xref: /linux/drivers/gpu/drm/i915/display/intel_dpll.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/string_helpers.h>
8 
9 #include "i915_reg.h"
10 #include "intel_atomic.h"
11 #include "intel_crtc.h"
12 #include "intel_cx0_phy.h"
13 #include "intel_de.h"
14 #include "intel_display.h"
15 #include "intel_display_types.h"
16 #include "intel_dpio_phy.h"
17 #include "intel_dpll.h"
18 #include "intel_lvds.h"
19 #include "intel_lvds_regs.h"
20 #include "intel_panel.h"
21 #include "intel_pps.h"
22 #include "intel_snps_phy.h"
23 #include "vlv_sideband.h"
24 
25 struct intel_dpll_funcs {
26 	int (*crtc_compute_clock)(struct intel_atomic_state *state,
27 				  struct intel_crtc *crtc);
28 	int (*crtc_get_shared_dpll)(struct intel_atomic_state *state,
29 				    struct intel_crtc *crtc);
30 };
31 
32 struct intel_limit {
33 	struct {
34 		int min, max;
35 	} dot, vco, n, m, m1, m2, p, p1;
36 
37 	struct {
38 		int dot_limit;
39 		int p2_slow, p2_fast;
40 	} p2;
41 };
42 static const struct intel_limit intel_limits_i8xx_dac = {
43 	.dot = { .min = 25000, .max = 350000 },
44 	.vco = { .min = 908000, .max = 1512000 },
45 	.n = { .min = 2, .max = 16 },
46 	.m = { .min = 96, .max = 140 },
47 	.m1 = { .min = 18, .max = 26 },
48 	.m2 = { .min = 6, .max = 16 },
49 	.p = { .min = 4, .max = 128 },
50 	.p1 = { .min = 2, .max = 33 },
51 	.p2 = { .dot_limit = 165000,
52 		.p2_slow = 4, .p2_fast = 2 },
53 };
54 
55 static const struct intel_limit intel_limits_i8xx_dvo = {
56 	.dot = { .min = 25000, .max = 350000 },
57 	.vco = { .min = 908000, .max = 1512000 },
58 	.n = { .min = 2, .max = 16 },
59 	.m = { .min = 96, .max = 140 },
60 	.m1 = { .min = 18, .max = 26 },
61 	.m2 = { .min = 6, .max = 16 },
62 	.p = { .min = 4, .max = 128 },
63 	.p1 = { .min = 2, .max = 33 },
64 	.p2 = { .dot_limit = 165000,
65 		.p2_slow = 4, .p2_fast = 4 },
66 };
67 
68 static const struct intel_limit intel_limits_i8xx_lvds = {
69 	.dot = { .min = 25000, .max = 350000 },
70 	.vco = { .min = 908000, .max = 1512000 },
71 	.n = { .min = 2, .max = 16 },
72 	.m = { .min = 96, .max = 140 },
73 	.m1 = { .min = 18, .max = 26 },
74 	.m2 = { .min = 6, .max = 16 },
75 	.p = { .min = 4, .max = 128 },
76 	.p1 = { .min = 1, .max = 6 },
77 	.p2 = { .dot_limit = 165000,
78 		.p2_slow = 14, .p2_fast = 7 },
79 };
80 
81 static const struct intel_limit intel_limits_i9xx_sdvo = {
82 	.dot = { .min = 20000, .max = 400000 },
83 	.vco = { .min = 1400000, .max = 2800000 },
84 	.n = { .min = 1, .max = 6 },
85 	.m = { .min = 70, .max = 120 },
86 	.m1 = { .min = 8, .max = 18 },
87 	.m2 = { .min = 3, .max = 7 },
88 	.p = { .min = 5, .max = 80 },
89 	.p1 = { .min = 1, .max = 8 },
90 	.p2 = { .dot_limit = 200000,
91 		.p2_slow = 10, .p2_fast = 5 },
92 };
93 
94 static const struct intel_limit intel_limits_i9xx_lvds = {
95 	.dot = { .min = 20000, .max = 400000 },
96 	.vco = { .min = 1400000, .max = 2800000 },
97 	.n = { .min = 1, .max = 6 },
98 	.m = { .min = 70, .max = 120 },
99 	.m1 = { .min = 8, .max = 18 },
100 	.m2 = { .min = 3, .max = 7 },
101 	.p = { .min = 7, .max = 98 },
102 	.p1 = { .min = 1, .max = 8 },
103 	.p2 = { .dot_limit = 112000,
104 		.p2_slow = 14, .p2_fast = 7 },
105 };
106 
107 
108 static const struct intel_limit intel_limits_g4x_sdvo = {
109 	.dot = { .min = 25000, .max = 270000 },
110 	.vco = { .min = 1750000, .max = 3500000},
111 	.n = { .min = 1, .max = 4 },
112 	.m = { .min = 104, .max = 138 },
113 	.m1 = { .min = 17, .max = 23 },
114 	.m2 = { .min = 5, .max = 11 },
115 	.p = { .min = 10, .max = 30 },
116 	.p1 = { .min = 1, .max = 3},
117 	.p2 = { .dot_limit = 270000,
118 		.p2_slow = 10,
119 		.p2_fast = 10
120 	},
121 };
122 
123 static const struct intel_limit intel_limits_g4x_hdmi = {
124 	.dot = { .min = 22000, .max = 400000 },
125 	.vco = { .min = 1750000, .max = 3500000},
126 	.n = { .min = 1, .max = 4 },
127 	.m = { .min = 104, .max = 138 },
128 	.m1 = { .min = 16, .max = 23 },
129 	.m2 = { .min = 5, .max = 11 },
130 	.p = { .min = 5, .max = 80 },
131 	.p1 = { .min = 1, .max = 8},
132 	.p2 = { .dot_limit = 165000,
133 		.p2_slow = 10, .p2_fast = 5 },
134 };
135 
136 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
137 	.dot = { .min = 20000, .max = 115000 },
138 	.vco = { .min = 1750000, .max = 3500000 },
139 	.n = { .min = 1, .max = 3 },
140 	.m = { .min = 104, .max = 138 },
141 	.m1 = { .min = 17, .max = 23 },
142 	.m2 = { .min = 5, .max = 11 },
143 	.p = { .min = 28, .max = 112 },
144 	.p1 = { .min = 2, .max = 8 },
145 	.p2 = { .dot_limit = 0,
146 		.p2_slow = 14, .p2_fast = 14
147 	},
148 };
149 
150 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
151 	.dot = { .min = 80000, .max = 224000 },
152 	.vco = { .min = 1750000, .max = 3500000 },
153 	.n = { .min = 1, .max = 3 },
154 	.m = { .min = 104, .max = 138 },
155 	.m1 = { .min = 17, .max = 23 },
156 	.m2 = { .min = 5, .max = 11 },
157 	.p = { .min = 14, .max = 42 },
158 	.p1 = { .min = 2, .max = 6 },
159 	.p2 = { .dot_limit = 0,
160 		.p2_slow = 7, .p2_fast = 7
161 	},
162 };
163 
164 static const struct intel_limit pnv_limits_sdvo = {
165 	.dot = { .min = 20000, .max = 400000},
166 	.vco = { .min = 1700000, .max = 3500000 },
167 	/* Pineview's Ncounter is a ring counter */
168 	.n = { .min = 3, .max = 6 },
169 	.m = { .min = 2, .max = 256 },
170 	/* Pineview only has one combined m divider, which we treat as m2. */
171 	.m1 = { .min = 0, .max = 0 },
172 	.m2 = { .min = 0, .max = 254 },
173 	.p = { .min = 5, .max = 80 },
174 	.p1 = { .min = 1, .max = 8 },
175 	.p2 = { .dot_limit = 200000,
176 		.p2_slow = 10, .p2_fast = 5 },
177 };
178 
179 static const struct intel_limit pnv_limits_lvds = {
180 	.dot = { .min = 20000, .max = 400000 },
181 	.vco = { .min = 1700000, .max = 3500000 },
182 	.n = { .min = 3, .max = 6 },
183 	.m = { .min = 2, .max = 256 },
184 	.m1 = { .min = 0, .max = 0 },
185 	.m2 = { .min = 0, .max = 254 },
186 	.p = { .min = 7, .max = 112 },
187 	.p1 = { .min = 1, .max = 8 },
188 	.p2 = { .dot_limit = 112000,
189 		.p2_slow = 14, .p2_fast = 14 },
190 };
191 
192 /* Ironlake / Sandybridge
193  *
194  * We calculate clock using (register_value + 2) for N/M1/M2, so here
195  * the range value for them is (actual_value - 2).
