1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 * 5 */ 6 7 #include <drm/drm_vblank.h> 8 9 #include "i915_drv.h" 10 #include "i915_irq.h" 11 #include "i915_reg.h" 12 #include "intel_crtc.h" 13 #include "intel_de.h" 14 #include "intel_display_types.h" 15 #include "intel_dsb.h" 16 #include "intel_dsb_buffer.h" 17 #include "intel_dsb_regs.h" 18 #include "intel_vblank.h" 19 #include "intel_vrr.h" 20 #include "skl_watermark.h" 21 22 #define CACHELINE_BYTES 64 23 24 struct intel_dsb { 25 enum intel_dsb_id id; 26 27 struct intel_dsb_buffer dsb_buf; 28 struct intel_crtc *crtc; 29 30 /* 31 * maximum number of dwords the buffer will hold. 32 */ 33 unsigned int size; 34 35 /* 36 * free_pos will point the first free dword and 37 * help in calculating tail of command buffer. 38 */ 39 unsigned int free_pos; 40 41 /* 42 * Previously emitted DSB instruction. Used to 43 * identify/adjust the instruction for indexed 44 * register writes. 45 */ 46 u32 ins[2]; 47 48 /* 49 * Start of the previously emitted DSB instruction. 50 * Used to adjust the instruction for indexed 51 * register writes. 52 */ 53 unsigned int ins_start_offset; 54 55 u32 chicken; 56 int hw_dewake_scanline; 57 }; 58 59 /** 60 * DOC: DSB 61 * 62 * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory 63 * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA 64 * engine that can be programmed to download the DSB from memory. 65 * It allows driver to batch submit display HW programming. This helps to 66 * reduce loading time and CPU activity, thereby making the context switch 67 * faster. DSB Support added from Gen12 Intel graphics based platform. 68 * 69 * DSB's can access only the pipe, plane, and transcoder Data Island Packet 70 * registers. 71 * 72 * DSB HW can support only register writes (both indexed and direct MMIO 73 * writes). There are no registers reads possible with DSB HW engine. 74 */ 75 76 /* DSB opcodes. */ 77 #define DSB_OPCODE_SHIFT 24 78 #define DSB_OPCODE_NOOP 0x0 79 #define DSB_OPCODE_MMIO_WRITE 0x1 80 #define DSB_BYTE_EN 0xf 81 #define DSB_BYTE_EN_SHIFT 20 82 #define DSB_REG_VALUE_MASK 0xfffff 83 #define DSB_OPCODE_WAIT_USEC 0x2 84 #define DSB_OPCODE_WAIT_SCANLINE 0x3 85 #define DSB_OPCODE_WAIT_VBLANKS 0x4 86 #define DSB_OPCODE_WAIT_DSL_IN 0x5 87 #define DSB_OPCODE_WAIT_DSL_OUT 0x6 88 #define DSB_SCANLINE_UPPER_SHIFT 20 89 #define DSB_SCANLINE_LOWER_SHIFT 0 90 #define DSB_OPCODE_INTERRUPT 0x7 91 #define DSB_OPCODE_INDEXED_WRITE 0x9 92 /* see DSB_REG_VALUE_MASK */ 93 #define DSB_OPCODE_POLL 0xA 94 /* see DSB_REG_VALUE_MASK */ 95 96 static bool pre_commit_is_vrr_active(struct intel_atomic_state *state, 97 struct intel_crtc *crtc) 98 { 99 const struct intel_crtc_state *old_crtc_state = 100 intel_atomic_get_old_crtc_state(state, crtc); 101 const struct intel_crtc_state *new_crtc_state = 102 intel_atomic_get_new_crtc_state(state, crtc); 103 104 /* VRR will be enabled afterwards, if necessary */ 105 if (intel_crtc_needs_modeset(new_crtc_state)) 106 return false; 107 108 /* VRR will have been disabled during intel_pre_plane_update() */ 109 return old_crtc_state->vrr.enable && !intel_crtc_vrr_disabling(state, crtc); 110 } 111 112 static const struct intel_crtc_state * 113 pre_commit_crtc_state(struct intel_atomic_state *state, 114 struct intel_crtc *crtc) 115 { 116 const struct intel_crtc_state *old_crtc_state = 117 intel_atomic_get_old_crtc_state(state, crtc); 118 const struct intel_crtc_state *new_crtc_state = 119 intel_atomic_get_new_crtc_state(state, crtc); 120 121 /* 122 * During fastsets/etc. the transcoder is still 123 * running with the old timings at this point. 