1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/string_helpers.h> 8 9 #include "i915_drv.h" 10 #include "i915_reg.h" 11 #include "intel_atomic.h" 12 #include "intel_crtc.h" 13 #include "intel_cx0_phy.h" 14 #include "intel_de.h" 15 #include "intel_display.h" 16 #include "intel_display_types.h" 17 #include "intel_dpio_phy.h" 18 #include "intel_dpll.h" 19 #include "intel_lvds.h" 20 #include "intel_lvds_regs.h" 21 #include "intel_panel.h" 22 #include "intel_pps.h" 23 #include "intel_snps_phy.h" 24 #include "vlv_dpio_phy_regs.h" 25 #include "vlv_sideband.h" 26 27 struct intel_dpll_funcs { 28 int (*crtc_compute_clock)(struct intel_atomic_state *state, 29 struct intel_crtc *crtc); 30 int (*crtc_get_shared_dpll)(struct intel_atomic_state *state, 31 struct intel_crtc *crtc); 32 }; 33 34 struct intel_limit { 35 struct { 36 int min, max; 37 } dot, vco, n, m, m1, m2, p, p1; 38 39 struct { 40 int dot_limit; 41 int p2_slow, p2_fast; 42 } p2; 43 }; 44 static const struct intel_limit intel_limits_i8xx_dac = { 45 .dot = { .min = 25000, .max = 350000 }, 46 .vco = { .min = 908000, .max = 1512000 }, 47 .n = { .min = 2, .max = 16 }, 48 .m = { .min = 96, .max = 140 }, 49 .m1 = { .min = 18, .max = 26 }, 50 .m2 = { .min = 6, .max = 16 }, 51 .p = { .min = 4, .max = 128 }, 52 .p1 = { .min = 2, .max = 33 }, 53 .p2 = { .dot_limit = 165000, 54 .p2_slow = 4, .p2_fast = 2 }, 55 }; 56 57 static const struct intel_limit intel_limits_i8xx_dvo = { 58 .dot = { .min = 25000, .max = 350000 }, 59 .vco = { .min = 908000, .max = 1512000 }, 60 .n = { .min = 2, .max = 16 }, 61 .m = { .min = 96, .max = 140 }, 62 .m1 = { .min = 18, .max = 26 }, 63 .m2 = { .min = 6, .max = 16 }, 64 .p = { .min = 4, .max = 128 }, 65 .p1 = { .min = 2, .max = 33 }, 66 .p2 = { .dot_limit = 165000, 67 .p2_slow = 4, .p2_fast = 4 }, 68 }; 69 70 static const struct intel_limit intel_limits_i8xx_lvds = { 71 .dot = { .min = 25000, .max = 350000 }, 72 .vco = { .min = 908000, .max = 1512000 }, 73 .n = { .min = 2, .max = 16 }, 74 .m = { .min = 96, .max = 140 }, 75 .m1 = { .min = 18, .max = 26 }, 76 .m2 = { .min = 6, .max = 16 }, 77 .p = { .min = 4, .max = 128 }, 78 .p1 = { .min = 1, .max = 6 }, 79 .p2 = { .dot_limit = 165000, 80 .p2_slow = 14, .p2_fast = 7 }, 81 }; 82 83 static const struct intel_limit intel_limits_i9xx_sdvo = { 84 .dot = { .min = 20000, .max = 400000 }, 85 .vco = { .min = 1400000, .max = 2800000 }, 86 .n = { .min = 1, .max = 6 }, 87 .m = { .min = 70, .max = 120 }, 88 .m1 = { .min = 8, .max = 18 }, 89 .m2 = { .min = 3, .max = 7 }, 90 .p = { .min = 5, .max = 80 }, 91 .p1 = { .min = 1, .max = 8 }, 92 .p2 = { .dot_limit = 200000, 93 .p2_slow = 10, .p2_fast = 5 }, 94 }; 95 96 static const struct intel_limit intel_limits_i9xx_lvds = { 97 .dot = { .min = 20000, .max = 400000 }, 98 .vco = { .min = 1400000, .max = 2800000 }, 99 .n = { .min = 1, .max = 6 }, 100 .m = { .min = 70, .max = 120 }, 101 .m1 = { .min = 8, .max = 18 }, 102 .m2 = { .min = 3, .max = 7 }, 103 .p = { .min = 7, .max = 98 }, 104 .p1 = { .min = 1, .max = 8 }, 105 .p2 = { .dot_limit = 112000, 106 .p2_slow = 14, .p2_fast = 7 }, 107 }; 108 109 110 static const struct intel_limit intel_limits_g4x_sdvo = { 111 .dot = { .min = 25000, .max = 270000 }, 112 .vco = { .min = 1750000, .max = 3500000}, 113 .n = { .min = 1, .max = 4 }, 114 .m = { .min = 104, .max = 138 }, 115 .m1 = { .min = 17, .max = 23 }, 116 .m2 = { .min = 5, .max = 11 }, 117 .p = { .min = 10, .max = 30 }, 118 .p1 = { .min = 1, .max = 3}, 119 .p2 = { .dot_limit = 270000, 120 .p2_slow = 10, 121 .p2_fast = 10 122 }, 123 }; 124 125 static const struct intel_limit intel_limits_g4x_hdmi = { 126 .dot = { .min = 22000, .max = 400000 }, 127 .vco = { .min = 1750000, .max = 3500000}, 128 .n = { .min = 1, .max = 4 }, 129 .m = { .min = 104, .max = 138 }, 130 .m1 = { .min = 16, .max = 23 }, 131 .m2 = { .min = 5, .max = 11 }, 132 .p = { .min = 5, .max = 80 }, 133 .p1 = { .min = 1, .max = 8}, 134 .p2 = { .dot_limit = 165000, 135 .p2_slow = 10, .p2_fast = 5 }, 136 }; 137 138 static const struct intel_limit intel_limits_g4x_single_channel_lvds = { 139 .dot = { .min = 20000, .max = 115000 }, 140 .vco = { .min = 1750000, .max = 3500000 }, 141 .n = { .min = 1, .max = 3 }, 142 .m = { .min = 104, .max = 138 }, 143 .m1 = { .min = 17, .max = 23 }, 144 .m2 = { .min = 5, .max = 11 }, 145 .p = { .min = 28, .max = 112 }, 146 .p1 = { .min = 2, .max = 8 }, 147 .p2 = { .dot_limit = 0, 148 .p2_slow = 14, .p2_fast = 14 149 }, 150 }; 151 152 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { 153 .dot = { .min = 80000, .max = 224000 }, 154 .vco = { .min = 1750000, .max = 3500000 }, 155 .n = { .min = 1, .max = 3 }, 156 .m = { .min = 104, .max = 138 }, 157 .m1 = { .min = 17, .max = 23 }, 158 .m2 = { .min = 5, .max = 11 }, 159 .p = { .min = 14, .max = 42 }, 160 .p1 = { .min = 2, .max = 6 }, 161 .p2 = { .dot_limit = 0, 162 .p2_slow = 7, .p2_fast = 7 163 }, 164 }; 165 166 static const struct intel_limit pnv_limits_sdvo = { 167 .dot = { .min = 20000, .max = 400000}, 168 .vco = { .min = 1700000, .max = 3500000 }, 169 /* Pineview's Ncounter is a ring counter */ 170 .n = { .min = 3, .max = 6 }, 171 .m = { .min = 2, .max = 256 }, 172 /* Pineview only has one combined m divider, which we treat as m2. */ 173 .m1 = { .min = 0, .max = 0 }, 174 .m2 = { .min = 0, .max = 254 }, 175 .p = { .min = 5, .max = 80 }, 176 .p1 = { .min = 1, .max = 8 }, 177 .p2 = { .dot_limit = 200000, 178 .p2_slow = 10, .p2_fast = 5 }, 179 }; 180 181 static const struct intel_limit pnv_limits_lvds = { 182 .dot = { .min = 20000, .max = 400000 }, 183 .vco = { .min = 1700000, .max = 3500000 }, 184 .n = { .min = 3, .max = 6 }, 185 .m = { .min = 2, .max = 256 }, 186 .m1 = { .min = 0, .max = 0 }, 187 .m2 = { .min = 0, .max = 254 }, 188 .p = { .min = 7, .max = 112 }, 189 .p1 = { .min = 1, .max = 8 }, 190 .p2 = { .dot_limit = 112000, 191 .p2_slow = 14, .p2_fast = 14 }, 192 }; 193 194 /* Ironlake / Sandybridge 195 * 196 * We calculate clock using (register_value + 2) for N/M1/M2, so here 197 * the range value for them is (actual_value - 2). 