xref: /linux/drivers/gpu/drm/i915/display/intel_dpll.c (revision a6a6a98094116b60e5523a571d9443c53325f5b1)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/string_helpers.h>
8 
9 #include "i915_reg.h"
10 #include "intel_atomic.h"
11 #include "intel_crtc.h"
12 #include "intel_cx0_phy.h"
13 #include "intel_de.h"
14 #include "intel_display.h"
15 #include "intel_display_types.h"
16 #include "intel_dpio_phy.h"
17 #include "intel_dpll.h"
18 #include "intel_lvds.h"
19 #include "intel_lvds_regs.h"
20 #include "intel_panel.h"
21 #include "intel_pps.h"
22 #include "intel_snps_phy.h"
23 #include "vlv_dpio_phy_regs.h"
24 #include "vlv_sideband.h"
25 
26 struct intel_dpll_funcs {
27 	int (*crtc_compute_clock)(struct intel_atomic_state *state,
28 				  struct intel_crtc *crtc);
29 	int (*crtc_get_shared_dpll)(struct intel_atomic_state *state,
30 				    struct intel_crtc *crtc);
31 };
32 
33 struct intel_limit {
34 	struct {
35 		int min, max;
36 	} dot, vco, n, m, m1, m2, p, p1;
37 
38 	struct {
39 		int dot_limit;
40 		int p2_slow, p2_fast;
41 	} p2;
42 };
43 static const struct intel_limit intel_limits_i8xx_dac = {
44 	.dot = { .min = 25000, .max = 350000 },
45 	.vco = { .min = 908000, .max = 1512000 },
46 	.n = { .min = 2, .max = 16 },
47 	.m = { .min = 96, .max = 140 },
48 	.m1 = { .min = 18, .max = 26 },
49 	.m2 = { .min = 6, .max = 16 },
50 	.p = { .min = 4, .max = 128 },
51 	.p1 = { .min = 2, .max = 33 },
52 	.p2 = { .dot_limit = 165000,
53 		.p2_slow = 4, .p2_fast = 2 },
54 };
55 
56 static const struct intel_limit intel_limits_i8xx_dvo = {
57 	.dot = { .min = 25000, .max = 350000 },
58 	.vco = { .min = 908000, .max = 1512000 },
59 	.n = { .min = 2, .max = 16 },
60 	.m = { .min = 96, .max = 140 },
61 	.m1 = { .min = 18, .max = 26 },
62 	.m2 = { .min = 6, .max = 16 },
63 	.p = { .min = 4, .max = 128 },
64 	.p1 = { .min = 2, .max = 33 },
65 	.p2 = { .dot_limit = 165000,
66 		.p2_slow = 4, .p2_fast = 4 },
67 };
68 
69 static const struct intel_limit intel_limits_i8xx_lvds = {
70 	.dot = { .min = 25000, .max = 350000 },
71 	.vco = { .min = 908000, .max = 1512000 },
72 	.n = { .min = 2, .max = 16 },
73 	.m = { .min = 96, .max = 140 },
74 	.m1 = { .min = 18, .max = 26 },
75 	.m2 = { .min = 6, .max = 16 },
76 	.p = { .min = 4, .max = 128 },
77 	.p1 = { .min = 1, .max = 6 },
78 	.p2 = { .dot_limit = 165000,
79 		.p2_slow = 14, .p2_fast = 7 },
80 };
81 
82 static const struct intel_limit intel_limits_i9xx_sdvo = {
83 	.dot = { .min = 20000, .max = 400000 },
84 	.vco = { .min = 1400000, .max = 2800000 },
85 	.n = { .min = 1, .max = 6 },
86 	.m = { .min = 70, .max = 120 },
87 	.m1 = { .min = 8, .max = 18 },
88 	.m2 = { .min = 3, .max = 7 },
89 	.p = { .min = 5, .max = 80 },
90 	.p1 = { .min = 1, .max = 8 },
91 	.p2 = { .dot_limit = 200000,
92 		.p2_slow = 10, .p2_fast = 5 },
93 };
94 
95 static const struct intel_limit intel_limits_i9xx_lvds = {
96 	.dot = { .min = 20000, .max = 400000 },
97 	.vco = { .min = 1400000, .max = 2800000 },
98 	.n = { .min = 1, .max = 6 },
99 	.m = { .min = 70, .max = 120 },
100 	.m1 = { .min = 8, .max = 18 },
101 	.m2 = { .min = 3, .max = 7 },
102 	.p = { .min = 7, .max = 98 },
103 	.p1 = { .min = 1, .max = 8 },
104 	.p2 = { .dot_limit = 112000,
105 		.p2_slow = 14, .p2_fast = 7 },
106 };
107 
108 
109 static const struct intel_limit intel_limits_g4x_sdvo = {
110 	.dot = { .min = 25000, .max = 270000 },
111 	.vco = { .min = 1750000, .max = 3500000},
112 	.n = { .min = 1, .max = 4 },
113 	.m = { .min = 104, .max = 138 },
114 	.m1 = { .min = 17, .max = 23 },
115 	.m2 = { .min = 5, .max = 11 },
116 	.p = { .min = 10, .max = 30 },
117 	.p1 = { .min = 1, .max = 3},
118 	.p2 = { .dot_limit = 270000,
119 		.p2_slow = 10,
120 		.p2_fast = 10
121 	},
122 };
123 
124 static const struct intel_limit intel_limits_g4x_hdmi = {
125 	.dot = { .min = 22000, .max = 400000 },
126 	.vco = { .min = 1750000, .max = 3500000},
127 	.n = { .min = 1, .max = 4 },
128 	.m = { .min = 104, .max = 138 },
129 	.m1 = { .min = 16, .max = 23 },
130 	.m2 = { .min = 5, .max = 11 },
131 	.p = { .min = 5, .max = 80 },
132 	.p1 = { .min = 1, .max = 8},
133 	.p2 = { .dot_limit = 165000,
134 		.p2_slow = 10, .p2_fast = 5 },
135 };
136 
137 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
138 	.dot = { .min = 20000, .max = 115000 },
139 	.vco = { .min = 1750000, .max = 3500000 },
140 	.n = { .min = 1, .max = 3 },
141 	.m = { .min = 104, .max = 138 },
142 	.m1 = { .min = 17, .max = 23 },
143 	.m2 = { .min = 5, .max = 11 },
144 	.p = { .min = 28, .max = 112 },
145 	.p1 = { .min = 2, .max = 8 },
146 	.p2 = { .dot_limit = 0,
147 		.p2_slow = 14, .p2_fast = 14
148 	},
149 };
150 
151 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
152 	.dot = { .min = 80000, .max = 224000 },
153 	.vco = { .min = 1750000, .max = 3500000 },
154 	.n = { .min = 1, .max = 3 },
155 	.m = { .min = 104, .max = 138 },
156 	.m1 = { .min = 17, .max = 23 },
157 	.m2 = { .min = 5, .max = 11 },
158 	.p = { .min = 14, .max = 42 },
159 	.p1 = { .min = 2, .max = 6 },
160 	.p2 = { .dot_limit = 0,
161 		.p2_slow = 7, .p2_fast = 7
162 	},
163 };
164 
165 static const struct intel_limit pnv_limits_sdvo = {
166 	.dot = { .min = 20000, .max = 400000},
167 	.vco = { .min = 1700000, .max = 3500000 },
168 	/* Pineview's Ncounter is a ring counter */
169 	.n = { .min = 3, .max = 6 },
170 	.m = { .min = 2, .max = 256 },
171 	/* Pineview only has one combined m divider, which we treat as m2. */
172 	.m1 = { .min = 0, .max = 0 },
173 	.m2 = { .min = 0, .max = 254 },
174 	.p = { .min = 5, .max = 80 },
175 	.p1 = { .min = 1, .max = 8 },
176 	.p2 = { .dot_limit = 200000,
177 		.p2_slow = 10, .p2_fast = 5 },
178 };
179 
180 static const struct intel_limit pnv_limits_lvds = {
181 	.dot = { .min = 20000, .max = 400000 },
182 	.vco = { .min = 1700000, .max = 3500000 },
183 	.n = { .min = 3, .max = 6 },
184 	.m = { .min = 2, .max = 256 },
185 	.m1 = { .min = 0, .max = 0 },
186 	.m2 = { .min = 0, .max = 254 },
187 	.p = { .min = 7, .max = 112 },
188 	.p1 = { .min = 1, .max = 8 },
189 	.p2 = { .dot_limit = 112000,
190 		.p2_slow = 14, .p2_fast = 14 },
191 };
192 
193 /* Ironlake / Sandybridge
194  *
195  * We calculate clock using (register_value + 2) for N/M1/M2, so here
196  * the range value for them is (actual_value - 2).
