1 /* 2 * Copyright © 2006-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/math.h> 25 #include <linux/string_helpers.h> 26 27 #include "bxt_dpio_phy_regs.h" 28 #include "i915_reg.h" 29 #include "intel_de.h" 30 #include "intel_display_types.h" 31 #include "intel_dkl_phy.h" 32 #include "intel_dkl_phy_regs.h" 33 #include "intel_dpio_phy.h" 34 #include "intel_dpll.h" 35 #include "intel_dpll_mgr.h" 36 #include "intel_hti.h" 37 #include "intel_mg_phy_regs.h" 38 #include "intel_pch_refclk.h" 39 #include "intel_tc.h" 40 41 /** 42 * DOC: Display PLLs 43 * 44 * Display PLLs used for driving outputs vary by platform. While some have 45 * per-pipe or per-encoder dedicated PLLs, others allow the use of any PLL 46 * from a pool. In the latter scenario, it is possible that multiple pipes 47 * share a PLL if their configurations match. 48 * 49 * This file provides an abstraction over display PLLs. The function 50 * intel_shared_dpll_init() initializes the PLLs for the given platform. The 51 * users of a PLL are tracked and that tracking is integrated with the atomic 52 * modset interface. During an atomic operation, required PLLs can be reserved 53 * for a given CRTC and encoder configuration by calling 54 * intel_reserve_shared_dplls() and previously reserved PLLs can be released 55 * with intel_release_shared_dplls(). 56 * Changes to the users are first staged in the atomic state, and then made 57 * effective by calling intel_shared_dpll_swap_state() during the atomic 58 * commit phase. 59 */ 60 61 /* platform specific hooks for managing DPLLs */ 62 struct intel_shared_dpll_funcs { 63 /* 64 * Hook for enabling the pll, called from intel_enable_shared_dpll() if 65 * the pll is not already enabled. 66 */ 67 void (*enable)(struct drm_i915_private *i915, 68 struct intel_shared_dpll *pll, 69 const struct intel_dpll_hw_state *dpll_hw_state); 70 71 /* 72 * Hook for disabling the pll, called from intel_disable_shared_dpll() 73 * only when it is safe to disable the pll, i.e., there are no more 74 * tracked users for it. 75 */ 76 void (*disable)(struct drm_i915_private *i915, 77 struct intel_shared_dpll *pll); 78 79 /* 80 * Hook for reading the values currently programmed to the DPLL 81 * registers. This is used for initial hw state readout and state 82 * verification after a mode set. 83 */ 84 bool (*get_hw_state)(struct drm_i915_private *i915, 85 struct intel_shared_dpll *pll, 86 struct intel_dpll_hw_state *dpll_hw_state); 87 88 /* 89 * Hook for calculating the pll's output frequency based on its passed 90 * in state. 91 */ 92 int (*get_freq)(struct drm_i915_private *i915, 93 const struct intel_shared_dpll *pll, 94 const struct intel_dpll_hw_state *dpll_hw_state); 95 }; 96 97 struct intel_dpll_mgr { 98 const struct dpll_info *dpll_info; 99 100 int (*compute_dplls)(struct intel_atomic_state *state, 101 struct intel_crtc *crtc, 102 struct intel_encoder *encoder); 103 int (*get_dplls)(struct intel_atomic_state *state, 104 struct intel_crtc *crtc, 105 struct intel_encoder *encoder); 106 void (*put_dplls)(struct intel_atomic_state *state, 107 struct intel_crtc *crtc); 108 void (*update_active_dpll)(struct intel_atomic_state *state, 109 struct intel_crtc *crtc, 110 struct intel_encoder *encoder); 111 void (*update_ref_clks)(struct drm_i915_private *i915); 112 void (*dump_hw_state)(struct drm_printer *p, 113 const struct intel_dpll_hw_state *dpll_hw_state); 114 bool (*compare_hw_state)(const struct intel_dpll_hw_state *a, 115 const struct intel_dpll_hw_state *b); 116 }; 117 118 static void 119 intel_atomic_duplicate_dpll_state(struct drm_i915_private *i915, 120 struct intel_shared_dpll_state *shared_dpll) 121 { 122 struct intel_shared_dpll *pll; 123 int i; 124 125 /* Copy shared dpll state */ 126 for_each_shared_dpll(i915, pll, i) 127 shared_dpll[pll->index] = pll->state; 128 } 129 130 static struct intel_shared_dpll_state * 131 intel_atomic_get_shared_dpll_state(struct drm_atomic_state *s) 132 { 133 struct intel_atomic_state *state = to_intel_atomic_state(s); 134 135 drm_WARN_ON(s->dev, !drm_modeset_is_locked(&s->dev->mode_config.connection_mutex)); 136 137 if (!state->dpll_set) { 138 state->dpll_set = true; 139 140 intel_atomic_duplicate_dpll_state(to_i915(s->dev), 141 state->shared_dpll); 142 } 143 144 return state->shared_dpll; 145 } 146 147 /** 148 * intel_get_shared_dpll_by_id - get a DPLL given its id 149 * @i915: i915 device instance 150 * @id: pll id 151 * 152 * Returns: 153 * A pointer to the DPLL with @id 154 */ 155 struct intel_shared_dpll * 156 intel_get_shared_dpll_by_id(struct drm_i915_private *i915, 157 enum intel_dpll_id id) 158 { 159 struct intel_shared_dpll *pll; 160 int i; 161 162 for_each_shared_dpll(i915, pll, i) { 163 if (pll->info->id == id) 164 return pll; 165 } 166 167 MISSING_CASE(id); 168 return NULL; 169 } 170 171 /* For ILK+ */ 172 void assert_shared_dpll(struct drm_i915_private *i915, 173 struct intel_shared_dpll *pll, 174 bool state) 175 { 176 struct intel_display *display = &i915->display; 177 bool cur_state; 178 struct intel_dpll_hw_state hw_state; 179 180 if (drm_WARN(display->drm, !pll, 181 "asserting DPLL %s with no DPLL\n", str_on_off(state))) 182 return; 183 184 cur_state = intel_dpll_get_hw_state(i915, pll, &hw_state); 185 INTEL_DISPLAY_STATE_WARN(display, cur_state != state, 186 "%s assertion failure (expected %s, current %s)\n", 187 pll->info->name, str_on_off(state), 188 str_on_off(cur_state)); 189 } 190 191 static enum tc_port icl_pll_id_to_tc_port(enum intel_dpll_id id) 192 { 193 return TC_PORT_1 + id - DPLL_ID_ICL_MGPLL1; 194 } 195 196 enum intel_dpll_id icl_tc_port_to_pll_id(enum tc_port tc_port) 197 { 198 return tc_port - TC_PORT_1 + DPLL_ID_ICL_MGPLL1; 199 } 200 201 static i915_reg_t 202 intel_combo_pll_enable_reg(struct drm_i915_private *i915, 203 struct intel_shared_dpll *pll) 204 { 205 if (IS_DG1(i915)) 206 return DG1_DPLL_ENABLE(pll->info->id); 207 else if ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) && 208 (pll->info->id == DPLL_ID_EHL_DPLL4)) 209 return MG_PLL_ENABLE(0); 210 211 return ICL_DPLL_ENABLE(pll->info->id); 212 } 213 214 static i915_reg_t 215 intel_tc_pll_enable_reg(struct drm_i915_private *i915, 216 struct intel_shared_dpll *pll) 217 { 218 const enum intel_dpll_id id = pll->info->id; 219 enum tc_port tc_port = icl_pll_id_to_tc_port(id); 220 221 if (IS_ALDERLAKE_P(i915)) 222 return ADLP_PORTTC_PLL_ENABLE(tc_port); 223 224 return MG_PLL_ENABLE(tc_port); 225 } 226 227 static void _intel_enable_shared_dpll(struct drm_i915_private *i915, 228 struct intel_shared_dpll *pll) 229 { 230 if (pll->info->power_domain) 231 pll->wakeref = intel_display_power_get(i915, pll->info->power_domain); 232 233 pll->info->funcs->enable(i915, pll, &pll->state.hw_state); 234 pll->on = true; 235 } 236 237 static void _intel_disable_shared_dpll(struct drm_i915_private *i915, 238 struct intel_shared_dpll *pll) 239 { 240 pll->info->funcs->disable(i915, pll); 241 pll->on = false; 242 243 if (pll->info->power_domain) 244 intel_display_power_put(i915, pll->info->power_domain, pll->wakeref); 245 } 246 247 /** 248 * intel_enable_shared_dpll - enable a CRTC's shared DPLL 249 * @crtc_state: CRTC, and its state, which has a shared DPLL 250 * 251 * Enable the shared DPLL used by @crtc. 252 */ 253 void intel_enable_shared_dpll(const struct intel_crtc_state *crtc_state) 254 { 255 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 256 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 257 struct intel_shared_dpll *pll = crtc_state->shared_dpll; 258 unsigned int pipe_mask = BIT(crtc->pipe); 259 unsigned int old_mask; 260 261 if (drm_WARN_ON(&i915->drm, pll == NULL)) 262 return; 263 264 mutex_lock(&i915->display.dpll.lock); 265 old_mask = pll->active_mask; 266 267 if (drm_WARN_ON(&i915->drm, !(pll->state.pipe_mask & pipe_mask)) || 268 drm_WARN_ON(&i915->drm, pll->active_mask & pipe_mask)) 269 goto out; 270 271 pll->active_mask |= pipe_mask; 272 273 drm_dbg_kms(&i915->drm, 274 "enable %s (active 0x%x, on? %d) for [CRTC:%d:%s]\n", 275 pll->info->name, pll->active_mask, pll->on, 276 crtc->base.base.id, crtc->base.name); 277 278 if (old_mask) { 279 drm_WARN_ON(&i915->drm, !pll->on); 280 assert_shared_dpll_enabled(i915, pll); 281 goto out; 282 } 283 drm_WARN_ON(&i915->drm, pll->on); 284 285 drm_dbg_kms(&i915->drm, "enabling %s\n", pll->info->name); 286 287 _intel_enable_shared_dpll(i915, pll); 288 289 out: 290 mutex_unlock(&i915->display.dpll.lock); 291 } 292 293 /** 294 * intel_disable_shared_dpll - disable a CRTC's shared DPLL 295 * @crtc_state: CRTC, and its state, which has a shared DPLL 296 * 297 * Disable the shared DPLL used by @crtc. 298 */ 299 void intel_disable_shared_dpll(const struct intel_crtc_state *crtc_state) 300 { 301 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 302 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 303 struct intel_shared_dpll *pll = crtc_state->shared_dpll; 304 unsigned int pipe_mask = BIT(crtc->pipe); 305 306 /* PCH only available on ILK+ */ 307 if (DISPLAY_VER(i915) < 5) 308 return; 309 310 if (pll == NULL) 311 return; 312 313 mutex_lock(&i915->display.dpll.lock); 314 if (drm_WARN(&i915->drm, !(pll->active_mask & pipe_mask), 315 "%s not used by [CRTC:%d:%s]\n", pll->info->name, 316 crtc->base.base.id, crtc->base.name)) 317 goto out; 318 319 drm_dbg_kms(&i915->drm, 320 "disable %s (active 0x%x, on? %d) for [CRTC:%d:%s]\n", 321 pll->info->name, pll->active_mask, pll->on, 322 crtc->base.base.id, crtc->base.name); 323 324 assert_shared_dpll_enabled(i915, pll); 325 drm_WARN_ON(&i915->drm, !pll->on); 326 327 pll->active_mask &= ~pipe_mask; 328 if (pll->active_mask) 329 goto out; 330 331 drm_dbg_kms(&i915->drm, "disabling %s\n", pll->info->name); 332 333 _intel_disable_shared_dpll(i915, pll); 334 335 out: 336 mutex_unlock(&i915->display.dpll.lock); 337 } 338 339 static unsigned long 340 intel_dpll_mask_all(struct drm_i915_private *i915) 341 { 342 struct intel_shared_dpll *pll; 343 unsigned long dpll_mask = 0; 344 int i; 345 346 for_each_shared_dpll(i915, pll, i) { 347 drm_WARN_ON(&i915->drm, dpll_mask & BIT(pll->info->id)); 348 349 dpll_mask |= BIT(pll->info->id); 350 } 351 352 return dpll_mask; 353 } 354 355 static struct intel_shared_dpll * 356 intel_find_shared_dpll(struct intel_atomic_state *state, 357 const struct intel_crtc *crtc, 358 const struct intel_dpll_hw_state *dpll_hw_state, 359 unsigned long dpll_mask) 360 { 361 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 362 unsigned long dpll_mask_all = intel_dpll_mask_all(i915); 363 struct intel_shared_dpll_state *shared_dpll; 364 struct intel_shared_dpll *unused_pll = NULL; 365 enum intel_dpll_id id; 366 367 shared_dpll = intel_atomic_get_shared_dpll_state(&state->base); 368 369 drm_WARN_ON(&i915->drm, dpll_mask & ~dpll_mask_all); 370 371 for_each_set_bit(id, &dpll_mask, fls(dpll_mask_all)) { 372 struct intel_shared_dpll *pll; 373 374 pll = intel_get_shared_dpll_by_id(i915, id); 375 if (!pll) 376 continue; 377 378 /* Only want to check enabled timings first */ 379 if (shared_dpll[pll->index].pipe_mask == 0) { 380 if (!unused_pll) 381 unused_pll = pll; 382 continue; 383 } 384 385 if (memcmp(dpll_hw_state, 386 &shared_dpll[pll->index].hw_state, 387 sizeof(*dpll_hw_state)) == 0) { 388 drm_dbg_kms(&i915->drm, 389 "[CRTC:%d:%s] sharing existing %s (pipe mask 0x%x, active 0x%x)\n", 390 crtc->base.base.id, crtc->base.name, 391 pll->info->name, 392 shared_dpll[pll->index].pipe_mask, 393 pll->active_mask); 394 return pll; 395 } 396 } 397 398 /* Ok no matching timings, maybe there's a free one? */ 399 if (unused_pll) { 400 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] allocated %s\n", 401 crtc->base.base.id, crtc->base.name, 402 unused_pll->info->name); 403 return unused_pll; 404 } 405 406 return NULL; 407 } 408 409 /** 410 * intel_reference_shared_dpll_crtc - Get a DPLL reference for a CRTC 411 * @crtc: CRTC on which behalf the reference is taken 412 * @pll: DPLL for which the reference is taken 413 * @shared_dpll_state: the DPLL atomic state in which the reference is tracked 414 * 415 * Take a reference for @pll tracking the use of it by @crtc. 416 */ 417 static void 418 intel_reference_shared_dpll_crtc(const struct intel_crtc *crtc, 419 const struct intel_shared_dpll *pll, 420 struct intel_shared_dpll_state *shared_dpll_state) 421 { 422 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 423 424 drm_WARN_ON(&i915->drm, (shared_dpll_state->pipe_mask & BIT(crtc->pipe)) != 0); 425 426 shared_dpll_state->pipe_mask |= BIT(crtc->pipe); 427 428 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] reserving %s\n", 429 crtc->base.base.id, crtc->base.name, pll->info->name); 430 } 431 432 static void 433 intel_reference_shared_dpll(struct intel_atomic_state *state, 434 const struct intel_crtc *crtc, 435 const struct intel_shared_dpll *pll, 436 const struct intel_dpll_hw_state *dpll_hw_state) 437 { 438 struct intel_shared_dpll_state *shared_dpll; 439 440 shared_dpll = intel_atomic_get_shared_dpll_state(&state->base); 441 442 if (shared_dpll[pll->index].pipe_mask == 0) 443 shared_dpll[pll->index].hw_state = *dpll_hw_state; 444 445 intel_reference_shared_dpll_crtc(crtc, pll, &shared_dpll[pll->index]); 446 } 447 448 /** 449 * intel_unreference_shared_dpll_crtc - Drop a DPLL reference for a CRTC 450 * @crtc: CRTC on which behalf the reference is dropped 451 * @pll: DPLL for which the reference is dropped 452 * @shared_dpll_state: the DPLL atomic state in which the reference is tracked 453 * 454 * Drop a reference for @pll tracking the end of use of it by @crtc. 455 */ 456 void 457 intel_unreference_shared_dpll_crtc(const struct intel_crtc *crtc, 458 const struct intel_shared_dpll *pll, 459 struct intel_shared_dpll_state *shared_dpll_state) 460 { 461 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 462 463 drm_WARN_ON(&i915->drm, (shared_dpll_state->pipe_mask & BIT(crtc->pipe)) == 0); 464 465 shared_dpll_state->pipe_mask &= ~BIT(crtc->pipe); 466 467 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] releasing %s\n", 468 crtc->base.base.id, crtc->base.name, pll->info->name); 469 } 470 471 static void intel_unreference_shared_dpll(struct intel_atomic_state *state, 472 const struct intel_crtc *crtc, 473 const struct intel_shared_dpll *pll) 474 { 475 struct intel_shared_dpll_state *shared_dpll; 476 477 shared_dpll = intel_atomic_get_shared_dpll_state(&state->base); 478 479 intel_unreference_shared_dpll_crtc(crtc, pll, &shared_dpll[pll->index]); 480 } 481 482 static void intel_put_dpll(struct intel_atomic_state *state, 483 struct intel_crtc *crtc) 484 { 485 const struct intel_crtc_state *old_crtc_state = 486 intel_atomic_get_old_crtc_state(state, crtc); 487 struct intel_crtc_state *new_crtc_state = 488 intel_atomic_get_new_crtc_state(state, crtc); 489 490 new_crtc_state->shared_dpll = NULL; 491 492 if (!old_crtc_state->shared_dpll) 493 return; 494 495 intel_unreference_shared_dpll(state, crtc, old_crtc_state->shared_dpll); 496 } 497 498 /** 499 * intel_shared_dpll_swap_state - make atomic DPLL configuration effective 500 * @state: atomic state 501 * 502 * This is the dpll version of drm_atomic_helper_swap_state() since the 503 * helper does not handle driver-specific global state. 504 * 505 * For consistency with atomic helpers this function does a complete swap, 506 * i.e. it also puts the current state into @state, even though there is no 507 * need for that at this moment. 508 */ 509 void intel_shared_dpll_swap_state(struct intel_atomic_state *state) 510 { 511 struct drm_i915_private *i915 = to_i915(state->base.dev); 512 struct intel_shared_dpll_state *shared_dpll = state->shared_dpll; 513 struct intel_shared_dpll *pll; 514 int i; 515 516 if (!state->dpll_set) 517 return; 518 519 for_each_shared_dpll(i915, pll, i) 520 swap(pll->state, shared_dpll[pll->index]); 521 } 522 523 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *i915, 524 struct intel_shared_dpll *pll, 525 struct intel_dpll_hw_state *dpll_hw_state) 526 { 527 struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx; 528 const enum intel_dpll_id id = pll->info->id; 529 intel_wakeref_t wakeref; 530 u32 val; 531 532 wakeref = intel_display_power_get_if_enabled(i915, 533 POWER_DOMAIN_DISPLAY_CORE); 534 if (!wakeref) 535 return false; 536 537 val = intel_de_read(i915, PCH_DPLL(id)); 538 hw_state->dpll = val; 539 hw_state->fp0 = intel_de_read(i915, PCH_FP0(id)); 540 hw_state->fp1 = intel_de_read(i915, PCH_FP1(id)); 541 542 intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); 543 544 return val & DPLL_VCO_ENABLE; 545 } 546 547 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *i915) 548 { 549 struct intel_display *display = &i915->display; 550 u32 val; 551 bool enabled; 552 553 val = intel_de_read(display, PCH_DREF_CONTROL); 554 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK | 555 DREF_SUPERSPREAD_SOURCE_MASK)); 556 INTEL_DISPLAY_STATE_WARN(display, !enabled, 557 "PCH refclk assertion failure, should be active but is disabled\n"); 558 } 559 560 static void ibx_pch_dpll_enable(struct drm_i915_private *i915, 561 struct intel_shared_dpll *pll, 562 const struct intel_dpll_hw_state *dpll_hw_state) 563 { 564 const struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx; 565 const enum intel_dpll_id id = pll->info->id; 566 567 /* PCH refclock must be enabled first */ 568 ibx_assert_pch_refclk_enabled(i915); 569 570 intel_de_write(i915, PCH_FP0(id), hw_state->fp0); 571 intel_de_write(i915, PCH_FP1(id), hw_state->fp1); 572 573 intel_de_write(i915, PCH_DPLL(id), hw_state->dpll); 574 575 /* Wait for the clocks to stabilize. */ 576 intel_de_posting_read(i915, PCH_DPLL(id)); 577 udelay(150); 578 579 /* The pixel multiplier can only be updated once the 580 * DPLL is enabled and the clocks are stable. 581 * 582 * So write it again. 