198 */ 199 static const struct intel_limit ilk_limits_dac = { 200 .dot = { .min = 25000, .max = 350000 }, 201 .vco = { .min = 1760000, .max = 3510000 }, 202 .n = { .min = 1, .max = 5 }, 203 .m = { .min = 79, .max = 127 }, 204 .m1 = { .min = 12, .max = 22 }, 205 .m2 = { .min = 5, .max = 9 }, 206 .p = { .min = 5, .max = 80 }, 207 .p1 = { .min = 1, .max = 8 }, 208 .p2 = { .dot_limit = 225000, 209 .p2_slow = 10, .p2_fast = 5 }, 210 }; 211 212 static const struct intel_limit ilk_limits_single_lvds = { 213 .dot = { .min = 25000, .max = 350000 }, 214 .vco = { .min = 1760000, .max = 3510000 }, 215 .n = { .min = 1, .max = 3 }, 216 .m = { .min = 79, .max = 118 }, 217 .m1 = { .min = 12, .max = 22 }, 218 .m2 = { .min = 5, .max = 9 }, 219 .p = { .min = 28, .max = 112 }, 220 .p1 = { .min = 2, .max = 8 }, 221 .p2 = { .dot_limit = 225000, 222 .p2_slow = 14, .p2_fast = 14 }, 223 }; 224 225 static const struct intel_limit ilk_limits_dual_lvds = { 226 .dot = { .min = 25000, .max = 350000 }, 227 .vco = { .min = 1760000, .max = 3510000 }, 228 .n = { .min = 1, .max = 3 }, 229 .m = { .min = 79, .max = 127 }, 230 .m1 = { .min = 12, .max = 22 }, 231 .m2 = { .min = 5, .max = 9 }, 232 .p = { .min = 14, .max = 56 }, 233 .p1 = { .min = 2, .max = 8 }, 234 .p2 = { .dot_limit = 225000, 235 .p2_slow = 7, .p2_fast = 7 }, 236 }; 237 238 /* LVDS 100mhz refclk limits. */ 239 static const struct intel_limit ilk_limits_single_lvds_100m = { 240 .dot = { .min = 25000, .max = 350000 }, 241 .vco = { .min = 1760000, .max = 3510000 }, 242 .n = { .min = 1, .max = 2 }, 243 .m = { .min = 79, .max = 126 }, 244 .m1 = { .min = 12, .max = 22 }, 245 .m2 = { .min = 5, .max = 9 }, 246 .p = { .min = 28, .max = 112 }, 247 .p1 = { .min = 2, .max = 8 }, 248 .p2 = { .dot_limit = 225000, 249 .p2_slow = 14, .p2_fast = 14 }, 250 }; 251 252 static const struct intel_limit ilk_limits_dual_lvds_100m = { 253 .dot = { .min = 25000, .max = 350000 }, 254 .vco = { .min = 1760000, .max = 3510000 }, 255 .n = { .min = 1, .max = 3 }, 256 .m = { .min = 79, .max = 126 }, 257 .m1 = { .min = 12, .max = 22 }, 258 .m2 = { .min = 5, .max = 9 }, 259 .p = { .min = 14, .max = 42 }, 260 .p1 = { .min = 2, .max = 6 }, 261 .p2 = { .dot_limit = 225000, 262 .p2_slow = 7, .p2_fast = 7 }, 263 }; 264 265 static const struct intel_limit intel_limits_vlv = { 266 /* 267 * These are based on the data rate limits (measured in fast clocks) 268 * since those are the strictest limits we have. The fast 269 * clock and actual rate limits are more relaxed, so checking 270 * them would make no difference. 271 */ 272 .dot = { .min = 25000, .max = 270000 }, 273 .vco = { .min = 4000000, .max = 6000000 }, 274 .n = { .min = 1, .max = 7 }, 275 .m1 = { .min = 2, .max = 3 }, 276 .m2 = { .min = 11, .max = 156 }, 277 .p1 = { .min = 2, .max = 3 }, 278 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ 279 }; 280 281 static const struct intel_limit intel_limits_chv = { 282 /* 283 * These are based on the data rate limits (measured in fast clocks) 284 * since those are the strictest limits we have. The fast 285 * clock and actual rate limits are more relaxed, so checking 286 * them would make no difference. 287 */ 288 .dot = { .min = 25000, .max = 540000 }, 289 .vco = { .min = 4800000, .max = 6480000 }, 290 .n = { .min = 1, .max = 1 }, 291 .m1 = { .min = 2, .max = 2 }, 292 .m2 = { .min = 24 << 22, .max = 175 << 22 }, 293 .p1 = { .min = 2, .max = 4 }, 294 .p2 = { .p2_slow = 1, .p2_fast = 14 }, 295 }; 296 297 static const struct intel_limit intel_limits_bxt = { 298 .dot = { .min = 25000, .max = 594000 }, 299 .vco = { .min = 4800000, .max = 6700000 }, 300 .n = { .min = 1, .max = 1 }, 301 .m1 = { .min = 2, .max = 2 }, 302 /* FIXME: find real m2 limits */ 303 .m2 = { .min = 2 << 22, .max = 255 << 22 }, 304 .p1 = { .min = 2, .max = 4 }, 305 .p2 = { .p2_slow = 1, .p2_fast = 20 }, 306 }; 307 308 /* 309 * Platform specific helpers to calculate the port PLL loopback- (clock.m), 310 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast 311 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. 312 * The helpers' return value is the rate of the clock that is fed to the 313 * display engine's pipe which can be the above fast dot clock rate or a 314 * divided-down version of it. 315 */ 316 /* m1 is reserved as 0 in Pineview, n is a ring counter */ 317 static int pnv_calc_dpll_params(int refclk, struct dpll *clock) 318 { 319 clock->m = clock->m2 + 2; 320 clock->p = clock->p1 * clock->p2; 321 322 clock->vco = clock->n == 0 ? 0 : 323 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 324 clock->dot = clock->p == 0 ? 