1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 * 5 */ 6 7 #include "gem/i915_gem_internal.h" 8 #include "gem/i915_gem_lmem.h" 9 10 #include "i915_drv.h" 11 #include "i915_irq.h" 12 #include "i915_reg.h" 13 #include "intel_crtc.h" 14 #include "intel_de.h" 15 #include "intel_display_types.h" 16 #include "intel_dsb.h" 17 #include "intel_dsb_regs.h" 18 #include "intel_vblank.h" 19 #include "intel_vrr.h" 20 #include "skl_watermark.h" 21 22 struct i915_vma; 23 24 enum dsb_id { 25 INVALID_DSB = -1, 26 DSB1, 27 DSB2, 28 DSB3, 29 MAX_DSB_PER_PIPE 30 }; 31 32 struct intel_dsb { 33 enum dsb_id id; 34 35 u32 *cmd_buf; 36 struct i915_vma *vma; 37 struct intel_crtc *crtc; 38 39 /* 40 * maximum number of dwords the buffer will hold. 41 */ 42 unsigned int size; 43 44 /* 45 * free_pos will point the first free dword and 46 * help in calculating tail of command buffer. 47 */ 48 unsigned int free_pos; 49 50 /* 51 * ins_start_offset will help to store start dword of the dsb 52 * instuction and help in identifying the batch of auto-increment 53 * register. 54 */ 55 unsigned int ins_start_offset; 56 57 int dewake_scanline; 58 }; 59 60 /** 61 * DOC: DSB 62 * 63 * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory 64 * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA 65 * engine that can be programmed to download the DSB from memory. 66 * It allows driver to batch submit display HW programming. This helps to 67 * reduce loading time and CPU activity, thereby making the context switch 68 * faster. DSB Support added from Gen12 Intel graphics based platform. 69 * 70 * DSB's can access only the pipe, plane, and transcoder Data Island Packet 71 * registers. 72 * 73 * DSB HW can support only register writes (both indexed and direct MMIO 74 * writes). There are no registers reads possible with DSB HW engine. 75 */ 76 77 /* DSB opcodes. */ 78 #define DSB_OPCODE_SHIFT 24 79 #define DSB_OPCODE_NOOP 0x0 80 #define DSB_OPCODE_MMIO_WRITE 0x1 81 #define DSB_BYTE_EN 0xf 82 #define DSB_BYTE_EN_SHIFT 20 83 #define DSB_REG_VALUE_MASK 0xfffff 84 #define DSB_OPCODE_WAIT_USEC 0x2 85 #define DSB_OPCODE_WAIT_SCANLINE 0x3 86 #define DSB_OPCODE_WAIT_VBLANKS 0x4 87 #define DSB_OPCODE_WAIT_DSL_IN 0x5 88 #define DSB_OPCODE_WAIT_DSL_OUT 0x6 89 #define DSB_SCANLINE_UPPER_SHIFT 20 90 #define DSB_SCANLINE_LOWER_SHIFT 0 91 #define DSB_OPCODE_INTERRUPT 0x7 92 #define DSB_OPCODE_INDEXED_WRITE 0x9 93 /* see DSB_REG_VALUE_MASK */ 94 #define DSB_OPCODE_POLL 0xA 95 /* see DSB_REG_VALUE_MASK */ 96 97 static bool assert_dsb_has_room(struct intel_dsb *dsb) 98 { 99 struct intel_crtc *crtc = dsb->crtc; 100 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 101 102 /* each instruction is 2 dwords */ 103 return !drm_WARN(&i915->drm, dsb->free_pos > dsb->size - 2, 104 "[CRTC:%d:%s] DSB %d buffer overflow\n", 105 crtc->base.base.id, crtc->base.name, dsb->id); 106 } 107 108 static void intel_dsb_dump(struct intel_dsb *dsb) 109 { 110 struct intel_crtc *crtc = dsb->crtc; 111 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 112 const u32 *buf = dsb->cmd_buf; 113 int i; 114 115 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] DSB %d commands {\n", 116 crtc->base.base.id, crtc->base.name, dsb->id); 117 for (i = 0; i < ALIGN(dsb->free_pos, 64 / 4); i += 4) 118 drm_dbg_kms(&i915->drm, 119 " 0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 120 i * 4, buf[i], buf[i+1], buf[i+2], buf[i+3]); 121 drm_dbg_kms(&i915->drm, "}\n"); 122 } 123 124 static bool is_dsb_busy(struct drm_i915_private *i915, enum pipe pipe, 125 enum dsb_id id) 126 { 127 return intel_de_read_fw(i915, DSB_CTRL(pipe, id)) & DSB_STATUS_BUSY; 128 } 129 130 static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw) 131 { 132 u32 *buf = dsb->cmd_buf; 133 134 if (!assert_dsb_has_room(dsb)) 135 return; 136 137 /* Every instruction should be 8 byte aligned. */ 138 dsb->free_pos = ALIGN(dsb->free_pos, 2); 139 140 dsb->ins_start_offset = dsb->free_pos; 141 142 buf[dsb->free_pos++] = ldw; 143 buf[dsb->free_pos++] = udw; 144 } 145 146 static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb, 147 u32 opcode, i915_reg_t reg) 148 { 149 const u32 *buf = dsb->cmd_buf; 150 u32 prev_opcode, prev_reg; 151 152 /* 153 * Nothing emitted yet? Must check before looking 154 * at the actual data since i915_gem_object_create_internal() 155 * does *not* give you zeroed memory! 