197  */
198 static const struct intel_limit ilk_limits_dac = {
199 	.dot = { .min = 25000, .max = 350000 },
200 	.vco = { .min = 1760000, .max = 3510000 },
201 	.n = { .min = 1, .max = 5 },
202 	.m = { .min = 79, .max = 127 },
203 	.m1 = { .min = 12, .max = 22 },
204 	.m2 = { .min = 5, .max = 9 },
205 	.p = { .min = 5, .max = 80 },
206 	.p1 = { .min = 1, .max = 8 },
207 	.p2 = { .dot_limit = 225000,
208 		.p2_slow = 10, .p2_fast = 5 },
209 };
210 
211 static const struct intel_limit ilk_limits_single_lvds = {
212 	.dot = { .min = 25000, .max = 350000 },
213 	.vco = { .min = 1760000, .max = 3510000 },
214 	.n = { .min = 1, .max = 3 },
215 	.m = { .min = 79, .max = 118 },
216 	.m1 = { .min = 12, .max = 22 },
217 	.m2 = { .min = 5, .max = 9 },
218 	.p = { .min = 28, .max = 112 },
219 	.p1 = { .min = 2, .max = 8 },
220 	.p2 = { .dot_limit = 225000,
221 		.p2_slow = 14, .p2_fast = 14 },
222 };
223 
224 static const struct intel_limit ilk_limits_dual_lvds = {
225 	.dot = { .min = 25000, .max = 350000 },
226 	.vco = { .min = 1760000, .max = 3510000 },
227 	.n = { .min = 1, .max = 3 },
228 	.m = { .min = 79, .max = 127 },
229 	.m1 = { .min = 12, .max = 22 },
230 	.m2 = { .min = 5, .max = 9 },
231 	.p = { .min = 14, .max = 56 },
232 	.p1 = { .min = 2, .max = 8 },
233 	.p2 = { .dot_limit = 225000,
234 		.p2_slow = 7, .p2_fast = 7 },
235 };
236 
237 /* LVDS 100mhz refclk limits. */
238 static const struct intel_limit ilk_limits_single_lvds_100m = {
239 	.dot = { .min = 25000, .max = 350000 },
240 	.vco = { .min = 1760000, .max = 3510000 },
241 	.n = { .min = 1, .max = 2 },
242 	.m = { .min = 79, .max = 126 },
243 	.m1 = { .min = 12, .max = 22 },
244 	.m2 = { .min = 5, .max = 9 },
245 	.p = { .min = 28, .max = 112 },
246 	.p1 = { .min = 2, .max = 8 },
247 	.p2 = { .dot_limit = 225000,
248 		.p2_slow = 14, .p2_fast = 14 },
249 };
250 
251 static const struct intel_limit ilk_limits_dual_lvds_100m = {
252 	.dot = { .min = 25000, .max = 350000 },
253 	.vco = { .min = 1760000, .max = 3510000 },
254 	.n = { .min = 1, .max = 3 },
255 	.m = { .min = 79, .max = 126 },
256 	.m1 = { .min = 12, .max = 22 },
257 	.m2 = { .min = 5, .max = 9 },
258 	.p = { .min = 14, .max = 42 },
259 	.p1 = { .min = 2, .max = 6 },
260 	.p2 = { .dot_limit = 225000,
261 		.p2_slow = 7, .p2_fast = 7 },
262 };
263 
264 static const struct intel_limit intel_limits_vlv = {
265 	 /*
266 	  * These are based on the data rate limits (measured in fast clocks)
267 	  * since those are the strictest limits we have. The fast
268 	  * clock and actual rate limits are more relaxed, so checking
269 	  * them would make no difference.
270 	  */
271 	.dot = { .min = 25000, .max = 270000 },
272 	.vco = { .min = 4000000, .max = 6000000 },
273 	.n = { .min = 1, .max = 7 },
274 	.m1 = { .min = 2, .max = 3 },
275 	.m2 = { .min = 11, .max = 156 },
276 	.p1 = { .min = 2, .max = 3 },
277 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
278 };
279 
280 static const struct intel_limit intel_limits_chv = {
281 	/*
282 	 * These are based on the data rate limits (measured in fast clocks)
283 	 * since those are the strictest limits we have.  The fast
284 	 * clock and actual rate limits are more relaxed, so checking
285 	 * them would make no difference.
286 	 */
287 	.dot = { .min = 25000, .max = 540000 },
288 	.vco = { .min = 4800000, .max = 6480000 },
289 	.n = { .min = 1, .max = 1 },
290 	.m1 = { .min = 2, .max = 2 },
291 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
292 	.p1 = { .min = 2, .max = 4 },
293 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
294 };
295 
296 static const struct intel_limit intel_limits_bxt = {
297 	.dot = { .min = 25000, .max = 594000 },
298 	.vco = { .min = 4800000, .max = 6700000 },
299 	.n = { .min = 1, .max = 1 },
300 	.m1 = { .min = 2, .max = 2 },
301 	/* FIXME: find real m2 limits */
302 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
303 	.p1 = { .min = 2, .max = 4 },
304 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
305 };
306 
307 /*
308  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
309  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
310  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
311  * The helpers' return value is the rate of the clock that is fed to the
312  * display engine's pipe which can be the above fast dot clock rate or a
313  * divided-down version of it.
314  */
315 /* m1 is reserved as 0 in Pineview, n is a ring counter */
316 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
317 {
318 	clock->m = clock->m2 + 2;
319 	clock->p = clock->p1 * clock->p2;
320 
321 	clock->vco = clock->n == 0 ? 0 :
322 		DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
323 	clock->dot = clock->p == 0 ? 0 :
324 		DIV_ROUND_CLOSEST(clock->vco, clock->p);
325 
326 	return clock->dot;
327 }
328 
329 static u32 i9xx_dpll_compute_m(const struct dpll *dpll)
330 {
331 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
332 }
333 
334 int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
335 {
336 	clock->m = i9xx_dpll_compute_m(clock);
337 	clock->p = clock->p1 * clock->p2;
338 
339 	clock->vco = clock->n + 2 == 0 ? 0 :
340 		DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
341 	clock->dot = clock->p == 0 ? 0 :
342 		DIV_ROUND_CLOSEST(clock->vco, clock->p);
343 
344 	return clock->dot;
345 }
346 
347 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
348 {
349 	clock->m = clock->m1 * clock->m2;
350 	clock->p = clock->p1 * clock->p2 * 5;
351 
352 	clock->vco = clock->n == 0 ? 0 :
353 		DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
354 	clock->dot = clock->p == 0 ? 0 :
355 		DIV_ROUND_CLOSEST(clock->vco, clock->p);
356 
357 	return clock->dot;
358 }
359 
360 int chv_calc_dpll_params(int refclk, struct dpll *clock)
361 {
362 	clock->m = clock->m1 * clock->m2;
363 	clock->p = clock->p1 * clock->p2 * 5;
364 
365 	clock->vco = clock->n == 0 ? 0 :
366 		DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22);
367 	clock->dot = clock->p == 0 ? 0 :
368 		DIV_ROUND_CLOSEST(clock->vco, clock->p);
369 
370 	return clock->dot;
371 }
372 
373 static int i9xx_pll_refclk(const struct intel_crtc_state *crtc_state)
374 {
375 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
376 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
377 
378 	if ((hw_state->dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
379 		return i915->display.vbt.lvds_ssc_freq;
380 	else if (HAS_PCH_SPLIT(i915))
381 		return 120000;
382 	else if (DISPLAY_VER(i915) != 2)
383 		return 96000;
384 	else
385 		return 48000;
386 }
387 
388 void i9xx_dpll_get_hw_state(struct intel_crtc *crtc,
389 			    struct intel_dpll_hw_state *dpll_hw_state)
390 {
391 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
392 	struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx;
393 
394 	if (DISPLAY_VER(dev_priv) >= 4) {
395 		u32 tmp;
396 
397 		/* No way to read it out on pipes B and C */
398 		if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
399 			tmp = dev_priv->display.state.chv_dpll_md[crtc->pipe];
400 		else
401 			tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe));
402 
403 		hw_state->dpll_md = tmp;
404 	}
405 
406 	hw_state->dpll = intel_de_read(dev_priv, DPLL(crtc->pipe));
407 
408 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
409 		hw_state->fp0 = intel_de_read(dev_priv, FP0(crtc->pipe));
410 		hw_state->fp1 = intel_de_read(dev_priv, FP1(crtc->pipe));
411 	} else {
412 		/* Mask out read-only status bits. */
413 		hw_state->dpll &= ~(DPLL_LOCK_VLV |
414 				    DPLL_PORTC_READY_MASK |
415 				    DPLL_PORTB_READY_MASK);
416 	}
417 }
418 
419 /* Returns the clock of the currently programmed mode of the given pipe. */
420 void i9xx_crtc_clock_get(struct intel_crtc_state *crtc_state)
421 {
422 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
423 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
424 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
425 	u32 dpll = hw_state->dpll;
426 	u32 fp;
427 	struct dpll clock;
428 	int port_clock;
429 	int refclk = i9xx_pll_refclk(crtc_state);
430 
431 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
432 		fp = hw_state->fp0;
433 	else
434 		fp = hw_state->fp1;
435 
436 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
437 	if (IS_PINEVIEW(dev_priv)) {
438 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
439 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
440 	} else {
441 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
442 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
443 	}
444 
445 	if (DISPLAY_VER(dev_priv) != 2) {
446 		if (IS_PINEVIEW(dev_priv))
447 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
448 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
449 		else
450 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
451 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
452 
453 		switch (dpll & DPLL_MODE_MASK) {
454 		case DPLLB_MODE_DAC_SERIAL:
455 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
456 				5 : 10;
457 			break;
458 		case DPLLB_MODE_LVDS:
459 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
460 				7 : 14;
461 			break;
462 		default:
463 			drm_dbg_kms(&dev_priv->drm,
464 				    "Unknown DPLL mode %08x in programmed "
465 				    "mode\n", (int)(dpll & DPLL_MODE_MASK));
466 			return;
467 		}
468 
469 		if (IS_PINEVIEW(dev_priv))
470 			port_clock = pnv_calc_dpll_params(refclk, &clock);
471 		else
472 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
473 	} else {
474 		enum pipe lvds_pipe;
475 
476 		if (IS_I85X(dev_priv) &&
477 		    intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) &&
478 		    lvds_pipe == crtc->pipe) {
479 			u32 lvds = intel_de_read(dev_priv, LVDS);
480 
481 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
482 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
483 
484 			if (lvds & LVDS_CLKB_POWER_UP)
485 				clock.p2 = 7;
486 			else
487 				clock.p2 = 14;
488 		} else {
489 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
490 				clock.p1 = 2;
491 			else {
492 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
493 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
494 			}
495 			if (dpll & PLL_P2_DIVIDE_BY_4)
496 				clock.p2 = 4;
497 			else
498 				clock.p2 = 2;
499 		}
500 
501 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
502 	}
503 
504 	/*
505 	 * This value includes pixel_multiplier. We will use
506 	 * port_clock to compute adjusted_mode.crtc_clock in the
507 	 * encoder's get_config() function.