196  */
197 static const struct intel_limit ilk_limits_dac = {
198 	.dot = { .min = 25000, .max = 350000 },
199 	.vco = { .min = 1760000, .max = 3510000 },
200 	.n = { .min = 1, .max = 5 },
201 	.m = { .min = 79, .max = 127 },
202 	.m1 = { .min = 12, .max = 22 },
203 	.m2 = { .min = 5, .max = 9 },
204 	.p = { .min = 5, .max = 80 },
205 	.p1 = { .min = 1, .max = 8 },
206 	.p2 = { .dot_limit = 225000,
207 		.p2_slow = 10, .p2_fast = 5 },
208 };
209 
210 static const struct intel_limit ilk_limits_single_lvds = {
211 	.dot = { .min = 25000, .max = 350000 },
212 	.vco = { .min = 1760000, .max = 3510000 },
213 	.n = { .min = 1, .max = 3 },
214 	.m = { .min = 79, .max = 118 },
215 	.m1 = { .min = 12, .max = 22 },
216 	.m2 = { .min = 5, .max = 9 },
217 	.p = { .min = 28, .max = 112 },
218 	.p1 = { .min = 2, .max = 8 },
219 	.p2 = { .dot_limit = 225000,
220 		.p2_slow = 14, .p2_fast = 14 },
221 };
222 
223 static const struct intel_limit ilk_limits_dual_lvds = {
224 	.dot = { .min = 25000, .max = 350000 },
225 	.vco = { .min = 1760000, .max = 3510000 },
226 	.n = { .min = 1, .max = 3 },
227 	.m = { .min = 79, .max = 127 },
228 	.m1 = { .min = 12, .max = 22 },
229 	.m2 = { .min = 5, .max = 9 },
230 	.p = { .min = 14, .max = 56 },
231 	.p1 = { .min = 2, .max = 8 },
232 	.p2 = { .dot_limit = 225000,
233 		.p2_slow = 7, .p2_fast = 7 },
234 };
235 
236 /* LVDS 100mhz refclk limits. */
237 static const struct intel_limit ilk_limits_single_lvds_100m = {
238 	.dot = { .min = 25000, .max = 350000 },
239 	.vco = { .min = 1760000, .max = 3510000 },
240 	.n = { .min = 1, .max = 2 },
241 	.m = { .min = 79, .max = 126 },
242 	.m1 = { .min = 12, .max = 22 },
243 	.m2 = { .min = 5, .max = 9 },
244 	.p = { .min = 28, .max = 112 },
245 	.p1 = { .min = 2, .max = 8 },
246 	.p2 = { .dot_limit = 225000,
247 		.p2_slow = 14, .p2_fast = 14 },
248 };
249 
250 static const struct intel_limit ilk_limits_dual_lvds_100m = {
251 	.dot = { .min = 25000, .max = 350000 },
252 	.vco = { .min = 1760000, .max = 3510000 },
253 	.n = { .min = 1, .max = 3 },
254 	.m = { .min = 79, .max = 126 },
255 	.m1 = { .min = 12, .max = 22 },
256 	.m2 = { .min = 5, .max = 9 },
257 	.p = { .min = 14, .max = 42 },
258 	.p1 = { .min = 2, .max = 6 },
259 	.p2 = { .dot_limit = 225000,
260 		.p2_slow = 7, .p2_fast = 7 },
261 };
262 
263 static const struct intel_limit intel_limits_vlv = {
264 	 /*
265 	  * These are based on the data rate limits (measured in fast clocks)
266 	  * since those are the strictest limits we have. The fast
267 	  * clock and actual rate limits are more relaxed, so checking
268 	  * them would make no difference.
269 	  */
270 	.dot = { .min = 25000, .max = 270000 },
271 	.vco = { .min = 4000000, .max = 6000000 },
272 	.n = { .min = 1, .max = 7 },
273 	.m1 = { .min = 2, .max = 3 },
274 	.m2 = { .min = 11, .max = 156 },
275 	.p1 = { .min = 2, .max = 3 },
276 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
277 };
278 
279 static const struct intel_limit intel_limits_chv = {
280 	/*
281 	 * These are based on the data rate limits (measured in fast clocks)
282 	 * since those are the strictest limits we have.  The fast
283 	 * clock and actual rate limits are more relaxed, so checking
284 	 * them would make no difference.
285 	 */
286 	.dot = { .min = 25000, .max = 540000 },
287 	.vco = { .min = 4800000, .max = 6480000 },
288 	.n = { .min = 1, .max = 1 },
289 	.m1 = { .min = 2, .max = 2 },
290 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
291 	.p1 = { .min = 2, .max = 4 },
292 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
293 };
294 
295 static const struct intel_limit intel_limits_bxt = {
296 	.dot = { .min = 25000, .max = 594000 },
297 	.vco = { .min = 4800000, .max = 6700000 },
298 	.n = { .min = 1, .max = 1 },
299 	.m1 = { .min = 2, .max = 2 },
300 	/* FIXME: find real m2 limits */
301 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
302 	.p1 = { .min = 2, .max = 4 },
303 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
304 };
305 
306 /*
307  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
308  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
309  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
310  * The helpers' return value is the rate of the clock that is fed to the
311  * display engine's pipe which can be the above fast dot clock rate or a
312  * divided-down version of it.
313  */
314 /* m1 is reserved as 0 in Pineview, n is a ring counter */
315 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
316 {
317 	clock->m = clock->m2 + 2;
318 	clock->p = clock->p1 * clock->p2;
319 
320 	clock->vco = clock->n == 0 ? 0 :
321 		DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
322 	clock->dot = clock->p == 0 ? 0 :
323 		DIV_ROUND_CLOSEST(clock->vco, clock->p);
324 
325 	return clock->dot;
326 }
327 
328 static u32 i9xx_dpll_compute_m(const struct dpll *dpll)
329 {
330 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
331 }
332 
333 int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
334 {
335 	clock->m = i9xx_dpll_compute_m(clock);
336 	clock->p = clock->p1 * clock->p2;
337 
338 	clock->vco = clock->n + 2 == 0 ? 0 :
339 		DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
340 	clock->dot = clock->p == 0 ? 0 :
341 		DIV_ROUND_CLOSEST(clock->vco, clock->p);
342 
343 	return clock->dot;
344 }
345 
346 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
347 {
348 	clock->m = clock->m1 * clock->m2;
349 	clock->p = clock->p1 * clock->p2 * 5;
350 
351 	clock->vco = clock->n == 0 ? 0 :
352 		DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
353 	clock->dot = clock->p == 0 ? 0 :
354 		DIV_ROUND_CLOSEST(clock->vco, clock->p);
355 
356 	return clock->dot;
357 }
358 
359 int chv_calc_dpll_params(int refclk, struct dpll *clock)
360 {
361 	clock->m = clock->m1 * clock->m2;
362 	clock->p = clock->p1 * clock->p2 * 5;
363 
364 	clock->vco = clock->n == 0 ? 0 :
365 		DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22);
366 	clock->dot = clock->p == 0 ? 0 :
367 		DIV_ROUND_CLOSEST(clock->vco, clock->p);
368 
369 	return clock->dot;
370 }
371 
372 static int i9xx_pll_refclk(struct drm_device *dev,
373 			   const struct intel_crtc_state *pipe_config)
374 {
375 	struct drm_i915_private *dev_priv = to_i915(dev);
376 	u32 dpll = pipe_config->dpll_hw_state.dpll;
377 
378 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
379 		return dev_priv->display.vbt.lvds_ssc_freq;
380 	else if (HAS_PCH_SPLIT(dev_priv))
381 		return 120000;
382 	else if (DISPLAY_VER(dev_priv) != 2)
383 		return 96000;
384 	else
385 		return 48000;
386 }
387 
388 /* Returns the clock of the currently programmed mode of the given pipe. */
389 void i9xx_crtc_clock_get(struct intel_crtc *crtc,
390 			 struct intel_crtc_state *pipe_config)
391 {
392 	struct drm_device *dev = crtc->base.dev;
393 	struct drm_i915_private *dev_priv = to_i915(dev);
394 	u32 dpll = pipe_config->dpll_hw_state.dpll;
395 	u32 fp;
396 	struct dpll clock;
397 	int port_clock;
398 	int refclk = i9xx_pll_refclk(dev, pipe_config);
399 
400 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
401 		fp = pipe_config->dpll_hw_state.fp0;
402 	else
403 		fp = pipe_config->dpll_hw_state.fp1;
404 
405 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
406 	if (IS_PINEVIEW(dev_priv)) {
407 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
408 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
409 	} else {
410 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
411 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
412 	}
413 
414 	if (DISPLAY_VER(dev_priv) != 2) {
415 		if (IS_PINEVIEW(dev_priv))
416 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
417 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
418 		else
419 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
420 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
421 
422 		switch (dpll & DPLL_MODE_MASK) {
423 		case DPLLB_MODE_DAC_SERIAL:
424 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
425 				5 : 10;
426 			break;
427 		case DPLLB_MODE_LVDS:
428 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
429 				7 : 14;
430 			break;
431 		default:
432 			drm_dbg_kms(&dev_priv->drm,
433 				    "Unknown DPLL mode %08x in programmed "
434 				    "mode\n", (int)(dpll & DPLL_MODE_MASK));
435 			return;
436 		}
437 
438 		if (IS_PINEVIEW(dev_priv))
439 			port_clock = pnv_calc_dpll_params(refclk, &clock);
440 		else
441 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
442 	} else {
443 		enum pipe lvds_pipe;
444 
445 		if (IS_I85X(dev_priv) &&
446 		    intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) &&
447 		    lvds_pipe == crtc->pipe) {
448 			u32 lvds = intel_de_read(dev_priv, LVDS);
449 
450 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
451 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
452 
453 			if (lvds & LVDS_CLKB_POWER_UP)
454 				clock.p2 = 7;
455 			else
456 				clock.p2 = 14;
457 		} else {
458 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
459 				clock.p1 = 2;
460 			else {
461 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
462 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
463 			}
464 			if (dpll & PLL_P2_DIVIDE_BY_4)
465 				clock.p2 = 4;
466 			else
467 				clock.p2 = 2;
468 		}
469 
470 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
471 	}
472 
473 	/*
474 	 * This value includes pixel_multiplier. We will use
475 	 * port_clock to compute adjusted_mode.crtc_clock in the
476 	 * encoder's get_config() function.