156 */ 157 if (dsb->free_pos == 0) 158 return false; 159 160 prev_opcode = buf[dsb->ins_start_offset + 1] & ~DSB_REG_VALUE_MASK; 161 prev_reg = buf[dsb->ins_start_offset + 1] & DSB_REG_VALUE_MASK; 162 163 return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg); 164 } 165 166 static bool intel_dsb_prev_ins_is_mmio_write(struct intel_dsb *dsb, i915_reg_t reg) 167 { 168 /* only full byte-enables can be converted to indexed writes */ 169 return intel_dsb_prev_ins_is_write(dsb, 170 DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT | 171 DSB_BYTE_EN << DSB_BYTE_EN_SHIFT, 172 reg); 173 } 174 175 static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg) 176 { 177 return intel_dsb_prev_ins_is_write(dsb, 178 DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT, 179 reg); 180 } 181 182 /** 183 * intel_dsb_reg_write() - Emit register wriite to the DSB context 184 * @dsb: DSB context 185 * @reg: register address. 186 * @val: value. 187 * 188 * This function is used for writing register-value pair in command 189 * buffer of DSB. 190 */ 191 void intel_dsb_reg_write(struct intel_dsb *dsb, 192 i915_reg_t reg, u32 val) 193 { 194 /* 195 * For example the buffer will look like below for 3 dwords for auto 196 * increment register: 197 * +--------------------------------------------------------+ 198 * | size = 3 | offset &| value1 | value2 | value3 | zero | 199 * | | opcode | | | | | 200 * +--------------------------------------------------------+ 201 * + + + + + + + 202 * 0 4 8 12 16 20 24 203 * Byte 204 * 205 * As every instruction is 8 byte aligned the index of dsb instruction 206 * will start always from even number while dealing with u32 array. If 207 * we are writing odd no of dwords, Zeros will be added in the end for 208 * padding. 209 */ 210 if (!intel_dsb_prev_ins_is_mmio_write(dsb, reg) && 211 !intel_dsb_prev_ins_is_indexed_write(dsb, reg)) { 212 intel_dsb_emit(dsb, val, 213 (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | 214 (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) | 215 i915_mmio_reg_offset(reg)); 216 } else { 217 u32 *buf = dsb->cmd_buf; 218 219 if (!assert_dsb_has_room(dsb)) 220 return; 221 222 /* convert to indexed write? */ 223 if (intel_dsb_prev_ins_is_mmio_write(dsb, reg)) { 224 u32 prev_val = buf[dsb->ins_start_offset + 0]; 225 226 buf[dsb->ins_start_offset + 0] = 1; /* count */ 227 buf[dsb->ins_start_offset + 1] = 228 (DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) | 229 i915_mmio_reg_offset(reg); 230 buf[dsb->ins_start_offset + 2] = prev_val; 231 232 dsb->free_pos++; 233 } 234 235 buf[dsb->free_pos++] = val; 236 /* Update the count */ 237 buf[dsb->ins_start_offset]++; 238 239 /* if number of data words is odd, then the last dword should be 0.*/ 240 if (dsb->free_pos & 0x1) 241 buf[dsb->free_pos] = 0; 242 } 243 } 244 245 static u32 intel_dsb_mask_to_byte_en(u32 mask) 246 { 247 return (!!(mask & 0xff000000) << 3 | 248 !!(mask & 0x00ff0000) << 2 | 249 !!(mask & 0x0000ff00) << 1 | 250 !!