583 */ 584 intel_de_write(i915, PCH_DPLL(id), hw_state->dpll); 585 intel_de_posting_read(i915, PCH_DPLL(id)); 586 udelay(200); 587 } 588 589 static void ibx_pch_dpll_disable(struct drm_i915_private *i915, 590 struct intel_shared_dpll *pll) 591 { 592 const enum intel_dpll_id id = pll->info->id; 593 594 intel_de_write(i915, PCH_DPLL(id), 0); 595 intel_de_posting_read(i915, PCH_DPLL(id)); 596 udelay(200); 597 } 598 599 static int ibx_compute_dpll(struct intel_atomic_state *state, 600 struct intel_crtc *crtc, 601 struct intel_encoder *encoder) 602 { 603 return 0; 604 } 605 606 static int ibx_get_dpll(struct intel_atomic_state *state, 607 struct intel_crtc *crtc, 608 struct intel_encoder *encoder) 609 { 610 struct intel_crtc_state *crtc_state = 611 intel_atomic_get_new_crtc_state(state, crtc); 612 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 613 struct intel_shared_dpll *pll; 614 enum intel_dpll_id id; 615 616 if (HAS_PCH_IBX(i915)) { 617 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */ 618 id = (enum intel_dpll_id) crtc->pipe; 619 pll = intel_get_shared_dpll_by_id(i915, id); 620 621 drm_dbg_kms(&i915->drm, 622 "[CRTC:%d:%s] using pre-allocated %s\n", 623 crtc->base.base.id, crtc->base.name, 624 pll->info->name); 625 } else { 626 pll = intel_find_shared_dpll(state, crtc, 627 &crtc_state->dpll_hw_state, 628 BIT(DPLL_ID_PCH_PLL_B) | 629 BIT(DPLL_ID_PCH_PLL_A)); 630 } 631 632 if (!pll) 633 return -EINVAL; 634 635 /* reference the pll */ 636 intel_reference_shared_dpll(state, crtc, 637 pll, &crtc_state->dpll_hw_state); 638 639 crtc_state->shared_dpll = pll; 640 641 return 0; 642 } 643 644 static void ibx_dump_hw_state(struct drm_printer *p, 645 const struct intel_dpll_hw_state *dpll_hw_state) 646 { 647 const struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx; 648 649 drm_printf(p, "dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, " 650 "fp0: 0x%x, fp1: 0x%x\n", 651 hw_state->dpll, 652 hw_state->dpll_md, 653 hw_state->fp0, 654 hw_state->fp1); 655 } 656 657 static bool ibx_compare_hw_state(const struct intel_dpll_hw_state *_a, 658 const struct intel_dpll_hw_state *_b) 659 { 660 const struct i9xx_dpll_hw_state *a = &_a->i9xx; 661 const struct i9xx_dpll_hw_state *b = &_b->i9xx; 662 663 return a->dpll == b->dpll && 664 a->dpll_md == b->dpll_md && 665 a->fp0 == b->fp0 && 666 a->fp1 == b->fp1; 667 } 668 669 static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = { 670 .enable = ibx_pch_dpll_enable, 671 .disable = ibx_pch_dpll_disable, 672 .get_hw_state = ibx_pch_dpll_get_hw_state, 673 }; 674 675 static const struct dpll_info pch_plls[] = { 676 { .name = "PCH DPLL A", .funcs = &ibx_pch_dpll_funcs, .id = DPLL_ID_PCH_PLL_A, }, 677 { .name = "PCH DPLL B", .funcs = &ibx_pch_dpll_funcs, .id = DPLL_ID_PCH_PLL_B, }, 678 {} 679 }; 680 681 static const struct intel_dpll_mgr pch_pll_mgr = { 682 .dpll_info = pch_plls, 683 .compute_dplls = ibx_compute_dpll, 684 .get_dplls = ibx_get_dpll, 685 .put_dplls = intel_put_dpll, 686 .dump_hw_state = ibx_dump_hw_state, 687 .compare_hw_state = ibx_compare_hw_state, 688 }; 689 690 static void hsw_ddi_wrpll_enable(struct drm_i915_private *i915, 691 struct intel_shared_dpll *pll, 692 const struct intel_dpll_hw_state *dpll_hw_state) 693 { 694 const struct hsw_dpll_hw_state *hw_state = &dpll_hw_state->hsw; 695 const enum intel_dpll_id id = pll->info->id; 696 697 intel_de_write(i915, WRPLL_CTL(id), hw_state->wrpll); 698 intel_de_posting_read(i915, WRPLL_CTL(id)); 699 udelay(20); 700 } 701 702 static void hsw_ddi_spll_enable(struct drm_i915_private *i915, 703 struct intel_shared_dpll *pll, 704 const struct intel_dpll_hw_state *dpll_hw_state) 705 { 706 const struct hsw_dpll_hw_state *hw_state = &dpll_hw_state->hsw; 707 708 intel_de_write(i915, SPLL_CTL, hw_state->spll); 709 intel_de_posting_read(i915, SPLL_CTL); 710 udelay(20); 711 } 712 713 static void hsw_ddi_wrpll_disable(struct drm_i915_private *i915, 714 struct intel_shared_dpll *pll) 715 { 716 const enum intel_dpll_id id = pll->info->id; 717 718 intel_de_rmw(i915, WRPLL_CTL(id), WRPLL_PLL_ENABLE, 0); 719 intel_de_posting_read(i915, WRPLL_CTL(id)); 720 721 /* 722 * Try to set up the PCH reference clock once all DPLLs 723 * that depend on it have been shut down. 724 */ 725 if (i915->display.dpll.pch_ssc_use & BIT(id)) 726 intel_init_pch_refclk(i915); 727 } 728 729 static void hsw_ddi_spll_disable(struct drm_i915_private *i915, 730 struct intel_shared_dpll *pll) 731 { 732 enum intel_dpll_id id = pll->info->id; 733 734 intel_de_rmw(i915, SPLL_CTL, SPLL_PLL_ENABLE, 0); 735 intel_de_posting_read(i915, SPLL_CTL); 736 737 /* 738 * Try to set up the PCH reference clock once all DPLLs 739 * that depend on it have been shut down. 740 */ 741 if (i915->display.dpll.pch_ssc_use & BIT(id)) 742 intel_init_pch_refclk(i915); 743 } 744 745 static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *i915, 746 struct intel_shared_dpll *pll, 747 struct intel_dpll_hw_state *dpll_hw_state) 748 { 749 struct hsw_dpll_hw_state *hw_state = &dpll_hw_state->hsw; 750 const enum intel_dpll_id id = pll->info->id; 751 intel_wakeref_t wakeref; 752 u32 val; 753 754 wakeref = intel_display_power_get_if_enabled(i915, 755 POWER_DOMAIN_DISPLAY_CORE); 756 if (!wakeref) 757 return false; 758 759 val = intel_de_read(i915, WRPLL_CTL(id)); 760 hw_state->wrpll = val; 761 762 intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); 763 764 return val & WRPLL_PLL_ENABLE; 765 } 766 767 static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *i915, 768 struct intel_shared_dpll *pll, 769 struct intel_dpll_hw_state *dpll_hw_state) 770 { 771 struct hsw_dpll_hw_state *hw_state = &dpll_hw_state->hsw; 772 intel_wakeref_t wakeref; 773 u32 val; 774 775 wakeref = intel_display_power_get_if_enabled(i915, 776 POWER_DOMAIN_DISPLAY_CORE); 777 if (!wakeref) 778 return false; 779 780 val = intel_de_read(i915, SPLL_CTL); 781 hw_state->spll = val; 782 783 intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); 784 785 return val & SPLL_PLL_ENABLE; 786 } 787 788 #define LC_FREQ 2700 789 #define LC_FREQ_2K U64_C(LC_FREQ * 2000) 790 791 #define P_MIN 2 792 #define P_MAX 64 793 #define P_INC 2 794 795 /* Constraints for PLL good behavior */ 796 #define REF_MIN 48 797 #define REF_MAX 400 798 #define VCO_MIN 2400 799 #define VCO_MAX 4800 800 801 struct hsw_wrpll_rnp { 802 unsigned p, n2, r2; 803 }; 804 805 static unsigned hsw_wrpll_get_budget_for_freq(int clock) 806 { 807 switch (clock) { 808 case 25175000: 809 case 25200000: 810 case 27000000: 811 case 27027000: 812 case 37762500: 813 case 37800000: 814 case 40500000: 815 case 40541000: 816 case 54000000: 817 case 54054000: 818 case 59341000: 819 case 59400000: 820 case 72000000: 821 case 74176000: 822 case 74250000: 823 case 81000000: 824 case 81081000: 825 case 89012000: 826 case 89100000: 827 case 108000000: 828 case 108108000: 829 case 111264000: 830 case 111375000: 831 case 148352000: 832 case 148500000: 833 case 162000000: 834 case 162162000: 835 case 222525000: 836 case 222750000: 837 case 296703000: 838 case 297000000: 839 return 0; 840 case 233500000: 841 case 245250000: 842 case 247750000: 843 case 253250000: 844 case 298000000: 845 return 1500; 846 case 169128000: 847 case 169500000: 848 case 179500000: 849 case 202000000: 850 return 2000; 851 case 256250000: 852 case 262500000: 853 case 270000000: 854 case 272500000: 855 case 273750000: 856 case 280750000: 857 case 281250000: 858 case 286000000: 859 case 291750000: 860 return 4000; 861 case 267250000: 862 case 268500000: 863 return 5000; 864 default: 865 return 1000; 866 } 867 } 868 869 static void hsw_wrpll_update_rnp(u64 freq2k, unsigned int budget, 870 unsigned int r2, unsigned int n2, 871 unsigned int p, 872 struct hsw_wrpll_rnp *best) 873 { 874 u64 a, b, c, d, diff, diff_best; 875 876 /* No best (r,n,p) yet */ 877 if (best->p == 0) { 878 best->p = p; 879 best->n2 = n2; 880 best->r2 = r2; 881 return; 882 } 883 884 /* 885 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to 886 * freq2k. 887 * 888 * delta = 1e6 * 889 * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) / 890 * freq2k; 891 * 892 * and we would like delta <= budget. 893 * 894 * If the discrepancy is above the PPM-based budget, always prefer to 895 * improve upon the previous solution. However, if you're within the 896 * budget, try to maximize Ref * VCO, that is N / (P * R^2). 897 */ 898 a = freq2k * budget * p * r2; 899 b = freq2k * budget * best->p * best->r2; 900 diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2); 901 diff_best = abs_diff(freq2k * best->p * best->r2, 902 LC_FREQ_2K * best->n2); 903 c = 1000000 * diff; 904 d = 1000000 * diff_best; 905 906 if (a < c && b < d) { 907 /* If both are above the budget, pick the closer */ 908 if (best->p * best->r2 * diff < p * r2 * diff_best) { 909 best->p = p; 910 best->n2 = n2; 911 best->r2 = r2; 912 } 913 } else if (a >= c && b < d) { 914 /* If A is below the threshold but B is above it? Update. */ 915 best->p = p; 916 best->n2 = n2; 917 best->r2 = r2; 918 } else if (a >= c && b >= d) { 919 /* Both are below the limit, so pick the higher n2/(r2*r2) */ 920 if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) { 921 best->p = p; 922 best->n2 = n2; 923 best->r2 = r2; 924 } 925 } 926 /* Otherwise a < c && b >= d, do nothing */ 927 } 928 929 static void 930 hsw_ddi_calculate_wrpll(int clock /* in Hz */, 931 unsigned *r2_out, unsigned *n2_out, unsigned *p_out) 932 { 933 u64 freq2k; 934 unsigned p, n2, r2; 935 struct hsw_wrpll_rnp best = {}; 936 unsigned budget; 937 938 freq2k = clock / 100; 939 940 budget = hsw_wrpll_get_budget_for_freq(clock); 941 942 /* Special case handling for 540 pixel clock: bypass WR PLL entirely 943 * and directly pass the LC PLL to it. */ 944 if (freq2k == 5400000) { 945 *n2_out = 2; 946 *p_out = 1; 947 *r2_out = 2; 948 return; 949 } 950 951 /* 952 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by 953 * the WR PLL. 954 * 955 * We want R so that REF_MIN <= Ref <= REF_MAX. 956 * Injecting R2 = 2 * R gives: 957 * REF_MAX * r2 > LC_FREQ * 2 and 958 * REF_MIN * r2 < LC_FREQ * 2 959 * 960 * Which means the desired boundaries for r2 are: 961 * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN 962 * 963 */ 964 for (r2 = LC_FREQ * 2 / REF_MAX + 1; 965 r2 <= LC_FREQ * 2 / REF_MIN; 966 r2++) { 967 968 /* 969 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R 970 * 971 * Once again we want VCO_MIN <= VCO <= VCO_MAX. 972 * Injecting R2 = 2 * R and N2 = 2 * N, we get: 973 * VCO_MAX * r2 > n2 * LC_FREQ and 974 * VCO_MIN * r2 < n2 * LC_FREQ) 975 * 976 * Which means the desired boundaries for n2 are: 977 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ 978 */ 979 for (n2 = VCO_MIN * r2 / LC_FREQ + 1; 980 n2 <= VCO_MAX * r2 / LC_FREQ; 981 n2++) { 982 983 for (p = P_MIN; p <= P_MAX; p += P_INC) 984 hsw_wrpll_update_rnp(freq2k, budget, 985 r2, n2, p, &best); 986 } 987 } 988 989 *n2_out = best.n2; 990 *p_out = best.p; 991 *r2_out = best.r2; 992 } 993 994 static int hsw_ddi_wrpll_get_freq(struct drm_i915_private *i915, 995 const struct intel_shared_dpll *pll, 996 const struct intel_dpll_hw_state *dpll_hw_state) 997 { 998 const struct hsw_dpll_hw_state *hw_state = &dpll_hw_state->hsw; 999 int refclk; 1000 int n, p, r; 1001 u32 wrpll = hw_state->wrpll; 1002 1003 switch (wrpll & WRPLL_REF_MASK) { 1004 case WRPLL_REF_SPECIAL_HSW: 1005 /* Muxed-SSC for BDW, non-SSC for non-ULT HSW. */ 1006 if (IS_HASWELL(i915) && !IS_HASWELL_ULT(i915)) { 1007 refclk = i915->display.dpll.ref_clks.nssc; 1008 break; 1009 } 1010 fallthrough; 1011 case WRPLL_REF_PCH_SSC: 1012 /* 1013 * We could calculate spread here, but our checking 1014 * code only cares about 5% accuracy, and spread is a max of 1015 * 0.5% downspread. 1016 */ 1017 refclk = i915->display.dpll.ref_clks.ssc; 1018 break; 1019 case WRPLL_REF_LCPLL: 1020 refclk = 2700000; 1021 break; 1022 default: 1023 MISSING_CASE(wrpll); 1024 return 0; 1025 } 1026 1027 r = wrpll & WRPLL_DIVIDER_REF_MASK; 1028 p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT; 1029 n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT; 1030 1031 /* Convert to KHz, p & r have a fixed point portion */ 1032 return (refclk * n / 10) / (p * r) * 2; 1033 } 1034 1035 static int 1036 hsw_ddi_wrpll_compute_dpll(struct intel_atomic_state *state, 1037 struct intel_crtc *crtc) 1038 { 1039 struct drm_i915_private *i915 = to_i915(state->base.dev); 1040 struct intel_crtc_state *crtc_state = 1041 intel_atomic_get_new_crtc_state(state, crtc); 1042 struct hsw_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.hsw; 1043 unsigned int p, n2, r2; 1044 1045 hsw_ddi_calculate_wrpll(crtc_state->port_clock * 1000, &r2, &n2, &p); 1046 1047 hw_state->wrpll = 1048 WRPLL_PLL_ENABLE | WRPLL_REF_LCPLL | 1049 WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) | 1050 WRPLL_DIVIDER_POST(p); 1051 1052 crtc_state->port_clock = hsw_ddi_wrpll_get_freq(i915, NULL, 1053 &crtc_state->dpll_hw_state); 1054 1055 return 0; 1056 } 1057 1058 static struct intel_shared_dpll * 1059 hsw_ddi_wrpll_get_dpll(struct intel_atomic_state *state, 1060 struct intel_crtc *crtc) 1061 { 1062 struct intel_crtc_state *crtc_state = 1063 intel_atomic_get_new_crtc_state(state, crtc); 1064 1065 return intel_find_shared_dpll(state, crtc, 1066 &crtc_state->dpll_hw_state, 1067 BIT(DPLL_ID_WRPLL2) | 1068 BIT(DPLL_ID_WRPLL1)); 1069 } 1070 1071 static int 1072 hsw_ddi_lcpll_compute_dpll(struct intel_crtc_state *crtc_state) 1073 { 1074 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 1075 int clock = crtc_state->port_clock; 1076 1077 switch (clock / 2) { 1078 case 81000: 1079 case 135000: 1080 case 270000: 1081 return 0; 1082 default: 1083 drm_dbg_kms(&i915->drm, "Invalid clock for DP: %d\n", 1084 clock); 1085 return -EINVAL; 1086 } 1087 } 1088 1089 static struct intel_shared_dpll * 1090 hsw_ddi_lcpll_get_dpll(struct intel_crtc_state *crtc_state) 1091 { 1092 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 1093 struct intel_shared_dpll *pll; 1094 enum intel_dpll_id pll_id; 1095 int clock = crtc_state->port_clock; 1096 1097 switch (clock / 2) { 1098 case 81000: 1099 pll_id = DPLL_ID_LCPLL_810; 1100 break; 1101 case 135000: 1102 pll_id = DPLL_ID_LCPLL_1350; 1103 break; 1104 case 270000: 1105 pll_id = DPLL_ID_LCPLL_2700; 1106 break; 1107 default: 1108 MISSING_CASE(clock / 2); 1109 return NULL; 1110 } 1111 1112 pll = intel_get_shared_dpll_by_id(i915, pll_id); 1113 1114 if (!pll) 1115 return NULL; 1116 1117 return pll; 1118 } 1119 1120 static int hsw_ddi_lcpll_get_freq(struct drm_i915_private *i915, 1121 const struct intel_shared_dpll *pll, 1122 const struct intel_dpll_hw_state *dpll_hw_state) 1123 { 1124 int link_clock = 0; 1125 1126 switch (pll->info->id) { 1127 case DPLL_ID_LCPLL_810: 1128 link_clock = 81000; 1129 break; 1130 case DPLL_ID_LCPLL_1350: 1131 link_clock = 135000; 1132 break; 1133 case DPLL_ID_LCPLL_2700: 1134 link_clock = 270000; 1135 break; 1136 default: 1137 drm_WARN(&i915->drm, 1, "bad port clock sel\n"); 1138 break; 1139 } 1140 1141 return link_clock * 2; 1142 } 1143 1144 static int 1145 hsw_ddi_spll_compute_dpll(struct intel_atomic_state *state, 1146 struct intel_crtc *crtc) 1147 { 1148 struct intel_crtc_state *crtc_state = 1149 intel_atomic_get_new_crtc_state(state, crtc); 1150 struct hsw_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.hsw; 1151 1152 if (drm_WARN_ON(crtc->base.dev, crtc_state->port_clock / 2 != 135000)) 1153 return -EINVAL; 1154 1155 hw_state->spll = 1156 SPLL_PLL_ENABLE | SPLL_FREQ_1350MHz | SPLL_REF_MUXED_SSC; 1157 1158 return 0; 1159 } 1160 1161 static struct intel_shared_dpll * 1162 hsw_ddi_spll_get_dpll(struct intel_atomic_state *state, 1163 struct intel_crtc *crtc) 1164 { 1165 struct intel_crtc_state *crtc_state = 1166 intel_atomic_get_new_crtc_state(state, crtc); 1167 1168 return intel_find_shared_dpll(state, crtc, &crtc_state->dpll_hw_state, 1169 BIT(DPLL_ID_SPLL)); 1170 } 1171 1172 static int hsw_ddi_spll_get_freq(struct drm_i915_private *i915, 1173 const struct intel_shared_dpll *pll, 1174 const struct intel_dpll_hw_state *dpll_hw_state) 1175 { 1176 const struct hsw_dpll_hw_state *hw_state = &dpll_hw_state->hsw; 1177 int link_clock = 0; 1178 1179 switch (hw_state->spll & SPLL_FREQ_MASK) { 1180 case SPLL_FREQ_810MHz: 1181 link_clock = 81000; 1182 break; 1183 case SPLL_FREQ_1350MHz: 1184 link_clock = 135000; 1185 break; 1186 case SPLL_FREQ_2700MHz: 1187 link_clock = 270000; 1188 break; 1189 default: 1190 drm_WARN(&i915->drm, 1, "bad spll freq\n"); 1191 break; 1192 } 1193 1194 return link_clock * 2; 1195 } 1196 1197 static int hsw_compute_dpll(struct intel_atomic_state *state, 1198 struct intel_crtc *crtc, 1199 struct intel_encoder *encoder) 1200 { 1201 struct intel_crtc_state *crtc_state = 1202 intel_atomic_get_new_crtc_state(state, crtc); 1203 1204 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1205 return hsw_ddi_wrpll_compute_dpll(state, crtc); 1206 else if (intel_crtc_has_dp_encoder(crtc_state)) 1207 return hsw_ddi_lcpll_compute_dpll(crtc_state); 1208 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 1209 return hsw_ddi_spll_compute_dpll(state, crtc); 1210 else 1211 return -EINVAL; 1212 } 1213 1214 static int hsw_get_dpll(struct intel_atomic_state *state, 1215 struct intel_crtc *crtc, 1216 struct intel_encoder *encoder) 1217 { 1218 struct intel_crtc_state *crtc_state = 1219 intel_atomic_get_new_crtc_state(state, crtc); 1220 struct intel_shared_dpll *pll = NULL; 1221 1222 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1223 pll = hsw_ddi_wrpll_get_dpll(state, crtc); 1224 else if (intel_crtc_has_dp_encoder(crtc_state)) 1225 pll = hsw_ddi_lcpll_get_dpll(crtc_state); 1226 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 1227 pll = hsw_ddi_spll_get_dpll(state, crtc); 1228 1229 if (!pll) 1230 return -EINVAL; 1231 1232 intel_reference_shared_dpll(state, crtc, 1233 pll, &crtc_state->dpll_hw_state); 1234 1235 crtc_state->shared_dpll = pll; 1236 1237 return 0; 1238 } 1239 1240 static void hsw_update_dpll_ref_clks(struct drm_i915_private *i915) 1241 { 1242 i915->display.dpll.ref_clks.ssc = 135000; 1243 /* Non-SSC is only used on non-ULT HSW. */ 1244 if (intel_de_read(i915, FUSE_STRAP3) & HSW_REF_CLK_SELECT) 1245 i915->display.dpll.ref_clks.nssc = 24000; 1246 else 1247 i915->display.dpll.ref_clks.nssc = 135000; 1248 } 1249 1250 static void hsw_dump_hw_state(struct drm_printer *p, 1251 const struct intel_dpll_hw_state *dpll_hw_state) 1252 { 1253 const struct hsw_dpll_hw_state *hw_state = &dpll_hw_state->hsw; 1254 1255 drm_printf(p, "dpll_hw_state: wrpll: 0x%x spll: 0x%x\n", 1256 hw_state->wrpll, hw_state->spll); 1257 } 1258 1259 static bool hsw_compare_hw_state(const struct intel_dpll_hw_state *_a, 1260 const struct intel_dpll_hw_state *_b) 1261 { 1262 const struct hsw_dpll_hw_state *a = &_a->hsw; 1263 const struct hsw_dpll_hw_state *b = &_b->hsw; 1264 1265 return a->wrpll == b->wrpll && 1266 a->spll == b->spll; 1267 } 1268 1269 static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = { 1270 .enable = hsw_ddi_wrpll_enable, 1271 .disable = hsw_ddi_wrpll_disable, 1272 .get_hw_state = hsw_ddi_wrpll_get_hw_state, 1273 .get_freq = hsw_ddi_wrpll_get_freq, 1274 }; 1275 1276 static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = { 1277 .enable = hsw_ddi_spll_enable, 1278 .disable = hsw_ddi_spll_disable, 1279 .get_hw_state = hsw_ddi_spll_get_hw_state, 1280 .get_freq = hsw_ddi_spll_get_freq, 1281 }; 1282 1283 static void hsw_ddi_lcpll_enable(struct drm_i915_private *i915, 1284 struct intel_shared_dpll *pll, 1285 const struct intel_dpll_hw_state *hw_state) 1286 { 1287 } 1288 1289 static void hsw_ddi_lcpll_disable(struct drm_i915_private *i915, 1290 struct intel_shared_dpll *pll) 1291 { 1292 } 1293 1294 static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *i915, 1295 struct intel_shared_dpll *pll, 1296 struct intel_dpll_hw_state *dpll_hw_state) 1297 { 1298 return true; 1299 } 1300 1301 static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = { 1302 .enable = hsw_ddi_lcpll_enable, 1303 .disable = hsw_ddi_lcpll_disable, 1304 .get_hw_state = hsw_ddi_lcpll_get_hw_state, 1305 .get_freq = hsw_ddi_lcpll_get_freq, 1306 }; 1307 1308 static const struct dpll_info hsw_plls[] = { 1309 { .name = "WRPLL 1", .funcs = &hsw_ddi_wrpll_funcs, .id = DPLL_ID_WRPLL1, }, 1310 { .name = "WRPLL 2", .funcs = &hsw_ddi_wrpll_funcs, .id = DPLL_ID_WRPLL2, }, 1311 { .name = "SPLL", .funcs = &hsw_ddi_spll_funcs, .id = DPLL_ID_SPLL, }, 1312 { .name = "LCPLL 810", .funcs = &hsw_ddi_lcpll_funcs, .id = DPLL_ID_LCPLL_810, 1313 .always_on = true, }, 1314 { .name = "LCPLL 1350", .funcs = &hsw_ddi_lcpll_funcs, .id = DPLL_ID_LCPLL_1350, 1315 .always_on = true, }, 1316 { .name = "LCPLL 2700", .funcs = &hsw_ddi_lcpll_funcs, .id = DPLL_ID_LCPLL_2700, 1317 .always_on = true, }, 1318 {} 1319 }; 1320 1321 static const struct intel_dpll_mgr hsw_pll_mgr = { 1322 .dpll_info = hsw_plls, 1323 .compute_dplls = hsw_compute_dpll, 1324 .get_dplls = hsw_get_dpll, 1325 .put_dplls = intel_put_dpll, 1326 .update_ref_clks = hsw_update_dpll_ref_clks, 1327 .dump_hw_state = hsw_dump_hw_state, 1328 .compare_hw_state = hsw_compare_hw_state, 1329 }; 1330 1331 struct skl_dpll_regs { 1332 i915_reg_t ctl, cfgcr1, cfgcr2; 1333 }; 1334 1335 /* this array is indexed by the *shared* pll id */ 1336 static const struct skl_dpll_regs skl_dpll_regs[4] = { 1337 { 1338 /* DPLL 0 */ 1339 .ctl = LCPLL1_CTL, 1340 /* DPLL 0 doesn't support HDMI mode */ 1341 }, 1342 { 1343 /* DPLL 1 */ 1344 .ctl = LCPLL2_CTL, 1345 .