477 	 */
478 	pipe_config->port_clock = port_clock;
479 }
480 
481 void vlv_crtc_clock_get(struct intel_crtc *crtc,
482 			struct intel_crtc_state *pipe_config)
483 {
484 	struct drm_device *dev = crtc->base.dev;
485 	struct drm_i915_private *dev_priv = to_i915(dev);
486 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
487 	struct dpll clock;
488 	u32 mdiv;
489 	int refclk = 100000;
490 
491 	/* In case of DSI, DPLL will not be used */
492 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
493 		return;
494 
495 	vlv_dpio_get(dev_priv);
496 	mdiv = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW3(crtc->pipe));
497 	vlv_dpio_put(dev_priv);
498 
499 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
500 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
501 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
502 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
503 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
504 
505 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
506 }
507 
508 void chv_crtc_clock_get(struct intel_crtc *crtc,
509 			struct intel_crtc_state *pipe_config)
510 {
511 	struct drm_device *dev = crtc->base.dev;
512 	struct drm_i915_private *dev_priv = to_i915(dev);
513 	enum dpio_channel port = vlv_pipe_to_channel(crtc->pipe);
514 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
515 	struct dpll clock;
516 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
517 	int refclk = 100000;
518 
519 	/* In case of DSI, DPLL will not be used */
520 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
521 		return;
522 
523 	vlv_dpio_get(dev_priv);
524 	cmn_dw13 = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW13(port));
525 	pll_dw0 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW0(port));
526 	pll_dw1 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW1(port));
527 	pll_dw2 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW2(port));
528 	pll_dw3 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(port));
529 	vlv_dpio_put(dev_priv);
530 
531 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
532 	clock.m2 = (pll_dw0 & 0xff) << 22;
533 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
534 		clock.m2 |= pll_dw2 & 0x3fffff;
535 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
536 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
537 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
538 
539 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
540 }
541 
542 /*
543  * Returns whether the given set of divisors are valid for a given refclk with
544  * the given connectors.
545  */
546 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
547 			       const struct intel_limit *limit,
548 			       const struct dpll *clock)
549 {
550 	if (clock->n < limit->n.min || limit->n.max < clock->n)
551 		return false;
552 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
553 		return false;
554 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
555 		return false;
556 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
557 		return false;
558 
559 	if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv))
560 		if (clock->m1 <= clock->m2)
561 			return false;
562 
563 	if (!IS_LP(dev_priv)) {
564 		if (clock->p < limit->p.min || limit->p.max < clock->p)
565 			return false;
566 		if (clock->m < limit->m.min || limit->m.max < clock->m)
567 			return false;
568 	}
569 
570 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
571 		return false;
572 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
573 	 * connector, etc., rather than just a single range.
574 	 */
575 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
576 		return false;
577 
578 	return true;
579 }
580 
581 static int
582 i9xx_select_p2_div(const struct intel_limit *limit,
583 		   const struct intel_crtc_state *crtc_state,
584 		   int target)
585 {
586 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
587 
588 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
589 		/*
590 		 * For LVDS just rely on its current settings for dual-channel.
591 		 * We haven't figured out how to reliably set up different
592 		 * single/dual channel state, if we even can.
593 		 */
594 		if (intel_is_dual_link_lvds(dev_priv))
595 			return limit->p2.p2_fast;
596 		else
597 			return limit->p2.p2_slow;
598 	} else {
599 		if (target < limit->p2.dot_limit)
600 			return limit->p2.p2_slow;
601 		else
602 			return limit->p2.p2_fast;
603 	}
604 }
605 
606 /*
607  * Returns a set of divisors for the desired target clock with the given
608  * refclk, or FALSE.
609  *
610  * Target and reference clocks are specified in kHz.
611  *
612  * If match_clock is provided, then best_clock P divider must match the P
613  * divider from @match_clock used for LVDS downclocking.
614  */
615 static bool
616 i9xx_find_best_dpll(const struct intel_limit *limit,
617 		    struct intel_crtc_state *crtc_state,
618 		    int target, int refclk,
619 		    const struct dpll *match_clock,
620 		    struct dpll *best_clock)
621 {
622 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
623 	struct dpll clock;
624 	int err = target;
625 
626 	memset(best_clock, 0, sizeof(*best_clock));
627 
628 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
629 
630 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
631 	     clock.m1++) {
632 		for (clock.m2 = limit->m2.min;
633 		     clock.m2 <= limit->m2.max; clock.m2++) {
634 			if (clock.m2 >= clock.m1)
635 				break;
636 			for (clock.n = limit->n.min;
637 			     clock.n <= limit->n.max; clock.n++) {
638 				for (clock.p1 = limit->p1.min;
639 					clock.p1 <= limit->p1.max; clock.p1++) {
640 					int this_err;
641 
642 					i9xx_calc_dpll_params(refclk, &clock);
643 					if (!intel_pll_is_valid(to_i915(dev),
644 								limit,
645 								&clock))
646 						continue;
647 					if (match_clock &&
648 					    clock.p != match_clock->p)
649 						continue;
650 
651 					this_err = abs(clock.dot - target);
652 					if (this_err < err) {
653 						*best_clock = clock;
654 						err = this_err;
655 					}
656 				}
657 			}
658 		}
659 	}
660 
661 	return (err != target);
662 }
663 
664 /*
665  * Returns a set of divisors for the desired target clock with the given
666  * refclk, or FALSE.
667  *
668  * Target and reference clocks are specified in kHz.
669  *
670  * If match_clock is provided, then best_clock P divider must match the P
671  * divider from @match_clock used for LVDS downclocking.
672  */
673 static bool
674 pnv_find_best_dpll(const struct intel_limit *limit,
675 		   struct intel_crtc_state *crtc_state,
676 		   int target, int refclk,
677 		   const struct dpll *match_clock,
678 		   struct dpll *best_clock)
679 {
680 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
681 	struct dpll clock;
682 	int err = target;
683 
684 	memset(best_clock, 0, sizeof(*best_clock));
685 
686 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
687 
688 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
689 	     clock.m1++) {
690 		for (clock.m2 = limit->m2.min;
691 		     clock.m2 <= limit->m2.max; clock.m2++) {
692 			for (clock.n = limit->n.min;
693 			     clock.n <= limit->n.max; clock.n++) {
694 				for (clock.p1 = limit->p1.min;
695 					clock.p1 <= limit->p1.max; clock.p1++) {
696 					int this_err;
697 
698 					pnv_calc_dpll_params(refclk, &clock);
699 					if (!intel_pll_is_valid(to_i915(dev),
700 								limit,
701 								&clock))
702 						continue;
703 					if (match_clock &&
704 					    clock.p != match_clock->p)
705 						continue;
706 
707 					this_err = abs(clock.dot - target);
708 					if (this_err < err) {
709 						*best_clock = clock;
710 						err = this_err;
711 					}
712 				}
713 			}
714 		}
715 	}
716 
717 	return (err != target);
718 }
719 
720 /*
721  * Returns a set of divisors for the desired target clock with the given
722  * refclk, or FALSE.
723  *
724  * Target and reference clocks are specified in kHz.
725  *
726  * If match_clock is provided, then best_clock P divider must match the P
727  * divider from @match_clock used for LVDS downclocking.
728  */
729 static bool
730 g4x_find_best_dpll(const struct intel_limit *limit,
731 		   struct intel_crtc_state *crtc_state,
732 		   int target, int refclk,
733 		   const struct dpll *match_clock,
734 		   struct dpll *best_clock)
735 {
736 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
737 	struct dpll clock;
738 	int max_n;
739 	bool found = false;
740 	/* approximately equals target * 0.00585 */
741 	int err_most = (target >> 8) + (target >> 9);
742 
743 	memset(best_clock, 0, sizeof(*best_clock));
744 
745 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746 
747 	max_n = limit->n.max;
748 	/* based on hardware requirement, prefer smaller n to precision */
749 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750 		/* based on hardware requirement, prefere larger m1,m2 */
751 		for (clock.m1 = limit->m1.max;
752 		     clock.m1 >= limit->m1.min; clock.m1--) {
753 			for (clock.m2 = limit->m2.max;
754 			     clock.m2 >= limit->m2.min; clock.m2--) {
755 				for (clock.p1 = limit->p1.max;
756 				     clock.p1 >= limit->p1.min; clock.p1--) {
757 					int this_err;
758 
759 					i9xx_calc_dpll_params(refclk, &clock);
760 					if (!intel_pll_is_valid(to_i915(dev),
761 								limit,
762 								&clock))
763 						continue;
764 
765 					this_err = abs(clock.dot - target);
766 					if (this_err < err_most) {
767 						*best_clock = clock;
768 						err_most = this_err;
769 						max_n = clock.n;
770 						found = true;
771 					}
772 				}
773 			}
774 		}
775 	}
776 	return found;
777 }
778 
779 /*
780  * Check if the calculated PLL configuration is more optimal compared to the
781  * best configuration and error found so far. Return the calculated error.
782  */
783 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
784 			       const struct dpll *calculated_clock,
785 			       const struct dpll *best_clock,
786 			       unsigned int best_error_ppm,
787 			       unsigned int *error_ppm)
788 {
789 	/*
790 	 * For CHV ignore the error and consider only the P value.
791 	 * Prefer a bigger P value based on HW requirements.
792 	 */
793 	if (IS_CHERRYVIEW(to_i915(dev))) {
794 		*error_ppm = 0;
795 
796 		return calculated_clock->p > best_clock->p;
797 	}
798 
799 	if (drm_WARN_ON_ONCE(dev, !target_freq))
800 		return false;
801 
802 	*error_ppm = div_u64(1000000ULL *
803 				abs(target_freq - calculated_clock->dot),
804 			     target_freq);
805 	/*
806 	 * Prefer a better P value over a better (smaller) error if the error
807 	 * is small. Ensure this preference for future configurations too by
808 	 * setting the error to 0.
809 	 */
810 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
811 		*error_ppm = 0;
812 
813 		return true;
814 	}
815 
816 	return *error_ppm + 10 < best_error_ppm;
817 }
818 
819 /*
820  * Returns a set of divisors for the desired target clock with the given
821  * refclk, or FALSE.