0 : 325 DIV_ROUND_CLOSEST(clock->vco, clock->p); 326 327 return clock->dot; 328 } 329 330 static u32 i9xx_dpll_compute_m(const struct dpll *dpll) 331 { 332 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); 333 } 334 335 int i9xx_calc_dpll_params(int refclk, struct dpll *clock) 336 { 337 clock->m = i9xx_dpll_compute_m(clock); 338 clock->p = clock->p1 * clock->p2; 339 340 clock->vco = clock->n + 2 == 0 ? 0 : 341 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); 342 clock->dot = clock->p == 0 ? 0 : 343 DIV_ROUND_CLOSEST(clock->vco, clock->p); 344 345 return clock->dot; 346 } 347 348 static int vlv_calc_dpll_params(int refclk, struct dpll *clock) 349 { 350 clock->m = clock->m1 * clock->m2; 351 clock->p = clock->p1 * clock->p2 * 5; 352 353 clock->vco = clock->n == 0 ? 0 : 354 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 355 clock->dot = clock->p == 0 ? 0 : 356 DIV_ROUND_CLOSEST(clock->vco, clock->p); 357 358 return clock->dot; 359 } 360 361 int chv_calc_dpll_params(int refclk, struct dpll *clock) 362 { 363 clock->m = clock->m1 * clock->m2; 364 clock->p = clock->p1 * clock->p2 * 5; 365 366 clock->vco = clock->n == 0 ? 0 : 367 DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22); 368 clock->dot = clock->p == 0 ? 0 : 369 DIV_ROUND_CLOSEST(clock->vco, clock->p); 370 371 return clock->dot; 372 } 373 374 static int i9xx_pll_refclk(const struct intel_crtc_state *crtc_state) 375 { 376 struct intel_display *display = to_intel_display(crtc_state); 377 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 378 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 379 380 if ((hw_state->dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 381 return display->vbt.lvds_ssc_freq; 382 else if (HAS_PCH_SPLIT(i915)) 383 return 120000; 384 else if (DISPLAY_VER(display) != 2) 385 return 96000; 386 else 387 return 48000; 388 } 389 390 void i9xx_dpll_get_hw_state(struct intel_crtc *crtc, 391 struct intel_dpll_hw_state *dpll_hw_state) 392 { 393 struct intel_display *display = to_intel_display(crtc); 394 struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx; 395 396 if (DISPLAY_VER(display) >= 4) { 397 u32 tmp; 398 399 /* No way to read it out on pipes B and C */ 400 if (display->platform.cherryview && crtc->pipe != PIPE_A) 401 tmp = display->state.chv_dpll_md[crtc->pipe]; 402 else 403 tmp = intel_de_read(display, 404 DPLL_MD(display, crtc->pipe)); 405 406 hw_state->dpll_md = tmp; 407 } 408 409 hw_state->dpll = intel_de_read(display, DPLL(display, crtc->pipe)); 410 411 if (!display->platform.valleyview && !display->platform.cherryview) { 412 hw_state->fp0 = intel_de_read(display, FP0(crtc->pipe)); 413 hw_state->fp1 = intel_de_read(display, FP1(crtc->pipe)); 414 } else { 415 /* Mask out read-only status bits. */ 416 hw_state->dpll &= ~(DPLL_LOCK_VLV | 417 DPLL_PORTC_READY_MASK | 418 DPLL_PORTB_READY_MASK); 419 } 420 } 421 422 /* Returns the clock of the currently programmed mode of the given pipe. */ 423 void i9xx_crtc_clock_get(struct intel_crtc_state *crtc_state) 424 { 425 struct intel_display *display = to_intel_display(crtc_state); 426 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 427 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 428 u32 dpll = hw_state->dpll; 429 u32 fp; 430 struct dpll clock; 431 int port_clock; 432 int refclk = i9xx_pll_refclk(crtc_state); 433 434 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 435 fp = hw_state->fp0; 436 else 437 fp = hw_state->fp1; 438 439 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 440 if (display->platform.pineview) { 441 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 442 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 443 } else { 444 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 445 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 446 } 447 448 if (DISPLAY_VER(display) != 2) { 449 if (display->platform.pineview) 450 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 451 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 452 else 453 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 454 DPLL_FPA01_P1_POST_DIV_SHIFT); 455 456 switch (dpll & DPLL_MODE_MASK) { 457 case DPLLB_MODE_DAC_SERIAL: 458 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 459 5 : 10; 460 break; 461 case DPLLB_MODE_LVDS: 462 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 463 7 : 14; 464 break; 465 default: 466 drm_dbg_kms(display->drm, 467 "Unknown DPLL mode %08x in programmed " 468 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 469 return; 470 } 471 472 if (display->platform.pineview) 473 port_clock = pnv_calc_dpll_params(refclk, &clock); 474 else 475 port_clock = i9xx_calc_dpll_params(refclk, &clock); 476 } else { 477 enum pipe lvds_pipe; 478 479 if (display->platform.i85x && 480 intel_lvds_port_enabled(display, LVDS, &lvds_pipe) && 481 lvds_pipe == crtc->pipe) { 482 u32 lvds = intel_de_read(display, LVDS); 483 484 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 485 DPLL_FPA01_P1_POST_DIV_SHIFT); 486 487 if (lvds & LVDS_CLKB_POWER_UP) 488 clock.p2 = 7; 489 else 490 clock.p2 = 14; 491 } else { 492 if (dpll & PLL_P1_DIVIDE_BY_TWO) 493 clock.p1 = 2; 494 else { 495 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 496 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 497 } 498 if (dpll & PLL_P2_DIVIDE_BY_4) 499 clock.p2 = 4; 500 else 501 clock.p2 = 2; 502 } 503 504 port_clock = i9xx_calc_dpll_params(refclk, &clock); 505 } 506 507 /* 508 * This value includes pixel_multiplier. We will use 509 * port_clock to compute adjusted_mode.crtc_clock in the 510 * encoder's get_config() function. 