124 */ 125 if (intel_crtc_needs_modeset(new_crtc_state)) 126 return new_crtc_state; 127 else 128 return old_crtc_state; 129 } 130 131 static int dsb_vblank_delay(const struct intel_crtc_state *crtc_state) 132 { 133 return intel_mode_vblank_start(&crtc_state->hw.adjusted_mode) - 134 intel_mode_vdisplay(&crtc_state->hw.adjusted_mode); 135 } 136 137 static int dsb_vtotal(struct intel_atomic_state *state, 138 struct intel_crtc *crtc) 139 { 140 const struct intel_crtc_state *crtc_state = pre_commit_crtc_state(state, crtc); 141 142 if (pre_commit_is_vrr_active(state, crtc)) 143 return crtc_state->vrr.vmax; 144 else 145 return intel_mode_vtotal(&crtc_state->hw.adjusted_mode); 146 } 147 148 static int dsb_dewake_scanline_start(struct intel_atomic_state *state, 149 struct intel_crtc *crtc) 150 { 151 const struct intel_crtc_state *crtc_state = pre_commit_crtc_state(state, crtc); 152 struct drm_i915_private *i915 = to_i915(state->base.dev); 153 unsigned int latency = skl_watermark_max_latency(i915, 0); 154 155 return intel_mode_vdisplay(&crtc_state->hw.adjusted_mode) - 156 intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode, latency); 157 } 158 159 static int dsb_dewake_scanline_end(struct intel_atomic_state *state, 160 struct intel_crtc *crtc) 161 { 162 const struct intel_crtc_state *crtc_state = pre_commit_crtc_state(state, crtc); 163 164 return intel_mode_vdisplay(&crtc_state->hw.adjusted_mode); 165 } 166 167 static int dsb_scanline_to_hw(struct intel_atomic_state *state, 168 struct intel_crtc *crtc, int scanline) 169 { 170 const struct intel_crtc_state *crtc_state = pre_commit_crtc_state(state, crtc); 171 int vtotal = dsb_vtotal(state, crtc); 172 173 return (scanline + vtotal - intel_crtc_scanline_offset(crtc_state)) % vtotal; 174 } 175 176 static u32 dsb_chicken(struct intel_atomic_state *state, 177 struct intel_crtc *crtc) 178 { 179 if (pre_commit_is_vrr_active(state, crtc)) 180 return DSB_SKIP_WAITS_EN | 181 DSB_CTRL_WAIT_SAFE_WINDOW | 182 DSB_CTRL_NO_WAIT_VBLANK | 183 DSB_INST_WAIT_SAFE_WINDOW | 184 DSB_INST_NO_WAIT_VBLANK; 185 else 186 return DSB_SKIP_WAITS_EN; 187 } 188 189 static bool assert_dsb_has_room(struct intel_dsb *dsb) 190 { 191 struct intel_crtc *crtc = dsb->crtc; 192 struct intel_display *display = to_intel_display(crtc->base.dev); 193 194 /* each instruction is 2 dwords */ 195 return !drm_WARN(display->drm, dsb->free_pos > dsb->size - 2, 196 "[CRTC:%d:%s] DSB %d buffer overflow\n", 197 crtc->base.base.id, crtc->base.name, dsb->id); 198 } 199 200 static void intel_dsb_dump(struct intel_dsb *dsb) 201 { 202 struct intel_crtc *crtc = dsb->crtc; 203 struct intel_display *display = to_intel_display(crtc->base.dev); 204 int i; 205 206 drm_dbg_kms(display->drm, "[CRTC:%d:%s] DSB %d commands {\n", 207 crtc->base.base.id, crtc->base.name, dsb->id); 208 for (i = 0; i < ALIGN(dsb->free_pos, 64 / 4); i += 4) 209 drm_dbg_kms(display->drm, 210 " 0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4, 211 intel_dsb_buffer_read(&dsb->dsb_buf, i), 212 intel_dsb_buffer_read(&dsb->dsb_buf, i + 1), 213 intel_dsb_buffer_read(&dsb->dsb_buf, i + 2), 214 intel_dsb_buffer_read(&dsb->dsb_buf, i + 3)); 215 drm_dbg_kms(display->drm, "}\n"); 