822  */
823 static bool
824 vlv_find_best_dpll(const struct intel_limit *limit,
825 		   struct intel_crtc_state *crtc_state,
826 		   int target, int refclk,
827 		   const struct dpll *match_clock,
828 		   struct dpll *best_clock)
829 {
830 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
831 	struct drm_device *dev = crtc->base.dev;
832 	struct dpll clock;
833 	unsigned int bestppm = 1000000;
834 	/* min update 19.2 MHz */
835 	int max_n = min(limit->n.max, refclk / 19200);
836 	bool found = false;
837 
838 	memset(best_clock, 0, sizeof(*best_clock));
839 
840 	/* based on hardware requirement, prefer smaller n to precision */
841 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
842 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
843 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
844 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
845 				clock.p = clock.p1 * clock.p2 * 5;
846 				/* based on hardware requirement, prefer bigger m1,m2 values */
847 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
848 					unsigned int ppm;
849 
850 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
851 								     refclk * clock.m1);
852 
853 					vlv_calc_dpll_params(refclk, &clock);
854 
855 					if (!intel_pll_is_valid(to_i915(dev),
856 								limit,
857 								&clock))
858 						continue;
859 
860 					if (!vlv_PLL_is_optimal(dev, target,
861 								&clock,
862 								best_clock,
863 								bestppm, &ppm))
864 						continue;
865 
866 					*best_clock = clock;
867 					bestppm = ppm;
868 					found = true;
869 				}
870 			}
871 		}
872 	}
873 
874 	return found;
875 }
876 
877 /*
878  * Returns a set of divisors for the desired target clock with the given
879  * refclk, or FALSE.
880  */
881 static bool
882 chv_find_best_dpll(const struct intel_limit *limit,
883 		   struct intel_crtc_state *crtc_state,
884 		   int target, int refclk,
885 		   const struct dpll *match_clock,
886 		   struct dpll *best_clock)
887 {
888 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
889 	struct drm_device *dev = crtc->base.dev;
890 	unsigned int best_error_ppm;
891 	struct dpll clock;
892 	u64 m2;
893 	int found = false;
894 
895 	memset(best_clock, 0, sizeof(*best_clock));
896 	best_error_ppm = 1000000;
897 
898 	/*
899 	 * Based on hardware doc, the n always set to 1, and m1 always
900 	 * set to 2.  If requires to support 200Mhz refclk, we need to
901 	 * revisit this because n may not 1 anymore.
902 	 */
903 	clock.n = 1;
904 	clock.m1 = 2;
905 
906 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
907 		for (clock.p2 = limit->p2.p2_fast;
908 				clock.p2 >= limit->p2.p2_slow;
909 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
910 			unsigned int error_ppm;
911 
912 			clock.p = clock.p1 * clock.p2 * 5;
913 
914 			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
915 						   refclk * clock.m1);
916 
917 			if (m2 > INT_MAX/clock.m1)
918 				continue;
919 
920 			clock.m2 = m2;
921 
922 			chv_calc_dpll_params(refclk, &clock);
923 
924 			if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
925 				continue;
926 
927 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
928 						best_error_ppm, &error_ppm))
929 				continue;
930 
931 			*best_clock = clock;
932 			best_error_ppm = error_ppm;
933 			found = true;
934 		}
935 	}
936 
937 	return found;
938 }
939 
940 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
941 			struct dpll *best_clock)
942 {
943 	const struct intel_limit *limit = &intel_limits_bxt;
944 	int refclk = 100000;
945 
946 	return chv_find_best_dpll(limit, crtc_state,
947 				  crtc_state->port_clock, refclk,
948 				  NULL, best_clock);
949 }
950 
951 u32 i9xx_dpll_compute_fp(const struct dpll *dpll)
952 {
953 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
954 }
955 
956 static u32 pnv_dpll_compute_fp(const struct dpll *dpll)
957 {
958 	return (1 << dpll->n) << 16 | dpll->m2;
959 }
960 
961 static void i9xx_update_pll_dividers(struct intel_crtc_state *crtc_state,
962 				     const struct dpll *clock,
963 				     const struct dpll *reduced_clock)
964 {
965 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
966 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
967 	u32 fp, fp2;
968 
969 	if (IS_PINEVIEW(dev_priv)) {
970 		fp = pnv_dpll_compute_fp(clock);
971 		fp2 = pnv_dpll_compute_fp(reduced_clock);
972 	} else {
973 		fp = i9xx_dpll_compute_fp(clock);
974 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
975 	}
976 
977 	crtc_state->dpll_hw_state.fp0 = fp;
978 	crtc_state->dpll_hw_state.fp1 = fp2;
979 }
980 
981 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state,
982 			      const struct dpll *clock,
983 			      const struct dpll *reduced_clock)
984 {
985 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
986 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
987 	u32 dpll;
988 
989 	i9xx_update_pll_dividers(crtc_state, clock, reduced_clock);
990 
991 	dpll = DPLL_VGA_MODE_DIS;
992 
993 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
994 		dpll |= DPLLB_MODE_LVDS;
995 	else
996 		dpll |= DPLLB_MODE_DAC_SERIAL;
997 
998 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
999 	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
1000 		dpll |= (crtc_state->pixel_multiplier - 1)
1001 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
1002 	}
1003 
1004 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1005 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1006 		dpll |= DPLL_SDVO_HIGH_SPEED;
1007 
1008 	if (intel_crtc_has_dp_encoder(crtc_state))
1009 		dpll |= DPLL_SDVO_HIGH_SPEED;
1010 
1011 	/* compute bitmask from p1 value */
1012 	if (IS_G4X(dev_priv)) {
1013 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1014 		dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1015 	} else if (IS_PINEVIEW(dev_priv)) {
1016 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
1017 		WARN_ON(reduced_clock->p1 != clock->p1);
1018 	} else {
1019 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1020 		WARN_ON(reduced_clock->p1 != clock->p1);
1021 	}
1022 
1023 	switch (clock->p2) {
1024 	case 5:
1025 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1026 		break;
1027 	case 7:
1028 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1029 		break;
1030 	case 10:
1031 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1032 		break;
1033 	case 14:
1034 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1035 		break;
1036 	}
1037 	WARN_ON(reduced_clock->p2 != clock->p2);
1038 
1039 	if (DISPLAY_VER(dev_priv) >= 4)
1040 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
1041 
1042 	if (crtc_state->sdvo_tv_clock)
1043 		dpll |= PLL_REF_INPUT_TVCLKINBC;
1044 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1045 		 intel_panel_use_ssc(dev_priv))
1046 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1047 	else
1048 		dpll |= PLL_REF_INPUT_DREFCLK;
1049 
1050 	dpll |= DPLL_VCO_ENABLE;
1051 	crtc_state->dpll_hw_state.dpll = dpll;
1052 
1053 	if (DISPLAY_VER(dev_priv) >= 4) {
1054 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
1055 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
1056 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
1057 	}
1058 }
1059 
1060 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state,
1061 			      const struct dpll *clock,
1062 			      const struct dpll *reduced_clock)
1063 {
1064 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1065 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1066 	u32 dpll;
1067 
1068 	i9xx_update_pll_dividers(crtc_state, clock, reduced_clock);
1069 
1070 	dpll = DPLL_VGA_MODE_DIS;
1071 
1072 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1073 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1074 	} else {
1075 		if (clock->p1 == 2)
1076 			dpll |= PLL_P1_DIVIDE_BY_TWO;
1077 		else
1078 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1079 		if (clock->p2 == 4)
1080 			dpll |= PLL_P2_DIVIDE_BY_4;
1081 	}
1082 	WARN_ON(reduced_clock->p1 != clock->p1);
1083 	WARN_ON(reduced_clock->p2 != clock->p2);
1084 
1085 	/*
1086 	 * Bspec:
1087 	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
1088 	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
1089 	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
1090 	 *  Enable) must be set to “1” in both the DPLL A Control Register
1091 	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
1092 	 *
1093 	 * For simplicity We simply keep both bits always enabled in
1094 	 * both DPLLS. The spec says we should disable the DVO 2X clock
1095 	 * when not needed, but this seems to work fine in practice.