511 */ 512 crtc_state->port_clock = port_clock; 513 } 514 515 void vlv_crtc_clock_get(struct intel_crtc_state *crtc_state) 516 { 517 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 518 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 519 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 520 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 521 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 522 int refclk = 100000; 523 struct dpll clock; 524 u32 tmp; 525 526 /* In case of DSI, DPLL will not be used */ 527 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0) 528 return; 529 530 vlv_dpio_get(dev_priv); 531 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW3(ch)); 532 vlv_dpio_put(dev_priv); 533 534 clock.m1 = REG_FIELD_GET(DPIO_M1_DIV_MASK, tmp); 535 clock.m2 = REG_FIELD_GET(DPIO_M2_DIV_MASK, tmp); 536 clock.n = REG_FIELD_GET(DPIO_N_DIV_MASK, tmp); 537 clock.p1 = REG_FIELD_GET(DPIO_P1_DIV_MASK, tmp); 538 clock.p2 = REG_FIELD_GET(DPIO_P2_DIV_MASK, tmp); 539 540 crtc_state->port_clock = vlv_calc_dpll_params(refclk, &clock); 541 } 542 543 void chv_crtc_clock_get(struct intel_crtc_state *crtc_state) 544 { 545 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 546 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 547 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 548 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 549 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 550 struct dpll clock; 551 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 552 int refclk = 100000; 553 554 /* In case of DSI, DPLL will not be used */ 555 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0) 556 return; 557 558 vlv_dpio_get(dev_priv); 559 cmn_dw13 = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW13(ch)); 560 pll_dw0 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW0(ch)); 561 pll_dw1 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW1(ch)); 562 pll_dw2 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW2(ch)); 563 pll_dw3 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch)); 564 vlv_dpio_put(dev_priv); 565 566 clock.m1 = REG_FIELD_GET(DPIO_CHV_M1_DIV_MASK, pll_dw1) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 567 clock.m2 = REG_FIELD_GET(DPIO_CHV_M2_DIV_MASK, pll_dw0) << 22; 568 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 569 clock.m2 |= REG_FIELD_GET(DPIO_CHV_M2_FRAC_DIV_MASK, pll_dw2); 570 clock.n = REG_FIELD_GET(DPIO_CHV_N_DIV_MASK, pll_dw1); 571 clock.p1 = REG_FIELD_GET(DPIO_CHV_P1_DIV_MASK, cmn_dw13); 572 clock.p2 = REG_FIELD_GET(DPIO_CHV_P2_DIV_MASK, cmn_dw13); 573 574 crtc_state->port_clock = chv_calc_dpll_params(refclk, &clock); 575 } 576 577 /* 578 * Returns whether the given set of divisors are valid for a given refclk with 579 * the given connectors. 580 */ 581 static bool intel_pll_is_valid(struct intel_display *display, 582 const struct intel_limit *limit, 583 const struct dpll *clock) 584 { 585 if (clock->n < limit->n.min || limit->n.max < clock->n) 586 return false; 587 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 588 return false; 589 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 590 return false; 591 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 592 return false; 593 594 if (!display->platform.pineview && 595 !display->platform.valleyview && !display->platform.cherryview && 596 !display->platform.broxton && !display->platform.geminilake) 597 if (clock->m1 <= clock->m2) 598 return false; 599 600 if (!display->platform.valleyview && !display->platform.cherryview && 601 !display->platform.broxton && !display->platform.geminilake) { 602 if (clock->p < limit->p.min || limit->p.max < clock->p) 603 return false; 604 if (clock->m < limit->m.min || limit->m.max < clock->m) 605 return false; 606 } 607 608 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 609 return false; 610 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 611 * connector, etc., rather than just a single range. 612 */ 613 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 614 return false; 615 616 return true; 617 } 618 619 static int 620 i9xx_select_p2_div(const struct intel_limit *limit, 621 const struct intel_crtc_state *crtc_state, 622 int target) 623 { 624 struct intel_display *display = to_intel_display(crtc_state); 625 626 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 627 /* 628 * For LVDS just rely on its current settings for dual-channel. 629 * We haven't figured out how to reliably set up different 630 * single/dual channel state, if we even can. 631 */ 632 if (intel_is_dual_link_lvds(display)) 633 return limit->p2.p2_fast; 634 else 635 return limit->p2.p2_slow; 636 } else { 637 if (target < limit->p2.dot_limit) 638 return limit->p2.p2_slow; 639 else 640 return limit->p2.p2_fast; 641 } 642 } 643 644 /* 645 * Returns a set of divisors for the desired target clock with the given 646 * refclk, or FALSE. 647 * 648 * Target and reference clocks are specified in kHz. 649 * 650 * If match_clock is provided, then best_clock P divider must match the P 651 * divider from @match_clock used for LVDS downclocking. 