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1), 1346 .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1), 1347 }, 1348 { 1349 /* DPLL 2 */ 1350 .ctl = WRPLL_CTL(0), 1351 .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2), 1352 .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2), 1353 }, 1354 { 1355 /* DPLL 3 */ 1356 .ctl = WRPLL_CTL(1), 1357 .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3), 1358 .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3), 1359 }, 1360 }; 1361 1362 static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *i915, 1363 struct intel_shared_dpll *pll, 1364 const struct skl_dpll_hw_state *hw_state) 1365 { 1366 const enum intel_dpll_id id = pll->info->id; 1367 1368 intel_de_rmw(i915, DPLL_CTRL1, 1369 DPLL_CTRL1_HDMI_MODE(id) | 1370 DPLL_CTRL1_SSC(id) | 1371 DPLL_CTRL1_LINK_RATE_MASK(id), 1372 hw_state->ctrl1 << (id * 6)); 1373 intel_de_posting_read(i915, DPLL_CTRL1); 1374 } 1375 1376 static void skl_ddi_pll_enable(struct drm_i915_private *i915, 1377 struct intel_shared_dpll *pll, 1378 const struct intel_dpll_hw_state *dpll_hw_state) 1379 { 1380 const struct skl_dpll_hw_state *hw_state = &dpll_hw_state->skl; 1381 const struct skl_dpll_regs *regs = skl_dpll_regs; 1382 const enum intel_dpll_id id = pll->info->id; 1383 1384 skl_ddi_pll_write_ctrl1(i915, pll, hw_state); 1385 1386 intel_de_write(i915, regs[id].cfgcr1, hw_state->cfgcr1); 1387 intel_de_write(i915, regs[id].cfgcr2, hw_state->cfgcr2); 1388 intel_de_posting_read(i915, regs[id].cfgcr1); 1389 intel_de_posting_read(i915, regs[id].cfgcr2); 1390 1391 /* the enable bit is always bit 31 */ 1392 intel_de_rmw(i915, regs[id].ctl, 0, LCPLL_PLL_ENABLE); 1393 1394 if (intel_de_wait_for_set(i915, DPLL_STATUS, DPLL_LOCK(id), 5)) 1395 drm_err(&i915->drm, "DPLL %d not locked\n", id); 1396 } 1397 1398 static void skl_ddi_dpll0_enable(struct drm_i915_private *i915, 1399 struct intel_shared_dpll *pll, 1400 const struct intel_dpll_hw_state *dpll_hw_state) 1401 { 1402 const struct skl_dpll_hw_state *hw_state = &dpll_hw_state->skl; 1403 1404 skl_ddi_pll_write_ctrl1(i915, pll, hw_state); 1405 } 1406 1407 static void skl_ddi_pll_disable(struct drm_i915_private *i915, 1408 struct intel_shared_dpll *pll) 1409 { 1410 const struct skl_dpll_regs *regs = skl_dpll_regs; 1411 const enum intel_dpll_id id = pll->info->id; 1412 1413 /* the enable bit is always bit 31 */ 1414 intel_de_rmw(i915, regs[id].ctl, LCPLL_PLL_ENABLE, 0); 1415 intel_de_posting_read(i915, regs[id].ctl); 1416 } 1417 1418 static void skl_ddi_dpll0_disable(struct drm_i915_private *i915, 1419 struct intel_shared_dpll *pll) 1420 { 1421 } 1422 1423 static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *i915, 1424 struct intel_shared_dpll *pll, 1425 struct intel_dpll_hw_state *dpll_hw_state) 1426 { 1427 struct skl_dpll_hw_state *hw_state = &dpll_hw_state->skl; 1428 const struct skl_dpll_regs *regs = skl_dpll_regs; 1429 const enum intel_dpll_id id = pll->info->id; 1430 intel_wakeref_t wakeref; 1431 bool ret; 1432 u32 val; 1433 1434 wakeref = intel_display_power_get_if_enabled(i915, 1435 POWER_DOMAIN_DISPLAY_CORE); 1436 if (!wakeref) 1437 return false; 1438 1439 ret = false; 1440 1441 val = intel_de_read(i915, regs[id].ctl); 1442 if (!(val & LCPLL_PLL_ENABLE)) 1443 goto out; 1444 1445 val = intel_de_read(i915, DPLL_CTRL1); 1446 hw_state->ctrl1 = (val >> (id * 6)) & 0x3f; 1447 1448 /* avoid reading back stale values if HDMI mode is not enabled */ 1449 if (val & DPLL_CTRL1_HDMI_MODE(id)) { 1450 hw_state->cfgcr1 = intel_de_read(i915, regs[id].cfgcr1); 1451 hw_state->cfgcr2 = intel_de_read(i915, regs[id].cfgcr2); 1452 } 1453 ret = true; 1454 1455 out: 1456 intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); 1457 1458 return ret; 1459 } 1460 1461 static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *i915, 1462 struct intel_shared_dpll *pll, 1463 struct intel_dpll_hw_state *dpll_hw_state) 1464 { 1465 struct skl_dpll_hw_state *hw_state = &dpll_hw_state->skl; 1466 const struct skl_dpll_regs *regs = skl_dpll_regs; 1467 const enum intel_dpll_id id = pll->info->id; 1468 intel_wakeref_t wakeref; 1469 u32 val; 1470 bool ret; 1471 1472 wakeref = intel_display_power_get_if_enabled(i915, 1473 POWER_DOMAIN_DISPLAY_CORE); 1474 if (!wakeref) 1475 return false; 1476 1477 ret = false; 1478 1479 /* DPLL0 is always enabled since it drives CDCLK */ 1480 val = intel_de_read(i915, regs[id].ctl); 1481 if (drm_WARN_ON(&i915->drm, !(val & LCPLL_PLL_ENABLE))) 1482 goto out; 1483 1484 val = intel_de_read(i915, DPLL_CTRL1); 1485 hw_state->ctrl1 = (val >> (id * 6)) & 0x3f; 1486 1487 ret = true; 1488 1489 out: 1490 intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); 1491 1492 return ret; 1493 } 1494 1495 struct skl_wrpll_context { 1496 u64 min_deviation; /* current minimal deviation */ 1497 u64 central_freq; /* chosen central freq */ 1498 u64 dco_freq; /* chosen dco freq */ 1499 unsigned int p; /* chosen divider */ 1500 }; 1501 1502 /* DCO freq must be within +1%/-6% of the DCO central freq */ 1503 #define SKL_DCO_MAX_PDEVIATION 100 1504 #define SKL_DCO_MAX_NDEVIATION 600 1505 1506 static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx, 1507 u64 central_freq, 1508 u64 dco_freq, 1509 unsigned int divider) 1510 { 1511 u64 deviation; 1512 1513 deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq), 1514 central_freq); 1515 1516 /* positive deviation */ 1517 if (dco_freq >= central_freq) { 1518 if (deviation < SKL_DCO_MAX_PDEVIATION && 1519 deviation < ctx->min_deviation) { 1520 ctx->min_deviation = deviation; 1521 ctx->central_freq = central_freq; 1522 ctx->dco_freq = dco_freq; 1523 ctx->p = divider; 1524 } 1525 /* negative deviation */ 1526 } else if (deviation < SKL_DCO_MAX_NDEVIATION && 1527 deviation < ctx->min_deviation) { 1528 ctx->min_deviation = deviation; 1529 ctx->central_freq = central_freq; 1530 ctx->dco_freq = dco_freq; 1531 ctx->p = divider; 1532 } 1533 } 1534 1535 static void skl_wrpll_get_multipliers(unsigned int p, 1536 unsigned int *p0 /* out */, 1537 unsigned int *p1 /* out */, 1538 unsigned int *p2 /* out */) 1539 { 1540 /* even dividers */ 1541 if (p % 2 == 0) { 1542 unsigned int half = p / 2; 1543 1544 if (half == 1 || half == 2 || half == 3 || half == 5) { 1545 *p0 = 2; 1546 *p1 = 1; 1547 *p2 = half; 1548 } else if (half % 2 == 0) { 1549 *p0 = 2; 1550 *p1 = half / 2; 1551 *p2 = 2; 1552 } else if (half % 3 == 0) { 1553 *p0 = 3; 1554 *p1 = half / 3; 1555 *p2 = 2; 1556 } else if (half % 7 == 0) { 1557 *p0 = 7; 1558 *p1 = half / 7; 1559 *p2 = 2; 1560 } 1561 } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */ 1562 *p0 = 3; 1563 *p1 = 1; 1564 *p2 = p / 3; 1565 } else if (p == 5 || p == 7) { 1566 *p0 = p; 1567 *p1 = 1; 1568 *p2 = 1; 1569 } else if (p == 15) { 1570 *p0 = 3; 1571 *p1 = 1; 1572 *p2 = 5; 1573 } else if (p == 21) { 1574 *p0 = 7; 1575 *p1 = 1; 1576 *p2 = 3; 1577 } else if (p == 35) { 1578 *p0 = 7; 1579 *p1 = 1; 1580 *p2 = 5; 1581 } 1582 } 1583 1584 struct skl_wrpll_params { 1585 u32 dco_fraction; 1586 u32 dco_integer; 1587 u32 qdiv_ratio; 1588 u32 qdiv_mode; 1589 u32 kdiv; 1590 u32 pdiv; 1591 u32 central_freq; 1592 }; 1593 1594 static void skl_wrpll_params_populate(struct skl_wrpll_params *params, 1595 u64 afe_clock, 1596 int ref_clock, 1597 u64 central_freq, 1598 u32 p0, u32 p1, u32 p2) 1599 { 1600 u64 dco_freq; 1601 1602 switch (central_freq) { 1603 case 9600000000ULL: 1604 params->central_freq = 0; 1605 break; 1606 case 9000000000ULL: 1607 params->central_freq = 1; 1608 break; 1609 case 8400000000ULL: 1610 params->central_freq = 3; 1611 } 1612 1613 switch (p0) { 1614 case 1: 1615 params->pdiv = 0; 1616 break; 1617 case 2: 1618 params->pdiv = 1; 1619 break; 1620 case 3: 1621 params->pdiv = 2; 1622 break; 1623 case 7: 1624 params->pdiv = 4; 1625 break; 1626 default: 1627 WARN(1, "Incorrect PDiv\n"); 1628 } 1629 1630 switch (p2) { 1631 case 5: 1632 params->kdiv = 0; 1633 break; 1634 case 2: 1635 params->kdiv = 1; 1636 break; 1637 case 3: 1638 params->kdiv = 2; 1639 break; 1640 case 1: 1641 params->kdiv = 3; 1642 break; 1643 default: 1644 WARN(1, "Incorrect KDiv\n"); 1645 } 1646 1647 params->qdiv_ratio = p1; 1648 params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1; 1649 1650 dco_freq = p0 * p1 * p2 * afe_clock; 1651 1652 /* 1653 * Intermediate values are in Hz. 1654 * Divide by MHz to match bsepc 1655 */ 1656 params->dco_integer = div_u64(dco_freq, ref_clock * KHz(1)); 1657 params->dco_fraction = 1658 div_u64((div_u64(dco_freq, ref_clock / KHz(1)) - 1659 params->dco_integer * MHz(1)) * 0x8000, MHz(1)); 1660 } 1661 1662 static int 1663 skl_ddi_calculate_wrpll(int clock, 1664 int ref_clock, 1665 struct skl_wrpll_params *wrpll_params) 1666 { 1667 static const u64 dco_central_freq[3] = { 8400000000ULL, 1668 9000000000ULL, 1669 9600000000ULL }; 1670 static const u8 even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20, 1671 24, 28, 30, 32, 36, 40, 42, 44, 1672 48, 52, 54, 56, 60, 64, 66, 68, 1673 70, 72, 76, 78, 80, 84, 88, 90, 1674 92, 96, 98 }; 1675 static const u8 odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 }; 1676 static const struct { 1677 const u8 *list; 1678 int n_dividers; 1679 } dividers[] = { 1680 { even_dividers, ARRAY_SIZE(even_dividers) }, 1681 { odd_dividers, ARRAY_SIZE(odd_dividers) }, 1682 }; 1683 struct skl_wrpll_context ctx = { 1684 .min_deviation = U64_MAX, 1685 }; 1686 unsigned int dco, d, i; 1687 unsigned int p0, p1, p2; 1688 u64 afe_clock = (u64)clock * 1000 * 5; /* AFE Clock is 5x Pixel clock, in Hz */ 1689 1690 for (d = 0; d < ARRAY_SIZE(dividers); d++) { 1691 for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) { 1692 for (i = 0; i < dividers[d].n_dividers; i++) { 1693 unsigned int p = dividers[d].list[i]; 1694 u64 dco_freq = p * afe_clock; 1695 1696 skl_wrpll_try_divider(&ctx, 1697 dco_central_freq[dco], 1698 dco_freq, 1699 p); 1700 /* 1701 * Skip the remaining dividers if we're sure to 1702 * have found the definitive divider, we can't 1703 * improve a 0 deviation. 1704 */ 1705 if (ctx.min_deviation == 0) 1706 goto skip_remaining_dividers; 1707 } 1708 } 1709 1710 skip_remaining_dividers: 1711 /* 1712 * If a solution is found with an even divider, prefer 1713 * this one. 1714 */ 1715 if (d == 0 && ctx.p) 1716 break; 1717 } 1718 1719 if (!ctx.p) 1720 return -EINVAL; 1721 1722 /* 1723 * gcc incorrectly analyses that these can be used without being 1724 * initialized. To be fair, it's hard to guess. 1725 */ 1726 p0 = p1 = p2 = 0; 1727 skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2); 1728 skl_wrpll_params_populate(wrpll_params, afe_clock, ref_clock, 1729 ctx.central_freq, p0, p1, p2); 1730 1731 return 0; 1732 } 1733 1734 static int skl_ddi_wrpll_get_freq(struct drm_i915_private *i915, 1735 const struct intel_shared_dpll *pll, 1736 const struct intel_dpll_hw_state *dpll_hw_state) 1737 { 1738 const struct skl_dpll_hw_state *hw_state = &dpll_hw_state->skl; 1739 int ref_clock = i915->display.dpll.ref_clks.nssc; 1740 u32 p0, p1, p2, dco_freq; 1741 1742 p0 = hw_state->cfgcr2 & DPLL_CFGCR2_PDIV_MASK; 1743 p2 = hw_state->cfgcr2 & DPLL_CFGCR2_KDIV_MASK; 1744 1745 if (hw_state->cfgcr2 & DPLL_CFGCR2_QDIV_MODE(1)) 1746 p1 = (hw_state->cfgcr2 & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8; 1747 else 1748 p1 = 1; 1749 1750 1751 switch (p0) { 1752 case DPLL_CFGCR2_PDIV_1: 1753 p0 = 1; 1754 break; 1755 case DPLL_CFGCR2_PDIV_2: 1756 p0 = 2; 1757 break; 1758 case DPLL_CFGCR2_PDIV_3: 1759 p0 = 3; 1760 break; 1761 case DPLL_CFGCR2_PDIV_7_INVALID: 1762 /* 1763 * Incorrect ASUS-Z170M BIOS setting, the HW seems to ignore bit#0, 1764 * handling it the same way as PDIV_7. 1765 */ 1766 drm_dbg_kms(&i915->drm, "Invalid WRPLL PDIV divider value, fixing it.\n"); 1767 fallthrough; 1768 case DPLL_CFGCR2_PDIV_7: 1769 p0 = 7; 1770 break; 1771 default: 1772 MISSING_CASE(p0); 1773 return 0; 1774 } 1775 1776 switch (p2) { 1777 case DPLL_CFGCR2_KDIV_5: 1778 p2 = 5; 1779 break; 1780 case DPLL_CFGCR2_KDIV_2: 1781 p2 = 2; 1782 break; 1783 case DPLL_CFGCR2_KDIV_3: 1784 p2 = 3; 1785 break; 1786 case DPLL_CFGCR2_KDIV_1: 1787 p2 = 1; 1788 break; 1789 default: 1790 MISSING_CASE(p2); 1791 return 0; 1792 } 1793 1794 dco_freq = (hw_state->cfgcr1 & DPLL_CFGCR1_DCO_INTEGER_MASK) * 1795 ref_clock; 1796 1797 dco_freq += ((hw_state->cfgcr1 & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 1798 ref_clock / 0x8000; 1799 1800 if (drm_WARN_ON(&i915->drm, p0 == 0 || p1 == 0 || p2 == 0)) 1801 return 0; 1802 1803 return dco_freq / (p0 * p1 * p2 * 5); 1804 } 1805 1806 static int skl_ddi_hdmi_pll_dividers(struct intel_crtc_state *crtc_state) 1807 { 1808 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 1809 struct skl_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.skl; 1810 struct skl_wrpll_params wrpll_params = {}; 1811 int ret; 1812 1813 ret = skl_ddi_calculate_wrpll(crtc_state->port_clock, 1814 i915->display.dpll.ref_clks.nssc, &wrpll_params); 1815 if (ret) 1816 return ret; 1817 1818 /* 1819 * See comment in intel_dpll_hw_state to understand why we always use 0 1820 * as the DPLL id in this function. 1821 */ 1822 hw_state->ctrl1 = 1823 DPLL_CTRL1_OVERRIDE(0) | 1824 DPLL_CTRL1_HDMI_MODE(0); 1825 1826 hw_state->cfgcr1 = 1827 DPLL_CFGCR1_FREQ_ENABLE | 1828 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) | 1829 wrpll_params.dco_integer; 1830 1831 hw_state->cfgcr2 = 1832 DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) | 1833 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) | 1834 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) | 1835 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) | 1836 wrpll_params.central_freq; 1837 1838 crtc_state->port_clock = skl_ddi_wrpll_get_freq(i915, NULL, 1839 &crtc_state->dpll_hw_state); 1840 1841 return 0; 1842 } 1843 1844 static int 1845 skl_ddi_dp_set_dpll_hw_state(struct intel_crtc_state *crtc_state) 1846 { 1847 struct skl_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.skl; 1848 u32 ctrl1; 1849 1850 /* 1851 * See comment in intel_dpll_hw_state to understand why we always use 0 1852 * as the DPLL id in this function. 1853 */ 1854 ctrl1 = DPLL_CTRL1_OVERRIDE(0); 1855 switch (crtc_state->port_clock / 2) { 1856 case 81000: 1857 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0); 1858 break; 1859 case 135000: 1860 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0); 1861 break; 1862 case 270000: 1863 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0); 1864 break; 1865 /* eDP 1.4 rates */ 1866 case 162000: 1867 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0); 1868 break; 1869 case 108000: 1870 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0); 1871 break; 1872 case 216000: 1873 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0); 1874 break; 1875 } 1876 1877 hw_state->ctrl1 = ctrl1; 1878 1879 return 0; 1880 } 1881 1882 static int skl_ddi_lcpll_get_freq(struct drm_i915_private *i915, 1883 const struct intel_shared_dpll *pll, 1884 const struct intel_dpll_hw_state *dpll_hw_state) 1885 { 1886 const struct skl_dpll_hw_state *hw_state = &dpll_hw_state->skl; 1887 int link_clock = 0; 1888 1889 switch ((hw_state->ctrl1 & DPLL_CTRL1_LINK_RATE_MASK(0)) >> 1890 DPLL_CTRL1_LINK_RATE_SHIFT(0)) { 1891 case DPLL_CTRL1_LINK_RATE_810: 1892 link_clock = 81000; 1893 break; 1894 case DPLL_CTRL1_LINK_RATE_1080: 1895 link_clock = 108000; 1896 break; 1897 case DPLL_CTRL1_LINK_RATE_1350: 1898 link_clock = 135000; 1899 break; 1900 case DPLL_CTRL1_LINK_RATE_1620: 1901 link_clock = 162000; 1902 break; 1903 case DPLL_CTRL1_LINK_RATE_2160: 1904 link_clock = 216000; 1905 break; 1906 case DPLL_CTRL1_LINK_RATE_2700: 1907 link_clock = 270000; 1908 break; 1909 default: 1910 drm_WARN(&i915->drm, 1, "Unsupported link rate\n"); 1911 break; 1912 } 1913 1914 return link_clock * 2; 1915 } 1916 1917 static int skl_compute_dpll(struct intel_atomic_state *state, 1918 struct intel_crtc *crtc, 1919 struct intel_encoder *encoder) 1920 { 1921 struct intel_crtc_state *crtc_state = 1922 intel_atomic_get_new_crtc_state(state, crtc); 1923 1924 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1925 return skl_ddi_hdmi_pll_dividers(crtc_state); 1926 else if (intel_crtc_has_dp_encoder(crtc_state)) 1927 return skl_ddi_dp_set_dpll_hw_state(crtc_state); 1928 else 1929 return -EINVAL; 1930 } 1931 1932 static int skl_get_dpll(struct intel_atomic_state *state, 1933 struct intel_crtc *crtc, 1934 struct intel_encoder *encoder) 1935 { 1936 struct intel_crtc_state *crtc_state = 1937 intel_atomic_get_new_crtc_state(state, crtc); 1938 struct intel_shared_dpll *pll; 1939 1940 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) 1941 pll = intel_find_shared_dpll(state, crtc, 1942 &crtc_state->dpll_hw_state, 1943 BIT(DPLL_ID_SKL_DPLL0)); 1944 else 1945 pll = intel_find_shared_dpll(state, crtc, 1946 &crtc_state->dpll_hw_state, 1947 BIT(DPLL_ID_SKL_DPLL3) | 1948 BIT(DPLL_ID_SKL_DPLL2) | 1949 BIT(DPLL_ID_SKL_DPLL1)); 1950 if (!pll) 1951 return -EINVAL; 1952 1953 intel_reference_shared_dpll(state, crtc, 1954 pll, &crtc_state->dpll_hw_state); 1955 1956 crtc_state->shared_dpll = pll; 1957 1958 return 0; 1959 } 1960 1961 static int skl_ddi_pll_get_freq(struct drm_i915_private *i915, 1962 const struct intel_shared_dpll *pll, 1963 const