1096 	 */
1097 	if (IS_I830(dev_priv) ||
1098 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
1099 		dpll |= DPLL_DVO_2X_MODE;
1100 
1101 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1102 	    intel_panel_use_ssc(dev_priv))
1103 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1104 	else
1105 		dpll |= PLL_REF_INPUT_DREFCLK;
1106 
1107 	dpll |= DPLL_VCO_ENABLE;
1108 	crtc_state->dpll_hw_state.dpll = dpll;
1109 }
1110 
1111 static int hsw_crtc_compute_clock(struct intel_atomic_state *state,
1112 				  struct intel_crtc *crtc)
1113 {
1114 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1115 	struct intel_crtc_state *crtc_state =
1116 		intel_atomic_get_new_crtc_state(state, crtc);
1117 	struct intel_encoder *encoder =
1118 		intel_get_crtc_new_encoder(state, crtc_state);
1119 	int ret;
1120 
1121 	if (DISPLAY_VER(dev_priv) < 11 &&
1122 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1123 		return 0;
1124 
1125 	ret = intel_compute_shared_dplls(state, crtc, encoder);
1126 	if (ret)
1127 		return ret;
1128 
1129 	/* FIXME this is a mess */
1130 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1131 		return 0;
1132 
1133 	/* CRT dotclock is determined via other means */
1134 	if (!crtc_state->has_pch_encoder)
1135 		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1136 
1137 	return 0;
1138 }
1139 
1140 static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state,
1141 				    struct intel_crtc *crtc)
1142 {
1143 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1144 	struct intel_crtc_state *crtc_state =
1145 		intel_atomic_get_new_crtc_state(state, crtc);
1146 	struct intel_encoder *encoder =
1147 		intel_get_crtc_new_encoder(state, crtc_state);
1148 
1149 	if (DISPLAY_VER(dev_priv) < 11 &&
1150 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1151 		return 0;
1152 
1153 	return intel_reserve_shared_dplls(state, crtc, encoder);
1154 }
1155 
1156 static int dg2_crtc_compute_clock(struct intel_atomic_state *state,
1157 				  struct intel_crtc *crtc)
1158 {
1159 	struct intel_crtc_state *crtc_state =
1160 		intel_atomic_get_new_crtc_state(state, crtc);
1161 	struct intel_encoder *encoder =
1162 		intel_get_crtc_new_encoder(state, crtc_state);
1163 	int ret;
1164 
1165 	ret = intel_mpllb_calc_state(crtc_state, encoder);
1166 	if (ret)
1167 		return ret;
1168 
1169 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1170 
1171 	return 0;
1172 }
1173 
1174 static int mtl_crtc_compute_clock(struct intel_atomic_state *state,
1175 				  struct intel_crtc *crtc)
1176 {
1177 	struct intel_crtc_state *crtc_state =
1178 		intel_atomic_get_new_crtc_state(state, crtc);
1179 	struct intel_encoder *encoder =
1180 		intel_get_crtc_new_encoder(state, crtc_state);
1181 	int ret;
1182 
1183 	ret = intel_cx0pll_calc_state(crtc_state, encoder);
1184 	if (ret)
1185 		return ret;
1186 
1187 	/* TODO: Do the readback via intel_compute_shared_dplls() */
1188 	crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->cx0pll_state);
1189 
1190 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1191 
1192 	return 0;
1193 }
1194 
1195 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor)
1196 {
1197 	return dpll->m < factor * dpll->n;
1198 }
1199 
1200 static void ilk_update_pll_dividers(struct intel_crtc_state *crtc_state,
1201 				    const struct dpll *clock,
1202 				    const struct dpll *reduced_clock)
1203 {
1204 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1205 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1206 	u32 fp, fp2;
1207 	int factor;
1208 
1209 	/* Enable autotuning of the PLL clock (if permissible) */
1210 	factor = 21;
1211 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1212 		if ((intel_panel_use_ssc(dev_priv) &&
1213 		     dev_priv->display.vbt.lvds_ssc_freq == 100000) ||
1214 		    (HAS_PCH_IBX(dev_priv) &&
1215 		     intel_is_dual_link_lvds(dev_priv)))
1216 			factor = 25;
1217 	} else if (crtc_state->sdvo_tv_clock) {
1218 		factor = 20;
1219 	}
1220 
1221 	fp = i9xx_dpll_compute_fp(clock);
1222 	if (ilk_needs_fb_cb_tune(clock, factor))
1223 		fp |= FP_CB_TUNE;
1224 
1225 	fp2 = i9xx_dpll_compute_fp(reduced_clock);
1226 	if (ilk_needs_fb_cb_tune(reduced_clock, factor))
1227 		fp2 |= FP_CB_TUNE;
1228 
1229 	crtc_state->dpll_hw_state.fp0 = fp;
1230 	crtc_state->dpll_hw_state.fp1 = fp2;
1231 }
1232 
1233 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state,
1234 			     const struct dpll *clock,
1235 			     const struct dpll *reduced_clock)
1236 {
1237 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1238 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1239 	u32 dpll;
1240 
1241 	ilk_update_pll_dividers(crtc_state, clock, reduced_clock);
1242 
1243 	dpll = 0;
1244 
1245 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1246 		dpll |= DPLLB_MODE_LVDS;
1247 	else
1248 		dpll |= DPLLB_MODE_DAC_SERIAL;
1249 
1250 	dpll |= (crtc_state->pixel_multiplier - 1)
1251 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1252 
1253 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1254 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1255 		dpll |= DPLL_SDVO_HIGH_SPEED;
1256 
1257 	if (intel_crtc_has_dp_encoder(crtc_state))
1258 		dpll |= DPLL_SDVO_HIGH_SPEED;
1259 
1260 	/*
1261 	 * The high speed IO clock is only really required for
1262 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1263 	 * possible to share the DPLL between CRT and HDMI. Enabling
1264 	 * the clock needlessly does no real harm, except use up a
1265 	 * bit of power potentially.
1266 	 *
1267 	 * We'll limit this to IVB with 3 pipes, since it has only two
1268 	 * DPLLs and so DPLL sharing is the only way to get three pipes
1269 	 * driving PCH ports at the same time. On SNB we could do this,
1270 	 * and potentially avoid enabling the second DPLL, but it's not
1271 	 * clear if it''s a win or loss power wise. No point in doing
1272 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1273 	 */
1274 	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1275 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1276 		dpll |= DPLL_SDVO_HIGH_SPEED;
1277 
1278 	/* compute bitmask from p1 value */
1279 	dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1280 	/* also FPA1 */
1281 	dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1282 
1283 	switch (clock->p2) {
1284 	case 5:
1285 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1286 		break;
1287 	case 7:
1288 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1289 		break;
1290 	case 10:
1291 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1292 		break;
1293 	case 14:
1294 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1295 		break;
1296 	}
1297 	WARN_ON(reduced_clock->p2 != clock->p2);
1298 
1299 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1300 	    intel_panel_use_ssc(dev_priv))
1301 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1302 	else
1303 		dpll |= PLL_REF_INPUT_DREFCLK;
1304 
1305 	dpll |= DPLL_VCO_ENABLE;
1306 
1307 	crtc_state->dpll_hw_state.dpll = dpll;
1308 }
1309 
1310 static int ilk_crtc_compute_clock(struct intel_atomic_state *state,
1311 				  struct intel_crtc *crtc)
1312 {
1313 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1314 	struct intel_crtc_state *crtc_state =
1315 		intel_atomic_get_new_crtc_state(state, crtc);
1316 	const struct intel_limit *limit;
1317 	int refclk = 120000;
1318 	int ret;
1319 
1320 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1321 	if (!crtc_state->has_pch_encoder)
1322 		return 0;
1323 
1324 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1325 		if (intel_panel_use_ssc(dev_priv)) {
1326 			drm_dbg_kms(&dev_priv->drm,
1327 				    "using SSC reference clock of %d kHz\n",
1328 				    dev_priv->display.vbt.lvds_ssc_freq);
1329 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1330 		}
1331 
1332 		if (intel_is_dual_link_lvds(dev_priv)) {
1333 			if (refclk == 100000)
1334 				limit = &ilk_limits_dual_lvds_100m;
1335 			else
1336 				limit = &ilk_limits_dual_lvds;
1337 		} else {
1338 			if (refclk == 100000)
1339 				limit = &ilk_limits_single_lvds_100m;
1340 			else
1341 				limit = &ilk_limits_single_lvds;
1342 		}
1343 	} else {
1344 		limit = &ilk_limits_dac;
1345 	}
1346 
1347 	if (!crtc_state->clock_set &&
1348 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1349 				refclk, NULL, &crtc_state->dpll))
1350 		return -EINVAL;
1351 
1352 	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1353 
1354 	ilk_compute_dpll(crtc_state, &crtc_state->dpll,
1355 			 &crtc_state->dpll);
1356 
1357 	ret = intel_compute_shared_dplls(state, crtc, NULL);
1358 	if (ret)
1359 		return ret;
1360 
1361 	crtc_state->port_clock = crtc_state->dpll.dot;
1362 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1363 
1364 	return ret;
1365 }
1366 
1367 static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state,
1368 				    struct intel_crtc *crtc)
1369 {
1370 	struct intel_crtc_state *crtc_state =
1371 		intel_atomic_get_new_crtc_state(state, crtc);
1372 
1373 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1374 	if (!crtc_state->has_pch_encoder)
1375 		return 0;
1376 
1377 	return intel_reserve_shared_dplls(state, crtc, NULL);
1378 }
1379 
1380 void vlv_compute_dpll(struct intel_crtc_state *crtc_state)
1381 {
1382 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1383 
1384 	crtc_state->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1385 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1386 	if (crtc->pipe != PIPE_A)
1387 		crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1388 
1389 	/* DPLL not used with DSI, but still need the rest set up */
1390 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1391 		crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
1392 			DPLL_EXT_BUFFER_ENABLE_VLV;
1393 
1394 	crtc_state->dpll_hw_state.dpll_md =
1395 		(crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1396 }
1397 
1398 void chv_compute_dpll(struct intel_crtc_state *crtc_state)
1399 {
1400 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1401 
1402 	crtc_state->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
1403 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1404 	if (crtc->pipe != PIPE_A)
1405 		crtc_state->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1406 
1407 	/* DPLL not used with DSI, but still need the rest set up */
1408 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1409 		crtc_state->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
1410 
1411 	crtc_state->dpll_hw_state.dpll_md =
1412 		(crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1413 }
1414 
1415 static int chv_crtc_compute_clock(struct intel_atomic_state *state,
1416 				  struct intel_crtc *crtc)
1417 {
1418 	struct intel_crtc_state *crtc_state =
1419 		intel_atomic_get_new_crtc_state(state, crtc);
1420 	const struct intel_limit *limit = &intel_limits_chv;
1421 	int refclk = 100000;
1422 
1423 	if (!crtc_state->clock_set &&
1424 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1425 				refclk, NULL, &crtc_state->dpll))
1426 		return -EINVAL;
1427 
1428 	chv_calc_dpll_params(refclk, &crtc_state->dpll);
1429 
1430 	chv_compute_dpll(crtc_state);
1431 
1432 	/* FIXME this is a mess */
1433 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1434 		return 0;
1435 
1436 	crtc_state->port_clock = crtc_state->dpll.dot;
1437 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1438 
1439 	return 0;