652 */ 653 static bool 654 i9xx_find_best_dpll(const struct intel_limit *limit, 655 struct intel_crtc_state *crtc_state, 656 int target, int refclk, 657 const struct dpll *match_clock, 658 struct dpll *best_clock) 659 { 660 struct intel_display *display = to_intel_display(crtc_state); 661 struct dpll clock; 662 int err = target; 663 664 memset(best_clock, 0, sizeof(*best_clock)); 665 666 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 667 668 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 669 clock.m1++) { 670 for (clock.m2 = limit->m2.min; 671 clock.m2 <= limit->m2.max; clock.m2++) { 672 if (clock.m2 >= clock.m1) 673 break; 674 for (clock.n = limit->n.min; 675 clock.n <= limit->n.max; clock.n++) { 676 for (clock.p1 = limit->p1.min; 677 clock.p1 <= limit->p1.max; clock.p1++) { 678 int this_err; 679 680 i9xx_calc_dpll_params(refclk, &clock); 681 if (!intel_pll_is_valid(display, 682 limit, 683 &clock)) 684 continue; 685 if (match_clock && 686 clock.p != match_clock->p) 687 continue; 688 689 this_err = abs(clock.dot - target); 690 if (this_err < err) { 691 *best_clock = clock; 692 err = this_err; 693 } 694 } 695 } 696 } 697 } 698 699 return (err != target); 700 } 701 702 /* 703 * Returns a set of divisors for the desired target clock with the given 704 * refclk, or FALSE. 705 * 706 * Target and reference clocks are specified in kHz. 707 * 708 * If match_clock is provided, then best_clock P divider must match the P 709 * divider from @match_clock used for LVDS downclocking. 710 */ 711 static bool 712 pnv_find_best_dpll(const struct intel_limit *limit, 713 struct intel_crtc_state *crtc_state, 714 int target, int refclk, 715 const struct dpll *match_clock, 716 struct dpll *best_clock) 717 { 718 struct intel_display *display = to_intel_display(crtc_state); 719 struct dpll clock; 720 int err = target; 721 722 memset(best_clock, 0, sizeof(*best_clock)); 723 724 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 725 726 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 727 clock.m1++) { 728 for (clock.m2 = limit->m2.min; 729 clock.m2 <= limit->m2.max; clock.m2++) { 730 for (clock.n = limit->n.min; 731 clock.n <= limit->n.max; clock.n++) { 732 for (clock.p1 = limit->p1.min; 733 clock.p1 <= limit->p1.max; clock.p1++) { 734 int this_err; 735 736 pnv_calc_dpll_params(refclk, &clock); 737 if (!intel_pll_is_valid(display, 738 limit, 739 &clock)) 740 continue; 741 if (match_clock && 742 clock.p != match_clock->p) 743 continue; 744 745 this_err = abs(clock.dot - target); 746 if (this_err < err) { 747 *best_clock = clock; 748 err = this_err; 749 } 750 } 751 } 752 } 753 } 754 755 return (err != target); 756 } 757 758 /* 759 * Returns a set of divisors for the desired target clock with the given 760 * refclk, or FALSE. 761 * 762 * Target and reference clocks are specified in kHz. 763 * 764 * If match_clock is provided, then best_clock P divider must match the P 765 * divider from @match_clock used for LVDS downclocking. 766 */ 767 static bool 768 g4x_find_best_dpll(const struct intel_limit *limit, 769 struct intel_crtc_state *crtc_state, 770 int target, int refclk, 771 const struct dpll *match_clock, 772 struct dpll *best_clock) 773 { 774 struct intel_display *display = to_intel_display(crtc_state); 775 struct dpll clock; 776 int max_n; 777 bool found = false; 778 /* approximately equals target * 0.00585 */ 779 int err_most = (target >> 8) + (target >> 9); 780 781 memset(best_clock, 0, sizeof(*best_clock)); 782 783 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 784 785 max_n = limit->n.max; 786 /* based on hardware requirement, prefer smaller n to precision */ 787 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 788 /* based on hardware requirement, prefer larger m1,m2 */ 789 for (clock.m1 = limit->m1.max; 790 clock.m1 >= limit->m1.min; clock.m1--) { 791 for (clock.m2 = limit->m2.max; 792 clock.m2 >= limit->m2.min; clock.m2--) { 793 for (clock.p1 = limit->p1.max; 794 clock.p1 >= limit->p1.min; clock.p1--) { 795 int this_err; 796 797 i9xx_calc_dpll_params(refclk, &clock); 798 if (!intel_pll_is_valid(display, 799 limit, 800 &clock)) 801 continue; 802 803 this_err = abs(clock.dot - target); 804 if (this_err < err_most) { 805 *best_clock = clock; 806 err_most = this_err; 807 max_n = clock.n; 808 found = true; 809 } 810 } 811 } 812 } 813 } 814 return found; 815 } 816 817 /* 818 * Check if the calculated PLL configuration is more optimal compared to the 819 * best configuration and error found so far. Return the calculated error. 820 */ 821 static bool vlv_PLL_is_optimal(struct intel_display *display, int target_freq, 822 const struct dpll *calculated_clock, 823 const struct dpll *best_clock, 824 unsigned int best_error_ppm, 825 unsigned int *error_ppm) 826 { 827 /* 828 * For CHV ignore the error and consider only the P value. 829 * Prefer a bigger P value based on HW requirements. 830 */ 831 if (display->platform.cherryview) { 832 *error_ppm = 0; 833 834 return calculated_clock->p > best_clock->p; 835 } 836 837 if (drm_WARN_ON_ONCE(display->drm, !target_freq)) 838 return false; 839 840 *error_ppm = div_u64(1000000ULL * 841 abs(target_freq - calculated_clock->dot), 842 target_freq); 843 /* 844 * Prefer a better P value over a better (smaller) error if the error 845 * is small. Ensure this preference for future configurations too by 846 * setting the error to 0. 