216 } 217 218 static bool is_dsb_busy(struct intel_display *display, enum pipe pipe, 219 enum intel_dsb_id dsb_id) 220 { 221 return intel_de_read_fw(display, DSB_CTRL(pipe, dsb_id)) & DSB_STATUS_BUSY; 222 } 223 224 static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw) 225 { 226 if (!assert_dsb_has_room(dsb)) 227 return; 228 229 /* Every instruction should be 8 byte aligned. */ 230 dsb->free_pos = ALIGN(dsb->free_pos, 2); 231 232 dsb->ins_start_offset = dsb->free_pos; 233 dsb->ins[0] = ldw; 234 dsb->ins[1] = udw; 235 236 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, dsb->ins[0]); 237 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, dsb->ins[1]); 238 } 239 240 static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb, 241 u32 opcode, i915_reg_t reg) 242 { 243 u32 prev_opcode, prev_reg; 244 245 /* 246 * Nothing emitted yet? Must check before looking 247 * at the actual data since i915_gem_object_create_internal() 248 * does *not* give you zeroed memory! 249 */ 250 if (dsb->free_pos == 0) 251 return false; 252 253 prev_opcode = dsb->ins[1] & ~DSB_REG_VALUE_MASK; 254 prev_reg = dsb->ins[1] & DSB_REG_VALUE_MASK; 255 256 return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg); 257 } 258 259 static bool intel_dsb_prev_ins_is_mmio_write(struct intel_dsb *dsb, i915_reg_t reg) 260 { 261 /* only full byte-enables can be converted to indexed writes */ 262 return intel_dsb_prev_ins_is_write(dsb, 263 DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT | 264 DSB_BYTE_EN << DSB_BYTE_EN_SHIFT, 265 reg); 266 } 267 268 static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg) 269 { 270 return intel_dsb_prev_ins_is_write(dsb, 271 DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT, 272 reg); 273 } 274 275 /** 276 * intel_dsb_reg_write_indexed() - Emit register wriite to the DSB context 277 * @dsb: DSB context 278 * @reg: register address. 279 * @val: value. 280 * 281 * This function is used for writing register-value pair in command 282 * buffer of DSB. 283 * 284 * Note that indexed writes are slower than normal MMIO writes 285 * for a small number (less than 5 or so) of writes to the same 286 * register. 287 */ 288 void intel_dsb_reg_write_indexed(struct intel_dsb *dsb, 289 i915_reg_t reg, u32 val) 290 { 291 /* 292 * For example the buffer will look like below for 3 dwords for auto 293 * increment register: 294 * +--------------------------------------------------------+ 295 * | size = 3 | offset &| value1 | value2 | value3 | zero | 296 * | | opcode | | | | | 297 * +--------------------------------------------------------+ 298 * + + + + + + + 299 * 0 4 8 12 16 20 24 300 * Byte 301 * 302 * As every instruction is 8 byte aligned the index of dsb instruction 303 * will start always from even number while dealing with u32 array. If 304 * we are writing odd no of dwords, Zeros will be added in the end for 305 * padding. 