1440 }
1441 
1442 static int vlv_crtc_compute_clock(struct intel_atomic_state *state,
1443 				  struct intel_crtc *crtc)
1444 {
1445 	struct intel_crtc_state *crtc_state =
1446 		intel_atomic_get_new_crtc_state(state, crtc);
1447 	const struct intel_limit *limit = &intel_limits_vlv;
1448 	int refclk = 100000;
1449 
1450 	if (!crtc_state->clock_set &&
1451 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1452 				refclk, NULL, &crtc_state->dpll))
1453 		return -EINVAL;
1454 
1455 	vlv_calc_dpll_params(refclk, &crtc_state->dpll);
1456 
1457 	vlv_compute_dpll(crtc_state);
1458 
1459 	/* FIXME this is a mess */
1460 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1461 		return 0;
1462 
1463 	crtc_state->port_clock = crtc_state->dpll.dot;
1464 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1465 
1466 	return 0;
1467 }
1468 
1469 static int g4x_crtc_compute_clock(struct intel_atomic_state *state,
1470 				  struct intel_crtc *crtc)
1471 {
1472 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1473 	struct intel_crtc_state *crtc_state =
1474 		intel_atomic_get_new_crtc_state(state, crtc);
1475 	const struct intel_limit *limit;
1476 	int refclk = 96000;
1477 
1478 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1479 		if (intel_panel_use_ssc(dev_priv)) {
1480 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1481 			drm_dbg_kms(&dev_priv->drm,
1482 				    "using SSC reference clock of %d kHz\n",
1483 				    refclk);
1484 		}
1485 
1486 		if (intel_is_dual_link_lvds(dev_priv))
1487 			limit = &intel_limits_g4x_dual_channel_lvds;
1488 		else
1489 			limit = &intel_limits_g4x_single_channel_lvds;
1490 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1491 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1492 		limit = &intel_limits_g4x_hdmi;
1493 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1494 		limit = &intel_limits_g4x_sdvo;
1495 	} else {
1496 		/* The option is for other outputs */
1497 		limit = &intel_limits_i9xx_sdvo;
1498 	}
1499 
1500 	if (!crtc_state->clock_set &&
1501 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1502 				refclk, NULL, &crtc_state->dpll))
1503 		return -EINVAL;
1504 
1505 	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1506 
1507 	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1508 			  &crtc_state->dpll);
1509 
1510 	crtc_state->port_clock = crtc_state->dpll.dot;
1511 	/* FIXME this is a mess */
1512 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1513 		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1514 
1515 	return 0;
1516 }
1517 
1518 static int pnv_crtc_compute_clock(struct intel_atomic_state *state,
1519 				  struct intel_crtc *crtc)
1520 {
1521 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1522 	struct intel_crtc_state *crtc_state =
1523 		intel_atomic_get_new_crtc_state(state, crtc);
1524 	const struct intel_limit *limit;
1525 	int refclk = 96000;
1526 
1527 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1528 		if (intel_panel_use_ssc(dev_priv)) {
1529 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1530 			drm_dbg_kms(&dev_priv->drm,
1531 				    "using SSC reference clock of %d kHz\n",
1532 				    refclk);
1533 		}
1534 
1535 		limit = &pnv_limits_lvds;
1536 	} else {
1537 		limit = &pnv_limits_sdvo;
1538 	}
1539 
1540 	if (!crtc_state->clock_set &&
1541 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1542 				refclk, NULL, &crtc_state->dpll))
1543 		return -EINVAL;
1544 
1545 	pnv_calc_dpll_params(refclk, &crtc_state->dpll);
1546 
1547 	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1548 			  &crtc_state->dpll);
1549 
1550 	crtc_state->port_clock = crtc_state->dpll.dot;
1551 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1552 
1553 	return 0;
1554 }
1555 
1556 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state,
1557 				   struct intel_crtc *crtc)
1558 {
1559 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1560 	struct intel_crtc_state *crtc_state =
1561 		intel_atomic_get_new_crtc_state(state, crtc);
1562 	const struct intel_limit *limit;
1563 	int refclk = 96000;
1564 
1565 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1566 		if (intel_panel_use_ssc(dev_priv)) {
1567 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1568 			drm_dbg_kms(&dev_priv->drm,
1569 				    "using SSC reference clock of %d kHz\n",
1570 				    refclk);
1571 		}
1572 
1573 		limit = &intel_limits_i9xx_lvds;
1574 	} else {
1575 		limit = &intel_limits_i9xx_sdvo;
1576 	}
1577 
1578 	if (!crtc_state->clock_set &&
1579 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1580 				 refclk, NULL, &crtc_state->dpll))
1581 		return -EINVAL;
1582 
1583 	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1584 
1585 	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1586 			  &crtc_state->dpll);
1587 
1588 	crtc_state->port_clock = crtc_state->dpll.dot;
1589 	/* FIXME this is a mess */
1590 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1591 		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1592 
1593 	return 0;
1594 }
1595 
1596 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state,
1597 				   struct intel_crtc *crtc)
1598 {
1599 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1600 	struct intel_crtc_state *crtc_state =
1601 		intel_atomic_get_new_crtc_state(state, crtc);
1602 	const struct intel_limit *limit;
1603 	int refclk = 48000;
1604 
1605 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1606 		if (intel_panel_use_ssc(dev_priv)) {
1607 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1608 			drm_dbg_kms(&dev_priv->drm,
1609 				    "using SSC reference clock of %d kHz\n",
1610 				    refclk);
1611 		}
1612 
1613 		limit = &intel_limits_i8xx_lvds;
1614 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1615 		limit = &intel_limits_i8xx_dvo;
1616 	} else {
1617 		limit = &intel_limits_i8xx_dac;
1618 	}
1619 
1620 	if (!crtc_state->clock_set &&
1621 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1622 				 refclk, NULL, &crtc_state->dpll))
1623 		return -EINVAL;
1624 
1625 	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1626 
1627 	i8xx_compute_dpll(crtc_state, &crtc_state->dpll,
1628 			  &crtc_state->dpll);
1629 
1630 	crtc_state->port_clock = crtc_state->dpll.dot;
1631 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1632 
1633 	return 0;
1634 }
1635 
1636 static const struct intel_dpll_funcs mtl_dpll_funcs = {
1637 	.crtc_compute_clock = mtl_crtc_compute_clock,
1638 };
1639 
1640 static const struct intel_dpll_funcs dg2_dpll_funcs = {
1641 	.crtc_compute_clock = dg2_crtc_compute_clock,
1642 };
1643 
1644 static const struct intel_dpll_funcs hsw_dpll_funcs = {
1645 	.crtc_compute_clock = hsw_crtc_compute_clock,
1646 	.crtc_get_shared_dpll = hsw_crtc_get_shared_dpll,
1647 };
1648 
1649 static const struct intel_dpll_funcs ilk_dpll_funcs = {
1650 	.crtc_compute_clock = ilk_crtc_compute_clock,
1651 	.crtc_get_shared_dpll = ilk_crtc_get_shared_dpll,
1652 };
1653 
1654 static const struct intel_dpll_funcs chv_dpll_funcs = {
1655 	.crtc_compute_clock = chv_crtc_compute_clock,
1656 };
1657 
1658 static const struct intel_dpll_funcs vlv_dpll_funcs = {
1659 	.crtc_compute_clock = vlv_crtc_compute_clock,
1660 };
1661 
1662 static const struct intel_dpll_funcs g4x_dpll_funcs = {
1663 	.crtc_compute_clock = g4x_crtc_compute_clock,
1664 };
1665 
1666 static const struct intel_dpll_funcs pnv_dpll_funcs = {
1667 	.crtc_compute_clock = pnv_crtc_compute_clock,
1668 };
1669 
1670 static const struct intel_dpll_funcs i9xx_dpll_funcs = {
1671 	.crtc_compute_clock = i9xx_crtc_compute_clock,
1672 };
1673 
1674 static const struct intel_dpll_funcs i8xx_dpll_funcs = {
1675 	.crtc_compute_clock = i8xx_crtc_compute_clock,
1676 };
1677 
1678 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state,
1679 				  struct intel_crtc *crtc)
1680 {
1681 	struct drm_i915_private *i915 = to_i915(state->base.dev);
1682 	struct intel_crtc_state *crtc_state =
1683 		intel_atomic_get_new_crtc_state(state, crtc);
1684 	int ret;
1685 
1686 	drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1687 
1688 	memset(&crtc_state->dpll_hw_state, 0,
1689 	       sizeof(crtc_state->dpll_hw_state));
1690 
1691 	if (!crtc_state->hw.enable)
1692 		return 0;
1693 
1694 	ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc);
1695 	if (ret) {
1696 		drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n",
1697 			    crtc->base.base.id, crtc->base.name);
1698 		return ret;
1699 	}
1700 
1701 	return 0;
1702 }
1703 
1704 int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state,
1705 				    struct intel_crtc *crtc)
1706 {
1707 	struct drm_i915_private *i915 = to_i915(state->base.dev);
1708 	struct intel_crtc_state *crtc_state =
1709 		intel_atomic_get_new_crtc_state(state, crtc);
1710 	int ret;
1711 
1712 	drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1713 	drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll);
1714 
1715 	if (!crtc_state->hw.enable || crtc_state->shared_dpll)
1716 		return 0;
1717 
1718 	if (!i915->display.funcs.dpll->crtc_get_shared_dpll)
1719 		return 0;
1720 
1721 	ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc);
1722 	if (ret) {
1723 		drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n",
1724 			    crtc->base.base.id, crtc->base.name);
1725 		return ret;
1726 	}
1727 
1728 	return 0;
1729 }
1730 
1731 void
1732 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1733 {
1734 	if (DISPLAY_VER(dev_priv) >= 14)
1735 		dev_priv->display.funcs.dpll = &mtl_dpll_funcs;
1736 	else if (IS_DG2(dev_priv))
1737 		dev_priv->display.funcs.dpll = &dg2_dpll_funcs;
1738 	else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1739 		dev_priv->display.funcs.dpll = &hsw_dpll_funcs;
1740 	else if (HAS_PCH_SPLIT(dev_priv))
1741 		dev_priv->display.funcs.dpll = &ilk_dpll_funcs;
1742 	else if (IS_CHERRYVIEW(dev_priv))
1743 		dev_priv->display.funcs.dpll = &chv_dpll_funcs;
1744 	else if (IS_VALLEYVIEW(dev_priv))
1745 		dev_priv->display.funcs.dpll = &vlv_dpll_funcs;
1746 	else if (IS_G4X(dev_priv))
1747 		dev_priv->display.funcs.dpll = &g4x_dpll_funcs;
1748 	else if (IS_PINEVIEW(dev_priv))
1749 		dev_priv->display.funcs.dpll = &pnv_dpll_funcs;
1750 	else if (DISPLAY_VER(dev_priv) != 2)
1751 		dev_priv->display.funcs.dpll = &i9xx_dpll_funcs;
1752 	else
1753 		dev_priv->display.funcs.dpll = &i8xx_dpll_funcs;
1754 }
1755 
1756 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1757 {
1758 	if (IS_I830(dev_priv))
1759 		return false;
1760 
1761 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1762 }
1763 
1764 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state)
1765 {
1766 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1767 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1768 	u32 dpll = crtc_state->dpll_hw_state.dpll;
1769 	enum pipe pipe = crtc->pipe;
1770 	int i;
1771 
1772 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1773 
1774 	/* PLL is protected by panel, make sure we can write it */
1775 	if (i9xx_has_pps(dev_priv))
1776 		assert_pps_unlocked(dev_priv, pipe);
1777 
1778 	intel_de_write(dev_priv, FP0(pipe), crtc_state->dpll_hw_state.fp0);
1779 	intel_de_write(dev_priv, FP1(pipe), crtc_state->dpll_hw_state.fp1);
1780 
1781 	/*
1782 	 * Apparently we need to have VGA mode enabled prior to changing
1783 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1784 	 * dividers, even though the register value does change.