847 */ 848 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { 849 *error_ppm = 0; 850 851 return true; 852 } 853 854 return *error_ppm + 10 < best_error_ppm; 855 } 856 857 /* 858 * Returns a set of divisors for the desired target clock with the given 859 * refclk, or FALSE. 860 */ 861 static bool 862 vlv_find_best_dpll(const struct intel_limit *limit, 863 struct intel_crtc_state *crtc_state, 864 int target, int refclk, 865 const struct dpll *match_clock, 866 struct dpll *best_clock) 867 { 868 struct intel_display *display = to_intel_display(crtc_state); 869 struct dpll clock; 870 unsigned int bestppm = 1000000; 871 /* min update 19.2 MHz */ 872 int max_n = min(limit->n.max, refclk / 19200); 873 bool found = false; 874 875 memset(best_clock, 0, sizeof(*best_clock)); 876 877 /* based on hardware requirement, prefer smaller n to precision */ 878 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 879 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 880 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; 881 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 882 clock.p = clock.p1 * clock.p2 * 5; 883 /* based on hardware requirement, prefer bigger m1,m2 values */ 884 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { 885 unsigned int ppm; 886 887 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, 888 refclk * clock.m1); 889 890 vlv_calc_dpll_params(refclk, &clock); 891 892 if (!intel_pll_is_valid(display, 893 limit, 894 &clock)) 895 continue; 896 897 if (!vlv_PLL_is_optimal(display, target, 898 &clock, 899 best_clock, 900 bestppm, &ppm)) 901 continue; 902 903 *best_clock = clock; 904 bestppm = ppm; 905 found = true; 906 } 907 } 908 } 909 } 910 911 return found; 912 } 913 914 /* 915 * Returns a set of divisors for the desired target clock with the given 916 * refclk, or FALSE. 917 */ 918 static bool 919 chv_find_best_dpll(const struct intel_limit *limit, 920 struct intel_crtc_state *crtc_state, 921 int target, int refclk, 922 const struct dpll *match_clock, 923 struct dpll *best_clock) 924 { 925 struct intel_display *display = to_intel_display(crtc_state); 926 unsigned int best_error_ppm; 927 struct dpll clock; 928 u64 m2; 929 int found = false; 930 931 memset(best_clock, 0, sizeof(*best_clock)); 932 best_error_ppm = 1000000; 933 934 /* 935 * Based on hardware doc, the n always set to 1, and m1 always 936 * set to 2. If requires to support 200Mhz refclk, we need to 937 * revisit this because n may not 1 anymore. 938 */ 939 clock.n = 1; 940 clock.m1 = 2; 941 942 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 943 for (clock.p2 = limit->p2.p2_fast; 944 clock.p2 >= limit->p2.p2_slow; 945 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 946 unsigned int error_ppm; 947 948 clock.p = clock.p1 * clock.p2 * 5; 949 950 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, 951 refclk * clock.m1); 952 953 if (m2 > INT_MAX/clock.m1) 954 continue; 955 956 clock.m2 = m2; 957 958 chv_calc_dpll_params(refclk, &clock); 959 960 if (!intel_pll_is_valid(display, limit, &clock)) 961 continue; 962 963 if (!vlv_PLL_is_optimal(display, target, &clock, best_clock, 964 best_error_ppm, &error_ppm)) 965 continue; 966 967 *best_clock = clock; 968 best_error_ppm = error_ppm; 969 found = true; 970 } 971 } 972 973 return found; 974 } 975 976 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, 977 struct dpll *best_clock) 978 { 979 const struct intel_limit *limit = &intel_limits_bxt; 980 int refclk = 100000; 981 982 return chv_find_best_dpll(limit, crtc_state, 983 crtc_state->port_clock, refclk, 984 NULL, best_clock); 985 } 986 987 u32 i9xx_dpll_compute_fp(const struct dpll *dpll) 988 { 989 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; 990 } 991 992 static u32 pnv_dpll_compute_fp(const struct dpll *dpll) 993 { 994 return (1 << dpll->n) << 16 | dpll->m2; 995 } 996 997 static u32 i965_dpll_md(const struct intel_crtc_state *crtc_state) 998 { 999 return (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 1000 } 1001 1002 static u32 i9xx_dpll(const struct intel_crtc_state *crtc_state, 1003 const struct dpll *clock, 1004 const struct dpll *reduced_clock) 1005 { 1006 struct intel_display *display = to_intel_display(crtc_state); 1007 u32 dpll; 1008 1009 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS; 1010 1011 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 1012 dpll |= DPLLB_MODE_LVDS; 1013 else 1014 dpll |= DPLLB_MODE_DAC_SERIAL; 1015 1016 if (display->platform.i945g || display->platform.i945gm || 1017 display->platform.g33 || display->platform.pineview) { 1018 dpll |= (crtc_state->pixel_multiplier - 1) 1019 << SDVO_MULTIPLIER_SHIFT_HIRES; 1020 } 1021 1022 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 1023 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1024 dpll |= DPLL_SDVO_HIGH_SPEED; 1025 1026 if (intel_crtc_has_dp_encoder(crtc_state)) 1027 dpll |= DPLL_SDVO_HIGH_SPEED; 1028 1029 /* compute bitmask from p1 value */ 1030 if (display->platform.g4x) { 1031 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1032 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 1033 } else if (display->platform.pineview) { 1034 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 1035 WARN_ON(reduced_clock->p1 != clock->p1); 1036 } else { 1037 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1038 WARN_ON(reduced_clock->p1 != clock->p1); 1039 } 1040 1041 switch (clock->p2) { 1042 case 5: 1043 