(mask & 0x000000ff) << 0); 251 } 252 253 /* Note: mask implemented via byte enables! */ 254 void intel_dsb_reg_write_masked(struct intel_dsb *dsb, 255 i915_reg_t reg, u32 mask, u32 val) 256 { 257 intel_dsb_emit(dsb, val, 258 (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | 259 (intel_dsb_mask_to_byte_en(mask) << DSB_BYTE_EN_SHIFT) | 260 i915_mmio_reg_offset(reg)); 261 } 262 263 void intel_dsb_noop(struct intel_dsb *dsb, int count) 264 { 265 int i; 266 267 for (i = 0; i < count; i++) 268 intel_dsb_emit(dsb, 0, 269 DSB_OPCODE_NOOP << DSB_OPCODE_SHIFT); 270 } 271 272 void intel_dsb_nonpost_start(struct intel_dsb *dsb) 273 { 274 struct intel_crtc *crtc = dsb->crtc; 275 enum pipe pipe = crtc->pipe; 276 277 intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id), 278 DSB_NON_POSTED, DSB_NON_POSTED); 279 intel_dsb_noop(dsb, 4); 280 } 281 282 void intel_dsb_nonpost_end(struct intel_dsb *dsb) 283 { 284 struct intel_crtc *crtc = dsb->crtc; 285 enum pipe pipe = crtc->pipe; 286 287 intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id), 288 DSB_NON_POSTED, 0); 289 intel_dsb_noop(dsb, 4); 290 } 291 292 static void intel_dsb_align_tail(struct intel_dsb *dsb) 293 { 294 u32 aligned_tail, tail; 295 296 tail = dsb->free_pos * 4; 297 aligned_tail = ALIGN(tail, CACHELINE_BYTES); 298 299 if (aligned_tail > tail) 300 memset(&dsb->cmd_buf[dsb->free_pos], 0, 301 aligned_tail - tail); 302 303 dsb->free_pos = aligned_tail / 4; 304 } 305 306 void intel_dsb_finish(struct intel_dsb *dsb) 307 { 308 struct intel_crtc *crtc = dsb->crtc; 309 310 /* 311 * DSB_FORCE_DEWAKE remains active even after DSB is 312 * disabled, so make sure to clear it (if set during 313 * intel_dsb_commit()). 314 */ 315 intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(crtc->pipe, dsb->id), 316 DSB_FORCE_DEWAKE, 0); 317 318 intel_dsb_align_tail(dsb); 319 320 i915_gem_object_flush_map(dsb->vma->obj); 321 } 322 323 static int intel_dsb_dewake_scanline(const struct intel_crtc_state *crtc_state) 324 { 325 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 326 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; 327 unsigned int latency = skl_watermark_max_latency(i915); 328 int vblank_start; 329 330 if (crtc_state->vrr.enable) { 331 vblank_start = intel_vrr_vmin_vblank_start(crtc_state); 332 } else { 333 vblank_start = adjusted_mode->crtc_vblank_start; 334 335 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 336 vblank_start = DIV_ROUND_UP(vblank_start, 2); 337 } 338 339 return max(0, vblank_start - intel_usecs_to_scanlines(adjusted_mode, latency)); 340 } 341 342 static void _intel_dsb_commit(struct intel_dsb *dsb, u32 ctrl, 343 unsigned int dewake_scanline) 344 { 345 struct intel_crtc *crtc = dsb->crtc; 346 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 347 enum pipe pipe = crtc->pipe; 348 u32 tail; 349 350 tail = dsb->free_pos * 4; 351 if (drm_WARN_ON(&dev_priv->drm, !IS_ALIGNED(tail, CACHELINE_BYTES))) 352 return; 353 354 if (is_dsb_busy(dev_priv, pipe, dsb->id)) { 355 drm_err(&dev_priv->drm, "[CRTC:%d:%s] DSB %d is busy\n", 356 crtc->base.base.id, crtc->base.name, dsb->id); 357 return; 358 } 359 360 intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id), 361 ctrl | DSB_ENABLE); 362 363 intel_de_write_fw(dev_priv, DSB_HEAD(pipe, dsb->id), 364 i915_ggtt_offset(dsb->vma)); 365 366 if (dewake_scanline >= 0) { 367 int diff, hw_dewake_scanline; 368 369 hw_dewake_scanline = intel_crtc_scanline_to_hw(crtc, dewake_scanline); 370 371 intel_de_write_fw(dev_priv, DSB_PMCTRL(pipe, dsb->id), 372 DSB_ENABLE_DEWAKE | 373 DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline)); 374 375 /* 376 * Force DEwake immediately if we're already past 377 * or close to racing past the target scanline. 378 */ 379 diff = dewake_scanline - intel_get_crtc_scanline(crtc); 380 intel_de_write_fw(dev_priv, DSB_PMCTRL_2(pipe, dsb->id), 381 (diff >= 0 && diff < 5 ? DSB_FORCE_DEWAKE : 0) | 382 DSB_BLOCK_DEWAKE_EXTENSION); 383 } 384 385 intel_de_write_fw(dev_priv, DSB_TAIL(pipe, dsb->id), 386 i915_ggtt_offset(dsb->vma) + tail); 387 } 388 389 /** 390 * intel_dsb_commit() - Trigger workload execution of DSB. 391 * @dsb: DSB context 392 * @wait_for_vblank: wait for vblank before executing 393 * 394 * This function is used to do actual write to hardware using DSB. 395 */ 396 void intel_dsb_commit(struct