1785 	 */
1786 	intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
1787 	intel_de_write(dev_priv, DPLL(pipe), dpll);
1788 
1789 	/* Wait for the clocks to stabilize. */
1790 	intel_de_posting_read(dev_priv, DPLL(pipe));
1791 	udelay(150);
1792 
1793 	if (DISPLAY_VER(dev_priv) >= 4) {
1794 		intel_de_write(dev_priv, DPLL_MD(pipe),
1795 			       crtc_state->dpll_hw_state.dpll_md);
1796 	} else {
1797 		/* The pixel multiplier can only be updated once the
1798 		 * DPLL is enabled and the clocks are stable.
1799 		 *
1800 		 * So write it again.
1801 		 */
1802 		intel_de_write(dev_priv, DPLL(pipe), dpll);
1803 	}
1804 
1805 	/* We do this three times for luck */
1806 	for (i = 0; i < 3; i++) {
1807 		intel_de_write(dev_priv, DPLL(pipe), dpll);
1808 		intel_de_posting_read(dev_priv, DPLL(pipe));
1809 		udelay(150); /* wait for warmup */
1810 	}
1811 }
1812 
1813 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1814 				 enum dpio_phy phy)
1815 {
1816 	u32 reg_val;
1817 
1818 	/*
1819 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1820 	 * and set it to a reasonable value instead.
1821 	 */
1822 	reg_val = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW9(1));
1823 	reg_val &= 0xffffff00;
1824 	reg_val |= 0x00000030;
1825 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW9(1), reg_val);
1826 
1827 	reg_val = vlv_dpio_read(dev_priv, phy, VLV_REF_DW13);
1828 	reg_val &= 0x00ffffff;
1829 	reg_val |= 0x8c000000;
1830 	vlv_dpio_write(dev_priv, phy, VLV_REF_DW13, reg_val);
1831 
1832 	reg_val = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW9(1));
1833 	reg_val &= 0xffffff00;
1834 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW9(1), reg_val);
1835 
1836 	reg_val = vlv_dpio_read(dev_priv, phy, VLV_REF_DW13);
1837 	reg_val &= 0x00ffffff;
1838 	reg_val |= 0xb0000000;
1839 	vlv_dpio_write(dev_priv, phy, VLV_REF_DW13, reg_val);
1840 }
1841 
1842 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state)
1843 {
1844 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1845 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1846 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1847 	enum pipe pipe = crtc->pipe;
1848 	u32 mdiv;
1849 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
1850 	u32 coreclk, reg_val;
1851 
1852 	vlv_dpio_get(dev_priv);
1853 
1854 	bestn = crtc_state->dpll.n;
1855 	bestm1 = crtc_state->dpll.m1;
1856 	bestm2 = crtc_state->dpll.m2;
1857 	bestp1 = crtc_state->dpll.p1;
1858 	bestp2 = crtc_state->dpll.p2;
1859 
1860 	/* See eDP HDMI DPIO driver vbios notes doc */
1861 
1862 	/* PLL B needs special handling */
1863 	if (pipe == PIPE_B)
1864 		vlv_pllb_recal_opamp(dev_priv, phy);
1865 
1866 	/* Set up Tx target for periodic Rcomp update */
1867 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW9_BCAST, 0x0100000f);
1868 
1869 	/* Disable target IRef on PLL */
1870 	reg_val = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW8(pipe));
1871 	reg_val &= 0x00ffffff;
1872 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW8(pipe), reg_val);
1873 
1874 	/* Disable fast lock */
1875 	vlv_dpio_write(dev_priv, phy, VLV_CMN_DW0, 0x610);
1876 
1877 	/* Set idtafcrecal before PLL is enabled */
1878 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
1879 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
1880 	mdiv |= ((bestn << DPIO_N_SHIFT));
1881 	mdiv |= (1 << DPIO_K_SHIFT);
1882 
1883 	/*
1884 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1885 	 * but we don't support that).
1886 	 * Note: don't use the DAC post divider as it seems unstable.
1887 	 */
1888 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
1889 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(pipe), mdiv);
1890 
1891 	mdiv |= DPIO_ENABLE_CALIBRATION;
1892 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(pipe), mdiv);
1893 
1894 	/* Set HBR and RBR LPF coefficients */
1895 	if (crtc_state->port_clock == 162000 ||
1896 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) ||
1897 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1898 		vlv_dpio_write(dev_priv, phy, VLV_PLL_DW10(pipe),
1899 				 0x009f0003);
1900 	else
1901 		vlv_dpio_write(dev_priv, phy, VLV_PLL_DW10(pipe),
1902 				 0x00d0000f);
1903 
1904 	if (intel_crtc_has_dp_encoder(crtc_state)) {
1905 		/* Use SSC source */
1906 		if (pipe == PIPE_A)
1907 			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(pipe),
1908 					 0x0df40000);
1909 		else
1910 			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(pipe),
1911 					 0x0df70000);
1912 	} else { /* HDMI or VGA */
1913 		/* Use bend source */
1914 		if (pipe == PIPE_A)
1915 			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(pipe),
1916 					 0x0df70000);
1917 		else
1918 			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(pipe),
1919 					 0x0df40000);
1920 	}
1921 
1922 	coreclk = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW7(pipe));
1923 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1924 	if (intel_crtc_has_dp_encoder(crtc_state))
1925 		coreclk |= 0x01000000;
1926 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW7(pipe), coreclk);
1927 
1928 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW11(pipe), 0x87871000);
1929 
1930 	vlv_dpio_put(dev_priv);
1931 }
1932 
1933 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1934 {
1935 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1936 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1937 	enum pipe pipe = crtc->pipe;
1938 
1939 	intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll);
1940 	intel_de_posting_read(dev_priv, DPLL(pipe));
1941 	udelay(150);
1942 
1943 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1944 		drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
1945 }
1946 
1947 void vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1948 {
1949 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1950 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1951 	enum pipe pipe = crtc->pipe;
1952 
1953 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1954 
1955 	/* PLL is protected by panel, make sure we can write it */
1956 	assert_pps_unlocked(dev_priv, pipe);
1957 
1958 	/* Enable Refclk */
1959 	intel_de_write(dev_priv, DPLL(pipe),
1960 		       crtc_state->dpll_hw_state.dpll &
1961 		       ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
1962 
1963 	if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) {
1964 		vlv_prepare_pll(crtc_state);
1965 		_vlv_enable_pll(crtc_state);
1966 	}
1967 
1968 	intel_de_write(dev_priv, DPLL_MD(pipe),
1969 		       crtc_state->dpll_hw_state.dpll_md);
1970 	intel_de_posting_read(dev_priv, DPLL_MD(pipe));
1971 }
1972 
1973 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state)
1974 {
1975 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1976 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1977 	enum pipe pipe = crtc->pipe;
1978 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1979 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1980 	u32 loopfilter, tribuf_calcntr;
1981 	u32 bestm2, bestp1, bestp2, bestm2_frac;
1982 	u32 dpio_val;
1983 	int vco;
1984 
1985 	bestm2_frac = crtc_state->dpll.m2 & 0x3fffff;
1986 	bestm2 = crtc_state->dpll.m2 >> 22;
1987 	bestp1 = crtc_state->dpll.p1;
1988 	bestp2 = crtc_state->dpll.p2;
1989 	vco = crtc_state->dpll.vco;
1990 	dpio_val = 0;
1991 	loopfilter = 0;
1992 
1993 	vlv_dpio_get(dev_priv);
1994 
1995 	/* p1 and p2 divider */
1996 	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW13(port),
1997 			5 << DPIO_CHV_S1_DIV_SHIFT |
1998 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
1999 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
2000 			1 << DPIO_CHV_K_DIV_SHIFT);
2001 
2002 	/* Feedback post-divider - m2 */
2003 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW0(port), bestm2);
2004 
2005 	/* Feedback refclk divider - n and m1 */
2006 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW1(port),
2007 			DPIO_CHV_M1_DIV_BY_2 |
2008 			1 << DPIO_CHV_N_DIV_SHIFT);
2009 
2010 	/* M2 fraction division */
2011 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW2(port), bestm2_frac);
2012 
2013 	/* M2 fraction division enable */
2014 	dpio_val = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(port));
2015 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
2016 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
2017 	if (bestm2_frac)
2018 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
2019 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW3(port), dpio_val);
2020 
2021 	/* Program digital lock detect threshold */
2022 	dpio_val = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW9(port));
2023 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
2024 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
2025 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
2026 	if (!bestm2_frac)
