dsb_reg_write(struct intel_dsb *dsb, 181 i915_reg_t reg, u32 val) 182 { 183 u32 old_val; 184 185 /* 186 * For example the buffer will look like below for 3 dwords for auto 187 * increment register: 188 * +--------------------------------------------------------+ 189 * | size = 3 | offset &| value1 | value2 | value3 | zero | 190 * | | opcode | | | | | 191 * +--------------------------------------------------------+ 192 * + + + + + + + 193 * 0 4 8 12 16 20 24 194 * Byte 195 * 196 * As every instruction is 8 byte aligned the index of dsb instruction 197 * will start always from even number while dealing with u32 array. If 198 * we are writing odd no of dwords, Zeros will be added in the end for 199 * padding. 200 */ 201 if (!intel_dsb_prev_ins_is_mmio_write(dsb, reg) && 202 !intel_dsb_prev_ins_is_indexed_write(dsb, reg)) { 203 intel_dsb_emit(dsb, val, 204 (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | 205 (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) | 206 i915_mmio_reg_offset(reg)); 207 } else { 208 if (!assert_dsb_has_room(dsb)) 209 return; 210 211 /* convert to indexed write? */ 212 if (intel_dsb_prev_ins_is_mmio_write(dsb, reg)) { 213 u32 prev_val = intel_dsb_buffer_read(&dsb->dsb_buf, 214 dsb->ins_start_offset + 0); 215 216 intel_dsb_buffer_write(&dsb->dsb_buf, 217 dsb->ins_start_offset + 0, 1); /* count */ 218 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 1, 219 (DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) | 220 i915_mmio_reg_offset(reg)); 221 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 2, prev_val); 222 223 dsb->free_pos++; 224 } 225 226 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, val); 227 /* Update the count */ 228 old_val = intel_dsb_buffer_read(&dsb->dsb_buf, dsb->ins_start_offset); 229 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset, old_val + 1); 230 231 /* if number of data words is odd, then the last dword should be 0.*/ 232 if (dsb->free_pos & 0x1) 233 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos, 0); 234 } 235 } 236 237 static u32 intel_dsb_mask_to_byte_en(u32 mask) 238 { 239 return (!!(mask & 0xff000000) << 3 | 240 !!(mask & 0x00ff0000) << 2 | 241 !!(mask & 0x0000ff00) << 1 | 242 !!(mask & 0x000000ff) << 0); 243 } 244 245 /* Note: mask implemented via byte enables! */ 246 void intel_dsb_reg_write_masked(struct intel_dsb *dsb, 247 i915_reg_t reg, u32 mask, u32 val) 248 { 249 intel_dsb_emit(dsb, val, 250 (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | 251 (intel_dsb_mask_to_byte_en(mask) << DSB_BYTE_EN_SHIFT) | 252 i915_mmio_reg_offset(reg)); 253 } 254 255 void intel_dsb_noop(struct intel_dsb *dsb, int count) 256 { 257 int i; 258 259 for (i = 0; i < count; i++) 260 intel_dsb_emit(dsb, 0, 261 DSB_OPCODE_NOOP << DSB_OPCODE_SHIFT); 262 } 263 264 void intel_dsb_nonpost_start(struct intel_dsb *dsb) 265 { 266 struct intel_crtc *crtc = dsb->crtc; 267 enum pipe pipe = crtc->pipe; 268 269 intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id), 270 DSB_NON_POSTED, DSB_NON_POSTED); 271 intel_dsb_noop(dsb, 4); 272 } 273 274 void intel_dsb_nonpost_end(struct intel_dsb *dsb) 275 { 276 struct intel_crtc *crtc = dsb->crtc; 277 enum pipe pipe = crtc->pipe; 278 279 intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id), 280 DSB_NON_POSTED, 0); 281 intel_dsb_noop(dsb, 4); 282 } 283 284 static void intel_dsb_align_tail(struct intel_dsb *dsb) 285 { 286 u32 aligned_tail, tail; 287 288 tail = dsb->free_pos * 4; 289 aligned_tail = ALIGN(tail, CACHELINE_BYTES); 290 291 if (aligned_tail > tail) 292 intel_dsb_buffer_memset(&dsb->dsb_buf, dsb->free_pos, 0, 293 aligned_tail - tail); 294 295 dsb->free_pos = aligned_tail / 4; 296 } 297 298 void intel_dsb_finish(struct intel_dsb *dsb) 299 { 300 struct intel_crtc *crtc = dsb->crtc; 301 302 /* 303 * DSB_FORCE_DEWAKE remains active even after DSB is 304 * disabled, so make sure to clear it (if set during 305 * intel_dsb_commit()). 