struct intel_dpll_hw_state *dpll_hw_state) 1964 { 1965 const struct skl_dpll_hw_state *hw_state = &dpll_hw_state->skl; 1966 1967 /* 1968 * ctrl1 register is already shifted for each pll, just use 0 to get 1969 * the internal shift for each field 1970 */ 1971 if (hw_state->ctrl1 & DPLL_CTRL1_HDMI_MODE(0)) 1972 return skl_ddi_wrpll_get_freq(i915, pll, dpll_hw_state); 1973 else 1974 return skl_ddi_lcpll_get_freq(i915, pll, dpll_hw_state); 1975 } 1976 1977 static void skl_update_dpll_ref_clks(struct drm_i915_private *i915) 1978 { 1979 /* No SSC ref */ 1980 i915->display.dpll.ref_clks.nssc = i915->display.cdclk.hw.ref; 1981 } 1982 1983 static void skl_dump_hw_state(struct drm_printer *p, 1984 const struct intel_dpll_hw_state *dpll_hw_state) 1985 { 1986 const struct skl_dpll_hw_state *hw_state = &dpll_hw_state->skl; 1987 1988 drm_printf(p, "dpll_hw_state: ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n", 1989 hw_state->ctrl1, hw_state->cfgcr1, hw_state->cfgcr2); 1990 } 1991 1992 static bool skl_compare_hw_state(const struct intel_dpll_hw_state *_a, 1993 const struct intel_dpll_hw_state *_b) 1994 { 1995 const struct skl_dpll_hw_state *a = &_a->skl; 1996 const struct skl_dpll_hw_state *b = &_b->skl; 1997 1998 return a->ctrl1 == b->ctrl1 && 1999 a->cfgcr1 == b->cfgcr1 && 2000 a->cfgcr2 == b->cfgcr2; 2001 } 2002 2003 static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = { 2004 .enable = skl_ddi_pll_enable, 2005 .disable = skl_ddi_pll_disable, 2006 .get_hw_state = skl_ddi_pll_get_hw_state, 2007 .get_freq = skl_ddi_pll_get_freq, 2008 }; 2009 2010 static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = { 2011 .enable = skl_ddi_dpll0_enable, 2012 .disable = skl_ddi_dpll0_disable, 2013 .get_hw_state = skl_ddi_dpll0_get_hw_state, 2014 .get_freq = skl_ddi_pll_get_freq, 2015 }; 2016 2017 static const struct dpll_info skl_plls[] = { 2018 { .name = "DPLL 0", .funcs = &skl_ddi_dpll0_funcs, .id = DPLL_ID_SKL_DPLL0, 2019 .always_on = true, }, 2020 { .name = "DPLL 1", .funcs = &skl_ddi_pll_funcs, .id = DPLL_ID_SKL_DPLL1, }, 2021 { .name = "DPLL 2", .funcs = &skl_ddi_pll_funcs, .id = DPLL_ID_SKL_DPLL2, }, 2022 { .name = "DPLL 3", .funcs = &skl_ddi_pll_funcs, .id = DPLL_ID_SKL_DPLL3, }, 2023 {} 2024 }; 2025 2026 static const struct intel_dpll_mgr skl_pll_mgr = { 2027 .dpll_info = skl_plls, 2028 .compute_dplls = skl_compute_dpll, 2029 .get_dplls = skl_get_dpll, 2030 .put_dplls = intel_put_dpll, 2031 .update_ref_clks = skl_update_dpll_ref_clks, 2032 .dump_hw_state = skl_dump_hw_state, 2033 .compare_hw_state = skl_compare_hw_state, 2034 }; 2035 2036 static void bxt_ddi_pll_enable(struct drm_i915_private *i915, 2037 struct intel_shared_dpll *pll, 2038 const struct intel_dpll_hw_state *dpll_hw_state) 2039 { 2040 struct intel_display *display = &i915->display; 2041 const struct bxt_dpll_hw_state *hw_state = &dpll_hw_state->bxt; 2042 enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */ 2043 enum dpio_phy phy; 2044 enum dpio_channel ch; 2045 u32 temp; 2046 2047 bxt_port_to_phy_channel(display, port, &phy, &ch); 2048 2049 /* Non-SSC reference */ 2050 intel_de_rmw(i915, BXT_PORT_PLL_ENABLE(port), 0, PORT_PLL_REF_SEL); 2051 2052 if (IS_GEMINILAKE(i915)) { 2053 intel_de_rmw(i915, BXT_PORT_PLL_ENABLE(port), 2054 0, PORT_PLL_POWER_ENABLE); 2055 2056 if (wait_for_us((intel_de_read(i915, BXT_PORT_PLL_ENABLE(port)) & 2057 PORT_PLL_POWER_STATE), 200)) 2058 drm_err(&i915->drm, 2059 "Power state not set for PLL:%d\n", port); 2060 } 2061 2062 /* Disable 10 bit clock */ 2063 intel_de_rmw(i915, BXT_PORT_PLL_EBB_4(phy, ch), 2064 PORT_PLL_10BIT_CLK_ENABLE, 0); 2065 2066 /* Write P1 & P2 */ 2067 intel_de_rmw(i915, BXT_PORT_PLL_EBB_0(phy, ch), 2068 PORT_PLL_P1_MASK | PORT_PLL_P2_MASK, hw_state->ebb0); 2069 2070 /* Write M2 integer */ 2071 intel_de_rmw(i915, BXT_PORT_PLL(phy, ch, 0), 2072 PORT_PLL_M2_INT_MASK, hw_state->pll0); 2073 2074 /* Write N */ 2075 intel_de_rmw(i915, BXT_PORT_PLL(phy, ch, 1), 2076 PORT_PLL_N_MASK, hw_state->pll1); 2077 2078 /* Write M2 fraction */ 2079 intel_de_rmw(i915, BXT_PORT_PLL(phy, ch, 2), 2080 PORT_PLL_M2_FRAC_MASK, hw_state->pll2); 2081 2082 /* Write M2 fraction enable */ 2083 intel_de_rmw(i915, BXT_PORT_PLL(phy, ch, 3), 2084 PORT_PLL_M2_FRAC_ENABLE, hw_state->pll3); 2085 2086 /* Write coeff */ 2087 temp = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 6)); 2088 temp &= ~PORT_PLL_PROP_COEFF_MASK; 2089 temp &= ~PORT_PLL_INT_COEFF_MASK; 2090 temp &= ~PORT_PLL_GAIN_CTL_MASK; 2091 temp |= hw_state->pll6; 2092 intel_de_write(i915, BXT_PORT_PLL(phy, ch, 6), temp); 2093 2094 /* Write calibration val */ 2095 intel_de_rmw(i915, BXT_PORT_PLL(phy, ch, 8), 2096 PORT_PLL_TARGET_CNT_MASK, hw_state->pll8); 2097 2098 intel_de_rmw(i915, BXT_PORT_PLL(phy, ch, 9), 2099 PORT_PLL_LOCK_THRESHOLD_MASK, hw_state->pll9); 2100 2101 temp = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 10)); 2102 temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H; 2103 temp &= ~PORT_PLL_DCO_AMP_MASK; 2104 temp |= hw_state->pll10; 2105 intel_de_write(i915, BXT_PORT_PLL(phy, ch, 10), temp); 2106 2107 /* Recalibrate with new settings */ 2108 temp = intel_de_read(i915, BXT_PORT_PLL_EBB_4(phy, ch)); 2109 temp |= PORT_PLL_RECALIBRATE; 2110 intel_de_write(i915, BXT_PORT_PLL_EBB_4(phy, ch), temp); 2111 temp &= ~PORT_PLL_10BIT_CLK_ENABLE; 2112 temp |= hw_state->ebb4; 2113 intel_de_write(i915, BXT_PORT_PLL_EBB_4(phy, ch), temp); 2114 2115 /* Enable PLL */ 2116 intel_de_rmw(i915, BXT_PORT_PLL_ENABLE(port), 0, PORT_PLL_ENABLE); 2117 intel_de_posting_read(i915, BXT_PORT_PLL_ENABLE(port)); 2118 2119 if (wait_for_us((intel_de_read(i915, BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK), 2120 200)) 2121 drm_err(&i915->drm, "PLL %d not locked\n", port); 2122 2123 if (IS_GEMINILAKE(i915)) { 2124 temp = intel_de_read(i915, BXT_PORT_TX_DW5_LN(phy, ch, 0)); 2125 temp |= DCC_DELAY_RANGE_2; 2126 intel_de_write(i915, BXT_PORT_TX_DW5_GRP(phy, ch), temp); 2127 } 2128 2129 /* 2130 * While we write to the group register to program all lanes at once we 2131 * can read only lane registers and we pick lanes 0/1 for that. 2132 */ 2133 temp = intel_de_read(i915, BXT_PORT_PCS_DW12_LN01(phy, ch)); 2134 temp &= ~LANE_STAGGER_MASK; 2135 temp &= ~LANESTAGGER_STRAP_OVRD; 2136 temp |= hw_state->pcsdw12; 2137 intel_de_write(i915, BXT_PORT_PCS_DW12_GRP(phy, ch), temp); 2138 } 2139 2140 static void bxt_ddi_pll_disable(struct drm_i915_private *i915, 2141 struct intel_shared_dpll *pll) 2142 { 2143 enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */ 2144 2145 intel_de_rmw(i915, BXT_PORT_PLL_ENABLE(port), PORT_PLL_ENABLE, 0); 2146 intel_de_posting_read(i915, BXT_PORT_PLL_ENABLE(port)); 2147 2148 if (IS_GEMINILAKE(i915)) { 2149 intel_de_rmw(i915, BXT_PORT_PLL_ENABLE(port), 2150 PORT_PLL_POWER_ENABLE, 0); 2151 2152 if (wait_for_us(!(intel_de_read(i915, BXT_PORT_PLL_ENABLE(port)) & 2153 PORT_PLL_POWER_STATE), 200)) 2154 drm_err(&i915->drm, 2155 "Power state not reset for PLL:%d\n", port); 2156 } 2157 } 2158 2159 static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *i915, 2160 struct intel_shared_dpll *pll, 2161 struct intel_dpll_hw_state *dpll_hw_state) 2162 { 2163 struct intel_display *display = &i915->display; 2164 struct bxt_dpll_hw_state *hw_state = &dpll_hw_state->bxt; 2165 enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */ 2166 intel_wakeref_t wakeref; 2167 enum dpio_phy phy; 2168 enum dpio_channel ch; 2169 u32 val; 2170 bool ret; 2171 2172 bxt_port_to_phy_channel(display, port, &phy, &ch); 2173 2174 wakeref = intel_display_power_get_if_enabled(i915, 2175 POWER_DOMAIN_DISPLAY_CORE); 2176 if (!wakeref) 2177 return false; 2178 2179 ret = false; 2180 2181 val = intel_de_read(i915, BXT_PORT_PLL_ENABLE(port)); 2182 if (!(val & PORT_PLL_ENABLE)) 2183 goto out; 2184 2185 hw_state->ebb0 = intel_de_read(i915, BXT_PORT_PLL_EBB_0(phy, ch)); 2186 hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK; 2187 2188 hw_state->ebb4 = intel_de_read(i915, BXT_PORT_PLL_EBB_4(phy, ch)); 2189 hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE; 2190 2191 hw_state->pll0 = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 0)); 2192 hw_state->pll0 &= PORT_PLL_M2_INT_MASK; 2193 2194 hw_state->pll1 = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 1)); 2195 hw_state->pll1 &= PORT_PLL_N_MASK; 2196 2197 hw_state->pll2 = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 2)); 2198 hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK; 2199 2200 hw_state->pll3 = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 3)); 2201 hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE; 2202 2203 hw_state->pll6 = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 6)); 2204 hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK | 2205 PORT_PLL_INT_COEFF_MASK | 2206 PORT_PLL_GAIN_CTL_MASK; 2207 2208 hw_state->pll8 = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 8)); 2209 hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK; 2210 2211 hw_state->pll9 = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 9)); 2212 hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK; 2213 2214 hw_state->pll10 = intel_de_read(i915, BXT_PORT_PLL(phy, ch, 10)); 2215 hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H | 2216 PORT_PLL_DCO_AMP_MASK; 2217 2218 /* 2219 * While we write to the group register to program all lanes at once we 2220 * can read only lane registers. We configure all lanes the same way, so 2221 * here just read out lanes 0/1 and output a note if lanes 2/3 differ. 2222 */ 2223 hw_state->pcsdw12 = intel_de_read(i915, 2224 BXT_PORT_PCS_DW12_LN01(phy, ch)); 2225 if (intel_de_read(i915, BXT_PORT_PCS_DW12_LN23(phy, ch)) != hw_state->pcsdw12) 2226 drm_dbg(&i915->drm, 2227 "lane stagger config different for lane 01 (%08x) and 23 (%08x)\n", 2228 hw_state->pcsdw12, 2229 intel_de_read(i915, 2230 BXT_PORT_PCS_DW12_LN23(phy, ch))); 2231 hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD; 2232 2233 ret = true; 2234 2235 out: 2236 intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); 2237 2238 return ret; 2239 } 2240 2241 /* pre-calculated values for DP linkrates */ 2242 static const struct dpll bxt_dp_clk_val[] = { 2243 /* m2 is .22 binary fixed point */ 2244 { .dot = 162000, .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a /* 32.4 */ }, 2245 { .dot = 270000, .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 /* 27.0 */ }, 2246 { .dot = 540000, .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 /* 27.0 */ }, 2247 { .dot = 216000, .p1 = 3, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a /* 32.4 */ }, 2248 { .dot = 243000, .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6133333 /* 24.3 */ }, 2249 { .dot = 324000, .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x819999a /* 32.4 */ }, 2250 { .dot = 432000, .p1 = 3, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x819999a /* 32.4 */ }, 2251 }; 2252 2253 static int 2254 bxt_ddi_hdmi_pll_dividers(struct intel_crtc_state *crtc_state, 2255 struct dpll *clk_div) 2256 { 2257 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 2258 2259 /* Calculate HDMI div */ 2260 /* 2261 * FIXME: tie the following calculation into 2262 * i9xx_crtc_compute_clock 2263 */ 2264 if (!bxt_find_best_dpll(crtc_state, clk_div)) 2265 return -EINVAL; 2266 2267 drm_WARN_ON(&i915->drm, clk_div->m1 != 2); 2268 2269 return 0; 2270 } 2271 2272 static void bxt_ddi_dp_pll_dividers(struct intel_crtc_state *crtc_state, 2273 struct dpll *clk_div) 2274 { 2275 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 2276 int i; 2277 2278 *clk_div = bxt_dp_clk_val[0]; 2279 for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) { 2280 if (crtc_state->port_clock == bxt_dp_clk_val[i].dot) { 2281 *clk_div = bxt_dp_clk_val[i]; 2282 break; 2283 } 2284 } 2285 2286 chv_calc_dpll_params(i915->display.dpll.ref_clks.nssc, clk_div); 2287 2288 drm_WARN_ON(&i915->drm, clk_div->vco == 0 || 2289 clk_div->dot != crtc_state->port_clock); 2290 } 2291 2292 static int bxt_ddi_set_dpll_hw_state(struct intel_crtc_state *crtc_state, 2293 const struct dpll *clk_div) 2294 { 2295 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 2296 struct bxt_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.bxt; 2297 int clock = crtc_state->port_clock; 2298 int vco = clk_div->vco; 2299 u32 prop_coef, int_coef, gain_ctl, targ_cnt; 2300 u32 lanestagger; 2301 2302 if (vco >= 6200000 && vco <= 6700000) { 2303 prop_coef = 4; 2304 int_coef = 9; 2305 gain_ctl = 3; 2306 targ_cnt = 8; 2307 } else if ((vco > 5400000 && vco < 6200000) || 2308 (vco >= 4800000 && vco < 5400000)) { 2309 prop_coef = 5; 2310 int_coef = 11; 2311 gain_ctl = 3; 2312 targ_cnt = 9; 2313 } else if (vco == 5400000) { 2314 prop_coef = 3; 2315 int_coef = 8; 2316 gain_ctl = 1; 2317 targ_cnt = 9; 2318 } else { 2319 drm_err(&i915->drm, "Invalid VCO\n"); 2320 return -EINVAL; 2321 } 2322 2323 if (clock > 270000) 2324 lanestagger = 0x18; 2325 else if (clock > 135000) 2326 lanestagger = 0x0d; 2327 else if (clock > 67000) 2328 lanestagger = 0x07; 2329 else if (clock > 33000) 2330 lanestagger = 0x04; 2331 else 2332 lanestagger = 0x02; 2333 2334 hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2); 2335 hw_state->pll0 = PORT_PLL_M2_INT(clk_div->m2 >> 22); 2336 hw_state->pll1 = PORT_PLL_N(clk_div->n); 2337 hw_state->pll2 = PORT_PLL_M2_FRAC(clk_div->m2 & 0x3fffff); 2338 2339 if (clk_div->m2 & 0x3fffff) 2340 hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE; 2341 2342 hw_state->pll6 = PORT_PLL_PROP_COEFF(prop_coef) | 2343 PORT_PLL_INT_COEFF(int_coef) | 2344 PORT_PLL_GAIN_CTL(gain_ctl); 2345 2346 hw_state->pll8 = PORT_PLL_TARGET_CNT(targ_cnt); 2347 2348 hw_state->pll9 = PORT_PLL_LOCK_THRESHOLD(5); 2349 2350 hw_state->pll10 = PORT_PLL_DCO_AMP(15) | 2351 PORT_PLL_DCO_AMP_OVR_EN_H; 2352 2353 hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE; 2354 2355 hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger; 2356 2357 return 0; 2358 } 2359 2360 static int bxt_ddi_pll_get_freq(struct drm_i915_private *i915, 2361 const struct intel_shared_dpll *pll, 2362 const struct intel_dpll_hw_state *dpll_hw_state) 2363 { 2364 const struct bxt_dpll_hw_state *hw_state = &dpll_hw_state->bxt; 2365 struct dpll clock; 2366 2367 clock.m1 = 2; 2368 clock.m2 = REG_FIELD_GET(PORT_PLL_M2_INT_MASK, hw_state->pll0) << 22; 2369 if (hw_state->pll3 & PORT_PLL_M2_FRAC_ENABLE) 2370 clock.m2 |= REG_FIELD_GET(PORT_PLL_M2_FRAC_MASK, 2371 hw_state->pll2); 2372 clock.n = REG_FIELD_GET(PORT_PLL_N_MASK, hw_state->pll1); 2373 clock.p1 = REG_FIELD_GET(PORT_PLL_P1_MASK, hw_state->ebb0); 2374 clock.p2 = REG_FIELD_GET(PORT_PLL_P2_MASK, hw_state->ebb0); 2375 2376 return chv_calc_dpll_params(i915->display.dpll.ref_clks.nssc, &clock); 2377 } 2378 2379 static int 2380 bxt_ddi_dp_set_dpll_hw_state(struct intel_crtc_state *crtc_state) 2381 { 2382 struct dpll clk_div = {}; 2383 2384 bxt_ddi_dp_pll_dividers(crtc_state, &clk_div); 2385 2386 return bxt_ddi_set_dpll_hw_state(crtc_state, &clk_div); 2387 } 2388 2389 static int 2390 bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc_state *crtc_state) 2391 { 2392 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 2393 struct dpll clk_div = {}; 2394 int ret; 2395 2396 bxt_ddi_hdmi_pll_dividers(crtc_state, &clk_div); 2397 2398 ret = bxt_ddi_set_dpll_hw_state(crtc_state, &clk_div); 2399 if (ret) 2400 return ret; 2401 2402 crtc_state->port_clock = bxt_ddi_pll_get_freq(i915, NULL, 2403 &crtc_state->dpll_hw_state); 2404 2405 return 0; 2406 } 2407 2408 static int bxt_compute_dpll(struct intel_atomic_state *state, 2409 struct intel_crtc *crtc, 2410 struct intel_encoder *encoder) 2411 { 2412 struct intel_crtc_state *crtc_state = 2413 intel_atomic_get_new_crtc_state(state, crtc); 2414 2415 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 2416 return bxt_ddi_hdmi_set_dpll_hw_state(crtc_state); 2417 else if (intel_crtc_has_dp_encoder(crtc_state)) 2418 return bxt_ddi_dp_set_dpll_hw_state(crtc_state); 2419 else 2420 return -EINVAL; 2421 } 2422 2423 static int bxt_get_dpll(struct intel_atomic_state *state, 2424 struct intel_crtc *crtc, 2425 struct intel_encoder *encoder) 2426 { 2427 struct intel_crtc_state *crtc_state = 2428 intel_atomic_get_new_crtc_state(state, crtc); 2429 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2430 struct intel_shared_dpll *pll; 2431 enum intel_dpll_id id; 2432 2433 /* 1:1 mapping between ports and PLLs */ 2434 id = (enum intel_dpll_id) encoder->port; 2435 pll = intel_get_shared_dpll_by_id(i915, id); 2436 2437 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] using pre-allocated %s\n", 2438 crtc->base.base.id, crtc->base.name, pll->info->name); 2439 2440 intel_reference_shared_dpll(state, crtc, 2441 pll, &crtc_state->dpll_hw_state); 2442 2443 crtc_state->shared_dpll = pll; 2444 2445 return 0; 2446 } 2447 2448 static void bxt_update_dpll_ref_clks(struct drm_i915_private *i915) 2449 { 2450 i915->display.dpll.ref_clks.ssc = 100000; 2451 i915->display.dpll.ref_clks.nssc = 100000; 2452 /* DSI non-SSC ref 19.2MHz */ 2453 } 2454 2455 static void bxt_dump_hw_state(struct drm_printer *p, 2456 const struct intel_dpll_hw_state *dpll_hw_state) 2457 { 2458 const struct bxt_dpll_hw_state *hw_state = &dpll_hw_state->bxt; 2459 2460 drm_printf(p, "dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x," 2461 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, " 2462 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n", 2463 hw_state->ebb0, hw_state->ebb4, 2464 hw_state->pll0, hw_state->pll1, hw_state->pll2, hw_state->pll3, 2465 hw_state->pll6, hw_state->pll8, hw_state->pll9, hw_state->pll10, 2466 hw_state->pcsdw12); 2467 } 2468 2469 static bool bxt_compare_hw_state(const struct intel_dpll_hw_state *_a, 2470 const struct intel_dpll_hw_state *_b) 2471 { 2472 const struct bxt_dpll_hw_state *a = &_a->bxt; 2473 const struct bxt_dpll_hw_state *b = &_b->bxt; 2474 2475 return a->ebb0 == b->ebb0 && 2476 a->ebb4 == b->ebb4 && 2477 a->pll0 == b->pll0 && 2478 a->pll1 == b->pll1 && 2479 a->pll2 == b->pll2 && 2480 a->pll3 == b->pll3 && 2481 a->pll6 == b->pll6 && 2482 a->pll8 == b->pll8 && 2483 a->pll10 == b->pll10 && 2484 a->pcsdw12 == b->pcsdw12; 2485 } 2486 2487 static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = { 2488 .enable = bxt_ddi_pll_enable, 2489 .disable = bxt_ddi_pll_disable, 2490 .get_hw_state = bxt_ddi_pll_get_hw_state, 2491 .get_freq = bxt_ddi_pll_get_freq, 2492 }; 2493 2494 static const struct dpll_info bxt_plls[] = { 2495 { .name = "PORT PLL A", .funcs = &bxt_ddi_pll_funcs, .id = DPLL_ID_SKL_DPLL0, }, 2496 { .name = "PORT PLL B", .funcs = &bxt_ddi_pll_funcs, .id = DPLL_ID_SKL_DPLL1, }, 2497 { .name = "PORT PLL C", .funcs = &bxt_ddi_pll_funcs, .id = DPLL_ID_SKL_DPLL2, }, 2498 {} 2499 }; 2500 2501 static const struct intel_dpll_mgr bxt_pll_mgr = { 2502 .dpll_info = bxt_plls, 2503 .compute_dplls = bxt_compute_dpll, 2504 .get_dplls = bxt_get_dpll, 2505 .put_dplls = intel_put_dpll, 2506 .update_ref_clks = bxt_update_dpll_ref_clks, 2507 .dump_hw_state = bxt_dump_hw_state, 2508 .compare_hw_state = bxt_compare_hw_state, 2509 }; 2510 2511 static void icl_wrpll_get_multipliers(int bestdiv, int *pdiv, 2512 int *qdiv, int *kdiv) 2513 { 2514 /* even dividers */ 2515 if (bestdiv % 2 == 0) { 2516 if (bestdiv == 2) { 2517 *pdiv = 2; 2518 *qdiv = 1; 2519 *kdiv = 1; 2520 } else if (bestdiv % 4 == 0) { 2521 *pdiv = 2; 2522 *qdiv = bestdiv / 4; 2523 *kdiv = 2; 2524 } else if (bestdiv % 6 == 0) { 2525 *pdiv = 3; 2526 *qdiv = bestdiv / 6; 2527 *kdiv = 2; 2528 } else if (bestdiv % 5 == 0) { 2529 *pdiv = 5; 2530 *qdiv = bestdiv / 10; 2531 *kdiv = 2; 2532 } else if (bestdiv % 14 == 0) { 2533 *pdiv = 7; 2534 *qdiv = bestdiv / 14; 2535 *kdiv = 2; 2536 } 2537 } else { 2538 if (bestdiv == 3 || bestdiv == 5 || bestdiv == 7) { 2539 *pdiv = bestdiv; 2540 *qdiv = 1; 2541 *kdiv = 1; 2542 } else { /* 9, 15, 21 */ 2543 *pdiv = bestdiv / 3; 2544 *qdiv = 1; 2545 *kdiv = 3; 2546 } 2547 } 2548 } 2549 2550 static void icl_wrpll_params_populate(struct skl_wrpll_params *params, 2551 u32 dco_freq, u32 ref_freq, 2552 int pdiv, int qdiv, int kdiv) 2553 { 2554 u32 dco; 2555 2556 switch (kdiv) { 2557 case 1: 2558 params->kdiv = 1; 2559 break; 2560 case 2: 2561 params->kdiv = 2; 2562 break; 2563 case 3: 2564 params->kdiv = 4; 2565 break; 2566 default: 2567 WARN(1, "Incorrect KDiv\n"); 2568 } 2569 2570 switch (pdiv) { 2571 case 2: 2572 params->pdiv = 1; 2573 break; 2574 case 3: 2575 params->pdiv = 2; 2576 break; 2577 case 5: 2578 params->pdiv = 4; 2579 break; 2580 case 7: 2581 params->pdiv = 8; 2582 break; 2583 default: 2584 WARN(1, "Incorrect PDiv\n"); 2585 } 2586 2587 WARN_ON(kdiv != 2 && qdiv != 1); 2588 2589 params->qdiv_ratio = qdiv; 2590 params->qdiv_mode = (qdiv == 1) ? 