306 */ 307 if (!intel_dsb_prev_ins_is_mmio_write(dsb, reg) && 308 !intel_dsb_prev_ins_is_indexed_write(dsb, reg)) { 309 intel_dsb_emit(dsb, val, 310 (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | 311 (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) | 312 i915_mmio_reg_offset(reg)); 313 } else { 314 if (!assert_dsb_has_room(dsb)) 315 return; 316 317 /* convert to indexed write? */ 318 if (intel_dsb_prev_ins_is_mmio_write(dsb, reg)) { 319 u32 prev_val = dsb->ins[0]; 320 321 dsb->ins[0] = 1; /* count */ 322 dsb->ins[1] = (DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) | 323 i915_mmio_reg_offset(reg); 324 325 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 0, 326 dsb->ins[0]); 327 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 1, 328 dsb->ins[1]); 329 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 2, 330 prev_val); 331 332 dsb->free_pos++; 333 } 334 335 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, val); 336 /* Update the count */ 337 dsb->ins[0]++; 338 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 0, 339 dsb->ins[0]); 340 341 /* if number of data words is odd, then the last dword should be 0.*/ 342 if (dsb->free_pos & 0x1) 343 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos, 0); 344 } 345 } 346 347 void intel_dsb_reg_write(struct intel_dsb *dsb, 348 i915_reg_t reg, u32 val) 349 { 350 intel_dsb_emit(dsb, val, 351 (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | 352 (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) | 353 i915_mmio_reg_offset(reg)); 354 } 355 356 static u32 intel_dsb_mask_to_byte_en(u32 mask) 357 { 358 return (!!(mask & 0xff000000) << 3 | 359 !!(mask & 0x00ff0000) << 2 | 360 !!(mask & 0x0000ff00) << 1 | 361 !!(mask & 0x000000ff) << 0); 362 } 363 364 /* Note: mask implemented via byte enables! */ 365 void intel_dsb_reg_write_masked(struct intel_dsb *dsb, 366 i915_reg_t reg, u32 mask, u32 val) 367 { 368 intel_dsb_emit(dsb, val, 369 (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | 370 (intel_dsb_mask_to_byte_en(mask) << DSB_BYTE_EN_SHIFT) | 371 i915_mmio_reg_offset(reg)); 372 } 373 374 void intel_dsb_noop(struct intel_dsb *dsb, int count) 375 { 376 int i; 377 378 for (i = 0; i < count; i++) 379 intel_dsb_emit(dsb, 0, 380 DSB_OPCODE_NOOP << DSB_OPCODE_SHIFT); 381 } 382 383 void intel_dsb_nonpost_start(struct intel_dsb *dsb) 384 { 385 struct intel_crtc *crtc = dsb->crtc; 386 enum pipe pipe = crtc->pipe; 387 388 intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id), 389 DSB_NON_POSTED, DSB_NON_POSTED); 390 intel_dsb_noop(dsb, 4); 391 } 392 393 void intel_dsb_nonpost_end(struct intel_dsb *dsb) 394 { 395 struct intel_crtc *crtc = dsb->crtc; 396 enum pipe pipe = crtc->pipe; 397 398 intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id), 399 DSB_NON_POSTED, 0); 400 intel_dsb_noop(dsb, 4); 401 } 402 403 void intel_dsb_interrupt(struct intel_dsb *dsb) 404 { 405 intel_dsb_emit(dsb, 0, 406 DSB_OPCODE_INTERRUPT << DSB_OPCODE_SHIFT); 407 } 408 409 void intel_dsb_wait_usec(struct intel_dsb *dsb, int count) 410 { 411 intel_dsb_emit(dsb, count, 412 DSB_OPCODE_WAIT_USEC << DSB_OPCODE_SHIFT); 413 } 414 415 void intel_dsb_wait_vblanks(struct intel_dsb *dsb, int count) 416 { 417 intel_dsb_emit(dsb, count, 418 DSB_OPCODE_WAIT_VBLANKS << DSB_OPCODE_SHIFT); 419 } 420 421 static void intel_dsb_emit_wait_dsl(struct intel_dsb *dsb, 422 u32 opcode, int lower, int upper) 423 { 424 u64 window = ((u64)upper << DSB_SCANLINE_UPPER_SHIFT) | 425 ((u64)lower << DSB_SCANLINE_LOWER_SHIFT); 426 427 intel_dsb_emit(dsb, lower_32_bits(window), 428 (opcode << DSB_OPCODE_SHIFT) | 429 upper_32_bits(window)); 430 } 431 432 static void intel_dsb_wait_dsl(struct intel_atomic_state *state, 433 struct intel_dsb *dsb, 434 int lower_in, int upper_in, 435 int lower_out, int upper_out) 436 { 437 struct intel_crtc *crtc = dsb->crtc; 438 439 lower_in = dsb_scanline_to_hw(state, crtc, lower_in); 440 upper_in = dsb_scanline_to_hw(state, crtc, upper_in); 441 442 lower_out = dsb_scanline_to_hw(state, crtc, lower_out); 443 upper_out = dsb_scanline_to_hw(state, crtc, upper_out); 444 445 if (upper_in >= lower_in) 446 intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_IN, 447 lower_in, upper_in); 448 else if (upper_out >= lower_out) 449 intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_OUT, 450 lower_out, upper_out); 451 else 452 drm_WARN_ON(crtc->base.dev, 1); /* assert_dsl_ok() should have caught it already */ 453 } 454 455 static void assert_dsl_ok(struct intel_atomic_state *state, 456 struct intel_dsb *dsb, 457 int start, int end) 458 { 459 struct intel_crtc *crtc = dsb->crtc; 460 int vtotal = dsb_vtotal(state, crtc); 461 462 /* 463 * Waiting for the entire frame doesn't make sense, 464 * (IN==don't wait, OUT=wait forever). 465 */ 466 drm_WARN(crtc->base.dev, (end - start + vtotal) % vtotal == vtotal - 1, 467 "[CRTC:%d:%s] DSB %d bad scanline window wait: %d-%d (vt=%d)\n", 468 crtc->base.base.id, crtc->base.name, dsb->id, 469 start, end, vtotal); 470 } 471 472 void intel_dsb_wait_scanline_in(struct intel_atomic_state *state, 473 struct intel_dsb *dsb, 474 int start, int end) 475 { 476 assert_dsl_ok(state, dsb, start, end); 477 478 intel_dsb_wait_dsl(state, dsb, 479 start, end, 480 end + 1, start - 1); 481 } 482 483 void intel_dsb_wait_scanline_out(struct intel_atomic_state *state, 484 struct intel_dsb *dsb, 485 int start, int end) 486 { 487 assert_dsl_ok(state, dsb, start, end); 488 489 intel_dsb_wait_dsl(state, dsb, 490 end + 1, start - 1, 491 start, end); 492 } 493 494 static void intel_dsb_align_tail(struct intel_dsb *dsb) 495 { 496 u32 aligned_tail, tail; 497 498 tail = dsb->free_pos * 4; 499 aligned_tail = ALIGN(tail, CACHELINE_BYTES); 500 501 if (aligned_tail > tail) 502 intel_dsb_buffer_memset(&dsb->dsb_buf, dsb->free_pos, 0, 503 aligned_tail - tail); 504 505 dsb->free_pos = aligned_tail / 4; 506 } 507 508 void intel_dsb_finish(struct intel_dsb *dsb) 509 { 510 struct intel_crtc *crtc = dsb->crtc; 511 512 /* 513 * DSB_FORCE_DEWAKE remains active even after DSB is 514 * disabled, so make sure to clear it (if set during 515 * intel_dsb_commit()). And clear DSB_ENABLE_DEWAKE as 516 * well for good measure. 517 */ 518 intel_dsb_reg_write(dsb, DSB_PMCTRL(crtc->pipe, dsb->id), 0); 519 intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(crtc->pipe, dsb->id), 520 DSB_FORCE_DEWAKE, 0); 521 522 intel_dsb_align_tail(dsb); 523 524 intel_dsb_buffer_flush_map(&dsb->dsb_buf); 525 } 526 527 static u32 dsb_error_int_status(struct intel_display *display) 528 { 529 u32 errors; 530 531 errors = DSB_GTT_FAULT_INT_STATUS | 532 DSB_RSPTIMEOUT_INT_STATUS | 533 DSB_POLL_ERR_INT_STATUS; 534 535 /* 536 * All the non-existing status bits operate as 537 * normal r/w bits, so any attempt to clear them 538 * will just end up setting them. Never do that so 539 * we won't mistake them for actual error interrupts. 