508 	 */
509 	crtc_state->port_clock = port_clock;
510 }
511 
512 void vlv_crtc_clock_get(struct intel_crtc_state *crtc_state)
513 {
514 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
515 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
516 	enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
517 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
518 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
519 	int refclk = 100000;
520 	struct dpll clock;
521 	u32 tmp;
522 
523 	/* In case of DSI, DPLL will not be used */
524 	if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0)
525 		return;
526 
527 	vlv_dpio_get(dev_priv);
528 	tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW3(ch));
529 	vlv_dpio_put(dev_priv);
530 
531 	clock.m1 = REG_FIELD_GET(DPIO_M1_DIV_MASK, tmp);
532 	clock.m2 = REG_FIELD_GET(DPIO_M2_DIV_MASK, tmp);
533 	clock.n = REG_FIELD_GET(DPIO_N_DIV_MASK, tmp);
534 	clock.p1 = REG_FIELD_GET(DPIO_P1_DIV_MASK, tmp);
535 	clock.p2 = REG_FIELD_GET(DPIO_P2_DIV_MASK, tmp);
536 
537 	crtc_state->port_clock = vlv_calc_dpll_params(refclk, &clock);
538 }
539 
540 void chv_crtc_clock_get(struct intel_crtc_state *crtc_state)
541 {
542 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
543 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
544 	enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
545 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
546 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
547 	struct dpll clock;
548 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
549 	int refclk = 100000;
550 
551 	/* In case of DSI, DPLL will not be used */
552 	if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0)
553 		return;
554 
555 	vlv_dpio_get(dev_priv);
556 	cmn_dw13 = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW13(ch));
557 	pll_dw0 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW0(ch));
558 	pll_dw1 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW1(ch));
559 	pll_dw2 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW2(ch));
560 	pll_dw3 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch));
561 	vlv_dpio_put(dev_priv);
562 
563 	clock.m1 = REG_FIELD_GET(DPIO_CHV_M1_DIV_MASK, pll_dw1) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
564 	clock.m2 = REG_FIELD_GET(DPIO_CHV_M2_DIV_MASK, pll_dw0) << 22;
565 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
566 		clock.m2 |= REG_FIELD_GET(DPIO_CHV_M2_FRAC_DIV_MASK, pll_dw2);
567 	clock.n = REG_FIELD_GET(DPIO_CHV_N_DIV_MASK, pll_dw1);
568 	clock.p1 = REG_FIELD_GET(DPIO_CHV_P1_DIV_MASK, cmn_dw13);
569 	clock.p2 = REG_FIELD_GET(DPIO_CHV_P2_DIV_MASK, cmn_dw13);
570 
571 	crtc_state->port_clock = chv_calc_dpll_params(refclk, &clock);
572 }
573 
574 /*
575  * Returns whether the given set of divisors are valid for a given refclk with
576  * the given connectors.
577  */
578 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
579 			       const struct intel_limit *limit,
580 			       const struct dpll *clock)
581 {
582 	if (clock->n < limit->n.min || limit->n.max < clock->n)
583 		return false;
584 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
585 		return false;
586 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
587 		return false;
588 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
589 		return false;
590 
591 	if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv))
592 		if (clock->m1 <= clock->m2)
593 			return false;
594 
595 	if (!IS_LP(dev_priv)) {
596 		if (clock->p < limit->p.min || limit->p.max < clock->p)
597 			return false;
598 		if (clock->m < limit->m.min || limit->m.max < clock->m)
599 			return false;
600 	}
601 
602 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
603 		return false;
604 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
605 	 * connector, etc., rather than just a single range.
606 	 */
607 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
608 		return false;
609 
610 	return true;
611 }
612 
613 static int
614 i9xx_select_p2_div(const struct intel_limit *limit,
615 		   const struct intel_crtc_state *crtc_state,
616 		   int target)
617 {
618 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
619 
620 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
621 		/*
622 		 * For LVDS just rely on its current settings for dual-channel.
623 		 * We haven't figured out how to reliably set up different
624 		 * single/dual channel state, if we even can.
625 		 */
626 		if (intel_is_dual_link_lvds(dev_priv))
627 			return limit->p2.p2_fast;
628 		else
629 			return limit->p2.p2_slow;
630 	} else {
631 		if (target < limit->p2.dot_limit)
632 			return limit->p2.p2_slow;
633 		else
634 			return limit->p2.p2_fast;
635 	}
636 }
637 
638 /*
639  * Returns a set of divisors for the desired target clock with the given
640  * refclk, or FALSE.
641  *
642  * Target and reference clocks are specified in kHz.
643  *
644  * If match_clock is provided, then best_clock P divider must match the P
645  * divider from @match_clock used for LVDS downclocking.
646  */
647 static bool
648 i9xx_find_best_dpll(const struct intel_limit *limit,
649 		    struct intel_crtc_state *crtc_state,
650 		    int target, int refclk,
651 		    const struct dpll *match_clock,
652 		    struct dpll *best_clock)
653 {
654 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
655 	struct dpll clock;
656 	int err = target;
657 
658 	memset(best_clock, 0, sizeof(*best_clock));
659 
660 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
661 
662 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
663 	     clock.m1++) {
664 		for (clock.m2 = limit->m2.min;
665 		     clock.m2 <= limit->m2.max; clock.m2++) {
666 			if (clock.m2 >= clock.m1)
667 				break;
668 			for (clock.n = limit->n.min;
669 			     clock.n <= limit->n.max; clock.n++) {
670 				for (clock.p1 = limit->p1.min;
671 					clock.p1 <= limit->p1.max; clock.p1++) {
672 					int this_err;
673 
674 					i9xx_calc_dpll_params(refclk, &clock);
675 					if (!intel_pll_is_valid(to_i915(dev),
676 								limit,
677 								&clock))
678 						continue;
679 					if (match_clock &&
680 					    clock.p != match_clock->p)
681 						continue;
682 
683 					this_err = abs(clock.dot - target);
684 					if (this_err < err) {
685 						*best_clock = clock;
686 						err = this_err;
687 					}
688 				}
689 			}
690 		}
691 	}
692 
693 	return (err != target);
694 }
695 
696 /*
697  * Returns a set of divisors for the desired target clock with the given
698  * refclk, or FALSE.
699  *
700  * Target and reference clocks are specified in kHz.
701  *
702  * If match_clock is provided, then best_clock P divider must match the P
703  * divider from @match_clock used for LVDS downclocking.
704  */
705 static bool
706 pnv_find_best_dpll(const struct intel_limit *limit,
707 		   struct intel_crtc_state *crtc_state,
708 		   int target, int refclk,
709 		   const struct dpll *match_clock,
710 		   struct dpll *best_clock)
711 {
712 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
713 	struct dpll clock;
714 	int err = target;
715 
716 	memset(best_clock, 0, sizeof(*best_clock));
717 
718 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
719 
720 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
721 	     clock.m1++) {
722 		for (clock.m2 = limit->m2.min;
723 		     clock.m2 <= limit->m2.max; clock.m2++) {
724 			for (clock.n = limit->n.min;
725 			     clock.n <= limit->n.max; clock.n++) {
726 				for (clock.p1 = limit->p1.min;
727 					clock.p1 <= limit->p1.max; clock.p1++) {
728 					int this_err;
729 
730 					pnv_calc_dpll_params(refclk, &clock);
731 					if (!intel_pll_is_valid(to_i915(dev),
732 								limit,
733 								&clock))
734 						continue;
735 					if (match_clock &&
736 					    clock.p != match_clock->p)
737 						continue;
738 
739 					this_err = abs(clock.dot - target);
740 					if (this_err < err) {
741 						*best_clock = clock;
742 						err = this_err;
743 					}
744 				}
745 			}
746 		}
747 	}
748 
749 	return (err != target);
750 }
751 
752 /*
753  * Returns a set of divisors for the desired target clock with the given
754  * refclk, or FALSE.
755  *
756  * Target and reference clocks are specified in kHz.
757  *
758  * If match_clock is provided, then best_clock P divider must match the P
759  * divider from @match_clock used for LVDS downclocking.
760  */
761 static bool
762 g4x_find_best_dpll(const struct intel_limit *limit,
763 		   struct intel_crtc_state *crtc_state,
764 		   int target, int refclk,
765 		   const struct dpll *match_clock,
766 		   struct dpll *best_clock)
767 {
768 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
769 	struct dpll clock;
770 	int max_n;
771 	bool found = false;
772 	/* approximately equals target * 0.00585 */
773 	int err_most = (target >> 8) + (target >> 9);
774 
775 	memset(best_clock, 0, sizeof(*best_clock));
776 
777 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
778 
779 	max_n = limit->n.max;
780 	/* based on hardware requirement, prefer smaller n to precision */
781 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
782 		/* based on hardware requirement, prefere larger m1,m2 */
783 		for (clock.m1 = limit->m1.max;
784 		     clock.m1 >= limit->m1.min; clock.m1--) {
785 			for (clock.m2 = limit->m2.max;
786 			     clock.m2 >= limit->m2.min; clock.m2--) {
787 				for (clock.p1 = limit->p1.max;
788 				     clock.p1 >= limit->p1.min; clock.p1--) {
789 					int this_err;
790 
791 					i9xx_calc_dpll_params(refclk, &clock);
792 					if (!intel_pll_is_valid(to_i915(dev),
793 								limit,
794 								&clock))
795 						continue;
796 
797 					this_err = abs(clock.dot - target);
798 					if (this_err < err_most) {
799 						*best_clock = clock;
800 						err_most = this_err;
801 						max_n = clock.n;
802 						found = true;
803 					}
804 				}
805 			}
806 		}
807 	}
808 	return found;
809 }
810 
811 /*
812  * Check if the calculated PLL configuration is more optimal compared to the
813  * best configuration and error found so far. Return the calculated error.
814  */
815 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
816 			       const struct dpll *calculated_clock,
817 			       const struct dpll *best_clock,
818 			       unsigned int best_error_ppm,
819 			       unsigned int *error_ppm)
820 {
821 	/*
822 	 * For CHV ignore the error and consider only the P value.