0 : 1; 2591 2592 dco = div_u64((u64)dco_freq << 15, ref_freq); 2593 2594 params->dco_integer = dco >> 15; 2595 params->dco_fraction = dco & 0x7fff; 2596 } 2597 2598 /* 2599 * Display WA #22010492432: ehl, tgl, adl-s, adl-p 2600 * Program half of the nominal DCO divider fraction value. 2601 */ 2602 static bool 2603 ehl_combo_pll_div_frac_wa_needed(struct drm_i915_private *i915) 2604 { 2605 return ((IS_ELKHARTLAKE(i915) && 2606 IS_DISPLAY_STEP(i915, STEP_B0, STEP_FOREVER)) || 2607 IS_TIGERLAKE(i915) || IS_ALDERLAKE_S(i915) || IS_ALDERLAKE_P(i915)) && 2608 i915->display.dpll.ref_clks.nssc == 38400; 2609 } 2610 2611 struct icl_combo_pll_params { 2612 int clock; 2613 struct skl_wrpll_params wrpll; 2614 }; 2615 2616 /* 2617 * These values alrea already adjusted: they're the bits we write to the 2618 * registers, not the logical values. 2619 */ 2620 static const struct icl_combo_pll_params icl_dp_combo_pll_24MHz_values[] = { 2621 { 540000, 2622 { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [0]: 5.4 */ 2623 .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, 2624 { 270000, 2625 { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [1]: 2.7 */ 2626 .pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, 2627 { 162000, 2628 { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [2]: 1.62 */ 2629 .pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, 2630 { 324000, 2631 { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [3]: 3.24 */ 2632 .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, 2633 { 216000, 2634 { .dco_integer = 0x168, .dco_fraction = 0x0000, /* [4]: 2.16 */ 2635 .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2, }, }, 2636 { 432000, 2637 { .dco_integer = 0x168, .dco_fraction = 0x0000, /* [5]: 4.32 */ 2638 .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, 2639 { 648000, 2640 { .dco_integer = 0x195, .dco_fraction = 0x0000, /* [6]: 6.48 */ 2641 .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, 2642 { 810000, 2643 { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [7]: 8.1 */ 2644 .pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, 2645 }; 2646 2647 2648 /* Also used for 38.4 MHz values. */ 2649 static const struct icl_combo_pll_params icl_dp_combo_pll_19_2MHz_values[] = { 2650 { 540000, 2651 { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [0]: 5.4 */ 2652 .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, 2653 { 270000, 2654 { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [1]: 2.7 */ 2655 .pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, 2656 { 162000, 2657 { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [2]: 1.62 */ 2658 .pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, 2659 { 324000, 2660 { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [3]: 3.24 */ 2661 .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, 2662 { 216000, 2663 { .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [4]: 2.16 */ 2664 .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2, }, }, 2665 { 432000, 2666 { .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [5]: 4.32 */ 2667 .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, 2668 { 648000, 2669 { .dco_integer = 0x1FA, .dco_fraction = 0x2000, /* [6]: 6.48 */ 2670 .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, 2671 { 810000, 2672 { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [7]: 8.1 */ 2673 .pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, }, 2674 }; 2675 2676 static const struct skl_wrpll_params icl_tbt_pll_24MHz_values = { 2677 .dco_integer = 0x151, .dco_fraction = 0x4000, 2678 .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, 2679 }; 2680 2681 static const struct skl_wrpll_params icl_tbt_pll_19_2MHz_values = { 2682 .dco_integer = 0x1A5, .dco_fraction = 0x7000, 2683 .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, 2684 }; 2685 2686 static const struct skl_wrpll_params tgl_tbt_pll_19_2MHz_values = { 2687 .dco_integer = 0x54, .dco_fraction = 0x3000, 2688 /* the following params are unused */ 2689 .pdiv = 0, .kdiv = 0, .qdiv_mode = 0, .qdiv_ratio = 0, 2690 }; 2691 2692 static const struct skl_wrpll_params tgl_tbt_pll_24MHz_values = { 2693 .dco_integer = 0x43, .dco_fraction = 0x4000, 2694 /* the following params are unused */ 2695 }; 2696 2697 static int icl_calc_dp_combo_pll(struct intel_crtc_state *crtc_state, 2698 struct skl_wrpll_params *pll_params) 2699 { 2700 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 2701 const struct icl_combo_pll_params *params = 2702 i915->display.dpll.ref_clks.nssc == 24000 ? 2703 icl_dp_combo_pll_24MHz_values : 2704 icl_dp_combo_pll_19_2MHz_values; 2705 int clock = crtc_state->port_clock; 2706 int i; 2707 2708 for (i = 0; i < ARRAY_SIZE(icl_dp_combo_pll_24MHz_values); i++) { 2709 if (clock == params[i].clock) { 2710 *pll_params = params[i].wrpll; 2711 return 0; 2712 } 2713 } 2714 2715 MISSING_CASE(clock); 2716 return -EINVAL; 2717 } 2718 2719 static int icl_calc_tbt_pll(struct intel_crtc_state *crtc_state, 2720 struct skl_wrpll_params *pll_params) 2721 { 2722 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 2723 2724 if (DISPLAY_VER(i915) >= 12) { 2725 switch (i915->display.dpll.ref_clks.nssc) { 2726 default: 2727 MISSING_CASE(i915->display.dpll.ref_clks.nssc); 2728 fallthrough; 2729 case 19200: 2730 case 38400: 2731 *pll_params = tgl_tbt_pll_19_2MHz_values; 2732 break; 2733 case 24000: 2734 *pll_params = tgl_tbt_pll_24MHz_values; 2735 break; 2736 } 2737 } else { 2738 switch (i915->display.dpll.ref_clks.nssc) { 2739 default: 2740 MISSING_CASE(i915->display.dpll.ref_clks.nssc); 2741 fallthrough; 2742 case 19200: 2743 case 38400: 2744 *pll_params = icl_tbt_pll_19_2MHz_values; 2745 break; 2746 case 24000: 2747 *pll_params = icl_tbt_pll_24MHz_values; 2748 break; 2749 } 2750 } 2751 2752 return 0; 2753 } 2754 2755 static int icl_ddi_tbt_pll_get_freq(struct drm_i915_private *i915, 2756 const struct intel_shared_dpll *pll, 2757 const struct intel_dpll_hw_state *dpll_hw_state) 2758 { 2759 /* 2760 * The PLL outputs multiple frequencies at the same time, selection is 2761 * made at DDI clock mux level. 2762 */ 2763 drm_WARN_ON(&i915->drm, 1); 2764 2765 return 0; 2766 } 2767 2768 static int icl_wrpll_ref_clock(struct drm_i915_private *i915) 2769 { 2770 int ref_clock = i915->display.dpll.ref_clks.nssc; 2771 2772 /* 2773 * For ICL+, the spec states: if reference frequency is 38.4, 2774 * use 19.2 because the DPLL automatically divides that by 2. 2775 */ 2776 if (ref_clock == 38400) 2777 ref_clock = 19200; 2778 2779 return ref_clock; 2780 } 2781 2782 static int 2783 icl_calc_wrpll(struct intel_crtc_state *crtc_state, 2784 struct skl_wrpll_params *wrpll_params) 2785 { 2786 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 2787 int ref_clock = icl_wrpll_ref_clock(i915); 2788 u32 afe_clock = crtc_state->port_clock * 5; 2789 u32 dco_min = 7998000; 2790 u32 dco_max = 10000000; 2791 u32 dco_mid = (dco_min + dco_max) / 2; 2792 static const int dividers[] = { 2, 4, 6, 8, 10, 12, 14, 16, 2793 18, 20, 24, 28, 30, 32, 36, 40, 2794 42, 44, 48, 50, 52, 54, 56, 60, 2795 64, 66, 68, 70, 72, 76, 78, 80, 2796 84, 88, 90, 92, 96, 98, 100, 102, 2797 3, 5, 7, 9, 15, 21 }; 2798 u32 dco, best_dco = 0, dco_centrality = 0; 2799 u32 best_dco_centrality = U32_MAX; /* Spec meaning of 999999 MHz */ 2800 int d, best_div = 0, pdiv = 0, qdiv = 0, kdiv = 0; 2801 2802 for (d = 0; d < ARRAY_SIZE(dividers); d++) { 2803 dco = afe_clock * dividers[d]; 2804 2805 if (dco <= dco_max && dco >= dco_min) { 2806 dco_centrality = abs(dco - dco_mid); 2807 2808 if (dco_centrality < best_dco_centrality) { 2809 best_dco_centrality = dco_centrality; 2810 best_div = dividers[d]; 2811 best_dco = dco; 2812 } 2813 } 2814 } 2815 2816 if (best_div == 0) 2817 return -EINVAL; 2818 2819 icl_wrpll_get_multipliers(best_div, &pdiv, &qdiv, &kdiv); 2820 icl_wrpll_params_populate(wrpll_params, best_dco, ref_clock, 2821 pdiv, qdiv, kdiv); 2822 2823 return 0; 2824 } 2825 2826 static int icl_ddi_combo_pll_get_freq(struct drm_i915_private *i915, 2827 const struct intel_shared_dpll *pll, 2828 const struct intel_dpll_hw_state *dpll_hw_state) 2829 { 2830 const struct icl_dpll_hw_state *hw_state = &dpll_hw_state->icl; 2831 int ref_clock = icl_wrpll_ref_clock(i915); 2832 u32 dco_fraction; 2833 u32 p0, p1, p2, dco_freq; 2834 2835 p0 = hw_state->cfgcr1 & DPLL_CFGCR1_PDIV_MASK; 2836 p2 = hw_state->cfgcr1 & DPLL_CFGCR1_KDIV_MASK; 2837 2838 if (hw_state->cfgcr1 & DPLL_CFGCR1_QDIV_MODE(1)) 2839 p1 = (hw_state->cfgcr1 & DPLL_CFGCR1_QDIV_RATIO_MASK) >> 2840 DPLL_CFGCR1_QDIV_RATIO_SHIFT; 2841 else 2842 p1 = 1; 2843 2844 switch (p0) { 2845 case DPLL_CFGCR1_PDIV_2: 2846 p0 = 2; 2847 break; 2848 case DPLL_CFGCR1_PDIV_3: 2849 p0 = 3; 2850 break; 2851 case DPLL_CFGCR1_PDIV_5: 2852 p0 = 5; 2853 break; 2854 case DPLL_CFGCR1_PDIV_7: 2855 p0 = 7; 2856 break; 2857 } 2858 2859 switch (p2) { 2860 case DPLL_CFGCR1_KDIV_1: 2861 p2 = 1; 2862 break; 2863 case DPLL_CFGCR1_KDIV_2: 2864 p2 = 2; 2865 break; 2866 case DPLL_CFGCR1_KDIV_3: 2867 p2 = 3; 2868 break; 2869 } 2870 2871 dco_freq = (hw_state->cfgcr0 & DPLL_CFGCR0_DCO_INTEGER_MASK) * 2872 ref_clock; 2873 2874 dco_fraction = (hw_state->cfgcr0 & DPLL_CFGCR0_DCO_FRACTION_MASK) >> 2875 DPLL_CFGCR0_DCO_FRACTION_SHIFT; 2876 2877 if (ehl_combo_pll_div_frac_wa_needed(i915)) 2878 dco_fraction *= 2; 2879 2880 dco_freq += (dco_fraction * ref_clock) / 0x8000; 2881 2882 if (drm_WARN_ON(&i915->drm, p0 == 0 || p1 == 0 || p2 == 0)) 2883 return 0; 2884 2885 return dco_freq / (p0 * p1 * p2 * 5); 2886 } 2887 2888 static void icl_calc_dpll_state(struct drm_i915_private *i915, 2889 const struct skl_wrpll_params *pll_params, 2890 struct intel_dpll_hw_state *dpll_hw_state) 2891 { 2892 struct icl_dpll_hw_state *hw_state = &dpll_hw_state->icl; 2893 u32 dco_fraction = pll_params->dco_fraction; 2894 2895 if (ehl_combo_pll_div_frac_wa_needed(i915)) 2896 dco_fraction = DIV_ROUND_CLOSEST(dco_fraction, 2); 2897 2898 hw_state->cfgcr0 = DPLL_CFGCR0_DCO_FRACTION(dco_fraction) | 2899 pll_params->dco_integer; 2900 2901 hw_state->cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(pll_params->qdiv_ratio) | 2902 DPLL_CFGCR1_QDIV_MODE(pll_params->qdiv_mode) | 2903 DPLL_CFGCR1_KDIV(pll_params->kdiv) | 2904 DPLL_CFGCR1_PDIV(pll_params->pdiv); 2905 2906 if (DISPLAY_VER(i915) >= 12) 2907 hw_state->cfgcr1 |= TGL_DPLL_CFGCR1_CFSELOVRD_NORMAL_XTAL; 2908 else 2909 hw_state->cfgcr1 |= DPLL_CFGCR1_CENTRAL_FREQ_8400; 2910 2911 if (i915->display.vbt.override_afc_startup) 2912 hw_state->div0 = TGL_DPLL0_DIV0_AFC_STARTUP(i915->display.vbt.override_afc_startup_val); 2913 } 2914 2915 static int icl_mg_pll_find_divisors(int clock_khz, bool is_dp, bool use_ssc, 2916 u32 *target_dco_khz, 2917 struct icl_dpll_hw_state *hw_state, 2918 bool is_dkl) 2919 { 2920 static const u8 div1_vals[] = { 7, 5, 3, 2 }; 2921 u32 dco_min_freq, dco_max_freq; 2922 unsigned int i; 2923 int div2; 2924 2925 dco_min_freq = is_dp ? 8100000 : use_ssc ? 8000000 : 7992000; 2926 dco_max_freq = is_dp ? 8100000 : 10000000; 2927 2928 for (i = 0; i < ARRAY_SIZE(div1_vals); i++) { 2929 int div1 = div1_vals[i]; 2930 2931 for (div2 = 10; div2 > 0; div2--) { 2932 int dco = div1 * div2 * clock_khz * 5; 2933 int a_divratio, tlinedrv, inputsel; 2934 u32 hsdiv; 2935 2936 if (dco < dco_min_freq || dco > dco_max_freq) 2937 continue; 2938 2939 if (div2 >= 2) { 2940 /* 2941 * Note: a_divratio not matching TGL BSpec 2942 * algorithm but matching hardcoded values and 2943 * working on HW for DP alt-mode at least 2944 */ 2945 a_divratio = is_dp ? 10 : 5; 2946 tlinedrv = is_dkl ? 1 : 2; 2947 } else { 2948 a_divratio = 5; 2949 tlinedrv = 0; 2950 } 2951 inputsel = is_dp ? 0 : 1; 2952 2953 switch (div1) { 2954 default: 2955 MISSING_CASE(div1); 2956 fallthrough; 2957 case 2: 2958 hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_2; 2959 break; 2960 case 3: 2961 hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_3; 2962 break; 2963 case 5: 2964 hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_5; 2965 break; 2966 case 7: 2967 hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_7; 2968 break; 2969 } 2970 2971 *target_dco_khz = dco; 2972 2973 hw_state->mg_refclkin_ctl = MG_REFCLKIN_CTL_OD_2_MUX(1); 2974 2975 hw_state->mg_clktop2_coreclkctl1 = 2976 MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO(a_divratio); 2977 2978 hw_state->mg_clktop2_hsclkctl = 2979 MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL(tlinedrv) | 2980 MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL(inputsel) | 2981 hsdiv | 2982 MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO(div2); 2983 2984 return 0; 2985 } 2986 } 2987 2988 return -EINVAL; 2989 } 2990 2991 /* 2992 * The specification for this function uses real numbers, so the math had to be 2993 * adapted to integer-only calculation, that's why it looks so different. 2994 */ 2995 static int icl_calc_mg_pll_state(struct intel_crtc_state *crtc_state, 2996 struct intel_dpll_hw_state *dpll_hw_state) 2997 { 2998 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 2999 struct icl_dpll_hw_state *hw_state = &dpll_hw_state->icl; 3000 int refclk_khz = i915->display.dpll.ref_clks.nssc; 3001 int clock = crtc_state->port_clock; 3002 u32 dco_khz, m1div, m2div_int, m2div_rem, m2div_frac; 3003 u32 iref_ndiv, iref_trim, iref_pulse_w; 3004 u32 prop_coeff, int_coeff; 3005 u32 tdc_targetcnt, feedfwgain; 3006 u64 ssc_stepsize, ssc_steplen, ssc_steplog; 3007 u64 tmp; 3008 bool use_ssc = false; 3009 bool is_dp = !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI); 3010 bool is_dkl = DISPLAY_VER(i915) >= 12; 3011 int ret; 3012 3013 ret = icl_mg_pll_find_divisors(clock, is_dp, use_ssc, &dco_khz, 3014 hw_state, is_dkl); 3015 if (ret) 3016 return ret; 3017 3018 m1div = 2; 3019 m2div_int = dco_khz / (refclk_khz * m1div); 3020 if (m2div_int > 255) { 3021 if (!is_dkl) { 3022 m1div = 4; 3023 m2div_int = dco_khz / (refclk_khz * m1div); 3024 } 3025 3026 if (m2div_int > 255) 3027 return -EINVAL; 3028 } 3029 m2div_rem = dco_khz % (refclk_khz * m1div); 3030 3031 tmp = (u64)m2div_rem * (1 << 22); 3032 do_div(tmp, refclk_khz * m1div); 3033 m2div_frac = tmp; 3034 3035 switch (refclk_khz) { 3036 case 19200: 3037 iref_ndiv = 1; 3038 iref_trim = 28; 3039 iref_pulse_w = 1; 3040 break; 3041 case 24000: 3042 iref_ndiv = 1; 3043 iref_trim = 25; 3044 iref_pulse_w = 2; 3045 break; 3046 case 38400: 3047 iref_ndiv = 2; 3048 iref_trim = 28; 3049 iref_pulse_w = 1; 3050 break; 3051 default: 3052 MISSING_CASE(refclk_khz); 3053 return -EINVAL; 3054 } 3055 3056 /* 3057 * tdc_res = 0.000003 3058 * tdc_targetcnt = int(2 / (tdc_res * 8 * 50 * 1.1) / refclk_mhz + 0.5) 3059 * 3060 * The multiplication by 1000 is due to refclk MHz to KHz conversion. It 3061 * was supposed to be a division, but we rearranged the operations of 3062 * the formula to avoid early divisions so we don't multiply the 3063 * rounding errors. 3064 * 3065 * 0.000003 * 8 * 50 * 1.1 = 0.00132, also known as 132 / 100000, which 3066 * we also rearrange to work with integers. 3067 * 3068 * The 0.5 transformed to 5 results in a multiplication by 10 and the 3069 * last division by 10. 3070 */ 3071 tdc_targetcnt = (2 * 1000 * 100000 * 10 / (132 * refclk_khz) + 5) / 10; 3072 3073 /* 3074 * Here we divide dco_khz by 10 in order to allow the dividend to fit in 3075 * 32 bits. That's not a problem since we round the division down 3076 * anyway. 3077 */ 3078 feedfwgain = (use_ssc || m2div_rem > 0) ? 