306 */ 307 intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(crtc->pipe, dsb->id), 308 DSB_FORCE_DEWAKE, 0); 309 310 intel_dsb_align_tail(dsb); 311 312 intel_dsb_buffer_flush_map(&dsb->dsb_buf); 313 } 314 315 static int intel_dsb_dewake_scanline(const struct intel_crtc_state *crtc_state) 316 { 317 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 318 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 319 unsigned int latency = skl_watermark_max_latency(i915, 0); 320 int vblank_start; 321 322 if (crtc_state->vrr.enable) 323 vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 324 else 325 vblank_start = intel_mode_vblank_start(adjusted_mode); 326 327 return max(0, vblank_start - intel_usecs_to_scanlines(adjusted_mode, latency)); 328 } 329 330 static u32 dsb_chicken(struct intel_crtc *crtc) 331 { 332 if (crtc->mode_flags & I915_MODE_FLAG_VRR) 333 return DSB_SKIP_WAITS_EN | 334 DSB_CTRL_WAIT_SAFE_WINDOW | 335 DSB_CTRL_NO_WAIT_VBLANK | 336 DSB_INST_WAIT_SAFE_WINDOW | 337 DSB_INST_NO_WAIT_VBLANK; 338 else 339 return DSB_SKIP_WAITS_EN; 340 } 341 342 static void _intel_dsb_commit(struct intel_dsb *dsb, u32 ctrl, 343 int dewake_scanline) 344 { 345 struct intel_crtc *crtc = dsb->crtc; 346 struct intel_display *display = to_intel_display(crtc->base.dev); 347 enum pipe pipe = crtc->pipe; 348 u32 tail; 349 350 tail = dsb->free_pos * 4; 351 if (drm_WARN_ON(display->drm, !IS_ALIGNED(tail, CACHELINE_BYTES))) 352 return; 353 354 if (is_dsb_busy(display, pipe, dsb->id)) { 355 drm_err(display->drm, "[CRTC:%d:%s] DSB %d is busy\n", 356 crtc->base.base.id, crtc->base.name, dsb->id); 357 return; 358 } 359 360 intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), 361 ctrl | DSB_ENABLE); 362 363 intel_de_write_fw(display, DSB_CHICKEN(pipe, dsb->id), 364 dsb_chicken(crtc)); 365 366 intel_de_write_fw(display, DSB_HEAD(pipe, dsb->id), 367 intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf)); 368 369 if (dewake_scanline >= 0) { 370 int diff, hw_dewake_scanline; 371 372 hw_dewake_scanline = intel_crtc_scanline_to_hw(crtc, dewake_scanline); 373 374 intel_de_write_fw(display, DSB_PMCTRL(pipe, dsb->id), 375 DSB_ENABLE_DEWAKE | 376 DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline)); 377 378 /* 379 * Force DEwake immediately if we're already past 380 * or close to racing past the target scanline. 381 */ 382 diff = dewake_scanline - intel_get_crtc_scanline(crtc); 383 intel_de_write_fw(display, DSB_PMCTRL_2(pipe, dsb->id), 384 (diff >= 0 && diff < 5 ? DSB_FORCE_DEWAKE : 0) | 385 DSB_BLOCK_DEWAKE_EXTENSION); 386 } 387 388 intel_de_write_fw(display, DSB_TAIL(pipe, dsb->id), 389 intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf) + tail); 390 } 391 392 /** 393 * intel_dsb_commit() - Trigger workload execution of DSB. 394 * @dsb: DSB context 395 * @wait_for_vblank: wait for vblank before executing 396 * 397 * This function is used to do actual write to hardware using DSB. 398 */ 399 void intel_dsb_commit(struct intel_dsb *dsb, 400 bool wait_for_vblank) 401 { 402 _intel_dsb_commit(dsb, 403 wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0, 404 wait_for_vblank ? dsb->dewake_scanline : -1); 405 } 406 407 void intel_dsb_wait(struct intel_dsb *dsb) 408 { 409 struct intel_crtc *crtc = dsb->crtc; 410 struct intel_display *display = to_intel_display(crtc->base.dev); 411 enum pipe pipe = crtc->pipe; 412 413 if (wait_for(!is_dsb_busy(display, pipe, dsb->id), 1)) { 414 u32 offset = intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf); 415 416 intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), 417 DSB_ENABLE | DSB_HALT); 418 419 drm_err(display->drm, 420 "[CRTC:%d:%s] DSB %d timed out waiting for idle (current head=0x%x, head=0x%x, tail=0x%x)\n", 421 crtc->base.base.id, crtc->base.name, dsb->id, 422 intel_de_read_fw(display, DSB_CURRENT_HEAD(pipe, dsb->id)) - offset, 423 intel_de_read_fw(display, DSB_HEAD(pipe, dsb->id)) - offset, 424 intel_de_read_fw(display, DSB_TAIL(pipe, dsb->id)) - offset); 425 426 intel_dsb_dump(dsb); 427 } 428 429 /* Attempt to reset it */ 430 dsb->free_pos = 0; 431 dsb->ins_start_offset = 0; 432 intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), 0); 433 } 434 435 /** 436 * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer. 437 * @state: the atomic state 438 * @crtc: the CRTC 439 * @dsb_id: the DSB engine to use 440 * @max_cmds: number of commands we need to fit into command buffer 441 * 442 * This function prepare the command buffer which is used to store dsb 443 * instructions with data. 444 * 445 * Returns: 446 * DSB context, NULL on failure 447 */ 448 struct intel_dsb *intel_dsb_prepare(struct intel_atomic_state *state, 449 struct intel_crtc *crtc, 450 enum intel_dsb_id dsb_id, 451 unsigned int max_cmds) 452 { 453 struct drm_i915_private *i915 = to_i915(state->base.dev); 454 const struct intel_crtc_state *crtc_state = 455 intel_atomic_get_new_crtc_state(state, crtc); 456 intel_wakeref_t wakeref; 457 struct intel_dsb *dsb; 458 unsigned int size; 459 460 if (!HAS_DSB(i915)) 461 return NULL; 462 463 if (!i915->display.params.enable_dsb) 464 return NULL; 465 466 /* TODO: DSB is broken in Xe KMD, so disabling it until fixed */ 467 if (!IS_ENABLED(I915)) 468 return NULL; 469 470 dsb = kzalloc(sizeof(*dsb), GFP_KERNEL); 471 if (!dsb) 472 goto out; 473 474 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 475 476 /* ~1 qword per instruction, full cachelines */ 477 size = ALIGN(max_cmds * 8, CACHELINE_BYTES); 478 479 if (!intel_dsb_buffer_create(crtc, &dsb->dsb_buf, size)) 480 goto out_put_rpm; 481 482 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 483 484 dsb->id = dsb_id; 485 dsb->crtc = crtc; 486 dsb->size = size / 4; /* in dwords */ 487 dsb->free_pos = 0; 488 dsb->ins_start_offset = 0; 489 dsb->dewake_scanline = intel_dsb_dewake_scanline(crtc_state); 490 491 return dsb; 492 493 out_put_rpm: 494 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 495 kfree(dsb); 496 out: 497 drm_info_once(&i915->drm, 498 "[CRTC:%d:%s] DSB %d queue setup failed, will fallback to MMIO for display HW programming\n", 499 crtc->base.base.id, crtc->base.name, dsb_id); 500 501 return NULL; 502 } 503 504 /** 505 * intel_dsb_cleanup() - To cleanup DSB context. 506 * @dsb: DSB context 507 * 508 * This function cleanup the DSB context by unpinning and releasing 509 * the VMA object associated with it. 510 */ 511 void intel_dsb_cleanup(struct intel_dsb *dsb) 512 { 513 intel_dsb_buffer_cleanup(&dsb->dsb_buf); 514 kfree(dsb); 515 } 516