xref: /linux/drivers/gpu/drm/i915/display/intel_dsb.c (revision 336b78c655c84ce9ce47219185171b3912109c0a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  *
5  */
6 
7 #include "gem/i915_gem_internal.h"
8 
9 #include "i915_drv.h"
10 #include "i915_reg.h"
11 #include "intel_de.h"
12 #include "intel_display_types.h"
13 #include "intel_dsb.h"
14 
15 struct i915_vma;
16 
17 enum dsb_id {
18 	INVALID_DSB = -1,
19 	DSB1,
20 	DSB2,
21 	DSB3,
22 	MAX_DSB_PER_PIPE
23 };
24 
25 struct intel_dsb {
26 	enum dsb_id id;
27 
28 	u32 *cmd_buf;
29 	struct i915_vma *vma;
30 	struct intel_crtc *crtc;
31 
32 	/*
33 	 * maximum number of dwords the buffer will hold.
34 	 */
35 	unsigned int size;
36 
37 	/*
38 	 * free_pos will point the first free dword and
39 	 * help in calculating tail of command buffer.
40 	 */
41 	unsigned int free_pos;
42 
43 	/*
44 	 * ins_start_offset will help to store start dword of the dsb
45 	 * instuction and help in identifying the batch of auto-increment
46 	 * register.
47 	 */
48 	unsigned int ins_start_offset;
49 };
50 
51 /**
52  * DOC: DSB
53  *
54  * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory
55  * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA
56  * engine that can be programmed to download the DSB from memory.
57  * It allows driver to batch submit display HW programming. This helps to
58  * reduce loading time and CPU activity, thereby making the context switch
59  * faster. DSB Support added from Gen12 Intel graphics based platform.
60  *
61  * DSB's can access only the pipe, plane, and transcoder Data Island Packet
62  * registers.
63  *
64  * DSB HW can support only register writes (both indexed and direct MMIO
65  * writes). There are no registers reads possible with DSB HW engine.
66  */
67 
68 /* DSB opcodes. */
69 #define DSB_OPCODE_SHIFT		24
70 #define DSB_OPCODE_NOOP			0x0
71 #define DSB_OPCODE_MMIO_WRITE		0x1
72 #define DSB_OPCODE_WAIT_USEC		0x2
73 #define DSB_OPCODE_WAIT_LINES		0x3
74 #define DSB_OPCODE_WAIT_VBLANKS		0x4
75 #define DSB_OPCODE_WAIT_DSL_IN		0x5
76 #define DSB_OPCODE_WAIT_DSL_OUT		0x6
77 #define DSB_OPCODE_INTERRUPT		0x7
78 #define DSB_OPCODE_INDEXED_WRITE	0x9
79 #define DSB_OPCODE_POLL			0xA
80 #define DSB_BYTE_EN			0xF
81 #define DSB_BYTE_EN_SHIFT		20
82 #define DSB_REG_VALUE_MASK		0xfffff
83 
84 static bool assert_dsb_has_room(struct intel_dsb *dsb)
85 {
86 	struct intel_crtc *crtc = dsb->crtc;
87 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
88 
89 	/* each instruction is 2 dwords */
90 	return !drm_WARN(&i915->drm, dsb->free_pos > dsb->size - 2,
91 			 "[CRTC:%d:%s] DSB %d buffer overflow\n",
92 			 crtc->base.base.id, crtc->base.name, dsb->id);
93 }
94 
95 static bool is_dsb_busy(struct drm_i915_private *i915, enum pipe pipe,
96 			enum dsb_id id)
97 {
98 	return intel_de_read(i915, DSB_CTRL(pipe, id)) & DSB_STATUS_BUSY;
99 }
100 
101 static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw)
102 {
103 	u32 *buf = dsb->cmd_buf;
104 
105 	if (!assert_dsb_has_room(dsb))
106 		return;
107 
108 	/* Every instruction should be 8 byte aligned. */
109 	dsb->free_pos = ALIGN(dsb->free_pos, 2);
110 
111 	dsb->ins_start_offset = dsb->free_pos;
112 
113 	buf[dsb->free_pos++] = ldw;
114 	buf[dsb->free_pos++] = udw;
115 }
116 
117 static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb,
118 					u32 opcode, i915_reg_t reg)
119 {
120 	const u32 *buf = dsb->cmd_buf;
121 	u32 prev_opcode, prev_reg;
122 
123 	prev_opcode = buf[dsb->ins_start_offset + 1] >> DSB_OPCODE_SHIFT;
124 	prev_reg = buf[dsb->ins_start_offset + 1] & DSB_REG_VALUE_MASK;
125 
126 	return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg);
127 }
128 
129 static bool intel_dsb_prev_ins_is_mmio_write(struct intel_dsb *dsb, i915_reg_t reg)
130 {
131 	return intel_dsb_prev_ins_is_write(dsb, DSB_OPCODE_MMIO_WRITE, reg);
132 }
133 
134 static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg)
135 {
136 	return intel_dsb_prev_ins_is_write(dsb, DSB_OPCODE_INDEXED_WRITE, reg);
137 }
138 
139 /**
140  * intel_dsb_reg_write() - Emit register wriite to the DSB context
141  * @dsb: DSB context
142  * @reg: register address.