2027 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
2028 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW9(port), dpio_val);
2029 
2030 	/* Loop filter */
2031 	if (vco == 5400000) {
2032 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
2033 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
2034 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
2035 		tribuf_calcntr = 0x9;
2036 	} else if (vco <= 6200000) {
2037 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
2038 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
2039 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
2040 		tribuf_calcntr = 0x9;
2041 	} else if (vco <= 6480000) {
2042 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
2043 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
2044 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
2045 		tribuf_calcntr = 0x8;
2046 	} else {
2047 		/* Not supported. Apply the same limits as in the max case */
2048 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
2049 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
2050 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
2051 		tribuf_calcntr = 0;
2052 	}
2053 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW6(port), loopfilter);
2054 
2055 	dpio_val = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW8(port));
2056 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
2057 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
2058 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW8(port), dpio_val);
2059 
2060 	/* AFC Recal */
2061 	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(port),
2062 			vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(port)) |
2063 			DPIO_AFC_RECAL);
2064 
2065 	vlv_dpio_put(dev_priv);
2066 }
2067 
2068 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state)
2069 {
2070 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2071 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2072 	enum pipe pipe = crtc->pipe;
2073 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
2074 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2075 	u32 tmp;
2076 
2077 	vlv_dpio_get(dev_priv);
2078 
2079 	/* Enable back the 10bit clock to display controller */
2080 	tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(port));
2081 	tmp |= DPIO_DCLKP_EN;
2082 	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(port), tmp);
2083 
2084 	vlv_dpio_put(dev_priv);
2085 
2086 	/*
2087 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
2088 	 */
2089 	udelay(1);
2090 
2091 	/* Enable PLL */
2092 	intel_de_write(dev_priv, DPLL(pipe), crtc_state->dpll_hw_state.dpll);
2093 
2094 	/* Check PLL is locked */
2095 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
2096 		drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
2097 }
2098 
2099 void chv_enable_pll(const struct intel_crtc_state *crtc_state)
2100 {
2101 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2102 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2103 	enum pipe pipe = crtc->pipe;
2104 
2105 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2106 
2107 	/* PLL is protected by panel, make sure we can write it */
2108 	assert_pps_unlocked(dev_priv, pipe);
2109 
2110 	/* Enable Refclk and SSC */
2111 	intel_de_write(dev_priv, DPLL(pipe),
2112 		       crtc_state->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
2113 
2114 	if (crtc_state->dpll_hw_state.dpll & DPLL_VCO_ENABLE) {
2115 		chv_prepare_pll(crtc_state);
2116 		_chv_enable_pll(crtc_state);
2117 	}
2118 
2119 	if (pipe != PIPE_A) {
2120 		/*
2121 		 * WaPixelRepeatModeFixForC0:chv
2122 		 *
2123 		 * DPLLCMD is AWOL. Use chicken bits to propagate
2124 		 * the value from DPLLBMD to either pipe B or C.
2125 		 */
2126 		intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
2127 		intel_de_write(dev_priv, DPLL_MD(PIPE_B),
2128 			       crtc_state->dpll_hw_state.dpll_md);
2129 		intel_de_write(dev_priv, CBR4_VLV, 0);
2130 		dev_priv->display.state.chv_dpll_md[pipe] = crtc_state->dpll_hw_state.dpll_md;
2131 
2132 		/*
2133 		 * DPLLB VGA mode also seems to cause problems.
2134 		 * We should always have it disabled.
2135 		 */
2136 		drm_WARN_ON(&dev_priv->drm,
2137 			    (intel_de_read(dev_priv, DPLL(PIPE_B)) &
2138 			     DPLL_VGA_MODE_DIS) == 0);
2139 	} else {
2140 		intel_de_write(dev_priv, DPLL_MD(pipe),
2141 			       crtc_state->dpll_hw_state.dpll_md);
2142 		intel_de_posting_read(dev_priv, DPLL_MD(pipe));
2143 	}
2144 }
2145 
2146 /**
2147  * vlv_force_pll_on - forcibly enable just the PLL
2148  * @dev_priv: i915 private structure
2149  * @pipe: pipe PLL to enable
2150  * @dpll: PLL configuration
2151  *
2152  * Enable the PLL for @pipe using the supplied @dpll config. To be used
2153  * in cases where we need the PLL enabled even when @pipe is not going to
2154  * be enabled.
2155  */
2156 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
2157 		     const struct dpll *dpll)
2158 {
2159 	struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
2160 	struct intel_crtc_state *crtc_state;
2161 
2162 	crtc_state = intel_crtc_state_alloc(crtc);
2163 	if (!crtc_state)
2164 		return -ENOMEM;
2165 
2166 	crtc_state->cpu_transcoder = (enum transcoder)pipe;
2167 	crtc_state->pixel_multiplier = 1;
2168 	crtc_state->dpll = *dpll;
2169 	crtc_state->output_types = BIT(INTEL_OUTPUT_EDP);
2170 
2171 	if (IS_CHERRYVIEW(dev_priv)) {
2172 		chv_compute_dpll(crtc_state);
2173 		chv_enable_pll(crtc_state);
2174 	} else {
2175 		vlv_compute_dpll(crtc_state);
2176 		vlv_enable_pll(crtc_state);
2177 	}
2178 
2179 	intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi);
2180 
2181 	return 0;
2182 }
2183 
2184 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2185 {
2186 	u32 val;
2187 
2188 	/* Make sure the pipe isn't still relying on us */
2189 	assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2190 
2191 	val = DPLL_INTEGRATED_REF_CLK_VLV |
2192 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2193 	if (pipe != PIPE_A)
2194 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2195 
2196 	intel_de_write(dev_priv, DPLL(pipe), val);
2197 	intel_de_posting_read(dev_priv, DPLL(pipe));
2198 }
2199 
2200 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2201 {
2202 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
2203 	enum dpio_phy phy = vlv_pipe_to_phy(pipe);
2204 	u32 val;
2205 
2206 	/* Make sure the pipe isn't still relying on us */
2207 	assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2208 
2209 	val = DPLL_SSC_REF_CLK_CHV |
2210 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2211 	if (pipe != PIPE_A)
2212 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2213 
2214 	intel_de_write(dev_priv, DPLL(pipe), val);
2215 	intel_de_posting_read(dev_priv, DPLL(pipe));
2216 
2217 	vlv_dpio_get(dev_priv);
2218 
2219 	/* Disable 10bit clock to display controller */
2220 	val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(port));
2221 	val &= ~DPIO_DCLKP_EN;
2222 	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(port), val);
2223 
2224 	vlv_dpio_put(dev_priv);
2225 }
2226 
2227 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
2228 {
2229 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2230 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2231 	enum pipe pipe = crtc->pipe;
2232 
2233 	/* Don't disable pipe or pipe PLLs if needed */
2234 	if (IS_I830(dev_priv))
2235 		return;
2236 
2237 	/* Make sure the pipe isn't still relying on us */
2238 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2239 
2240 	intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
2241 	intel_de_posting_read(dev_priv, DPLL(pipe));
2242 }
2243 
2244 
2245 /**
2246  * vlv_force_pll_off - forcibly disable just the PLL
2247  * @dev_priv: i915 private structure
2248  * @pipe: pipe PLL to disable
2249  *
2250  * Disable the PLL for @pipe. To be used in cases where we need
2251  * the PLL enabled even when @pipe is not going to be enabled.
2252  */
2253 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
2254 {
2255 	if (IS_CHERRYVIEW(dev_priv))
2256 		chv_disable_pll(dev_priv, pipe);
2257 	else
2258 		vlv_disable_pll(dev_priv, pipe);
2259 }
2260 
2261 /* Only for pre-ILK configs */
2262 static void assert_pll(struct drm_i915_private *dev_priv,
2263 		       enum pipe pipe, bool state)
2264 {
2265 	bool cur_state;
2266 
2267 	cur_state = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
2268 	I915_STATE_WARN(dev_priv, cur_state != state,
2269 			"PLL state assertion failure (expected %s, current %s)\n",
2270 			str_on_off(state), str_on_off(cur_state));
2271 }
2272 
2273 void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
2274 {
2275 	assert_pll(i915, pipe, true);
2276 }
2277 
2278 void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
2279 {
2280 	assert_pll(i915, pipe, false);
2281 }
2282