3079 m1div * 1000000 * 100 / (dco_khz * 3 / 10) : 0; 3080 3081 if (dco_khz >= 9000000) { 3082 prop_coeff = 5; 3083 int_coeff = 10; 3084 } else { 3085 prop_coeff = 4; 3086 int_coeff = 8; 3087 } 3088 3089 if (use_ssc) { 3090 tmp = mul_u32_u32(dco_khz, 47 * 32); 3091 do_div(tmp, refclk_khz * m1div * 10000); 3092 ssc_stepsize = tmp; 3093 3094 tmp = mul_u32_u32(dco_khz, 1000); 3095 ssc_steplen = DIV_ROUND_UP_ULL(tmp, 32 * 2 * 32); 3096 } else { 3097 ssc_stepsize = 0; 3098 ssc_steplen = 0; 3099 } 3100 ssc_steplog = 4; 3101 3102 /* write pll_state calculations */ 3103 if (is_dkl) { 3104 hw_state->mg_pll_div0 = DKL_PLL_DIV0_INTEG_COEFF(int_coeff) | 3105 DKL_PLL_DIV0_PROP_COEFF(prop_coeff) | 3106 DKL_PLL_DIV0_FBPREDIV(m1div) | 3107 DKL_PLL_DIV0_FBDIV_INT(m2div_int); 3108 if (i915->display.vbt.override_afc_startup) { 3109 u8 val = i915->display.vbt.override_afc_startup_val; 3110 3111 hw_state->mg_pll_div0 |= DKL_PLL_DIV0_AFC_STARTUP(val); 3112 } 3113 3114 hw_state->mg_pll_div1 = DKL_PLL_DIV1_IREF_TRIM(iref_trim) | 3115 DKL_PLL_DIV1_TDC_TARGET_CNT(tdc_targetcnt); 3116 3117 hw_state->mg_pll_ssc = DKL_PLL_SSC_IREF_NDIV_RATIO(iref_ndiv) | 3118 DKL_PLL_SSC_STEP_LEN(ssc_steplen) | 3119 DKL_PLL_SSC_STEP_NUM(ssc_steplog) | 3120 (use_ssc ? DKL_PLL_SSC_EN : 0); 3121 3122 hw_state->mg_pll_bias = (m2div_frac ? DKL_PLL_BIAS_FRAC_EN_H : 0) | 3123 DKL_PLL_BIAS_FBDIV_FRAC(m2div_frac); 3124 3125 hw_state->mg_pll_tdc_coldst_bias = 3126 DKL_PLL_TDC_SSC_STEP_SIZE(ssc_stepsize) | 3127 DKL_PLL_TDC_FEED_FWD_GAIN(feedfwgain); 3128 3129 } else { 3130 hw_state->mg_pll_div0 = 3131 (m2div_rem > 0 ? MG_PLL_DIV0_FRACNEN_H : 0) | 3132 MG_PLL_DIV0_FBDIV_FRAC(m2div_frac) | 3133 MG_PLL_DIV0_FBDIV_INT(m2div_int); 3134 3135 hw_state->mg_pll_div1 = 3136 MG_PLL_DIV1_IREF_NDIVRATIO(iref_ndiv) | 3137 MG_PLL_DIV1_DITHER_DIV_2 | 3138 MG_PLL_DIV1_NDIVRATIO(1) | 3139 MG_PLL_DIV1_FBPREDIV(m1div); 3140 3141 hw_state->mg_pll_lf = 3142 MG_PLL_LF_TDCTARGETCNT(tdc_targetcnt) | 3143 MG_PLL_LF_AFCCNTSEL_512 | 3144 MG_PLL_LF_GAINCTRL(1) | 3145 MG_PLL_LF_INT_COEFF(int_coeff) | 3146 MG_PLL_LF_PROP_COEFF(prop_coeff); 3147 3148 hw_state->mg_pll_frac_lock = 3149 MG_PLL_FRAC_LOCK_TRUELOCK_CRIT_32 | 3150 MG_PLL_FRAC_LOCK_EARLYLOCK_CRIT_32 | 3151 MG_PLL_FRAC_LOCK_LOCKTHRESH(10) | 3152 MG_PLL_FRAC_LOCK_DCODITHEREN | 3153 MG_PLL_FRAC_LOCK_FEEDFWRDGAIN(feedfwgain); 3154 if (use_ssc || m2div_rem > 0) 3155 hw_state->mg_pll_frac_lock |= 3156 MG_PLL_FRAC_LOCK_FEEDFWRDCAL_EN; 3157 3158 hw_state->mg_pll_ssc = 3159 (use_ssc ? MG_PLL_SSC_EN : 0) | 3160 MG_PLL_SSC_TYPE(2) | 3161 MG_PLL_SSC_STEPLENGTH(ssc_steplen) | 3162 MG_PLL_SSC_STEPNUM(ssc_steplog) | 3163 MG_PLL_SSC_FLLEN | 3164 MG_PLL_SSC_STEPSIZE(ssc_stepsize); 3165 3166 hw_state->mg_pll_tdc_coldst_bias = 3167 MG_PLL_TDC_COLDST_COLDSTART | 3168 MG_PLL_TDC_COLDST_IREFINT_EN | 3169 MG_PLL_TDC_COLDST_REFBIAS_START_PULSE_W(iref_pulse_w) | 3170 MG_PLL_TDC_TDCOVCCORR_EN | 3171 MG_PLL_TDC_TDCSEL(3); 3172 3173 hw_state->mg_pll_bias = 3174 MG_PLL_BIAS_BIAS_GB_SEL(3) | 3175 MG_PLL_BIAS_INIT_DCOAMP(0x3F) | 3176 MG_PLL_BIAS_BIAS_BONUS(10) | 3177 MG_PLL_BIAS_BIASCAL_EN | 3178 MG_PLL_BIAS_CTRIM(12) | 3179 MG_PLL_BIAS_VREF_RDAC(4) | 3180 MG_PLL_BIAS_IREFTRIM(iref_trim); 3181 3182 if (refclk_khz == 38400) { 3183 hw_state->mg_pll_tdc_coldst_bias_mask = 3184 MG_PLL_TDC_COLDST_COLDSTART; 3185 hw_state->mg_pll_bias_mask = 0; 3186 } else { 3187 hw_state->mg_pll_tdc_coldst_bias_mask = -1U; 3188 hw_state->mg_pll_bias_mask = -1U; 3189 } 3190 3191 hw_state->mg_pll_tdc_coldst_bias &= 3192 hw_state->mg_pll_tdc_coldst_bias_mask; 3193 hw_state->mg_pll_bias &= hw_state->mg_pll_bias_mask; 3194 } 3195 3196 return 0; 3197 } 3198 3199 static int icl_ddi_mg_pll_get_freq(struct drm_i915_private *i915, 3200 const struct intel_shared_dpll *pll, 3201 const struct intel_dpll_hw_state *dpll_hw_state) 3202 { 3203 const struct icl_dpll_hw_state *hw_state = &dpll_hw_state->icl; 3204 u32 m1, m2_int, m2_frac, div1, div2, ref_clock; 3205 u64 tmp; 3206 3207 ref_clock = i915->display.dpll.ref_clks.nssc; 3208 3209 if (DISPLAY_VER(i915) >= 12) { 3210 m1 = hw_state->mg_pll_div0 & DKL_PLL_DIV0_FBPREDIV_MASK; 3211 m1 = m1 >> DKL_PLL_DIV0_FBPREDIV_SHIFT; 3212 m2_int = hw_state->mg_pll_div0 & DKL_PLL_DIV0_FBDIV_INT_MASK; 3213 3214 if (hw_state->mg_pll_bias & DKL_PLL_BIAS_FRAC_EN_H) { 3215 m2_frac = hw_state->mg_pll_bias & 3216 DKL_PLL_BIAS_FBDIV_FRAC_MASK; 3217 m2_frac = m2_frac >> DKL_PLL_BIAS_FBDIV_SHIFT; 3218 } else { 3219 m2_frac = 0; 3220 } 3221 } else { 3222 m1 = hw_state->mg_pll_div1 & MG_PLL_DIV1_FBPREDIV_MASK; 3223 m2_int = hw_state->mg_pll_div0 & MG_PLL_DIV0_FBDIV_INT_MASK; 3224 3225 if (hw_state->mg_pll_div0 & MG_PLL_DIV0_FRACNEN_H) { 3226 m2_frac = hw_state->mg_pll_div0 & 3227 MG_PLL_DIV0_FBDIV_FRAC_MASK; 3228 m2_frac = m2_frac >> MG_PLL_DIV0_FBDIV_FRAC_SHIFT; 3229 } else { 3230 m2_frac = 0; 3231 } 3232 } 3233 3234 switch (hw_state->mg_clktop2_hsclkctl & 3235 MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK) { 3236 case MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_2: 3237 div1 = 2; 3238 break; 3239 case MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_3: 3240 div1 = 3; 3241 break; 3242 case MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_5: 3243 div1 = 5; 3244 break; 3245 case MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_7: 3246 div1 = 7; 3247 break; 3248 default: 3249 MISSING_CASE(hw_state->mg_clktop2_hsclkctl); 3250 return 0; 3251 } 3252 3253 div2 = (hw_state->mg_clktop2_hsclkctl & 3254 MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK) >> 3255 MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_SHIFT; 3256 3257 /* div2 value of 0 is same as 1 means no div */ 3258 if (div2 == 0) 3259 div2 = 1; 3260 3261 /* 3262 * Adjust the original formula to delay the division by 2^22 in order to 3263 * minimize possible rounding errors. 3264 */ 3265 tmp = (u64)m1 * m2_int * ref_clock + 3266 (((u64)m1 * m2_frac * ref_clock) >> 22); 3267 tmp = div_u64(tmp, 5 * div1 * div2); 3268 3269 return tmp; 3270 } 3271 3272 /** 3273 * icl_set_active_port_dpll - select the active port DPLL for a given CRTC 3274 * @crtc_state: state for the CRTC to select the DPLL for 3275 * @port_dpll_id: the active @port_dpll_id to select 3276 * 3277 * Select the given @port_dpll_id instance from the DPLLs reserved for the 3278 * CRTC. 3279 */ 3280 void icl_set_active_port_dpll(struct intel_crtc_state *crtc_state, 3281 enum icl_port_dpll_id port_dpll_id) 3282 { 3283 struct icl_port_dpll *port_dpll = 3284 &crtc_state->icl_port_dplls[port_dpll_id]; 3285 3286 crtc_state->shared_dpll = port_dpll->pll; 3287 crtc_state->dpll_hw_state = port_dpll->hw_state; 3288 } 3289 3290 static void icl_update_active_dpll(struct intel_atomic_state *state, 3291 struct intel_crtc *crtc, 3292 struct intel_encoder *encoder) 3293 { 3294 struct intel_crtc_state *crtc_state = 3295 intel_atomic_get_new_crtc_state(state, crtc); 3296 struct intel_digital_port *primary_port; 3297 enum icl_port_dpll_id port_dpll_id = ICL_PORT_DPLL_DEFAULT; 3298 3299 primary_port = encoder->type == INTEL_OUTPUT_DP_MST ? 3300 enc_to_mst(encoder)->primary : 3301 enc_to_dig_port(encoder); 3302 3303 if (primary_port && 3304 (intel_tc_port_in_dp_alt_mode(primary_port) || 3305 intel_tc_port_in_legacy_mode(primary_port))) 3306 port_dpll_id = ICL_PORT_DPLL_MG_PHY; 3307 3308 icl_set_active_port_dpll(crtc_state, port_dpll_id); 3309 } 3310 3311 static int icl_compute_combo_phy_dpll(struct intel_atomic_state *state, 3312 struct intel_crtc *crtc) 3313 { 3314 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 3315 struct intel_crtc_state *crtc_state = 3316 intel_atomic_get_new_crtc_state(state, crtc); 3317 struct icl_port_dpll *port_dpll = 3318 &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT]; 3319 struct skl_wrpll_params pll_params = {}; 3320 int ret; 3321 3322 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || 3323 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 3324 ret = icl_calc_wrpll(crtc_state, &pll_params); 3325 else 3326 ret = icl_calc_dp_combo_pll(crtc_state, &pll_params); 3327 3328 if (ret) 3329 return ret; 3330 3331 icl_calc_dpll_state(i915, &pll_params, &port_dpll->hw_state); 3332 3333 /* this is mainly for the fastset check */ 3334 icl_set_active_port_dpll(crtc_state, ICL_PORT_DPLL_DEFAULT); 3335 3336 crtc_state->port_clock = icl_ddi_combo_pll_get_freq(i915, NULL, 3337 &port_dpll->hw_state); 3338 3339 return 0; 3340 } 3341 3342 static int icl_get_combo_phy_dpll(struct intel_atomic_state *state, 3343 struct intel_crtc *crtc, 3344 struct intel_encoder *encoder) 3345 { 3346 struct intel_display *display = to_intel_display(crtc); 3347 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 3348 struct intel_crtc_state *crtc_state = 3349 intel_atomic_get_new_crtc_state(state, crtc); 3350 struct icl_port_dpll *port_dpll = 3351 &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT]; 3352 enum port port = encoder->port; 3353 unsigned long dpll_mask; 3354 3355 if (IS_ALDERLAKE_S(i915)) { 3356 dpll_mask = 3357 BIT(DPLL_ID_DG1_DPLL3) | 3358 BIT(DPLL_ID_DG1_DPLL2) | 3359 BIT(DPLL_ID_ICL_DPLL1) | 3360 BIT(DPLL_ID_ICL_DPLL0); 3361 } else if (IS_DG1(i915)) { 3362 if (port == PORT_D || port == PORT_E) { 3363 dpll_mask = 3364 BIT(DPLL_ID_DG1_DPLL2) | 3365 BIT(DPLL_ID_DG1_DPLL3); 3366 } else { 3367 dpll_mask = 3368 BIT(DPLL_ID_DG1_DPLL0) | 3369 BIT(DPLL_ID_DG1_DPLL1); 3370 } 3371 } else if (IS_ROCKETLAKE(i915)) { 3372 dpll_mask = 3373 BIT(DPLL_ID_EHL_DPLL4) | 3374 BIT(DPLL_ID_ICL_DPLL1) | 3375 BIT(DPLL_ID_ICL_DPLL0); 3376 } else if ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) && 3377 port != PORT_A) { 3378 dpll_mask = 3379 BIT(DPLL_ID_EHL_DPLL4) | 3380 BIT(DPLL_ID_ICL_DPLL1) | 3381 BIT(DPLL_ID_ICL_DPLL0); 3382 } else { 3383 dpll_mask = BIT(DPLL_ID_ICL_DPLL1) | BIT(DPLL_ID_ICL_DPLL0); 3384 } 3385 3386 /* Eliminate DPLLs from consideration if reserved by HTI */ 3387 dpll_mask &= ~intel_hti_dpll_mask(display); 3388 3389 port_dpll->pll = intel_find_shared_dpll(state, crtc, 3390 &port_dpll->hw_state, 3391 dpll_mask); 3392 if (!port_dpll->pll) 3393 return -EINVAL; 3394 3395 intel_reference_shared_dpll(state, crtc, 3396 port_dpll->pll, &port_dpll->hw_state); 3397 3398 icl_update_active_dpll(state, crtc, encoder); 3399 3400 return 0; 3401 } 3402 3403 static int icl_compute_tc_phy_dplls(struct intel_atomic_state *state, 3404 struct intel_crtc *crtc) 3405 { 3406 struct drm_i915_private *i915 = to_i915(state->base.dev); 3407 struct intel_crtc_state *crtc_state = 3408 intel_atomic_get_new_crtc_state(state, crtc); 3409 const struct intel_crtc_state *old_crtc_state = 3410 intel_atomic_get_old_crtc_state(state, crtc); 3411 struct icl_port_dpll *port_dpll = 3412 &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT]; 3413 struct skl_wrpll_params pll_params = {}; 3414 int ret; 3415 3416 port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT]; 3417 ret = icl_calc_tbt_pll(crtc_state, &pll_params); 3418 if (ret) 3419 return ret; 3420 3421 icl_calc_dpll_state(i915, &pll_params, &port_dpll->hw_state); 3422 3423 port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_MG_PHY]; 3424 ret = icl_calc_mg_pll_state(crtc_state, &port_dpll->hw_state); 3425 if (ret) 3426 return ret; 3427 3428 /* this is mainly for the fastset check */ 3429 if (old_crtc_state->shared_dpll && 3430 old_crtc_state->shared_dpll->info->id == DPLL_ID_ICL_TBTPLL) 3431 icl_set_active_port_dpll(crtc_state, ICL_PORT_DPLL_DEFAULT); 3432 else 3433 icl_set_active_port_dpll(crtc_state, ICL_PORT_DPLL_MG_PHY); 3434 3435 crtc_state->port_clock = icl_ddi_mg_pll_get_freq(i915, NULL, 3436 &port_dpll->hw_state); 3437 3438 return 0; 3439 } 3440 3441 static int icl_get_tc_phy_dplls(struct intel_atomic_state *state, 3442 struct intel_crtc *crtc, 3443 struct intel_encoder *encoder) 3444 { 3445 struct intel_crtc_state *crtc_state = 3446 intel_atomic_get_new_crtc_state(state, crtc); 3447 struct icl_port_dpll *port_dpll = 3448 &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT]; 3449 enum intel_dpll_id dpll_id; 3450 int ret; 3451 3452 port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT]; 3453 port_dpll->pll = intel_find_shared_dpll(state, crtc, 3454 &port_dpll->hw_state, 3455 BIT(DPLL_ID_ICL_TBTPLL)); 3456 if (!port_dpll->pll) 3457 return -EINVAL; 3458 intel_reference_shared_dpll(state, crtc, 3459 port_dpll->pll, &port_dpll->hw_state); 3460 3461 3462 port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_MG_PHY]; 3463 dpll_id = icl_tc_port_to_pll_id(intel_encoder_to_tc(encoder)); 3464 port_dpll->pll = intel_find_shared_dpll(state, crtc, 3465 &port_dpll->hw_state, 3466 BIT(dpll_id)); 3467 if (!port_dpll->pll) { 3468 ret = -EINVAL; 3469 goto err_unreference_tbt_pll; 3470 } 3471 intel_reference_shared_dpll(state, crtc, 3472 port_dpll->pll, &port_dpll->hw_state); 3473 3474 icl_update_active_dpll(state, crtc, encoder); 3475 3476 return 0; 3477 3478 err_unreference_tbt_pll: 3479 port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT]; 3480 intel_unreference_shared_dpll(state, crtc, port_dpll->pll); 3481 3482 return ret; 3483 } 3484 3485 static int icl_compute_dplls(struct intel_atomic_state *state, 3486 struct intel_crtc *crtc, 3487 struct intel_encoder *encoder) 3488 { 3489 if (intel_encoder_is_combo(encoder)) 3490 return icl_compute_combo_phy_dpll(state, crtc); 3491 else if (intel_encoder_is_tc(encoder)) 3492 return icl_compute_tc_phy_dplls(state, crtc); 3493 3494 MISSING_CASE(encoder->port); 3495 3496 return 0; 3497 } 3498 3499 static int icl_get_dplls(struct intel_atomic_state *state, 3500 struct intel_crtc *crtc, 3501 struct intel_encoder *encoder) 3502 { 3503 if (intel_encoder_is_combo(encoder)) 3504 return icl_get_combo_phy_dpll(state, crtc, encoder); 3505 else if (intel_encoder_is_tc(encoder)) 3506 return icl_get_tc_phy_dplls(state, crtc, encoder); 3507 3508 MISSING_CASE(encoder->port); 3509 3510 return -EINVAL; 3511 } 3512 3513 static void icl_put_dplls(struct intel_atomic_state *state, 3514 struct intel_crtc *crtc) 3515 { 3516 const struct intel_crtc_state *old_crtc_state = 3517 intel_atomic_get_old_crtc_state(state, crtc); 3518 struct intel_crtc_state *new_crtc_state = 3519 intel_atomic_get_new_crtc_state(state, crtc); 3520 enum icl_port_dpll_id id; 3521 3522 new_crtc_state->shared_dpll = NULL; 3523 3524 for (id = ICL_PORT_DPLL_DEFAULT; id < ICL_PORT_DPLL_COUNT; id++) { 3525 const struct icl_port_dpll *old_port_dpll = 3526 &old_crtc_state->icl_port_dplls[id]; 3527 struct icl_port_dpll *new_port_dpll = 3528 &new_crtc_state->icl_port_dplls[id]; 3529 3530 new_port_dpll->pll = NULL; 3531 3532 if (!old_port_dpll->pll) 3533 continue; 3534 3535 intel_unreference_shared_dpll(state, crtc, old_port_dpll->pll); 3536 } 3537 } 3538 3539 static bool mg_pll_get_hw_state(struct drm_i915_private *i915, 3540 struct intel_shared_dpll *pll, 3541 struct intel_dpll_hw_state *dpll_hw_state) 3542 { 3543 struct icl_dpll_hw_state *hw_state = &dpll_hw_state->icl; 3544 const enum intel_dpll_id id = pll->info->id; 3545 enum tc_port tc_port = icl_pll_id_to_tc_port(id); 3546 intel_wakeref_t wakeref; 3547 bool ret = false; 3548 u32 val; 3549 3550 i915_reg_t enable_reg = intel_tc_pll_enable_reg(i915, pll); 3551 3552 wakeref = intel_display_power_get_if_enabled(i915, 3553 POWER_DOMAIN_DISPLAY_CORE); 3554 if (!wakeref) 3555 return false; 3556 3557 val = intel_de_read(i915, enable_reg); 3558 if (!(val & PLL_ENABLE)) 3559 goto out; 3560 3561 hw_state->mg_refclkin_ctl = intel_de_read(i915, 3562 MG_REFCLKIN_CTL(tc_port)); 3563 hw_state->mg_refclkin_ctl &= MG_REFCLKIN_CTL_OD_2_MUX_MASK; 3564 3565 hw_state->mg_clktop2_coreclkctl1 = 3566 intel_de_read(i915, MG_CLKTOP2_CORECLKCTL1(tc_port)); 3567 hw_state->mg_clktop2_coreclkctl1 &= 3568 MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK; 3569 3570 hw_state->mg_clktop2_hsclkctl = 3571 intel_de_read(i915, MG_CLKTOP2_HSCLKCTL(tc_port)); 3572 hw_state->mg_clktop2_hsclkctl &= 3573 MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK | 3574 MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK | 3575 MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK | 3576 MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK; 3577 3578 hw_state->mg_pll_div0 = intel_de_read(i915, MG_PLL_DIV0(tc_port)); 3579 hw_state->mg_pll_div1 = intel_de_read(i915, MG_PLL_DIV1(tc_port)); 3580 hw_state->mg_pll_lf = intel_de_read(i915, MG_PLL_LF(tc_port)); 3581 hw_state->mg_pll_frac_lock = intel_de_read(i915, 3582 MG_PLL_FRAC_LOCK(tc_port)); 3583 hw_state->mg_pll_ssc = intel_de_read(i915, MG_PLL_SSC(tc_port)); 3584 3585 hw_state->mg_pll_bias = intel_de_read(i915, MG_PLL_BIAS(tc_port)); 3586 hw_state->mg_pll_tdc_coldst_bias = 3587 intel_de_read(i915, MG_PLL_TDC_COLDST_BIAS(tc_port)); 3588 3589 if (i915->display.dpll.ref_clks.nssc == 38400) { 3590 hw_state->mg_pll_tdc_coldst_bias_mask = MG_PLL_TDC_COLDST_COLDSTART; 3591 hw_state->mg_pll_bias_mask = 0; 3592 } else { 3593 hw_state->mg_pll_tdc_coldst_bias_mask = -1U; 3594 hw_state->mg_pll_bias_mask = -1U; 3595 } 3596 3597 hw_state->mg_pll_tdc_coldst_bias &= hw_state->mg_pll_tdc_coldst_bias_mask; 3598 hw_state->mg_pll_bias &= hw_state->mg_pll_bias_mask; 3599 3600 ret = true; 3601 out: 3602 intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); 3603 return ret; 3604 } 3605 3606 static bool dkl_pll_get_hw_state(struct drm_i915_private *i915, 3607 struct intel_shared_dpll *pll, 3608 struct intel_dpll_hw_state *dpll_hw_state) 3609 { 3610 struct icl_dpll_hw_state *hw_state = &dpll_hw_state->icl; 3611 const enum intel_dpll_id id = pll->info->id; 3612 enum tc_port tc_port = icl_pll_id_to_tc_port(id); 3613 intel_wakeref_t wakeref; 3614 bool ret = false; 3615 u32 val; 3616 3617 wakeref = intel_display_power_get_if_enabled(i915, 3618 POWER_DOMAIN_DISPLAY_CORE); 3619 if (!wakeref) 3620 return false; 3621 3622 val = intel_de_read(i915, intel_tc_pll_enable_reg(i915, pll)); 3623 if (!(val & PLL_ENABLE)) 3624 goto out; 3625 3626 /* 3627 * All registers read here have the same HIP_INDEX_REG even though 3628 * they are on different building blocks 3629 */ 3630 hw_state->mg_refclkin_ctl = intel_dkl_phy_read(i915, 3631 DKL_REFCLKIN_CTL(tc_port)); 3632 hw_state->mg_refclkin_ctl &= MG_REFCLKIN_CTL_OD_2_MUX_MASK; 3633 3634 hw_state->mg_clktop2_hsclkctl = 3635 intel_dkl_phy_read(i915, DKL_CLKTOP2_HSCLKCTL(tc_port)); 3636 hw_state->mg_clktop2_hsclkctl &= 3637 MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK | 3638 MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK | 3639 MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK | 3640 MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK; 3641 3642 hw_state->mg_clktop2_coreclkctl1 = 3643 intel_dkl_phy_read(i915, DKL_CLKTOP2_CORECLKCTL1(tc_port)); 3644 hw_state->mg_clktop2_coreclkctl1 &= 3645 MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK; 3646 3647 hw_state->mg_pll_div0 = intel_dkl_phy_read(i915, DKL_PLL_DIV0(tc_port)); 3648 val = DKL_PLL_DIV0_MASK; 3649 if (i915->display.vbt.override_afc_startup) 3650 val |= DKL_PLL_DIV0_AFC_STARTUP_MASK; 3651 hw_state->mg_pll_div0 &= val; 3652 3653 hw_state->mg_pll_div1 = intel_dkl_phy_read(i915, DKL_PLL_DIV1(tc_port)); 3654 hw_state->mg_pll_div1 &= (DKL_PLL_DIV1_IREF_TRIM_MASK | 3655 DKL_PLL_DIV1_TDC_TARGET_CNT_MASK); 3656 3657 hw_state->mg_pll_ssc = intel_dkl_phy_read(i915, DKL_PLL_SSC(tc_port)); 3658 hw_state->mg_pll_ssc &= (DKL_PLL_SSC_IREF_NDIV_RATIO_MASK | 3659 DKL_PLL_SSC_STEP_LEN_MASK | 3660 DKL_PLL_SSC_STEP_NUM_MASK | 3661 DKL_PLL_SSC_EN); 3662 3663 hw_state->mg_pll_bias = intel_dkl_phy_read(i915, DKL_PLL_BIAS(tc_port)); 3664 hw_state->mg_pll_bias &= (DKL_PLL_BIAS_FRAC_EN_H | 3665 DKL_PLL_BIAS_FBDIV_FRAC_MASK); 3666 3667 hw_state->mg_pll_tdc_coldst_bias = 3668 intel_dkl_phy_read(i915, DKL_PLL_TDC_COLDST_BIAS(tc_port)); 3669 hw_state->mg_pll_tdc_coldst_bias &= (DKL_PLL_TDC_SSC_STEP_SIZE_MASK | 3670 DKL_PLL_TDC_FEED_FWD_GAIN_MASK); 3671 3672 ret = true; 3673 out: 3674 intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); 3675 return ret; 3676 } 3677 3678 static bool icl_pll_get_hw_state(struct drm_i915_private *i915, 3679 struct intel_shared_dpll *pll, 3680 struct intel_dpll_hw_state *dpll_hw_state, 3681 i915_reg_t enable_reg) 3682 { 3683 struct icl_dpll_hw_state *hw_state = &dpll_hw_state->icl; 3684 const enum intel_dpll_id id = pll->info->id; 3685 intel_wakeref_t wakeref; 3686 bool ret = false; 3687 u32 val; 3688 3689 wakeref = intel_display_power_get_if_enabled(i915, 3690 POWER_DOMAIN_DISPLAY_CORE); 3691 if (!wakeref) 3692 return false; 3693 3694 val = intel_de_read(i915, enable_reg); 3695 if (!