823 	 * Prefer a bigger P value based on HW requirements.
824 	 */
825 	if (IS_CHERRYVIEW(to_i915(dev))) {
826 		*error_ppm = 0;
827 
828 		return calculated_clock->p > best_clock->p;
829 	}
830 
831 	if (drm_WARN_ON_ONCE(dev, !target_freq))
832 		return false;
833 
834 	*error_ppm = div_u64(1000000ULL *
835 				abs(target_freq - calculated_clock->dot),
836 			     target_freq);
837 	/*
838 	 * Prefer a better P value over a better (smaller) error if the error
839 	 * is small. Ensure this preference for future configurations too by
840 	 * setting the error to 0.
841 	 */
842 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
843 		*error_ppm = 0;
844 
845 		return true;
846 	}
847 
848 	return *error_ppm + 10 < best_error_ppm;
849 }
850 
851 /*
852  * Returns a set of divisors for the desired target clock with the given
853  * refclk, or FALSE.
854  */
855 static bool
856 vlv_find_best_dpll(const struct intel_limit *limit,
857 		   struct intel_crtc_state *crtc_state,
858 		   int target, int refclk,
859 		   const struct dpll *match_clock,
860 		   struct dpll *best_clock)
861 {
862 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
863 	struct drm_device *dev = crtc->base.dev;
864 	struct dpll clock;
865 	unsigned int bestppm = 1000000;
866 	/* min update 19.2 MHz */
867 	int max_n = min(limit->n.max, refclk / 19200);
868 	bool found = false;
869 
870 	memset(best_clock, 0, sizeof(*best_clock));
871 
872 	/* based on hardware requirement, prefer smaller n to precision */
873 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
874 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
875 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
876 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
877 				clock.p = clock.p1 * clock.p2 * 5;
878 				/* based on hardware requirement, prefer bigger m1,m2 values */
879 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
880 					unsigned int ppm;
881 
882 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
883 								     refclk * clock.m1);
884 
885 					vlv_calc_dpll_params(refclk, &clock);
886 
887 					if (!intel_pll_is_valid(to_i915(dev),
888 								limit,
889 								&clock))
890 						continue;
891 
892 					if (!vlv_PLL_is_optimal(dev, target,
893 								&clock,
894 								best_clock,
895 								bestppm, &ppm))
896 						continue;
897 
898 					*best_clock = clock;
899 					bestppm = ppm;
900 					found = true;
901 				}
902 			}
903 		}
904 	}
905 
906 	return found;
907 }
908 
909 /*
910  * Returns a set of divisors for the desired target clock with the given
911  * refclk, or FALSE.
912  */
913 static bool
914 chv_find_best_dpll(const struct intel_limit *limit,
915 		   struct intel_crtc_state *crtc_state,
916 		   int target, int refclk,
917 		   const struct dpll *match_clock,
918 		   struct dpll *best_clock)
919 {
920 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
921 	struct drm_device *dev = crtc->base.dev;
922 	unsigned int best_error_ppm;
923 	struct dpll clock;
924 	u64 m2;
925 	int found = false;
926 
927 	memset(best_clock, 0, sizeof(*best_clock));
928 	best_error_ppm = 1000000;
929 
930 	/*
931 	 * Based on hardware doc, the n always set to 1, and m1 always
932 	 * set to 2.  If requires to support 200Mhz refclk, we need to
933 	 * revisit this because n may not 1 anymore.
934 	 */
935 	clock.n = 1;
936 	clock.m1 = 2;
937 
938 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
939 		for (clock.p2 = limit->p2.p2_fast;
940 				clock.p2 >= limit->p2.p2_slow;
941 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
942 			unsigned int error_ppm;
943 
944 			clock.p = clock.p1 * clock.p2 * 5;
945 
946 			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
947 						   refclk * clock.m1);
948 
949 			if (m2 > INT_MAX/clock.m1)
950 				continue;
951 
952 			clock.m2 = m2;
953 
954 			chv_calc_dpll_params(refclk, &clock);
955 
956 			if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
957 				continue;
958 
959 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
960 						best_error_ppm, &error_ppm))
961 				continue;
962 
963 			*best_clock = clock;
964 			best_error_ppm = error_ppm;
965 			found = true;
966 		}
967 	}
968 
969 	return found;
970 }
971 
972 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
973 			struct dpll *best_clock)
974 {
975 	const struct intel_limit *limit = &intel_limits_bxt;
976 	int refclk = 100000;
977 
978 	return chv_find_best_dpll(limit, crtc_state,
979 				  crtc_state->port_clock, refclk,
980 				  NULL, best_clock);
981 }
982 
983 u32 i9xx_dpll_compute_fp(const struct dpll *dpll)
984 {
985 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
986 }
987 
988 static u32 pnv_dpll_compute_fp(const struct dpll *dpll)
989 {
990 	return (1 << dpll->n) << 16 | dpll->m2;
991 }
992 
993 static u32 i965_dpll_md(const struct intel_crtc_state *crtc_state)
994 {
995 	return (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
996 }
997 
998 static u32 i9xx_dpll(const struct intel_crtc_state *crtc_state,
999 		     const struct dpll *clock,
1000 		     const struct dpll *reduced_clock)
1001 {
1002 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1003 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1004 	u32 dpll;
1005 
1006 	dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS;
1007 
1008 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1009 		dpll |= DPLLB_MODE_LVDS;
1010 	else
1011 		dpll |= DPLLB_MODE_DAC_SERIAL;
1012 
1013 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
1014 	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
1015 		dpll |= (crtc_state->pixel_multiplier - 1)
1016 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
1017 	}
1018 
1019 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1020 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1021 		dpll |= DPLL_SDVO_HIGH_SPEED;
1022 
1023 	if (intel_crtc_has_dp_encoder(crtc_state))
1024 		dpll |= DPLL_SDVO_HIGH_SPEED;
1025 
1026 	/* compute bitmask from p1 value */
1027 	if (IS_G4X(dev_priv)) {
1028 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1029 		dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1030 	} else if (IS_PINEVIEW(dev_priv)) {
1031 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
1032 		WARN_ON(reduced_clock->p1 != clock->p1);
1033 	} else {
1034 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1035 		WARN_ON(reduced_clock->p1 != clock->p1);
1036 	}
1037 
1038 	switch (clock->p2) {
1039 	case 5:
1040 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1041 		break;
1042 	case 7:
1043 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1044 		break;
1045 	case 10:
1046 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1047 		break;
1048 	case 14:
1049 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1050 		break;
1051 	}
1052 	WARN_ON(reduced_clock->p2 != clock->p2);
1053 
1054 	if (DISPLAY_VER(dev_priv) >= 4)
1055 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
1056 
1057 	if (crtc_state->sdvo_tv_clock)
1058 		dpll |= PLL_REF_INPUT_TVCLKINBC;
1059 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1060 		 intel_panel_use_ssc(dev_priv))
1061 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1062 	else
1063 		dpll |= PLL_REF_INPUT_DREFCLK;
1064 
1065 	return dpll;
1066 }
1067 
1068 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state,
1069 			      const struct dpll *clock,
1070 			      const struct dpll *reduced_clock)
1071 {
1072 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1073 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1074 	struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1075 
1076 	if (IS_PINEVIEW(dev_priv)) {
1077 		hw_state->fp0 = pnv_dpll_compute_fp(clock);
1078 		hw_state->fp1 = pnv_dpll_compute_fp(reduced_clock);
1079 	} else {
1080 		hw_state->fp0 = i9xx_dpll_compute_fp(clock);
1081 		hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock);
1082 	}
1083 
1084 	hw_state->dpll = i9xx_dpll(crtc_state, clock, reduced_clock);
1085 
1086 	if (DISPLAY_VER(dev_priv) >= 4)
1087 		hw_state->dpll_md = i965_dpll_md(crtc_state);
1088 }
1089 
1090 static u32 i8xx_dpll(const struct intel_crtc_state *crtc_state,
1091 		     const struct dpll *clock,
1092 		     const struct dpll *reduced_clock)
1093 {
1094 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1095 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1096 	u32 dpll;
1097 
1098 	dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS;
1099 
1100 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1101 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1102 	} else {
1103 		if (clock->p1 == 2)
1104 			dpll |= PLL_P1_DIVIDE_BY_TWO;
1105 		else
1106 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1107 		if (clock->p2 == 4)
1108 			dpll |= PLL_P2_DIVIDE_BY_4;
1109 	}
1110 	WARN_ON(reduced_clock->p1 != clock->p1);
1111 	WARN_ON(reduced_clock->p2 != clock->p2);
1112 
1113 	/*
1114 	 * Bspec:
1115 	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
1116 	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
1117 	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
1118 	 *  Enable) must be set to “1” in both the DPLL A Control Register
1119 	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
1120 	 *
1121 	 * For simplicity We simply keep both bits always enabled in
1122 	 * both DPLLS. The spec says we should disable the DVO 2X clock
1123 	 * when not needed, but this seems to work fine in practice.