143  * @val: value.
144  *
145  * This function is used for writing register-value pair in command
146  * buffer of DSB.
147  */
148 void intel_dsb_reg_write(struct intel_dsb *dsb,
149 			 i915_reg_t reg, u32 val)
150 {
151 	/*
152 	 * For example the buffer will look like below for 3 dwords for auto
153 	 * increment register:
154 	 * +--------------------------------------------------------+
155 	 * | size = 3 | offset &| value1 | value2 | value3 | zero   |
156 	 * |          | opcode  |        |        |        |        |
157 	 * +--------------------------------------------------------+
158 	 * +          +         +        +        +        +        +
159 	 * 0          4         8        12       16       20       24
160 	 * Byte
161 	 *
162 	 * As every instruction is 8 byte aligned the index of dsb instruction
163 	 * will start always from even number while dealing with u32 array. If
164 	 * we are writing odd no of dwords, Zeros will be added in the end for
165 	 * padding.
166 	 */
167 	if (!intel_dsb_prev_ins_is_mmio_write(dsb, reg) &&
168 	    !intel_dsb_prev_ins_is_indexed_write(dsb, reg)) {
169 		intel_dsb_emit(dsb, val,
170 			       (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
171 			       (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) |
172 			       i915_mmio_reg_offset(reg));
173 	} else {
174 		u32 *buf = dsb->cmd_buf;
175 
176 		if (!assert_dsb_has_room(dsb))
177 			return;
178 
179 		/* convert to indexed write? */
180 		if (intel_dsb_prev_ins_is_mmio_write(dsb, reg)) {
181 			u32 prev_val = buf[dsb->ins_start_offset + 0];
182 
183 			buf[dsb->ins_start_offset + 0] = 1; /* count */
184 			buf[dsb->ins_start_offset + 1] =
185 				(DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) |
186 				i915_mmio_reg_offset(reg);
187 			buf[dsb->ins_start_offset + 2] = prev_val;
188 
189 			dsb->free_pos++;
190 		}
191 
192 		buf[dsb->free_pos++] = val;
193 		/* Update the count */
194 		buf[dsb->ins_start_offset]++;
195 
196 		/* if number of data words is odd, then the last dword should be 0.*/
197 		if (dsb->free_pos & 0x1)
198 			buf[dsb->free_pos] = 0;
199 	}
200 }
201 
202 static void intel_dsb_align_tail(struct intel_dsb *dsb)
203 {
204 	u32 aligned_tail, tail;
205 
206 	tail = dsb->free_pos * 4;
207 	aligned_tail = ALIGN(tail, CACHELINE_BYTES);
208 
209 	if (aligned_tail > tail)
210 		memset(&dsb->cmd_buf[dsb->free_pos], 0,
211 		       aligned_tail - tail);
212 
213 	dsb->free_pos = aligned_tail / 4;
214 }
215 
216 void intel_dsb_finish(struct intel_dsb *dsb)
217 {
218 	intel_dsb_align_tail(dsb);
219 }
220 
221 /**
222  * intel_dsb_commit() - Trigger workload execution of DSB.
223  * @dsb: DSB context
224  * @wait_for_vblank: wait for vblank before executing
225  *
226  * This function is used to do actual write to hardware using DSB.