intel_dsb *dsb, 397 bool wait_for_vblank) 398 { 399 _intel_dsb_commit(dsb, 400 wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0, 401 wait_for_vblank ? dsb->dewake_scanline : -1); 402 } 403 404 void intel_dsb_wait(struct intel_dsb *dsb) 405 { 406 struct intel_crtc *crtc = dsb->crtc; 407 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 408 enum pipe pipe = crtc->pipe; 409 410 if (wait_for(!is_dsb_busy(dev_priv, pipe, dsb->id), 1)) { 411 u32 offset = i915_ggtt_offset(dsb->vma); 412 413 intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id), 414 DSB_ENABLE | DSB_HALT); 415 416 drm_err(&dev_priv->drm, 417 "[CRTC:%d:%s] DSB %d timed out waiting for idle (current head=0x%x, head=0x%x, tail=0x%x)\n", 418 crtc->base.base.id, crtc->base.name, dsb->id, 419 intel_de_read_fw(dev_priv, DSB_CURRENT_HEAD(pipe, dsb->id)) - offset, 420 intel_de_read_fw(dev_priv, DSB_HEAD(pipe, dsb->id)) - offset, 421 intel_de_read_fw(dev_priv, DSB_TAIL(pipe, dsb->id)) - offset); 422 423 intel_dsb_dump(dsb); 424 } 425 426 /* Attempt to reset it */ 427 dsb->free_pos = 0; 428 dsb->ins_start_offset = 0; 429 intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id), 0); 430 } 431 432 /** 433 * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer. 434 * @crtc_state: the CRTC state 435 * @max_cmds: number of commands we need to fit into command buffer 436 * 437 * This function prepare the command buffer which is used to store dsb 438 * instructions with data. 439 * 440 * Returns: 441 * DSB context, NULL on failure 442 */ 443 struct intel_dsb *intel_dsb_prepare(const struct intel_crtc_state *crtc_state, 444 unsigned int max_cmds) 445 { 446 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 447 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 448 struct drm_i915_gem_object *obj; 449 intel_wakeref_t wakeref; 450 struct intel_dsb *dsb; 451 struct i915_vma *vma; 452 unsigned int size; 453 u32 *buf; 454 455 if (!HAS_DSB(i915)) 456 return NULL; 457 458 dsb = kzalloc(sizeof(*dsb), GFP_KERNEL); 459 if (!dsb) 460 goto out; 461 462 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 463 464 /* ~1 qword per instruction, full cachelines */ 465 size = ALIGN(max_cmds * 8, CACHELINE_BYTES); 466 467 if (HAS_LMEM(i915)) { 468 obj = i915_gem_object_create_lmem(i915, PAGE_ALIGN(size), 469 I915_BO_ALLOC_CONTIGUOUS); 470 if (IS_ERR(obj)) 471 goto out_put_rpm; 472 } else { 473 obj = i915_gem_object_create_internal(i915, PAGE_ALIGN(size)); 474 if (IS_ERR(obj)) 475 goto out_put_rpm; 476 477 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE); 478 } 479 480 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0); 481 if (IS_ERR(vma)) { 482 i915_gem_object_put(obj); 483 goto out_put_rpm; 484 } 485 486 buf = i915_gem_object_pin_map_unlocked(vma->obj, I915_MAP_WC); 487 if (IS_ERR(buf)) { 488 i915_vma_unpin_and_release(&vma, I915_VMA_RELEASE_MAP); 489 goto out_put_rpm; 490 } 491 492 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 493 494 dsb->id = DSB1; 495 dsb->vma = vma; 496 dsb->crtc = crtc; 497 dsb->cmd_buf = buf; 498 dsb->size = size / 4; /* in dwords */ 499 dsb->free_pos = 0; 500 dsb->ins_start_offset = 0; 501 dsb->dewake_scanline = intel_dsb_dewake_scanline(crtc_state); 502 503 return dsb; 504 505 out_put_rpm: 506 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 507 kfree(dsb); 508 out: 509 drm_info_once(&i915->drm, 510 "[CRTC:%d:%s] DSB %d queue setup failed, will fallback to MMIO for display HW programming\n", 511 crtc->base.base.id, crtc->base.name, DSB1); 512 513 return NULL; 514 } 515 516 /** 517 * intel_dsb_cleanup() - To cleanup DSB context. 518 * @dsb: DSB context 519 * 520 * This function cleanup the DSB context by unpinning and releasing 521 * the VMA object associated with it. 522 */ 523 void intel_dsb_cleanup(struct intel_dsb *dsb) 524 { 525 i915_vma_unpin_and_release(&dsb->vma, I915_VMA_RELEASE_MAP); 526 kfree(dsb); 527 } 528