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 1044 break; 1045 case 7: 1046 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 1047 break; 1048 case 10: 1049 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 1050 break; 1051 case 14: 1052 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 1053 break; 1054 } 1055 WARN_ON(reduced_clock->p2 != clock->p2); 1056 1057 if (DISPLAY_VER(display) >= 4) 1058 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 1059 1060 if (crtc_state->sdvo_tv_clock) 1061 dpll |= PLL_REF_INPUT_TVCLKINBC; 1062 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1063 intel_panel_use_ssc(display)) 1064 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 1065 else 1066 dpll |= PLL_REF_INPUT_DREFCLK; 1067 1068 return dpll; 1069 } 1070 1071 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state, 1072 const struct dpll *clock, 1073 const struct dpll *reduced_clock) 1074 { 1075 struct intel_display *display = to_intel_display(crtc_state); 1076 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1077 1078 if (display->platform.pineview) { 1079 hw_state->fp0 = pnv_dpll_compute_fp(clock); 1080 hw_state->fp1 = pnv_dpll_compute_fp(reduced_clock); 1081 } else { 1082 hw_state->fp0 = i9xx_dpll_compute_fp(clock); 1083 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock); 1084 } 1085 1086 hw_state->dpll = i9xx_dpll(crtc_state, clock, reduced_clock); 1087 1088 if (DISPLAY_VER(display) >= 4) 1089 hw_state->dpll_md = i965_dpll_md(crtc_state); 1090 } 1091 1092 static u32 i8xx_dpll(const struct intel_crtc_state *crtc_state, 1093 const struct dpll *clock, 1094 const struct dpll *reduced_clock) 1095 { 1096 struct intel_display *display = to_intel_display(crtc_state); 1097 u32 dpll; 1098 1099 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS; 1100 1101 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1102 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1103 } else { 1104 if (clock->p1 == 2) 1105 dpll |= PLL_P1_DIVIDE_BY_TWO; 1106 else 1107 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1108 if (clock->p2 == 4) 1109 dpll |= PLL_P2_DIVIDE_BY_4; 1110 } 1111 WARN_ON(reduced_clock->p1 != clock->p1); 1112 WARN_ON(reduced_clock->p2 != clock->p2); 1113 1114 /* 1115 * Bspec: 1116 * "[Almador Errata}: For the correct operation of the muxed DVO pins 1117 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, 1118 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock 1119 * Enable) must be set to “1” in both the DPLL A Control Register 1120 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." 1121 * 1122 * For simplicity We simply keep both bits always enabled in 1123 * both DPLLS. The spec says we should disable the DVO 2X clock 1124 * when not needed, but this seems to work fine in practice. 1125 */ 1126 if (display->platform.i830 || 1127 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) 1128 dpll |= DPLL_DVO_2X_MODE; 1129 1130 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1131 intel_panel_use_ssc(display)) 1132 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 1133 else 1134 dpll |= PLL_REF_INPUT_DREFCLK; 1135 1136 return dpll; 1137 } 1138 1139 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state, 1140 const struct dpll *clock, 1141 const struct dpll *reduced_clock) 1142 { 1143 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1144 1145 hw_state->fp0 = i9xx_dpll_compute_fp(clock); 1146 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock); 1147 1148 hw_state->dpll = i8xx_dpll(crtc_state, clock, reduced_clock); 1149 } 1150 1151 static int hsw_crtc_compute_clock(struct intel_atomic_state *state, 1152 struct intel_crtc *crtc) 1153 { 1154 struct intel_display *display = to_intel_display(state); 1155 struct intel_crtc_state *crtc_state = 1156 intel_atomic_get_new_crtc_state(state, crtc); 1157 struct intel_encoder *encoder = 1158 intel_get_crtc_new_encoder(state, crtc_state); 1159 int ret; 1160 1161 if (DISPLAY_VER(display) < 11 && 1162 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1163 return 0; 1164 1165 ret = intel_compute_shared_dplls(state, crtc, encoder); 1166 if (ret) 1167 return ret; 1168 1169 /* FIXME this is a mess */ 1170 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1171 return 0; 1172 1173 /* CRT dotclock is determined via other means */ 1174 if (!crtc_state->has_pch_encoder) 1175 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1176 1177 return 0; 1178 } 1179 1180 static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state, 1181 struct intel_crtc *crtc) 1182 { 1183 struct intel_display *display = to_intel_display(state); 1184 struct intel_crtc_state *crtc_state = 1185 intel_atomic_get_new_crtc_state(state, crtc); 1186 struct intel_encoder *encoder = 1187 intel_get_crtc_new_encoder(state, crtc_state); 1188 1189 if (DISPLAY_VER(display) < 11 && 1190 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1191 return 0; 1192 1193 return intel_reserve_shared_dplls(state, crtc, encoder); 1194 } 1195 1196 static int dg2_crtc_compute_clock(struct intel_atomic_state *state, 1197 struct intel_crtc *crtc) 1198 { 1199 struct intel_crtc_state *crtc_state = 1200 intel_atomic_get_new_crtc_state(state, crtc); 1201 struct intel_encoder *encoder = 1202 intel_get_crtc_new_encoder(state, crtc_state); 1203 int ret; 1204 1205 ret = intel_mpllb_calc_state(crtc_state, encoder); 1206 if (ret) 1207 