1124 	 */
1125 	if (IS_I830(dev_priv) ||
1126 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
1127 		dpll |= DPLL_DVO_2X_MODE;
1128 
1129 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1130 	    intel_panel_use_ssc(dev_priv))
1131 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1132 	else
1133 		dpll |= PLL_REF_INPUT_DREFCLK;
1134 
1135 	return dpll;
1136 }
1137 
1138 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state,
1139 			      const struct dpll *clock,
1140 			      const struct dpll *reduced_clock)
1141 {
1142 	struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1143 
1144 	hw_state->fp0 = i9xx_dpll_compute_fp(clock);
1145 	hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock);
1146 
1147 	hw_state->dpll = i8xx_dpll(crtc_state, clock, reduced_clock);
1148 }
1149 
1150 static int hsw_crtc_compute_clock(struct intel_atomic_state *state,
1151 				  struct intel_crtc *crtc)
1152 {
1153 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1154 	struct intel_crtc_state *crtc_state =
1155 		intel_atomic_get_new_crtc_state(state, crtc);
1156 	struct intel_encoder *encoder =
1157 		intel_get_crtc_new_encoder(state, crtc_state);
1158 	int ret;
1159 
1160 	if (DISPLAY_VER(dev_priv) < 11 &&
1161 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1162 		return 0;
1163 
1164 	ret = intel_compute_shared_dplls(state, crtc, encoder);
1165 	if (ret)
1166 		return ret;
1167 
1168 	/* FIXME this is a mess */
1169 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1170 		return 0;
1171 
1172 	/* CRT dotclock is determined via other means */
1173 	if (!crtc_state->has_pch_encoder)
1174 		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1175 
1176 	return 0;
1177 }
1178 
1179 static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state,
1180 				    struct intel_crtc *crtc)
1181 {
1182 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1183 	struct intel_crtc_state *crtc_state =
1184 		intel_atomic_get_new_crtc_state(state, crtc);
1185 	struct intel_encoder *encoder =
1186 		intel_get_crtc_new_encoder(state, crtc_state);
1187 
1188 	if (DISPLAY_VER(dev_priv) < 11 &&
1189 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1190 		return 0;
1191 
1192 	return intel_reserve_shared_dplls(state, crtc, encoder);
1193 }
1194 
1195 static int dg2_crtc_compute_clock(struct intel_atomic_state *state,
1196 				  struct intel_crtc *crtc)
1197 {
1198 	struct intel_crtc_state *crtc_state =
1199 		intel_atomic_get_new_crtc_state(state, crtc);
1200 	struct intel_encoder *encoder =
1201 		intel_get_crtc_new_encoder(state, crtc_state);
1202 	int ret;
1203 
1204 	ret = intel_mpllb_calc_state(crtc_state, encoder);
1205 	if (ret)
1206 		return ret;
1207 
1208 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1209 
1210 	return 0;
1211 }
1212 
1213 static int mtl_crtc_compute_clock(struct intel_atomic_state *state,
1214 				  struct intel_crtc *crtc)
1215 {
1216 	struct intel_crtc_state *crtc_state =
1217 		intel_atomic_get_new_crtc_state(state, crtc);
1218 	struct intel_encoder *encoder =
1219 		intel_get_crtc_new_encoder(state, crtc_state);
1220 	int ret;
1221 
1222 	ret = intel_cx0pll_calc_state(crtc_state, encoder);
1223 	if (ret)
1224 		return ret;
1225 
1226 	/* TODO: Do the readback via intel_compute_shared_dplls() */
1227 	crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->dpll_hw_state.cx0pll);
1228 
1229 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1230 
1231 	return 0;
1232 }
1233 
1234 static int ilk_fb_cb_factor(const struct intel_crtc_state *crtc_state)
1235 {
1236 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1237 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1238 
1239 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1240 	    ((intel_panel_use_ssc(i915) && i915->display.vbt.lvds_ssc_freq == 100000) ||
1241 	     (HAS_PCH_IBX(i915) && intel_is_dual_link_lvds(i915))))
1242 		return 25;
1243 
1244 	if (crtc_state->sdvo_tv_clock)
1245 		return 20;
1246 
1247 	return 21;
1248 }
1249 
1250 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor)
1251 {
1252 	return dpll->m < factor * dpll->n;
1253 }
1254 
1255 static u32 ilk_dpll_compute_fp(const struct dpll *clock, int factor)
1256 {
1257 	u32 fp;
1258 
1259 	fp = i9xx_dpll_compute_fp(clock);
1260 	if (ilk_needs_fb_cb_tune(clock, factor))
1261 		fp |= FP_CB_TUNE;
1262 
1263 	return fp;
1264 }
1265 
1266 static u32 ilk_dpll(const struct intel_crtc_state *crtc_state,
1267 		    const struct dpll *clock,
1268 		    const struct dpll *reduced_clock)
1269 {
1270 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1271 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1272 	u32 dpll;
1273 
1274 	dpll = DPLL_VCO_ENABLE;
1275 
1276 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1277 		dpll |= DPLLB_MODE_LVDS;
1278 	else
1279 		dpll |= DPLLB_MODE_DAC_SERIAL;
1280 
1281 	dpll |= (crtc_state->pixel_multiplier - 1)
1282 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1283 
1284 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1285 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1286 		dpll |= DPLL_SDVO_HIGH_SPEED;
1287 
1288 	if (intel_crtc_has_dp_encoder(crtc_state))
1289 		dpll |= DPLL_SDVO_HIGH_SPEED;
1290 
1291 	/*
1292 	 * The high speed IO clock is only really required for
1293 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1294 	 * possible to share the DPLL between CRT and HDMI. Enabling
1295 	 * the clock needlessly does no real harm, except use up a
1296 	 * bit of power potentially.
1297 	 *
1298 	 * We'll limit this to IVB with 3 pipes, since it has only two
1299 	 * DPLLs and so DPLL sharing is the only way to get three pipes
1300 	 * driving PCH ports at the same time. On SNB we could do this,
1301 	 * and potentially avoid enabling the second DPLL, but it's not
1302 	 * clear if it''s a win or loss power wise. No point in doing
1303 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1304 	 */
1305 	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1306 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1307 		dpll |= DPLL_SDVO_HIGH_SPEED;
1308 
1309 	/* compute bitmask from p1 value */
1310 	dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1311 	/* also FPA1 */
1312 	dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1313 
1314 	switch (clock->p2) {
1315 	case 5:
1316 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1317 		break;
1318 	case 7:
1319 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1320 		break;
1321 	case 10:
1322 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1323 		break;
1324 	case 14:
1325 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1326 		break;
1327 	}
1328 	WARN_ON(reduced_clock->p2 != clock->p2);
1329 
1330 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1331 	    intel_panel_use_ssc(dev_priv))
1332 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1333 	else
1334 		dpll |= PLL_REF_INPUT_DREFCLK;
1335 
1336 	return dpll;
1337 }
1338 
1339 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state,
1340 			     const struct dpll *clock,
1341 			     const struct dpll *reduced_clock)
1342 {
1343 	struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1344 	int factor = ilk_fb_cb_factor(crtc_state);
1345 
1346 	hw_state->fp0 = ilk_dpll_compute_fp(clock, factor);
1347 	hw_state->fp1 = ilk_dpll_compute_fp(reduced_clock, factor);
1348 
1349 	hw_state->dpll = ilk_dpll(crtc_state, clock, reduced_clock);
1350 }
1351 
1352 static int ilk_crtc_compute_clock(struct intel_atomic_state *state,
1353 				  struct intel_crtc *crtc)
1354 {
1355 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1356 	struct intel_crtc_state *crtc_state =
1357 		intel_atomic_get_new_crtc_state(state, crtc);
1358 	const struct intel_limit *limit;
1359 	int refclk = 120000;
1360 	int ret;
1361 
1362 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1363 	if (!crtc_state->has_pch_encoder)
1364 		return 0;
1365 
1366 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1367 		if (intel_panel_use_ssc(dev_priv)) {
1368 			drm_dbg_kms(&dev_priv->drm,
1369 				    "using SSC reference clock of %d kHz\n",
1370 				    dev_priv->display.vbt.lvds_ssc_freq);
1371 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1372 		}
1373 
1374 		if (intel_is_dual_link_lvds(dev_priv)) {
1375 			if (refclk == 100000)
1376 				limit = &ilk_limits_dual_lvds_100m;
1377 			else
1378 				limit = &ilk_limits_dual_lvds;
1379 		} else {
1380 			if (refclk == 100000)
1381 				limit = &ilk_limits_single_lvds_100m;
1382 			else
1383 				limit = &ilk_limits_single_lvds;
1384 		}
1385 	} else {
1386 		limit = &ilk_limits_dac;
1387 	}
1388 
1389 	if (!crtc_state->clock_set &&
1390 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1391 				refclk, NULL, &crtc_state->dpll))
1392 		return -EINVAL;
1393 
1394 	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1395 
1396 	ilk_compute_dpll(crtc_state, &crtc_state->dpll,
1397 			 &crtc_state->dpll);
1398 
1399 	ret = intel_compute_shared_dplls(state, crtc, NULL);
1400 	if (ret)
1401 		return ret;
1402 
1403 	crtc_state->port_clock = crtc_state->dpll.dot;
1404 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1405 
1406 	return ret;
1407 }
1408 
1409 static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state,
1410 				    struct intel_crtc *crtc)
1411 {
1412 	struct intel_crtc_state *crtc_state =
1413 		intel_atomic_get_new_crtc_state(state, crtc);
1414 
1415 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1416 	if (!crtc_state->has_pch_encoder)
1417 		return 0;
1418 
1419 	return intel_reserve_shared_dplls(state, crtc, NULL);
1420 }
1421 
1422 static u32 vlv_dpll(const struct intel_crtc_state *crtc_state)
1423 {
1424 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1425 	u32 dpll;
1426 
1427 	dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1428 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1429 
1430 	if (crtc->pipe != PIPE_A)
1431 		dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1432 
1433 	/* DPLL not used with DSI, but still need the rest set up */
1434 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1435 		dpll |= DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV;