540 */ 541 if (DISPLAY_VER(display) >= 14) 542 errors |= DSB_ATS_FAULT_INT_STATUS; 543 544 return errors; 545 } 546 547 static u32 dsb_error_int_en(struct intel_display *display) 548 { 549 u32 errors; 550 551 errors = DSB_GTT_FAULT_INT_EN | 552 DSB_RSPTIMEOUT_INT_EN | 553 DSB_POLL_ERR_INT_EN; 554 555 if (DISPLAY_VER(display) >= 14) 556 errors |= DSB_ATS_FAULT_INT_EN; 557 558 return errors; 559 } 560 561 void intel_dsb_vblank_evade(struct intel_atomic_state *state, 562 struct intel_dsb *dsb) 563 { 564 struct intel_crtc *crtc = dsb->crtc; 565 const struct intel_crtc_state *crtc_state = pre_commit_crtc_state(state, crtc); 566 /* FIXME calibrate sensibly */ 567 int latency = intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode, 20); 568 int vblank_delay = dsb_vblank_delay(crtc_state); 569 int start, end; 570 571 if (pre_commit_is_vrr_active(state, crtc)) { 572 end = intel_vrr_vmin_vblank_start(crtc_state); 573 start = end - vblank_delay - latency; 574 intel_dsb_wait_scanline_out(state, dsb, start, end); 575 576 end = intel_vrr_vmax_vblank_start(crtc_state); 577 start = end - vblank_delay - latency; 578 intel_dsb_wait_scanline_out(state, dsb, start, end); 579 } else { 580 end = intel_mode_vblank_start(&crtc_state->hw.adjusted_mode); 581 start = end - vblank_delay - latency; 582 intel_dsb_wait_scanline_out(state, dsb, start, end); 583 } 584 } 585 586 static void _intel_dsb_chain(struct intel_atomic_state *state, 587 struct intel_dsb *dsb, 588 struct intel_dsb *chained_dsb, 589 u32 ctrl) 590 { 591 struct intel_display *display = to_intel_display(state->base.dev); 592 struct intel_crtc *crtc = dsb->crtc; 593 enum pipe pipe = crtc->pipe; 594 u32 tail; 595 596 if (drm_WARN_ON(display->drm, dsb->id == chained_dsb->id)) 597 return; 598 599 tail = chained_dsb->free_pos * 4; 600 if (drm_WARN_ON(display->drm, !IS_ALIGNED(tail, CACHELINE_BYTES))) 601 return; 602 603 intel_dsb_reg_write(dsb, DSB_CTRL(pipe, chained_dsb->id), 604 ctrl | DSB_ENABLE); 605 606 intel_dsb_reg_write(dsb, DSB_CHICKEN(pipe, chained_dsb->id), 607 dsb_chicken(state, crtc)); 608 609 intel_dsb_reg_write(dsb, DSB_INTERRUPT(pipe, chained_dsb->id), 610 dsb_error_int_status(display) | DSB_PROG_INT_STATUS | 611 dsb_error_int_en(display) | DSB_PROG_INT_EN); 612 613 if (ctrl & DSB_WAIT_FOR_VBLANK) { 614 int dewake_scanline = dsb_dewake_scanline_start(state, crtc); 615 int hw_dewake_scanline = dsb_scanline_to_hw(state, crtc, dewake_scanline); 616 617 intel_dsb_reg_write(dsb, DSB_PMCTRL(pipe, chained_dsb->id), 618 DSB_ENABLE_DEWAKE | 619 DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline)); 620 } 621 622 intel_dsb_reg_write(dsb, DSB_HEAD(pipe, chained_dsb->id), 623 intel_dsb_buffer_ggtt_offset(&chained_dsb->dsb_buf)); 624 625 intel_dsb_reg_write(dsb, DSB_TAIL(pipe, chained_dsb->id), 626 intel_dsb_buffer_ggtt_offset(&chained_dsb->dsb_buf) + tail); 627 628 if (ctrl & DSB_WAIT_FOR_VBLANK) { 629 /* 630 * Keep DEwake alive via the first DSB, in 631 * case we're already past dewake_scanline, 632 * and thus DSB_ENABLE_DEWAKE on the second 633 * DSB won't do its job. 634 */ 635 intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(pipe, dsb->id), 636 DSB_FORCE_DEWAKE, DSB_FORCE_DEWAKE); 637 638 intel_dsb_wait_scanline_out(state, dsb, 639 dsb_dewake_scanline_start(state, crtc), 640 dsb_dewake_scanline_end(state, crtc)); 641 } 642 } 643 644 void intel_dsb_chain(struct intel_atomic_state *state, 645 struct intel_dsb *dsb, 646 struct intel_dsb *chained_dsb, 647 bool wait_for_vblank) 648 { 649 _intel_dsb_chain(state, dsb, chained_dsb, 650 wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0); 651 } 652 653 void intel_dsb_wait_vblank_delay(struct intel_atomic_state *state, 654 struct intel_dsb *dsb) 655 { 656 struct intel_crtc *crtc = dsb->crtc; 657 const struct intel_crtc_state *crtc_state = pre_commit_crtc_state(state, crtc); 658 int usecs = intel_scanlines_to_usecs(&crtc_state->hw.adjusted_mode, 659 dsb_vblank_delay(crtc_state)) + 1; 660 661 intel_dsb_wait_usec(dsb, usecs); 662 } 663 664 static void _intel_dsb_commit(struct intel_dsb *dsb, u32 ctrl, 665 int hw_dewake_scanline) 666 { 667 struct intel_crtc *crtc = dsb->crtc; 668 struct intel_display *display = to_intel_display(crtc->base.dev); 669 enum pipe pipe = crtc->pipe; 670 u32 tail; 671 672 tail = dsb->free_pos * 4; 673 if (drm_WARN_ON(display->drm, !IS_ALIGNED(tail, CACHELINE_BYTES))) 674 return; 675 676 if (is_dsb_busy(display, pipe, dsb->id)) { 677 drm_err(display->drm, "[CRTC:%d:%s] DSB %d is busy\n", 678 crtc->base.base.id, crtc->base.name, dsb->id); 679 return; 680 } 681 682 intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), 683 ctrl | DSB_ENABLE); 684 685 intel_de_write_fw(display, DSB_CHICKEN(pipe, dsb->id), 686 dsb->chicken); 687 688 intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb->id), 689 dsb_error_int_status(display) | DSB_PROG_INT_STATUS | 690 dsb_error_int_en(display) | DSB_PROG_INT_EN); 691 692 intel_de_write_fw(display, DSB_HEAD(pipe, dsb->id), 693 intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf)); 694 695 if (hw_dewake_scanline >= 0) { 696 int diff, position; 697 698 intel_de_write_fw(display, DSB_PMCTRL(pipe, dsb->id), 699 DSB_ENABLE_DEWAKE | 700 DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline)); 701 702 /* 703 * Force DEwake immediately if we're already past 704 * or close to racing past the target scanline. 705 */ 706 position = intel_de_read_fw(display, PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK; 707 708 diff = hw_dewake_scanline - position; 709 intel_de_write_fw(display, DSB_PMCTRL_2(pipe, dsb->id), 710 (diff >= 0 && diff < 5 ? DSB_FORCE_DEWAKE : 0) | 711 DSB_BLOCK_DEWAKE_EXTENSION); 712 } 713 714 intel_de_write_fw(display, DSB_TAIL(pipe, dsb->id), 715 intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf) + tail); 716 } 717 718 /** 719 * intel_dsb_commit() - Trigger workload execution of DSB. 720 * @dsb: DSB context 721 * @wait_for_vblank: wait for vblank before executing 722 * 723 * This function is used to do actual write to hardware using DSB. 724 */ 725 void intel_dsb_commit(struct intel_dsb *dsb, 726 bool wait_for_vblank) 727 { 728 _intel_dsb_commit(dsb, 729 wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0, 730 wait_for_vblank ? dsb->hw_dewake_scanline : -1); 731 } 732 733 void intel_dsb_wait(struct intel_dsb *dsb) 734 { 735 struct intel_crtc *crtc = dsb->crtc; 736 struct intel_display *display = to_intel_display(crtc->base.dev); 737 enum pipe pipe = crtc->pipe; 738 739 if (wait_for(!is_dsb_busy(display, pipe, dsb->id), 1)) { 740 u32 offset = intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf); 741 742 intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), 743 DSB_ENABLE | DSB_HALT); 744 745 drm_err(display->drm, 746 "[CRTC:%d:%s] DSB %d timed out waiting for idle (current head=0x%x, head=0x%x, tail=0x%x)\n", 747 crtc->base.base.id, crtc->base.name, dsb->id, 748 intel_de_read_fw(display, DSB_CURRENT_HEAD(pipe, dsb->id)) - offset, 749 intel_de_read_fw(display, DSB_HEAD(pipe, dsb->id)) - offset, 750 intel_de_read_fw(display, DSB_TAIL(pipe, dsb->id)) - offset); 751 752 intel_dsb_dump(dsb); 753 } 754 755 /* Attempt to reset it */ 756 dsb->free_pos = 0; 757 dsb->ins_start_offset = 0; 758 dsb->ins[0] = 0; 759 dsb->ins[1] = 0; 760 761 intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), 0); 762 763 intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb->id), 764 dsb_error_int_status(display) | DSB_PROG_INT_STATUS); 765 } 766 767 /** 768 * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer. 769 * @state: the atomic state 770 * @crtc: the CRTC 771 * @dsb_id: the DSB engine to use 772 * @max_cmds: number of commands we need to fit into command buffer 773 * 774 * This function prepare the command buffer which is used to store dsb 775 * instructions with data. 776 * 777 * Returns: 778 * DSB context, NULL on failure 779 */ 780 struct intel_dsb *intel_dsb_prepare(struct intel_atomic_state *state, 781 struct intel_crtc *crtc, 782 enum intel_dsb_id dsb_id, 783 unsigned int max_cmds) 784 { 785 struct drm_i915_private *i915 = to_i915(state->base.dev); 786 intel_wakeref_t wakeref; 787 struct intel_dsb *dsb; 788 unsigned int size; 789 790 if (!HAS_DSB(i915)) 791 return NULL; 792 793 if (!i915->display.params.enable_dsb) 794 return NULL; 795 796 dsb = kzalloc(sizeof(*dsb), GFP_KERNEL); 797 if (!dsb) 798 goto out; 799 800 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 801 802 /* ~1 qword per instruction, full cachelines */ 803 size = ALIGN(max_cmds * 8, CACHELINE_BYTES); 804 805 if (!intel_dsb_buffer_create(crtc, &dsb->dsb_buf, size)) 806 goto out_put_rpm; 807 808 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 809 810 dsb->id = dsb_id; 811 dsb->crtc = crtc; 812 dsb->size = size / 4; /* in dwords */ 813 814 dsb->chicken = dsb_chicken(state, crtc); 815 dsb->hw_dewake_scanline = 816 dsb_scanline_to_hw(state, crtc, dsb_dewake_scanline_start(state, crtc)); 817 818 return dsb; 819 820 out_put_rpm: 821 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 822 kfree(dsb); 823 out: 824 drm_info_once(&i915->drm, 825 "[CRTC:%d:%s] DSB %d queue setup failed, will fallback to MMIO for display HW programming\n", 826 crtc->base.base.id, crtc->base.name, dsb_id); 827 828 return NULL; 829 } 830 831 /** 832 * intel_dsb_cleanup() - To cleanup DSB context. 833 * @dsb: DSB context 834 * 835 * This function cleanup the DSB context by unpinning and releasing 836 * the VMA object associated with it. 837 */ 838 void intel_dsb_cleanup(struct intel_dsb *dsb) 839 { 840 intel_dsb_buffer_cleanup(&dsb->dsb_buf); 841 kfree(dsb); 842 } 843 844 void intel_dsb_irq_handler(struct intel_display *display, 845 enum pipe pipe, enum intel_dsb_id dsb_id) 846 { 847 struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe); 848 u32 tmp, errors; 849 850 tmp = intel_de_read_fw(display, DSB_INTERRUPT(pipe, dsb_id)); 851 intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb_id), tmp); 852 853 if (tmp & DSB_PROG_INT_STATUS) { 854 spin_lock(&display->drm->event_lock); 855 856 if (crtc->dsb_event) { 857 /* 858 * Update vblank counter/timestmap in case it 859 * hasn't been done yet for this frame. 860 */ 861 drm_crtc_accurate_vblank_count(&crtc->base); 862 863 drm_crtc_send_vblank_event(&crtc->base, crtc->dsb_event); 864 crtc->dsb_event = NULL; 865 } 866 867 spin_unlock(&display->drm->event_lock); 868 } 869 870 errors = tmp & dsb_error_int_status(display); 871 if (errors) 872 drm_err(display->drm, "[CRTC:%d:%s] DSB %d error interrupt: 0x%x\n", 873 crtc->base.base.id, crtc->base.name, dsb_id, errors); 874 } 875