(val & PLL_ENABLE)) 3696 goto out; 3697 3698 if (IS_ALDERLAKE_S(i915)) { 3699 hw_state->cfgcr0 = intel_de_read(i915, ADLS_DPLL_CFGCR0(id)); 3700 hw_state->cfgcr1 = intel_de_read(i915, ADLS_DPLL_CFGCR1(id)); 3701 } else if (IS_DG1(i915)) { 3702 hw_state->cfgcr0 = intel_de_read(i915, DG1_DPLL_CFGCR0(id)); 3703 hw_state->cfgcr1 = intel_de_read(i915, DG1_DPLL_CFGCR1(id)); 3704 } else if (IS_ROCKETLAKE(i915)) { 3705 hw_state->cfgcr0 = intel_de_read(i915, 3706 RKL_DPLL_CFGCR0(id)); 3707 hw_state->cfgcr1 = intel_de_read(i915, 3708 RKL_DPLL_CFGCR1(id)); 3709 } else if (DISPLAY_VER(i915) >= 12) { 3710 hw_state->cfgcr0 = intel_de_read(i915, 3711 TGL_DPLL_CFGCR0(id)); 3712 hw_state->cfgcr1 = intel_de_read(i915, 3713 TGL_DPLL_CFGCR1(id)); 3714 if (i915->display.vbt.override_afc_startup) { 3715 hw_state->div0 = intel_de_read(i915, TGL_DPLL0_DIV0(id)); 3716 hw_state->div0 &= TGL_DPLL0_DIV0_AFC_STARTUP_MASK; 3717 } 3718 } else { 3719 if ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) && 3720 id == DPLL_ID_EHL_DPLL4) { 3721 hw_state->cfgcr0 = intel_de_read(i915, 3722 ICL_DPLL_CFGCR0(4)); 3723 hw_state->cfgcr1 = intel_de_read(i915, 3724 ICL_DPLL_CFGCR1(4)); 3725 } else { 3726 hw_state->cfgcr0 = intel_de_read(i915, 3727 ICL_DPLL_CFGCR0(id)); 3728 hw_state->cfgcr1 = intel_de_read(i915, 3729 ICL_DPLL_CFGCR1(id)); 3730 } 3731 } 3732 3733 ret = true; 3734 out: 3735 intel_display_power_put(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref); 3736 return ret; 3737 } 3738 3739 static bool combo_pll_get_hw_state(struct drm_i915_private *i915, 3740 struct intel_shared_dpll *pll, 3741 struct intel_dpll_hw_state *dpll_hw_state) 3742 { 3743 i915_reg_t enable_reg = intel_combo_pll_enable_reg(i915, pll); 3744 3745 return icl_pll_get_hw_state(i915, pll, dpll_hw_state, enable_reg); 3746 } 3747 3748 static bool tbt_pll_get_hw_state(struct drm_i915_private *i915, 3749 struct intel_shared_dpll *pll, 3750 struct intel_dpll_hw_state *dpll_hw_state) 3751 { 3752 return icl_pll_get_hw_state(i915, pll, dpll_hw_state, TBT_PLL_ENABLE); 3753 } 3754 3755 static void icl_dpll_write(struct drm_i915_private *i915, 3756 struct intel_shared_dpll *pll, 3757 const struct icl_dpll_hw_state *hw_state) 3758 { 3759 const enum intel_dpll_id id = pll->info->id; 3760 i915_reg_t cfgcr0_reg, cfgcr1_reg, div0_reg = INVALID_MMIO_REG; 3761 3762 if (IS_ALDERLAKE_S(i915)) { 3763 cfgcr0_reg = ADLS_DPLL_CFGCR0(id); 3764 cfgcr1_reg = ADLS_DPLL_CFGCR1(id); 3765 } else if (IS_DG1(i915)) { 3766 cfgcr0_reg = DG1_DPLL_CFGCR0(id); 3767 cfgcr1_reg = DG1_DPLL_CFGCR1(id); 3768 } else if (IS_ROCKETLAKE(i915)) { 3769 cfgcr0_reg = RKL_DPLL_CFGCR0(id); 3770 cfgcr1_reg = RKL_DPLL_CFGCR1(id); 3771 } else if (DISPLAY_VER(i915) >= 12) { 3772 cfgcr0_reg = TGL_DPLL_CFGCR0(id); 3773 cfgcr1_reg = TGL_DPLL_CFGCR1(id); 3774 div0_reg = TGL_DPLL0_DIV0(id); 3775 } else { 3776 if ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) && 3777 id == DPLL_ID_EHL_DPLL4) { 3778 cfgcr0_reg = ICL_DPLL_CFGCR0(4); 3779 cfgcr1_reg = ICL_DPLL_CFGCR1(4); 3780 } else { 3781 cfgcr0_reg = ICL_DPLL_CFGCR0(id); 3782 cfgcr1_reg = ICL_DPLL_CFGCR1(id); 3783 } 3784 } 3785 3786 intel_de_write(i915, cfgcr0_reg, hw_state->cfgcr0); 3787 intel_de_write(i915, cfgcr1_reg, hw_state->cfgcr1); 3788 drm_WARN_ON_ONCE(&i915->drm, i915->display.vbt.override_afc_startup && 3789 !i915_mmio_reg_valid(div0_reg)); 3790 if (i915->display.vbt.override_afc_startup && 3791 i915_mmio_reg_valid(div0_reg)) 3792 intel_de_rmw(i915, div0_reg, 3793 TGL_DPLL0_DIV0_AFC_STARTUP_MASK, hw_state->div0); 3794 intel_de_posting_read(i915, cfgcr1_reg); 3795 } 3796 3797 static void icl_mg_pll_write(struct drm_i915_private *i915, 3798 struct intel_shared_dpll *pll, 3799 const struct icl_dpll_hw_state *hw_state) 3800 { 3801 enum tc_port tc_port = icl_pll_id_to_tc_port(pll->info->id); 3802 3803 /* 3804 * Some of the following registers have reserved fields, so program 3805 * these with RMW based on a mask. The mask can be fixed or generated 3806 * during the calc/readout phase if the mask depends on some other HW 3807 * state like refclk, see icl_calc_mg_pll_state(). 3808 */ 3809 intel_de_rmw(i915, MG_REFCLKIN_CTL(tc_port), 3810 MG_REFCLKIN_CTL_OD_2_MUX_MASK, hw_state->mg_refclkin_ctl); 3811 3812 intel_de_rmw(i915, MG_CLKTOP2_CORECLKCTL1(tc_port), 3813 MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK, 3814 hw_state->mg_clktop2_coreclkctl1); 3815 3816 intel_de_rmw(i915, MG_CLKTOP2_HSCLKCTL(tc_port), 3817 MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK | 3818 MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK | 3819 MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK | 3820 MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK, 3821 hw_state->mg_clktop2_hsclkctl); 3822 3823 intel_de_write(i915, MG_PLL_DIV0(tc_port), hw_state->mg_pll_div0); 3824 intel_de_write(i915, MG_PLL_DIV1(tc_port), hw_state->mg_pll_div1); 3825 intel_de_write(i915, MG_PLL_LF(tc_port), hw_state->mg_pll_lf); 3826 intel_de_write(i915, MG_PLL_FRAC_LOCK(tc_port), 3827 hw_state->mg_pll_frac_lock); 3828 intel_de_write(i915, MG_PLL_SSC(tc_port), hw_state->mg_pll_ssc); 3829 3830 intel_de_rmw(i915, MG_PLL_BIAS(tc_port), 3831 hw_state->mg_pll_bias_mask, hw_state->mg_pll_bias); 3832 3833 intel_de_rmw(i915, MG_PLL_TDC_COLDST_BIAS(tc_port), 3834 hw_state->mg_pll_tdc_coldst_bias_mask, 3835 hw_state->mg_pll_tdc_coldst_bias); 3836 3837 intel_de_posting_read(i915, MG_PLL_TDC_COLDST_BIAS(tc_port)); 3838 } 3839 3840 static void dkl_pll_write(struct drm_i915_private *i915, 3841 struct intel_shared_dpll *pll, 3842 const struct icl_dpll_hw_state *hw_state) 3843 { 3844 enum tc_port tc_port = icl_pll_id_to_tc_port(pll->info->id); 3845 u32 val; 3846 3847 /* 3848 * All registers programmed here have the same HIP_INDEX_REG even 3849 * though on different building block 3850 */ 3851 /* All the registers are RMW */ 3852 val = intel_dkl_phy_read(i915, DKL_REFCLKIN_CTL(tc_port)); 3853 val &= ~MG_REFCLKIN_CTL_OD_2_MUX_MASK; 3854 val |= hw_state->mg_refclkin_ctl; 3855 intel_dkl_phy_write(i915, DKL_REFCLKIN_CTL(tc_port), val); 3856 3857 val = intel_dkl_phy_read(i915, DKL_CLKTOP2_CORECLKCTL1(tc_port)); 3858 val &= ~MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK; 3859 val |= hw_state->mg_clktop2_coreclkctl1; 3860 intel_dkl_phy_write(i915, DKL_CLKTOP2_CORECLKCTL1(tc_port), val); 3861 3862 val = intel_dkl_phy_read(i915, DKL_CLKTOP2_HSCLKCTL(tc_port)); 3863 val &= ~(MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK | 3864 MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK | 3865 MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK | 3866 MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK); 3867 val |= hw_state->mg_clktop2_hsclkctl; 3868 intel_dkl_phy_write(i915, DKL_CLKTOP2_HSCLKCTL(tc_port), val); 3869 3870 val = DKL_PLL_DIV0_MASK; 3871 if (i915->display.vbt.override_afc_startup) 3872 val |= DKL_PLL_DIV0_AFC_STARTUP_MASK; 3873 intel_dkl_phy_rmw(i915, DKL_PLL_DIV0(tc_port), val, 3874 hw_state->mg_pll_div0); 3875 3876 val = intel_dkl_phy_read(i915, DKL_PLL_DIV1(tc_port)); 3877 val &= ~(DKL_PLL_DIV1_IREF_TRIM_MASK | 3878 DKL_PLL_DIV1_TDC_TARGET_CNT_MASK); 3879 val |= hw_state->mg_pll_div1; 3880 intel_dkl_phy_write(i915, DKL_PLL_DIV1(tc_port), val); 3881 3882 val = intel_dkl_phy_read(i915, DKL_PLL_SSC(tc_port)); 3883 val &= ~(DKL_PLL_SSC_IREF_NDIV_RATIO_MASK | 3884 DKL_PLL_SSC_STEP_LEN_MASK | 3885 DKL_PLL_SSC_STEP_NUM_MASK | 3886 DKL_PLL_SSC_EN); 3887 val |= hw_state->mg_pll_ssc; 3888 intel_dkl_phy_write(i915, DKL_PLL_SSC(tc_port), val); 3889 3890 val = intel_dkl_phy_read(i915, DKL_PLL_BIAS(tc_port)); 3891 val &= ~(DKL_PLL_BIAS_FRAC_EN_H | 3892 DKL_PLL_BIAS_FBDIV_FRAC_MASK); 3893 val |= hw_state->mg_pll_bias; 3894 intel_dkl_phy_write(i915, DKL_PLL_BIAS(tc_port), val); 3895 3896 val = intel_dkl_phy_read(i915, DKL_PLL_TDC_COLDST_BIAS(tc_port)); 3897 val &= ~(DKL_PLL_TDC_SSC_STEP_SIZE_MASK | 3898 DKL_PLL_TDC_FEED_FWD_GAIN_MASK); 3899 val |= hw_state->mg_pll_tdc_coldst_bias; 3900 intel_dkl_phy_write(i915, DKL_PLL_TDC_COLDST_BIAS(tc_port), val); 3901 3902 intel_dkl_phy_posting_read(i915, DKL_PLL_TDC_COLDST_BIAS(tc_port)); 3903 } 3904 3905 static void icl_pll_power_enable(struct drm_i915_private *i915, 3906 struct intel_shared_dpll *pll, 3907 i915_reg_t enable_reg) 3908 { 3909 intel_de_rmw(i915, enable_reg, 0, PLL_POWER_ENABLE); 3910 3911 /* 3912 * The spec says we need to "wait" but it also says it should be 3913 * immediate. 3914 */ 3915 if (intel_de_wait_for_set(i915, enable_reg, PLL_POWER_STATE, 1)) 3916 drm_err(&i915->drm, "PLL %d Power not enabled\n", 3917 pll->info->id); 3918 } 3919 3920 static void icl_pll_enable(struct drm_i915_private *i915, 3921 struct intel_shared_dpll *pll, 3922 i915_reg_t enable_reg) 3923 { 3924 intel_de_rmw(i915, enable_reg, 0, PLL_ENABLE); 3925 3926 /* Timeout is actually 600us. */ 3927 if (intel_de_wait_for_set(i915, enable_reg, PLL_LOCK, 1)) 3928 drm_err(&i915->drm, "PLL %d not locked\n", pll->info->id); 3929 } 3930 3931 static void adlp_cmtg_clock_gating_wa(struct drm_i915_private *i915, struct intel_shared_dpll *pll) 3932 { 3933 u32 val; 3934 3935 if (!(IS_ALDERLAKE_P(i915) && IS_DISPLAY_STEP(i915, STEP_A0, STEP_B0)) || 3936 pll->info->id != DPLL_ID_ICL_DPLL0) 3937 return; 3938 /* 3939 * Wa_16011069516:adl-p[a0] 3940 * 3941 * All CMTG regs are unreliable until CMTG clock gating is disabled, 3942 * so we can only assume the default TRANS_CMTG_CHICKEN reg value and 3943 * sanity check this assumption with a double read, which presumably 3944 * returns the correct value even with clock gating on. 3945 * 3946 * Instead of the usual place for workarounds we apply this one here, 3947 * since TRANS_CMTG_CHICKEN is only accessible while DPLL0 is enabled. 3948 */ 3949 val = intel_de_read(i915, TRANS_CMTG_CHICKEN); 3950 val = intel_de_rmw(i915, TRANS_CMTG_CHICKEN, ~0, DISABLE_DPT_CLK_GATING); 3951 if (drm_WARN_ON(&i915->drm, val & ~DISABLE_DPT_CLK_GATING)) 3952 drm_dbg_kms(&i915->drm, "Unexpected flags in TRANS_CMTG_CHICKEN: %08x\n", val); 3953 } 3954 3955 static void combo_pll_enable(struct drm_i915_private *i915, 3956 struct intel_shared_dpll *pll, 3957 const struct intel_dpll_hw_state *dpll_hw_state) 3958 { 3959 const struct icl_dpll_hw_state *hw_state = &dpll_hw_state->icl; 3960 i915_reg_t enable_reg = intel_combo_pll_enable_reg(i915, pll); 3961 3962 icl_pll_power_enable(i915, pll, enable_reg); 3963 3964 icl_dpll_write(i915, pll, hw_state); 3965 3966 /* 3967 * DVFS pre sequence would be here, but in our driver the cdclk code 3968 * paths should already be setting the appropriate voltage, hence we do 3969 * nothing here. 3970 */ 3971 3972 icl_pll_enable(i915, pll, enable_reg); 3973 3974 adlp_cmtg_clock_gating_wa(i915, pll); 3975 3976 /* DVFS post sequence would be here. See the comment above. */ 3977 } 3978 3979 static void tbt_pll_enable(struct drm_i915_private *i915, 3980 struct intel_shared_dpll *pll, 3981 const struct intel_dpll_hw_state *dpll_hw_state) 3982 { 3983 const struct icl_dpll_hw_state *hw_state = &dpll_hw_state->icl; 3984 3985 icl_pll_power_enable(i915, pll, TBT_PLL_ENABLE); 3986 3987 icl_dpll_write(i915, pll, hw_state); 3988 3989 /* 3990 * DVFS pre sequence would be here, but in our driver the cdclk code 3991 * paths should already be setting the appropriate voltage, hence we do 3992 * nothing here. 3993 */ 3994 3995 icl_pll_enable(i915, pll, TBT_PLL_ENABLE); 3996 3997 /* DVFS post sequence would be here. See the comment above. */ 3998 } 3999 4000 static void mg_pll_enable(struct drm_i915_private *i915, 4001 struct intel_shared_dpll *pll, 4002 const struct intel_dpll_hw_state *dpll_hw_state) 4003 { 4004 const struct icl_dpll_hw_state *hw_state = &dpll_hw_state->icl; 4005 i915_reg_t enable_reg = intel_tc_pll_enable_reg(i915, pll); 4006 4007 icl_pll_power_enable(i915, pll, enable_reg); 4008 4009 if (DISPLAY_VER(i915) >= 12) 4010 dkl_pll_write(i915, pll, hw_state); 4011 else 4012 icl_mg_pll_write(i915, pll, hw_state); 4013 4014 /* 4015 * DVFS pre sequence would be here, but in our driver the cdclk code 4016 * paths should already be setting the appropriate voltage, hence we do 4017 * nothing here. 4018 */ 4019 4020 icl_pll_enable(i915, pll, enable_reg); 4021 4022 /* DVFS post sequence would be here. See the comment above. */ 4023 } 4024 4025 static void icl_pll_disable(struct drm_i915_private *i915, 4026 struct intel_shared_dpll *pll, 4027 i915_reg_t enable_reg) 4028 { 4029 /* The first steps are done by intel_ddi_post_disable(). */ 4030 4031 /* 4032 * DVFS pre sequence would be here, but in our driver the cdclk code 4033 * paths should already be setting the appropriate voltage, hence we do 4034 * nothing here. 4035 */ 4036 4037 intel_de_rmw(i915, enable_reg, PLL_ENABLE, 0); 4038 4039 /* Timeout is actually 1us. */ 4040 if (intel_de_wait_for_clear(i915, enable_reg, PLL_LOCK, 1)) 4041 drm_err(&i915->drm, "PLL %d locked\n", pll->info->id); 4042 4043 /* DVFS post sequence would be here. See the comment above. */ 4044 4045 intel_de_rmw(i915, enable_reg, PLL_POWER_ENABLE, 0); 4046 4047 /* 4048 * The spec says we need to "wait" but it also says it should be 4049 * immediate. 4050 */ 4051 if (intel_de_wait_for_clear(i915, enable_reg, PLL_POWER_STATE, 1)) 4052 drm_err(&i915->drm, "PLL %d Power not disabled\n", 4053 pll->info->id); 4054 } 4055 4056 static void combo_pll_disable(struct drm_i915_private *i915, 4057 struct intel_shared_dpll *pll) 4058 { 4059 i915_reg_t enable_reg = intel_combo_pll_enable_reg(i915, pll); 4060 4061 icl_pll_disable(i915, pll, enable_reg); 4062 } 4063 4064 static void tbt_pll_disable(struct drm_i915_private *i915, 4065 struct intel_shared_dpll *pll) 4066 { 4067 icl_pll_disable(i915, pll, TBT_PLL_ENABLE); 4068 } 4069 4070 static void mg_pll_disable(struct drm_i915_private *i915, 4071 struct intel_shared_dpll *pll) 4072 { 4073 i915_reg_t enable_reg = intel_tc_pll_enable_reg(i915, pll); 4074 4075 icl_pll_disable(i915, pll, enable_reg); 4076 } 4077 4078 static void icl_update_dpll_ref_clks(struct drm_i915_private *i915) 4079 { 4080 /* No SSC ref */ 4081 i915->display.dpll.ref_clks.nssc = i915->display.cdclk.hw.ref; 4082 } 4083 4084 static void icl_dump_hw_state(struct drm_printer *p, 4085 const struct intel_dpll_hw_state *dpll_hw_state) 4086 { 4087 const struct icl_dpll_hw_state *hw_state = &dpll_hw_state->icl; 4088 4089 drm_printf(p, "dpll_hw_state: cfgcr0: 0x%x, cfgcr1: 0x%x, div0: 0x%x, " 4090 "mg_refclkin_ctl: 0x%x, hg_clktop2_coreclkctl1: 0x%x, " 4091 "mg_clktop2_hsclkctl: 0x%x, mg_pll_div0: 0x%x, " 4092 "mg_pll_div2: 0x%x, mg_pll_lf: 0x%x, " 4093 "mg_pll_frac_lock: 0x%x, mg_pll_ssc: 0x%x, " 4094 "mg_pll_bias: 0x%x, mg_pll_tdc_coldst_bias: 0x%x\n", 4095 hw_state->cfgcr0, hw_state->cfgcr1, hw_state->div0, 4096 hw_state->mg_refclkin_ctl, 4097 hw_state->mg_clktop2_coreclkctl1, 4098 hw_state->mg_clktop2_hsclkctl, 4099 hw_state->mg_pll_div0, 4100 hw_state->mg_pll_div1, 4101 hw_state->mg_pll_lf, 4102 hw_state->mg_pll_frac_lock, 4103 hw_state->mg_pll_ssc, 4104 hw_state->mg_pll_bias, 4105 hw_state->mg_pll_tdc_coldst_bias); 4106 } 4107 4108 static bool icl_compare_hw_state(const struct intel_dpll_hw_state *_a, 4109 const struct intel_dpll_hw_state *_b) 4110 { 4111 const struct icl_dpll_hw_state *a = &_a->icl; 4112 const struct icl_dpll_hw_state *b = &_b->icl; 4113 4114 /* FIXME split combo vs. mg more thoroughly */ 4115 return a->cfgcr0 == b->cfgcr0 && 4116 a->cfgcr1 == b->cfgcr1 && 4117 a->div0 == b->div0 && 4118 a->mg_refclkin_ctl == b->mg_refclkin_ctl && 4119 a->mg_clktop2_coreclkctl1 == b->mg_clktop2_coreclkctl1 && 4120 a->mg_clktop2_hsclkctl == b->mg_clktop2_hsclkctl && 4121 a->mg_pll_div0 == b->mg_pll_div0 && 4122 a->mg_pll_div1 == b->mg_pll_div1 && 4123 a->mg_pll_lf == b->mg_pll_lf && 4124 a->mg_pll_frac_lock == b->mg_pll_frac_lock && 4125 a->mg_pll_ssc == b->mg_pll_ssc && 4126 a->mg_pll_bias == b->mg_pll_bias && 4127 a->mg_pll_tdc_coldst_bias == b->mg_pll_tdc_coldst_bias; 4128 } 4129 4130 static const struct intel_shared_dpll_funcs combo_pll_funcs = { 4131 .enable = combo_pll_enable, 4132 .disable = combo_pll_disable, 4133 .get_hw_state = combo_pll_get_hw_state, 4134 .get_freq = icl_ddi_combo_pll_get_freq, 4135 }; 4136 4137 static const struct intel_shared_dpll_funcs tbt_pll_funcs = { 4138 .enable = tbt_pll_enable, 4139 .disable = tbt_pll_disable, 4140 .get_hw_state = tbt_pll_get_hw_state, 4141 .get_freq = icl_ddi_tbt_pll_get_freq, 4142 }; 4143 4144 static const struct intel_shared_dpll_funcs mg_pll_funcs = { 4145 .enable = mg_pll_enable, 4146 .disable = mg_pll_disable, 4147 .get_hw_state = mg_pll_get_hw_state, 4148 .get_freq = icl_ddi_mg_pll_get_freq, 4149 }; 4150 4151 static const struct dpll_info icl_plls[] = { 4152 { .name = "DPLL 0", .funcs = &combo_pll_funcs, .id = DPLL_ID_ICL_DPLL0, }, 4153 { .name = "DPLL 1", .funcs = &combo_pll_funcs, .id = DPLL_ID_ICL_DPLL1, }, 4154 { .name = "TBT PLL", .funcs = &tbt_pll_funcs, .id = DPLL_ID_ICL_TBTPLL, 4155 .is_alt_port_dpll = true, }, 4156 { .name = "MG PLL 1", .funcs = &mg_pll_funcs, .id = DPLL_ID_ICL_MGPLL1, }, 4157 { .name = "MG PLL 2", .funcs = &mg_pll_funcs, .id = DPLL_ID_ICL_MGPLL2, }, 4158 { .name = "MG PLL 3", .funcs = &mg_pll_funcs, .id = DPLL_ID_ICL_MGPLL3, }, 4159 { .name = "MG PLL 4", .funcs = &mg_pll_funcs, .id = DPLL_ID_ICL_MGPLL4, }, 4160 {} 4161 }; 4162 4163 static const struct intel_dpll_mgr icl_pll_mgr = { 4164 .dpll_info = icl_plls, 4165 .compute_dplls = icl_compute_dplls, 4166 .get_dplls = icl_get_dplls, 4167 .put_dplls = icl_put_dplls, 4168 .update_active_dpll = icl_update_active_dpll, 4169 .update_ref_clks = icl_update_dpll_ref_clks, 4170 .dump_hw_state = icl_dump_hw_state, 4171 .compare_hw_state = icl_compare_hw_state, 4172 }; 4173 4174 static const struct dpll_info ehl_plls[] = { 4175 { .name = "DPLL 0", .funcs = &combo_pll_funcs, .id = DPLL_ID_ICL_DPLL0, }, 4176 { .name = "DPLL 1", .funcs = &combo_pll_funcs, .id = DPLL_ID_ICL_DPLL1, }, 4177 { .name = "DPLL 4", .funcs = &combo_pll_funcs, .id = DPLL_ID_EHL_DPLL4, 4178 .power_domain = POWER_DOMAIN_DC_OFF, }, 4179 {} 4180 }; 4181 4182 static const struct intel_dpll_mgr ehl_pll_mgr = { 4183 .dpll_info = ehl_plls, 4184 .compute_dplls = icl_compute_dplls, 4185 .get_dplls = icl_get_dplls, 4186 .put_dplls = icl_put_dplls, 4187 .update_ref_clks = icl_update_dpll_ref_clks, 4188 .dump_hw_state = icl_dump_hw_state, 4189 .compare_hw_state = icl_compare_hw_state, 4190 }; 4191 4192 static const struct intel_shared_dpll_funcs dkl_pll_funcs = { 4193 .enable = mg_pll_enable, 4194 .disable = mg_pll_disable, 4195 .get_hw_state = dkl_pll_get_hw_state, 4196 .get_freq = icl_ddi_mg_pll_get_freq, 4197 }; 4198 4199 static const struct dpll_info tgl_plls[] = { 4200 { .name = "DPLL 0", .funcs = &combo_pll_funcs, .id = DPLL_ID_ICL_DPLL0, }, 4201 { .name = "DPLL 1", .funcs = &combo_pll_funcs, .id = DPLL_ID_ICL_DPLL1, }, 4202 { .name = "TBT PLL", .funcs = &tbt_pll_funcs, .id = DPLL_ID_ICL_TBTPLL, 4203 .is_alt_port_dpll = true, }, 4204 { .name = "TC PLL 1", .funcs = &dkl_pll_funcs, .id = DPLL_ID_ICL_MGPLL1, }, 4205 { .name = "TC PLL 2", .funcs = &dkl_pll_funcs, .id = DPLL_ID_ICL_MGPLL2, }, 4206 { .name = "TC PLL 3", .funcs = &dkl_pll_funcs, .id = DPLL_ID_ICL_MGPLL3, }, 4207 { .name = "TC PLL 4", .funcs = &dkl_pll_funcs, .id = DPLL_ID_ICL_MGPLL4, }, 4208 { .name = "TC PLL 5", .funcs = &dkl_pll_funcs, .id = DPLL_ID_TGL_MGPLL5, }, 4209 { .name = "TC PLL 6", .funcs = &dkl_pll_funcs, .id = DPLL_ID_TGL_MGPLL6, }, 4210 {} 4211 }; 4212 4213 static const struct intel_dpll_mgr tgl_pll_mgr = { 4214 .dpll_info = tgl_plls, 4215 .compute_dplls = icl_compute_dplls, 4216 .get_dplls = icl_get_dplls, 4217 .put_dplls = icl_put_dplls, 4218 .update_active_dpll = icl_update_active_dpll, 4219 .update_ref_clks = icl_update_dpll_ref_clks, 4220 .dump_hw_state = icl_dump_hw_state, 4221 .compare_hw_state = icl_compare_hw_state, 4222 }; 4223 4224 static const struct dpll_info rkl_plls[] = { 4225 { .name = "DPLL 0", .funcs = &combo_pll_funcs, .id = DPLL_ID_ICL_DPLL0, }, 4226 { .name = "DPLL 1", .funcs = &combo_pll_funcs, .id = DPLL_ID_ICL_DPLL1, }, 4227 { .name = "DPLL 4", .funcs = &combo_pll_funcs, .id = DPLL_ID_EHL_DPLL4, }, 4228 {} 4229 }; 4230 4231 static const struct intel_dpll_mgr rkl_pll_mgr = { 4232 .dpll_info = rkl_plls, 4233 .compute_dplls = icl_compute_dplls, 4234 .get_dplls = icl_get_dplls, 4235 .put_dplls = icl_put_dplls, 4236 .update_ref_clks = icl_update_dpll_ref_clks, 4237 .dump_hw_state = icl_dump_hw_state, 4238 .compare_hw_state = icl_compare_hw_state, 4239 }; 4240 4241 static const struct dpll_info dg1_plls[] = { 4242 { .name = "DPLL 0", .funcs = &combo_pll_funcs, .id = DPLL_ID_DG1_DPLL0, }, 4243 { .name = "DPLL 1", .funcs = &combo_pll_funcs, .id = DPLL_ID_DG1_DPLL1, }, 4244 { .name = "DPLL 2", .funcs = &combo_pll_funcs, .id = DPLL_ID_DG1_DPLL2, }, 4245 { .name = "DPLL 3", .funcs = &combo_pll_funcs, .id = DPLL_ID_DG1_DPLL3, }, 4246 {} 4247 }; 4248 4249 static const struct intel_dpll_mgr dg1_pll_mgr = { 4250 .dpll_info = dg1_plls, 4251 .compute_dplls = icl_compute_dplls, 4252 .get_dplls = icl_get_dplls, 4253 .put_dplls = icl_put_dplls, 4254 .update_ref_clks = icl_update_dpll_ref_clks, 4255 .dump_hw_state = icl_dump_hw_state, 4256 .compare_hw_state = icl_compare_hw_state, 4257 }; 4258 4259 static const struct dpll_info adls_plls[] = { 4260 { .name = "DPLL 0", .funcs = &combo_pll_funcs, .id = DPLL_ID_ICL_DPLL0, }, 4261 { .name = "DPLL 1", .funcs = &combo_pll_funcs, .id = DPLL_ID_ICL_DPLL1, }, 4262 { .name = "DPLL 2", .funcs = &combo_pll_funcs, .id = DPLL_ID_DG1_DPLL2, }, 4263 { .name = "DPLL 3", .funcs = &combo_pll_funcs, .id = DPLL_ID_DG1_DPLL3, }, 4264 {} 4265 }; 4266 4267 static const struct intel_dpll_mgr adls_pll_mgr = { 4268 .dpll_info = adls_plls, 4269 .compute_dplls = icl_compute_dplls, 4270 .get_dplls = icl_get_dplls, 4271 .put_dplls = icl_put_dplls, 4272 .update_ref_clks = icl_update_dpll_ref_clks, 4273 .dump_hw_state = icl_dump_hw_state, 4274 .compare_hw_state = icl_compare_hw_state, 4275 }; 4276 4277 static const struct dpll_info adlp_plls[] = { 4278 { .name = "DPLL 0", .funcs = &combo_pll_funcs, .id = DPLL_ID_ICL_DPLL0, }, 4279 { .name = "DPLL 1", .funcs = &combo_pll_funcs, .id = DPLL_ID_ICL_DPLL1, }, 4280 { .name = "TBT PLL", .funcs = &tbt_pll_funcs, .id = DPLL_ID_ICL_TBTPLL, 4281 .is_alt_port_dpll = true, }, 4282 { .name = "TC PLL 1", .funcs = &dkl_pll_funcs, .id = DPLL_ID_ICL_MGPLL1, }, 4283 { .name = "TC PLL 2", .funcs = &dkl_pll_funcs, .id = DPLL_ID_ICL_MGPLL2, }, 4284 { .name = "TC PLL 3", .funcs = &dkl_pll_funcs, .id = DPLL_ID_ICL_MGPLL3, }, 4285 { .name = "TC PLL 4", .funcs = &dkl_pll_funcs, .id = DPLL_ID_ICL_MGPLL4, }, 4286 {} 4287 }; 4288 4289 static const struct intel_dpll_mgr adlp_pll_mgr = { 4290 .dpll_info = adlp_plls, 4291 .compute_dplls = icl_compute_dplls, 4292 .get_dplls = icl_get_dplls, 4293 .put_dplls = icl_put_dplls, 4294 .update_active_dpll = icl_update_active_dpll, 4295 .update_ref_clks = icl_update_dpll_ref_clks, 4296 .dump_hw_state = icl_dump_hw_state, 4297 .compare_hw_state = icl_compare_hw_state, 4298 }; 4299 4300 /** 4301 * intel_shared_dpll_init - Initialize shared DPLLs 4302 * @i915: i915 device 4303 * 4304 * Initialize shared DPLLs for @i915. 4305 */ 4306 void intel_shared_dpll_init(struct drm_i915_private *i915) 4307 { 4308 const struct intel_dpll_mgr *dpll_mgr = NULL; 4309 const struct dpll_info *dpll_info; 4310 int i; 4311 4312 mutex_init(&i915->display.dpll.lock); 4313 4314 if (DISPLAY_VER(i915) >= 14 || IS_DG2(i915)) 4315 /* No shared DPLLs on DG2; port PLLs are part of the PHY */ 4316 dpll_mgr = NULL; 4317 else if (IS_ALDERLAKE_P(i915)) 4318 dpll_mgr = &adlp_pll_mgr; 4319 else if (IS_ALDERLAKE_S(i915)) 4320 dpll_mgr = &adls_pll_mgr; 4321 else if (IS_DG1(i915)) 4322 dpll_mgr = &dg1_pll_mgr; 4323 else if (IS_ROCKETLAKE(i915)) 4324 dpll_mgr = &rkl_pll_mgr; 4325 else if (DISPLAY_VER(i915) >= 12) 4326 dpll_mgr = &tgl_pll_mgr; 4327 else if (IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) 4328 dpll_mgr = &ehl_pll_mgr; 4329 else if (DISPLAY_VER(i915) >= 11) 4330 dpll_mgr = &icl_pll_mgr; 4331 else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) 4332 dpll_mgr = &bxt_pll_mgr; 4333 else if (DISPLAY_VER(i915) == 9) 4334 dpll_mgr = &skl_pll_mgr; 4335 else if (HAS_DDI(i915)) 4336 dpll_mgr = &hsw_pll_mgr; 4337 else if (HAS_PCH_IBX(i915) || HAS_PCH_CPT(i915)) 4338 dpll_mgr = &pch_pll_mgr; 4339 4340 if (!dpll_mgr) 4341 return; 4342 4343 dpll_info = dpll_mgr->dpll_info; 4344 4345 for (i = 0; dpll_info[i].name; i++) { 4346 if (drm_WARN_ON(&i915->drm, 4347 i >= ARRAY_SIZE(i915->display.dpll.shared_dplls))) 4348 break; 4349 4350 /* must fit into unsigned long bitmask on 32bit */ 4351 if (drm_WARN_ON(&i915->drm, dpll_info[i].id >= 32)) 4352 break; 4353 4354 i915->display.dpll.shared_dplls[i].info = &dpll_info[i]; 4355 i915->display.dpll.shared_dplls[i].index = i; 4356 } 4357 4358 i915->display.dpll.mgr = dpll_mgr; 4359 i915->display.dpll.num_shared_dpll = i; 4360 } 4361 4362 /** 4363 * intel_compute_shared_dplls - compute DPLL state CRTC and encoder combination 4364 * @state: atomic state 4365 * @crtc: CRTC to compute DPLLs for 4366 * @encoder: encoder 4367 * 4368 * This function computes the DPLL state for the given CRTC and encoder. 4369 * 4370 * The new configuration in the atomic commit @state is made effective by 4371 * calling intel_shared_dpll_swap_state(). 4372 * 4373 * Returns: 4374 * 0 on success, negative error code on falure. 4375 */ 4376 int intel_compute_shared_dplls(struct intel_atomic_state *state, 4377 struct intel_crtc *crtc, 4378 struct intel_encoder *encoder) 4379 { 4380 struct drm_i915_private *i915 = to_i915(state->base.dev); 4381 const struct intel_dpll_mgr *dpll_mgr = i915->display.dpll.mgr; 4382 4383 if (drm_WARN_ON(&i915->drm, !dpll_mgr)) 4384 return -EINVAL; 4385 4386 return dpll_mgr->compute_dplls(state, crtc, encoder); 4387 } 4388 4389 /** 4390 * intel_reserve_shared_dplls - reserve DPLLs for CRTC and encoder combination 4391 * @state: atomic state 4392 * @crtc: CRTC to reserve DPLLs for 4393 * @encoder: encoder 4394 * 4395 * This function reserves all required DPLLs for the given CRTC and encoder 4396 * combination in the current atomic commit @state and the new @crtc atomic 4397 * state. 4398 * 4399 * The new configuration in the atomic commit @state is made effective by 4400 * calling intel_shared_dpll_swap_state(). 4401 * 4402 * The reserved DPLLs should be released by calling 4403 * intel_release_shared_dplls(). 4404 * 4405 * Returns: 4406 * 0 if all required DPLLs were successfully reserved, 4407 * negative error code otherwise. 4408 */ 4409 int intel_reserve_shared_dplls(struct intel_atomic_state *state, 4410 struct intel_crtc *crtc, 4411 struct intel_encoder *encoder) 4412 { 4413 struct drm_i915_private *i915 = to_i915(state->base.dev); 4414 const struct intel_dpll_mgr *dpll_mgr = i915->display.dpll.mgr; 4415 4416 if (drm_WARN_ON(&i915->drm, !dpll_mgr)) 4417 return -EINVAL; 4418 4419 return dpll_mgr->get_dplls(state, crtc, encoder); 4420 } 4421 4422 /** 4423 * intel_release_shared_dplls - end use of DPLLs by CRTC in atomic state 4424 * @state: atomic state 4425 * @crtc: crtc from which the DPLLs are to be released 4426 * 4427 * This function releases all DPLLs reserved by intel_reserve_shared_dplls() 4428 * from the current atomic commit @state and the old @crtc atomic state. 4429 * 4430 * The new configuration in the atomic commit @state is made effective by 4431 * calling intel_shared_dpll_swap_state(). 4432 */ 4433 void intel_release_shared_dplls(struct intel_atomic_state *state, 4434 struct intel_crtc *crtc) 4435 { 4436 struct drm_i915_private *i915 = to_i915(state->base.dev); 4437 const struct intel_dpll_mgr *dpll_mgr = i915->display.dpll.mgr; 4438 4439 /* 4440 * FIXME: this function is called for every platform having a 4441 * compute_clock hook, even though the platform doesn't yet support 4442 * the shared DPLL framework and intel_reserve_shared_dplls() is not 4443 * called on those. 4444 */ 4445 if (!dpll_mgr) 4446 return; 4447 4448 dpll_mgr->put_dplls(state, crtc); 4449 } 4450 4451 /** 4452 * intel_update_active_dpll - update the active DPLL for a CRTC/encoder 4453 * @state: atomic state 4454 * @crtc: the CRTC for which to update the active DPLL 4455 * @encoder: encoder determining the type of port DPLL 4456 * 4457 * Update the active DPLL for the given @crtc/@encoder in @crtc's atomic state, 4458 * from the port DPLLs reserved previously by intel_reserve_shared_dplls(). The 4459 * DPLL selected will be based on the current mode of the encoder's port. 4460 */ 4461 void intel_update_active_dpll(struct intel_atomic_state *state, 4462 struct intel_crtc *crtc, 4463 struct intel_encoder *encoder) 4464 { 4465 struct drm_i915_private *i915 = to_i915(encoder->base.dev); 4466 const struct intel_dpll_mgr *dpll_mgr = i915->display.dpll.mgr; 4467 4468 if (drm_WARN_ON(&i915->drm, !dpll_mgr)) 4469 return; 4470 4471 dpll_mgr->update_active_dpll(state, crtc, encoder); 4472 } 4473 4474 /** 4475 * intel_dpll_get_freq - calculate the DPLL's output frequency 4476 * @i915: i915 device 4477 * @pll: DPLL for which to calculate the output frequency 4478 * @dpll_hw_state: DPLL state from which to calculate the output frequency 4479 * 4480 * Return the output frequency corresponding to @pll's passed in @dpll_hw_state. 4481 */ 4482 int intel_dpll_get_freq(struct drm_i915_private *i915, 4483 const struct intel_shared_dpll *pll, 4484 const struct intel_dpll_hw_state *dpll_hw_state) 4485 { 4486 if (drm_WARN_ON(&i915->drm, !pll->info->funcs->get_freq)) 4487 return 0; 4488 4489 return pll->info->funcs->get_freq(i915, pll, dpll_hw_state); 4490 } 4491 4492 /** 4493 * intel_dpll_get_hw_state - readout the DPLL's hardware state 4494 * @i915: i915 device 4495 * @pll: DPLL for which to calculate the output frequency 4496 * @dpll_hw_state: DPLL's hardware state 4497 * 4498 * Read out @pll's hardware state into @dpll_hw_state. 4499 */ 4500 bool intel_dpll_get_hw_state(struct drm_i915_private *i915, 4501 struct intel_shared_dpll *pll, 4502 struct intel_dpll_hw_state *dpll_hw_state) 4503 { 4504 return pll->info->funcs->get_hw_state(i915, pll, dpll_hw_state); 4505 } 4506 4507 static void readout_dpll_hw_state(struct drm_i915_private *i915, 4508 struct intel_shared_dpll *pll) 4509 { 4510 struct intel_crtc *crtc; 4511 4512 pll->on = intel_dpll_get_hw_state(i915, pll, &pll->state.hw_state); 4513 4514 if (pll->on && pll->info->power_domain) 4515 pll->wakeref = intel_display_power_get(i915, pll->info->power_domain); 4516 4517 pll->state.pipe_mask = 0; 4518 for_each_intel_crtc(&i915->drm, crtc) { 4519 struct intel_crtc_state *crtc_state = 4520 to_intel_crtc_state(crtc->base.state); 4521 4522 if (crtc_state->hw.active && crtc_state->shared_dpll == pll) 4523 intel_reference_shared_dpll_crtc(crtc, pll, &pll->state); 4524 } 4525 pll->active_mask = pll->state.pipe_mask; 4526 4527 drm_dbg_kms(&i915->drm, 4528 "%s hw state readout: pipe_mask 0x%x, on %i\n", 4529 pll->info->name, pll->state.pipe_mask, pll->on); 4530 } 4531 4532 void intel_dpll_update_ref_clks(struct drm_i915_private *i915) 4533 { 4534 if (i915->display.dpll.mgr && i915->display.dpll.mgr->update_ref_clks) 4535 i915->display.dpll.mgr->update_ref_clks(i915); 4536 } 4537 4538 void intel_dpll_readout_hw_state(struct drm_i915_private *i915) 4539 { 4540 struct intel_shared_dpll *pll; 4541 int i; 4542 4543 for_each_shared_dpll(i915, pll, i) 4544 readout_dpll_hw_state(i915, pll); 4545 } 4546 4547 static void sanitize_dpll_state(struct drm_i915_private *i915, 4548 struct intel_shared_dpll *pll) 4549 { 4550 if (!pll->on) 4551 return; 4552 4553 adlp_cmtg_clock_gating_wa(i915, pll); 4554 4555 if (pll->active_mask) 4556 return; 4557 4558 drm_dbg_kms(&i915->drm, 4559 "%s enabled but not in use, disabling\n", 4560 pll->info->name); 4561 4562 _intel_disable_shared_dpll(i915, pll); 4563 } 4564 4565 void intel_dpll_sanitize_state(struct drm_i915_private *i915) 4566 { 4567 struct intel_shared_dpll *pll; 4568 int i; 4569 4570 for_each_shared_dpll(i915, pll, i) 4571 sanitize_dpll_state(i915, pll); 4572 } 4573 4574 /** 4575 * intel_dpll_dump_hw_state - dump hw_state 4576 * @i915: i915 drm device 4577 * @p: where to print the state to 4578 * @dpll_hw_state: hw state to be dumped 4579 * 4580 * Dumo out the relevant values in @dpll_hw_state. 4581 */ 4582 void intel_dpll_dump_hw_state(struct drm_i915_private *i915, 4583 struct drm_printer *p, 4584 const struct intel_dpll_hw_state *dpll_hw_state) 4585 { 4586 if (i915->display.dpll.mgr) { 4587 i915->display.dpll.mgr->dump_hw_state(p, dpll_hw_state); 4588 } else { 4589 /* fallback for platforms that don't use the shared dpll 4590 * infrastructure 4591 */ 4592 ibx_dump_hw_state(p, dpll_hw_state); 4593 } 4594 } 4595 4596 /** 4597 * intel_dpll_compare_hw_state - compare the two states 4598 * @i915: i915 drm device 4599 * @a: first DPLL hw state 4600 * @b: second DPLL hw state 4601 * 4602 * Compare DPLL hw states @a and @b. 4603 * 4604 * Returns: true if the states are equal, false if the differ 4605 */ 4606 bool intel_dpll_compare_hw_state(struct drm_i915_private *i915, 4607 const struct intel_dpll_hw_state *a, 4608 const struct intel_dpll_hw_state *b) 4609 { 4610 if (i915->display.dpll.mgr) { 4611 return i915->display.dpll.mgr->compare_hw_state(a, b); 4612 } else { 4613 /* fallback for platforms that don't use the shared dpll 4614 * infrastructure 4615 */ 4616 return ibx_compare_hw_state(a, b); 4617 } 4618 } 4619 4620 static void 4621 verify_single_dpll_state(struct drm_i915_private *i915, 4622 struct intel_shared_dpll *pll, 4623 struct intel_crtc *crtc, 4624 const struct intel_crtc_state *new_crtc_state) 4625 { 4626 struct intel_display *display = &i915->display; 4627 struct intel_dpll_hw_state dpll_hw_state = {}; 4628 u8 pipe_mask; 4629 bool active; 4630 4631 active = intel_dpll_get_hw_state(i915, pll, &dpll_hw_state); 4632 4633 if (!pll->info->always_on) { 4634 INTEL_DISPLAY_STATE_WARN(display, !pll->on && pll->active_mask, 4635 "%s: pll in active use but not on in sw tracking\n", 4636 pll->info->name); 4637 INTEL_DISPLAY_STATE_WARN(display, pll->on && !pll->active_mask, 4638 "%s: pll is on but not used by any active pipe\n", 4639 pll->info->name); 4640 INTEL_DISPLAY_STATE_WARN(display, pll->on != active, 4641 "%s: pll on state mismatch (expected %i, found %i)\n", 4642 pll->info->name, pll->on, active); 4643 } 4644 4645 if (!crtc) { 4646 INTEL_DISPLAY_STATE_WARN(display, 4647 pll->active_mask & ~pll->state.pipe_mask, 4648 "%s: more active pll users than references: 0x%x vs 0x%x\n", 4649 pll->info->name, pll->active_mask, pll->state.pipe_mask); 4650 4651 return; 4652 } 4653 4654 pipe_mask = BIT(crtc->pipe); 4655 4656 if (new_crtc_state->hw.active) 4657 INTEL_DISPLAY_STATE_WARN(display, !(pll->active_mask & pipe_mask), 4658 "%s: pll active mismatch (expected pipe %c in active mask 0x%x)\n", 4659 pll->info->name, pipe_name(crtc->pipe), pll->active_mask); 4660 else 4661 INTEL_DISPLAY_STATE_WARN(display, pll->active_mask & pipe_mask, 4662 "%s: pll active mismatch (didn't expect pipe %c in active mask 0x%x)\n", 4663 pll->info->name, pipe_name(crtc->pipe), pll->active_mask); 4664 4665 INTEL_DISPLAY_STATE_WARN(display, !(pll->state.pipe_mask & pipe_mask), 4666 "%s: pll enabled crtcs mismatch (expected 0x%x in 0x%x)\n", 4667 pll->info->name, pipe_mask, pll->state.pipe_mask); 4668 4669 INTEL_DISPLAY_STATE_WARN(display, 4670 pll->on && memcmp(&pll->state.hw_state, &dpll_hw_state, 4671 sizeof(dpll_hw_state)), 4672 "%s: pll hw state mismatch\n", 4673 pll->info->name); 4674 } 4675 4676 static bool has_alt_port_dpll(const struct intel_shared_dpll *old_pll, 4677 const struct intel_shared_dpll *new_pll) 4678 { 4679 return old_pll && new_pll && old_pll != new_pll && 4680 (old_pll->info->is_alt_port_dpll || new_pll->info->is_alt_port_dpll); 4681 } 4682 4683 void intel_shared_dpll_state_verify(struct intel_atomic_state *state, 4684 struct intel_crtc *crtc) 4685 { 4686 struct intel_display *display = to_intel_display(state); 4687 struct drm_i915_private *i915 = to_i915(state->base.dev); 4688 const struct intel_crtc_state *old_crtc_state = 4689 intel_atomic_get_old_crtc_state(state, crtc); 4690 const struct intel_crtc_state *new_crtc_state = 4691 intel_atomic_get_new_crtc_state(state, crtc); 4692 4693 if (new_crtc_state->shared_dpll) 4694 verify_single_dpll_state(i915, new_crtc_state->shared_dpll, 4695 crtc, new_crtc_state); 4696 4697 if (old_crtc_state->shared_dpll && 4698 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) { 4699 u8 pipe_mask = BIT(crtc->pipe); 4700 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll; 4701 4702 INTEL_DISPLAY_STATE_WARN(display, pll->active_mask & pipe_mask, 4703 "%s: pll active mismatch (didn't expect pipe %c in active mask (0x%x))\n", 4704 pll->info->name, pipe_name(crtc->pipe), pll->active_mask); 4705 4706 /* TC ports have both MG/TC and TBT PLL referenced simultaneously */ 4707 INTEL_DISPLAY_STATE_WARN(display, !has_alt_port_dpll(old_crtc_state->shared_dpll, 4708 new_crtc_state->shared_dpll) && 4709 pll->state.pipe_mask & pipe_mask, 4710 "%s: pll enabled crtcs mismatch (found pipe %c in enabled mask (0x%x))\n", 4711 pll->info->name, pipe_name(crtc->pipe), pll->state.pipe_mask); 4712 } 4713 } 4714 4715 void intel_shared_dpll_verify_disabled(struct intel_atomic_state *state) 4716 { 4717 struct drm_i915_private *i915 = to_i915(state->base.dev); 4718 struct intel_shared_dpll *pll; 4719 int i; 4720 4721 for_each_shared_dpll(i915, pll, i) 4722 verify_single_dpll_state(i915, pll, NULL, NULL); 4723 } 4724