1436 
1437 	return dpll;
1438 }
1439 
1440 void vlv_compute_dpll(struct intel_crtc_state *crtc_state)
1441 {
1442 	struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1443 
1444 	hw_state->dpll = vlv_dpll(crtc_state);
1445 	hw_state->dpll_md = i965_dpll_md(crtc_state);
1446 }
1447 
1448 static u32 chv_dpll(const struct intel_crtc_state *crtc_state)
1449 {
1450 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1451 	u32 dpll;
1452 
1453 	dpll = DPLL_SSC_REF_CLK_CHV |
1454 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1455 
1456 	if (crtc->pipe != PIPE_A)
1457 		dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1458 
1459 	/* DPLL not used with DSI, but still need the rest set up */
1460 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1461 		dpll |= DPLL_VCO_ENABLE;
1462 
1463 	return dpll;
1464 }
1465 
1466 void chv_compute_dpll(struct intel_crtc_state *crtc_state)
1467 {
1468 	struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1469 
1470 	hw_state->dpll = chv_dpll(crtc_state);
1471 	hw_state->dpll_md = i965_dpll_md(crtc_state);
1472 }
1473 
1474 static int chv_crtc_compute_clock(struct intel_atomic_state *state,
1475 				  struct intel_crtc *crtc)
1476 {
1477 	struct intel_crtc_state *crtc_state =
1478 		intel_atomic_get_new_crtc_state(state, crtc);
1479 	const struct intel_limit *limit = &intel_limits_chv;
1480 	int refclk = 100000;
1481 
1482 	if (!crtc_state->clock_set &&
1483 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1484 				refclk, NULL, &crtc_state->dpll))
1485 		return -EINVAL;
1486 
1487 	chv_calc_dpll_params(refclk, &crtc_state->dpll);
1488 
1489 	chv_compute_dpll(crtc_state);
1490 
1491 	/* FIXME this is a mess */
1492 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1493 		return 0;
1494 
1495 	crtc_state->port_clock = crtc_state->dpll.dot;
1496 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1497 
1498 	return 0;
1499 }
1500 
1501 static int vlv_crtc_compute_clock(struct intel_atomic_state *state,
1502 				  struct intel_crtc *crtc)
1503 {
1504 	struct intel_crtc_state *crtc_state =
1505 		intel_atomic_get_new_crtc_state(state, crtc);
1506 	const struct intel_limit *limit = &intel_limits_vlv;
1507 	int refclk = 100000;
1508 
1509 	if (!crtc_state->clock_set &&
1510 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1511 				refclk, NULL, &crtc_state->dpll))
1512 		return -EINVAL;
1513 
1514 	vlv_calc_dpll_params(refclk, &crtc_state->dpll);
1515 
1516 	vlv_compute_dpll(crtc_state);
1517 
1518 	/* FIXME this is a mess */
1519 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1520 		return 0;
1521 
1522 	crtc_state->port_clock = crtc_state->dpll.dot;
1523 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1524 
1525 	return 0;
1526 }
1527 
1528 static int g4x_crtc_compute_clock(struct intel_atomic_state *state,
1529 				  struct intel_crtc *crtc)
1530 {
1531 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1532 	struct intel_crtc_state *crtc_state =
1533 		intel_atomic_get_new_crtc_state(state, crtc);
1534 	const struct intel_limit *limit;
1535 	int refclk = 96000;
1536 
1537 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1538 		if (intel_panel_use_ssc(dev_priv)) {
1539 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1540 			drm_dbg_kms(&dev_priv->drm,
1541 				    "using SSC reference clock of %d kHz\n",
1542 				    refclk);
1543 		}
1544 
1545 		if (intel_is_dual_link_lvds(dev_priv))
1546 			limit = &intel_limits_g4x_dual_channel_lvds;
1547 		else
1548 			limit = &intel_limits_g4x_single_channel_lvds;
1549 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1550 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1551 		limit = &intel_limits_g4x_hdmi;
1552 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1553 		limit = &intel_limits_g4x_sdvo;
1554 	} else {
1555 		/* The option is for other outputs */
1556 		limit = &intel_limits_i9xx_sdvo;
1557 	}
1558 
1559 	if (!crtc_state->clock_set &&
1560 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1561 				refclk, NULL, &crtc_state->dpll))
1562 		return -EINVAL;
1563 
1564 	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1565 
1566 	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1567 			  &crtc_state->dpll);
1568 
1569 	crtc_state->port_clock = crtc_state->dpll.dot;
1570 	/* FIXME this is a mess */
1571 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1572 		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1573 
1574 	return 0;
1575 }
1576 
1577 static int pnv_crtc_compute_clock(struct intel_atomic_state *state,
1578 				  struct intel_crtc *crtc)
1579 {
1580 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1581 	struct intel_crtc_state *crtc_state =
1582 		intel_atomic_get_new_crtc_state(state, crtc);
1583 	const struct intel_limit *limit;
1584 	int refclk = 96000;
1585 
1586 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1587 		if (intel_panel_use_ssc(dev_priv)) {
1588 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1589 			drm_dbg_kms(&dev_priv->drm,
1590 				    "using SSC reference clock of %d kHz\n",
1591 				    refclk);
1592 		}
1593 
1594 		limit = &pnv_limits_lvds;
1595 	} else {
1596 		limit = &pnv_limits_sdvo;
1597 	}
1598 
1599 	if (!crtc_state->clock_set &&
1600 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1601 				refclk, NULL, &crtc_state->dpll))
1602 		return -EINVAL;
1603 
1604 	pnv_calc_dpll_params(refclk, &crtc_state->dpll);
1605 
1606 	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1607 			  &crtc_state->dpll);
1608 
1609 	crtc_state->port_clock = crtc_state->dpll.dot;
1610 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1611 
1612 	return 0;
1613 }
1614 
1615 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state,
1616 				   struct intel_crtc *crtc)
1617 {
1618 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1619 	struct intel_crtc_state *crtc_state =
1620 		intel_atomic_get_new_crtc_state(state, crtc);
1621 	const struct intel_limit *limit;
1622 	int refclk = 96000;
1623 
1624 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1625 		if (intel_panel_use_ssc(dev_priv)) {
1626 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1627 			drm_dbg_kms(&dev_priv->drm,
1628 				    "using SSC reference clock of %d kHz\n",
1629 				    refclk);
1630 		}
1631 
1632 		limit = &intel_limits_i9xx_lvds;
1633 	} else {
1634 		limit = &intel_limits_i9xx_sdvo;
1635 	}
1636 
1637 	if (!crtc_state->clock_set &&
1638 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1639 				 refclk, NULL, &crtc_state->dpll))
1640 		return -EINVAL;
1641 
1642 	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1643 
1644 	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1645 			  &crtc_state->dpll);
1646 
1647 	crtc_state->port_clock = crtc_state->dpll.dot;
1648 	/* FIXME this is a mess */
1649 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1650 		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1651 
1652 	return 0;
1653 }
1654 
1655 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state,
1656 				   struct intel_crtc *crtc)
1657 {
1658 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1659 	struct intel_crtc_state *crtc_state =
1660 		intel_atomic_get_new_crtc_state(state, crtc);
1661 	const struct intel_limit *limit;
1662 	int refclk = 48000;
1663 
1664 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1665 		if (intel_panel_use_ssc(dev_priv)) {
1666 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1667 			drm_dbg_kms(&dev_priv->drm,
1668 				    "using SSC reference clock of %d kHz\n",
1669 				    refclk);
1670 		}
1671 
1672 		limit = &intel_limits_i8xx_lvds;
1673 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1674 		limit = &intel_limits_i8xx_dvo;
1675 	} else {
1676 		limit = &intel_limits_i8xx_dac;
1677 	}
1678 
1679 	if (!crtc_state->clock_set &&
1680 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1681 				 refclk, NULL, &crtc_state->dpll))
1682 		return -EINVAL;
1683 
1684 	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1685 
1686 	i8xx_compute_dpll(crtc_state, &crtc_state->dpll,
1687 			  &crtc_state->dpll);
1688 
1689 	crtc_state->port_clock = crtc_state->dpll.dot;
1690 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1691 
1692 	return 0;
1693 }
1694 
1695 static const struct intel_dpll_funcs mtl_dpll_funcs = {
1696 	.crtc_compute_clock = mtl_crtc_compute_clock,
1697 };
1698 
1699 static const struct intel_dpll_funcs dg2_dpll_funcs = {
1700 	.crtc_compute_clock = dg2_crtc_compute_clock,
1701 };
1702 
1703 static const struct intel_dpll_funcs hsw_dpll_funcs = {
1704 	.crtc_compute_clock = hsw_crtc_compute_clock,
1705 	.crtc_get_shared_dpll = hsw_crtc_get_shared_dpll,
1706 };
1707 
1708 static const struct intel_dpll_funcs ilk_dpll_funcs = {
1709 	.crtc_compute_clock = ilk_crtc_compute_clock,
1710 	.crtc_get_shared_dpll = ilk_crtc_get_shared_dpll,
1711 };
1712 
1713 static const struct intel_dpll_funcs chv_dpll_funcs = {
1714 	.crtc_compute_clock = chv_crtc_compute_clock,
1715 };
1716 
1717 static const struct intel_dpll_funcs vlv_dpll_funcs = {
1718 	.crtc_compute_clock = vlv_crtc_compute_clock,
1719 };
1720 
1721 static const struct intel_dpll_funcs g4x_dpll_funcs = {
1722 	.crtc_compute_clock = g4x_crtc_compute_clock,
1723 };
1724 
1725 static const struct intel_dpll_funcs pnv_dpll_funcs = {
1726 	.crtc_compute_clock = pnv_crtc_compute_clock,
1727 };
1728 
1729 static const struct intel_dpll_funcs i9xx_dpll_funcs = {
1730 	.crtc_compute_clock = i9xx_crtc_compute_clock,
1731 };
1732 
1733 static const struct intel_dpll_funcs i8xx_dpll_funcs = {
1734 	.crtc_compute_clock = i8xx_crtc_compute_clock,
1735 };
1736 
1737 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state,
1738 				  struct intel_crtc *crtc)
1739 {
1740 	struct drm_i915_private *i915 = to_i915(state->base.dev);
1741 	struct intel_crtc_state *crtc_state =
1742 		intel_atomic_get_new_crtc_state(state, crtc);
1743 	int ret;
1744 
1745 	drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1746 
1747 	memset(&crtc_state->dpll_hw_state, 0,