227  */
228 void intel_dsb_commit(struct intel_dsb *dsb, bool wait_for_vblank)
229 {
230 	struct intel_crtc *crtc = dsb->crtc;
231 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
232 	enum pipe pipe = crtc->pipe;
233 	u32 tail;
234 
235 	tail = dsb->free_pos * 4;
236 	if (drm_WARN_ON(&dev_priv->drm, !IS_ALIGNED(tail, CACHELINE_BYTES)))
237 		return;
238 
239 	if (is_dsb_busy(dev_priv, pipe, dsb->id)) {
240 		drm_err(&dev_priv->drm, "[CRTC:%d:%s] DSB %d is busy\n",
241 			crtc->base.base.id, crtc->base.name, dsb->id);
242 		return;
243 	}
244 
245 	intel_de_write(dev_priv, DSB_CTRL(pipe, dsb->id),
246 		       (wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0) |
247 		       DSB_ENABLE);
248 	intel_de_write(dev_priv, DSB_HEAD(pipe, dsb->id),
249 		       i915_ggtt_offset(dsb->vma));
250 	intel_de_write(dev_priv, DSB_TAIL(pipe, dsb->id),
251 		       i915_ggtt_offset(dsb->vma) + tail);
252 }
253 
254 void intel_dsb_wait(struct intel_dsb *dsb)
255 {
256 	struct intel_crtc *crtc = dsb->crtc;
257 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
258 	enum pipe pipe = crtc->pipe;
259 
260 	if (wait_for(!is_dsb_busy(dev_priv, pipe, dsb->id), 1))
261 		drm_err(&dev_priv->drm,
262 			"[CRTC:%d:%s] DSB %d timed out waiting for idle\n",
263 			crtc->base.base.id, crtc->base.name, dsb->id);
264 
265 	/* Attempt to reset it */
266 	dsb->free_pos = 0;
267 	dsb->ins_start_offset = 0;
268 	intel_de_write(dev_priv, DSB_CTRL(pipe, dsb->id), 0);
269 }
270 
271 /**
272  * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer.
273  * @crtc: the CRTC
274  * @max_cmds: number of commands we need to fit into command buffer
275  *
276  * This function prepare the command buffer which is used to store dsb
277  * instructions with data.
278  *
279  * Returns:
280  * DSB context, NULL on failure
281  */
282 struct intel_dsb *intel_dsb_prepare(struct intel_crtc *crtc,
283 				    unsigned int max_cmds)
284 {
285 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
286 	struct drm_i915_gem_object *obj;
287 	intel_wakeref_t wakeref;
288 	struct intel_dsb *dsb;
289 	struct i915_vma *vma;
290 	unsigned int size;
291 	u32 *buf;
292 
293 	if (!HAS_DSB(i915))
294 		return NULL;
295 
296 	dsb = kzalloc(sizeof(*dsb), GFP_KERNEL);
297 	if (!dsb)
298 		goto out;
299 
300 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
301 
302 	/* ~1 qword per instruction, full cachelines */
303 	size = ALIGN(max_cmds * 8, CACHELINE_BYTES);
304 
305 	obj = i915_gem_object_create_internal(i915, PAGE_ALIGN(size));
306 	if (IS_ERR(obj))
307 		goto out_put_rpm;
308 
309 	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
310 	if (IS_ERR(vma)) {
311 		i915_gem_object_put(obj);
312 		goto out_put_rpm;
313 	}
314 
315 	buf = i915_gem_object_pin_map_unlocked(vma->obj, I915_MAP_WC);
316 	if (IS_ERR(buf)) {
317 		i915_vma_unpin_and_release(&vma, I915_VMA_RELEASE_MAP);
318 		goto out_put_rpm;
319 	}
320 
321 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
322 
323 	dsb->id = DSB1;
324 	dsb->vma = vma;
325 	dsb->crtc = crtc;
326 	dsb->cmd_buf = buf;
327 	dsb->size = size / 4; /* in dwords */
328 	dsb->free_pos = 0;
329 	dsb->ins_start_offset = 0;
330 
331 	return dsb;
332 
333 out_put_rpm:
334 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
335 	kfree(dsb);
336 out:
337 	drm_info_once(&i915->drm,
338 		      "[CRTC:%d:%s] DSB %d queue setup failed, will fallback to MMIO for display HW programming\n",
339 		      crtc->base.base.id, crtc->base.name, DSB1);
340 
341 	return NULL;
342 }
343 
344 /**
345  * intel_dsb_cleanup() - To cleanup DSB context.
346  * @dsb: DSB context
347  *
348  * This function cleanup the DSB context by unpinning and releasing
349  * the VMA object associated with it.
350  */
351 void intel_dsb_cleanup(struct intel_dsb *dsb)
352 {
353 	i915_vma_unpin_and_release(&dsb->vma, I915_VMA_RELEASE_MAP);
354 	kfree(dsb);
355 }
356