1748 	       sizeof(crtc_state->dpll_hw_state));
1749 
1750 	if (!crtc_state->hw.enable)
1751 		return 0;
1752 
1753 	ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc);
1754 	if (ret) {
1755 		drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n",
1756 			    crtc->base.base.id, crtc->base.name);
1757 		return ret;
1758 	}
1759 
1760 	return 0;
1761 }
1762 
1763 int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state,
1764 				    struct intel_crtc *crtc)
1765 {
1766 	struct drm_i915_private *i915 = to_i915(state->base.dev);
1767 	struct intel_crtc_state *crtc_state =
1768 		intel_atomic_get_new_crtc_state(state, crtc);
1769 	int ret;
1770 
1771 	drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1772 	drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll);
1773 
1774 	if (!crtc_state->hw.enable || crtc_state->shared_dpll)
1775 		return 0;
1776 
1777 	if (!i915->display.funcs.dpll->crtc_get_shared_dpll)
1778 		return 0;
1779 
1780 	ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc);
1781 	if (ret) {
1782 		drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n",
1783 			    crtc->base.base.id, crtc->base.name);
1784 		return ret;
1785 	}
1786 
1787 	return 0;
1788 }
1789 
1790 void
1791 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1792 {
1793 	if (DISPLAY_VER(dev_priv) >= 14)
1794 		dev_priv->display.funcs.dpll = &mtl_dpll_funcs;
1795 	else if (IS_DG2(dev_priv))
1796 		dev_priv->display.funcs.dpll = &dg2_dpll_funcs;
1797 	else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1798 		dev_priv->display.funcs.dpll = &hsw_dpll_funcs;
1799 	else if (HAS_PCH_SPLIT(dev_priv))
1800 		dev_priv->display.funcs.dpll = &ilk_dpll_funcs;
1801 	else if (IS_CHERRYVIEW(dev_priv))
1802 		dev_priv->display.funcs.dpll = &chv_dpll_funcs;
1803 	else if (IS_VALLEYVIEW(dev_priv))
1804 		dev_priv->display.funcs.dpll = &vlv_dpll_funcs;
1805 	else if (IS_G4X(dev_priv))
1806 		dev_priv->display.funcs.dpll = &g4x_dpll_funcs;
1807 	else if (IS_PINEVIEW(dev_priv))
1808 		dev_priv->display.funcs.dpll = &pnv_dpll_funcs;
1809 	else if (DISPLAY_VER(dev_priv) != 2)
1810 		dev_priv->display.funcs.dpll = &i9xx_dpll_funcs;
1811 	else
1812 		dev_priv->display.funcs.dpll = &i8xx_dpll_funcs;
1813 }
1814 
1815 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1816 {
1817 	if (IS_I830(dev_priv))
1818 		return false;
1819 
1820 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1821 }
1822 
1823 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state)
1824 {
1825 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1826 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1827 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1828 	enum pipe pipe = crtc->pipe;
1829 	int i;
1830 
1831 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1832 
1833 	/* PLL is protected by panel, make sure we can write it */
1834 	if (i9xx_has_pps(dev_priv))
1835 		assert_pps_unlocked(dev_priv, pipe);
1836 
1837 	intel_de_write(dev_priv, FP0(pipe), hw_state->fp0);
1838 	intel_de_write(dev_priv, FP1(pipe), hw_state->fp1);
1839 
1840 	/*
1841 	 * Apparently we need to have VGA mode enabled prior to changing
1842 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1843 	 * dividers, even though the register value does change.
1844 	 */
1845 	intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll & ~DPLL_VGA_MODE_DIS);
1846 	intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll);
1847 
1848 	/* Wait for the clocks to stabilize. */
1849 	intel_de_posting_read(dev_priv, DPLL(pipe));
1850 	udelay(150);
1851 
1852 	if (DISPLAY_VER(dev_priv) >= 4) {
1853 		intel_de_write(dev_priv, DPLL_MD(pipe), hw_state->dpll_md);
1854 	} else {
1855 		/* The pixel multiplier can only be updated once the
1856 		 * DPLL is enabled and the clocks are stable.
1857 		 *
1858 		 * So write it again.
1859 		 */
1860 		intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll);
1861 	}
1862 
1863 	/* We do this three times for luck */
1864 	for (i = 0; i < 3; i++) {
1865 		intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll);
1866 		intel_de_posting_read(dev_priv, DPLL(pipe));
1867 		udelay(150); /* wait for warmup */
1868 	}
1869 }
1870 
1871 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1872 				 enum dpio_phy phy, enum dpio_channel ch)
1873 {
1874 	u32 tmp;
1875 
1876 	/*
1877 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1878 	 * and set it to a reasonable value instead.
1879 	 */
1880 	tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch));
1881 	tmp &= 0xffffff00;
1882 	tmp |= 0x00000030;
1883 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp);
1884 
1885 	tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11);
1886 	tmp &= 0x00ffffff;
1887 	tmp |= 0x8c000000;
1888 	vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp);
1889 
1890 	tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch));
1891 	tmp &= 0xffffff00;
1892 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp);
1893 
1894 	tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11);
1895 	tmp &= 0x00ffffff;
1896 	tmp |= 0xb0000000;
1897 	vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp);
1898 }
1899 
1900 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state)
1901 {
1902 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1903 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1904 	const struct dpll *clock = &crtc_state->dpll;
1905 	enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
1906 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1907 	enum pipe pipe = crtc->pipe;
1908 	u32 tmp, coreclk;
1909 
1910 	vlv_dpio_get(dev_priv);
1911 
1912 	/* See eDP HDMI DPIO driver vbios notes doc */
1913 
1914 	/* PLL B needs special handling */
1915 	if (pipe == PIPE_B)
1916 		vlv_pllb_recal_opamp(dev_priv, phy, ch);
1917 
1918 	/* Set up Tx target for periodic Rcomp update */
1919 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW17_BCAST, 0x0100000f);
1920 
1921 	/* Disable target IRef on PLL */
1922 	tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW16(ch));
1923 	tmp &= 0x00ffffff;
1924 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW16(ch), tmp);
1925 
1926 	/* Disable fast lock */
1927 	vlv_dpio_write(dev_priv, phy, VLV_CMN_DW0, 0x610);
1928 
1929 	/* Set idtafcrecal before PLL is enabled */
1930 	tmp = DPIO_M1_DIV(clock->m1) |
1931 		DPIO_M2_DIV(clock->m2) |
1932 		DPIO_P1_DIV(clock->p1) |
1933 		DPIO_P2_DIV(clock->p2) |
1934 		DPIO_N_DIV(clock->n) |
1935 		DPIO_K_DIV(1);
1936 
1937 	/*
1938 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1939 	 * but we don't support that).
1940 	 * Note: don't use the DAC post divider as it seems unstable.
1941 	 */
1942 	tmp |= DPIO_S1_DIV(DPIO_S1_DIV_HDMIDP);
1943 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp);
1944 
1945 	tmp |= DPIO_ENABLE_CALIBRATION;
1946 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp);
1947 
1948 	/* Set HBR and RBR LPF coefficients */
1949 	if (crtc_state->port_clock == 162000 ||
1950 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) ||
1951 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1952 		vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch),
1953 				 0x009f0003);
1954 	else
1955 		vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch),
1956 				 0x00d0000f);
1957 
1958 	if (intel_crtc_has_dp_encoder(crtc_state)) {
1959 		/* Use SSC source */
1960 		if (pipe == PIPE_A)
1961 			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1962 					 0x0df40000);
1963 		else
1964 			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1965 					 0x0df70000);
1966 	} else { /* HDMI or VGA */
1967 		/* Use bend source */
1968 		if (pipe == PIPE_A)
1969 			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1970 					 0x0df70000);
1971 		else
1972 			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1973 					 0x0df40000);
1974 	}
1975 
1976 	coreclk = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW7(ch));
1977 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1978 	if (intel_crtc_has_dp_encoder(crtc_state))
1979 		coreclk |= 0x01000000;
1980 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW7(ch), coreclk);
1981 
1982 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW19(ch), 0x87871000);
1983 
1984 	vlv_dpio_put(dev_priv);
1985 }
1986 
1987 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1988 {
1989 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1990 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1991 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1992 	enum pipe pipe = crtc->pipe;
1993 
1994 	intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll);
1995 	intel_de_posting_read(dev_priv, DPLL(pipe));
1996 	udelay(150);
1997 
1998 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1999 		drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
2000 }
2001 
2002 void vlv_enable_pll(const struct intel_crtc_state *crtc_state)
2003 {
2004 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2005 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2006 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2007 	enum pipe pipe = crtc->pipe;
2008 
2009 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2010 
2011 	/* PLL is protected by panel, make sure we can write it */
2012 	assert_pps_unlocked(dev_priv, pipe);
2013 
2014 	/* Enable Refclk */
2015 	intel_de_write(dev_priv, DPLL(pipe),
2016 		       hw_state->dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
2017 
2018 	if (hw_state->dpll & DPLL_VCO_ENABLE) {
2019 		vlv_prepare_pll(crtc_state);
2020 		_vlv_enable_pll(crtc_state);
2021 	}
2022 
2023 	intel_de_write(dev_priv, DPLL_MD(pipe), hw_state->dpll_md);
2024 	intel_de_posting_read(dev_priv, DPLL_MD(pipe));
2025 }
2026 
2027 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state)
2028 {
2029 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2030 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2031 	const struct dpll *clock = &crtc_state->dpll;
2032 	enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
2033 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2034 	u32 tmp, loopfilter, tribuf_calcntr;
2035 	u32 m2_frac;
2036 
2037 	m2_frac = clock->m2 & 0x3fffff;
2038 
2039 	vlv_dpio_get(dev_priv);
2040 
2041 	/* p1 and p2 divider */
2042 	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW13(ch),
2043 		       DPIO_CHV_S1_DIV(5) |
2044 		       DPIO_CHV_P1_DIV(clock->p1) |
2045 		       DPIO_CHV_P2_DIV(clock->p2) |
2046 		       DPIO_CHV_K_DIV(1));
2047 
2048 	/* Feedback post-divider - m2 */
2049 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW0(ch),
2050 		       DPIO_CHV_M2_DIV(clock->m2 >> 22));
2051 
2052 	/* Feedback refclk divider - n and m1 */
2053 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW1(ch),
2054 		       DPIO_CHV_M1_DIV(DPIO_CHV_M1_DIV_BY_2) |
2055 		       DPIO_CHV_N_DIV(1));
2056 
2057 	/* M2 fraction division */
2058 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW2(ch),
2059 		       DPIO_CHV_M2_FRAC_DIV(m2_frac));
2060 
2061 	/* M2 fraction division enable */
2062 	tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch));
2063 	tmp &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
2064 	tmp |= DPIO_CHV_FEEDFWD_GAIN(2);
2065 	if (m2_frac)
2066 		tmp |= DPIO_CHV_FRAC_DIV_EN;
2067 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW3(ch), tmp);
2068 
2069 	/* Program digital lock detect threshold */
2070 	tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW9(ch));
2071 	tmp &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
2072 		      DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
2073 	tmp |= DPIO_CHV_INT_LOCK_THRESHOLD(0x5);
2074 	if (!m2_frac)
2075 		tmp |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
2076 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW9(ch), tmp);
2077 
2078 	/* Loop filter */
2079 	if (clock->vco == 5400000) {
2080 		loopfilter = DPIO_CHV_PROP_COEFF(0x3) |
2081 			DPIO_CHV_INT_COEFF(0x8) |
2082 			DPIO_CHV_GAIN_CTRL(0x1);
2083 		tribuf_calcntr = 0x9;
2084 	} else if (clock->vco <= 6200000) {
2085 		loopfilter = DPIO_CHV_PROP_COEFF(0x5) |
2086 			DPIO_CHV_INT_COEFF(0xB) |
2087 			DPIO_CHV_GAIN_CTRL(0x3);
2088 		tribuf_calcntr = 0x9;
2089 	} else if (clock->vco <= 6480000) {
2090 		loopfilter = DPIO_CHV_PROP_COEFF(0x4) |
2091 			DPIO_CHV_INT_COEFF(0x9) |
2092 			DPIO_CHV_GAIN_CTRL(0x3);
2093 		tribuf_calcntr = 0x8;
2094 	} else {
2095 		/* Not supported. Apply the same limits as in the max case */
2096 		loopfilter = DPIO_CHV_PROP_COEFF(0x4) |
2097 			DPIO_CHV_INT_COEFF(0x9) |
2098 			DPIO_CHV_GAIN_CTRL(0x3);
2099 		tribuf_calcntr = 0;
2100 	}
2101 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW6(ch), loopfilter);
2102 
2103 	tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW8(ch));
2104 	tmp &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
2105 	tmp |= DPIO_CHV_TDC_TARGET_CNT(tribuf_calcntr);
2106 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW8(ch), tmp);
2107 
2108 	/* AFC Recal */
2109 	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch),
2110 		       vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)) |
2111 		       DPIO_AFC_RECAL);
2112 
2113 	vlv_dpio_put(dev_priv);
2114 }
2115 
2116 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state)
2117 {
2118 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2119 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2120 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2121 	enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
2122 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2123 	enum pipe pipe = crtc->pipe;
2124 	u32 tmp;
2125 
2126 	vlv_dpio_get(dev_priv);
2127 
2128 	/* Enable back the 10bit clock to display controller */
2129 	tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch));
2130 	tmp |= DPIO_DCLKP_EN;
2131 	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), tmp);
2132 
2133 	vlv_dpio_put(dev_priv);
2134 
2135 	/*
2136 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
2137 	 */
2138 	udelay(1);
2139 
2140 	/* Enable PLL */
2141 	intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll);
2142 
2143 	/* Check PLL is locked */
2144 	if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
2145 		drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
2146 }
2147 
2148 void chv_enable_pll(const struct intel_crtc_state *crtc_state)
2149 {
2150 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2151 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2152 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2153 	enum pipe pipe = crtc->pipe;
2154 
2155 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2156 
2157 	/* PLL is protected by panel, make sure we can write it */
2158 	assert_pps_unlocked(dev_priv, pipe);
2159 
2160 	/* Enable Refclk and SSC */
2161 	intel_de_write(dev_priv, DPLL(pipe),
2162 		       hw_state->dpll & ~DPLL_VCO_ENABLE);
2163 
2164 	if (hw_state->dpll & DPLL_VCO_ENABLE) {
2165 		chv_prepare_pll(crtc_state);
2166 		_chv_enable_pll(crtc_state);
2167 	}
2168 
2169 	if (pipe != PIPE_A) {
2170 		/*
2171 		 * WaPixelRepeatModeFixForC0:chv
2172 		 *
2173 		 * DPLLCMD is AWOL. Use chicken bits to propagate
2174 		 * the value from DPLLBMD to either pipe B or C.
2175 		 */
2176 		intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
2177 		intel_de_write(dev_priv, DPLL_MD(PIPE_B), hw_state->dpll_md);
2178 		intel_de_write(dev_priv, CBR4_VLV, 0);
2179 		dev_priv->display.state.chv_dpll_md[pipe] = hw_state->dpll_md;
2180 
2181 		/*
2182 		 * DPLLB VGA mode also seems to cause problems.
2183 		 * We should always have it disabled.
2184 		 */
2185 		drm_WARN_ON(&dev_priv->drm,
2186 			    (intel_de_read(dev_priv, DPLL(PIPE_B)) &
2187 			     DPLL_VGA_MODE_DIS) == 0);
2188 	} else {
2189 		intel_de_write(dev_priv, DPLL_MD(pipe), hw_state->dpll_md);
2190 		intel_de_posting_read(dev_priv, DPLL_MD(pipe));
2191 	}
2192 }
2193 
2194 /**
2195  * vlv_force_pll_on - forcibly enable just the PLL
2196  * @dev_priv: i915 private structure
2197  * @pipe: pipe PLL to enable
2198  * @dpll: PLL configuration
2199  *
2200  * Enable the PLL for @pipe using the supplied @dpll config. To be used
2201  * in cases where we need the PLL enabled even when @pipe is not going to
2202  * be enabled.
2203  */
2204 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
2205 		     const struct dpll *dpll)
2206 {
2207 	struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
2208 	struct intel_crtc_state *crtc_state;
2209 
2210 	crtc_state = intel_crtc_state_alloc(crtc);
2211 	if (!crtc_state)
2212 		return -ENOMEM;
2213 
2214 	crtc_state->cpu_transcoder = (enum transcoder)pipe;
2215 	crtc_state->pixel_multiplier = 1;
2216 	crtc_state->dpll = *dpll;
2217 	crtc_state->output_types = BIT(INTEL_OUTPUT_EDP);
2218 
2219 	if (IS_CHERRYVIEW(dev_priv)) {
2220 		chv_compute_dpll(crtc_state);
2221 		chv_enable_pll(crtc_state);
2222 	} else {
2223 		vlv_compute_dpll(crtc_state);
2224 		vlv_enable_pll(crtc_state);
2225 	}
2226 
2227 	intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi);
2228 
2229 	return 0;
2230 }
2231 
2232 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2233 {
2234 	u32 val;
2235 
2236 	/* Make sure the pipe isn't still relying on us */
2237 	assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2238 
2239 	val = DPLL_INTEGRATED_REF_CLK_VLV |
2240 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2241 	if (pipe != PIPE_A)
2242 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2243 
2244 	intel_de_write(dev_priv, DPLL(pipe), val);
2245 	intel_de_posting_read(dev_priv, DPLL(pipe));
2246 }
2247 
2248 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2249 {
2250 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
2251 	enum dpio_phy phy = vlv_pipe_to_phy(pipe);
2252 	u32 val;
2253 
2254 	/* Make sure the pipe isn't still relying on us */
2255 	assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2256 
2257 	val = DPLL_SSC_REF_CLK_CHV |
2258 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2259 	if (pipe != PIPE_A)
2260 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2261 
2262 	intel_de_write(dev_priv, DPLL(pipe), val);
2263 	intel_de_posting_read(dev_priv, DPLL(pipe));
2264 
2265 	vlv_dpio_get(dev_priv);
2266 
2267 	/* Disable 10bit clock to display controller */
2268 	val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch));
2269 	val &= ~DPIO_DCLKP_EN;
2270 	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), val);
2271 
2272 	vlv_dpio_put(dev_priv);
2273 }
2274 
2275 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
2276 {
2277 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2278 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2279 	enum pipe pipe = crtc->pipe;
2280 
2281 	/* Don't disable pipe or pipe PLLs if needed */
2282 	if (IS_I830(dev_priv))
2283 		return;
2284 
2285 	/* Make sure the pipe isn't still relying on us */
2286 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2287 
2288 	intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
2289 	intel_de_posting_read(dev_priv, DPLL(pipe));
2290 }
2291 
2292 
2293 /**
2294  * vlv_force_pll_off - forcibly disable just the PLL
2295  * @dev_priv: i915 private structure
2296  * @pipe: pipe PLL to disable
2297  *
2298  * Disable the PLL for @pipe. To be used in cases where we need
2299  * the PLL enabled even when @pipe is not going to be enabled.
2300  */
2301 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
2302 {
2303 	if (IS_CHERRYVIEW(dev_priv))
2304 		chv_disable_pll(dev_priv, pipe);
2305 	else
2306 		vlv_disable_pll(dev_priv, pipe);
2307 }
2308 
2309 /* Only for pre-ILK configs */
2310 static void assert_pll(struct drm_i915_private *dev_priv,
2311 		       enum pipe pipe, bool state)
2312 {
2313 	bool cur_state;
2314 
2315 	cur_state = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
2316 	I915_STATE_WARN(dev_priv, cur_state != state,
2317 			"PLL state assertion failure (expected %s, current %s)\n",
2318 			str_on_off(state), str_on_off(cur_state));
2319 }
2320 
2321 void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
2322 {
2323 	assert_pll(i915, pipe, true);
2324 }
2325 
2326 void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
2327 {
2328 	assert_pll(i915, pipe, false);
2329 }
2330