return ret; 1208 1209 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1210 1211 return 0; 1212 } 1213 1214 static int mtl_crtc_compute_clock(struct intel_atomic_state *state, 1215 struct intel_crtc *crtc) 1216 { 1217 struct intel_crtc_state *crtc_state = 1218 intel_atomic_get_new_crtc_state(state, crtc); 1219 struct intel_encoder *encoder = 1220 intel_get_crtc_new_encoder(state, crtc_state); 1221 int ret; 1222 1223 ret = intel_cx0pll_calc_state(crtc_state, encoder); 1224 if (ret) 1225 return ret; 1226 1227 /* TODO: Do the readback via intel_compute_shared_dplls() */ 1228 crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->dpll_hw_state.cx0pll); 1229 1230 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1231 1232 return 0; 1233 } 1234 1235 static int ilk_fb_cb_factor(const struct intel_crtc_state *crtc_state) 1236 { 1237 struct intel_display *display = to_intel_display(crtc_state); 1238 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1239 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 1240 1241 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1242 ((intel_panel_use_ssc(display) && display->vbt.lvds_ssc_freq == 100000) || 1243 (HAS_PCH_IBX(i915) && intel_is_dual_link_lvds(display)))) 1244 return 25; 1245 1246 if (crtc_state->sdvo_tv_clock) 1247 return 20; 1248 1249 return 21; 1250 } 1251 1252 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor) 1253 { 1254 return dpll->m < factor * dpll->n; 1255 } 1256 1257 static u32 ilk_dpll_compute_fp(const struct dpll *clock, int factor) 1258 { 1259 u32 fp; 1260 1261 fp = i9xx_dpll_compute_fp(clock); 1262 if (ilk_needs_fb_cb_tune(clock, factor)) 1263 fp |= FP_CB_TUNE; 1264 1265 return fp; 1266 } 1267 1268 static u32 ilk_dpll(const struct intel_crtc_state *crtc_state, 1269 const struct dpll *clock, 1270 const struct dpll *reduced_clock) 1271 { 1272 struct intel_display *display = to_intel_display(crtc_state); 1273 u32 dpll; 1274 1275 dpll = DPLL_VCO_ENABLE; 1276 1277 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) 1278 dpll |= DPLLB_MODE_LVDS; 1279 else 1280 dpll |= DPLLB_MODE_DAC_SERIAL; 1281 1282 dpll |= (crtc_state->pixel_multiplier - 1) 1283 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 1284 1285 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || 1286 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1287 dpll |= DPLL_SDVO_HIGH_SPEED; 1288 1289 if (intel_crtc_has_dp_encoder(crtc_state)) 1290 dpll |= DPLL_SDVO_HIGH_SPEED; 1291 1292 /* 1293 * The high speed IO clock is only really required for 1294 * SDVO/HDMI/DP, but we also enable it for CRT to make it 1295 * possible to share the DPLL between CRT and HDMI. Enabling 1296 * the clock needlessly does no real harm, except use up a 1297 * bit of power potentially. 1298 * 1299 * We'll limit this to IVB with 3 pipes, since it has only two 1300 * DPLLs and so DPLL sharing is the only way to get three pipes 1301 * driving PCH ports at the same time. On SNB we could do this, 1302 * and potentially avoid enabling the second DPLL, but it's not 1303 * clear if it''s a win or loss power wise. No point in doing 1304 * this on ILK at all since it has a fixed DPLL<->pipe mapping. 1305 */ 1306 if (INTEL_NUM_PIPES(display) == 3 && 1307 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) 1308 dpll |= DPLL_SDVO_HIGH_SPEED; 1309 1310 /* compute bitmask from p1 value */ 1311 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 1312 /* also FPA1 */ 1313 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 1314 1315 switch (clock->p2) { 1316 case 5: 1317 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 1318 break; 1319 case 7: 1320 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 1321 break; 1322 case 10: 1323 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 1324 break; 1325 case 14: 1326 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 1327 break; 1328 } 1329 WARN_ON(reduced_clock->p2 != clock->p2); 1330 1331 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && 1332 intel_panel_use_ssc(display)) 1333 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 1334 else 1335 dpll |= PLL_REF_INPUT_DREFCLK; 1336 1337 return dpll; 1338 } 1339 1340 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state, 1341 const struct dpll *clock, 1342 const struct dpll *reduced_clock) 1343 { 1344 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1345 int factor = ilk_fb_cb_factor(crtc_state); 1346 1347 hw_state->fp0 = ilk_dpll_compute_fp(clock, factor); 1348 hw_state->fp1 = ilk_dpll_compute_fp(reduced_clock, factor); 1349 1350 hw_state->dpll = ilk_dpll(crtc_state, clock, reduced_clock); 1351 } 1352 1353 static int ilk_crtc_compute_clock(struct intel_atomic_state *state, 1354 struct intel_crtc *crtc) 1355 { 1356 struct intel_display *display = to_intel_display(state); 1357 struct intel_crtc_state *crtc_state = 1358 intel_atomic_get_new_crtc_state(state, crtc); 1359 const struct intel_limit *limit; 1360 int refclk = 120000; 1361 int ret; 1362 1363 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 1364 if (!crtc_state->has_pch_encoder) 1365 return 0; 1366 1367 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1368 if (intel_panel_use_ssc(display)) { 1369 drm_dbg_kms(display->drm, 1370 "using SSC reference clock of %d kHz\n", 1371 display->vbt.lvds_ssc_freq); 1372 refclk = display->vbt.lvds_ssc_freq; 1373 } 1374 1375 if (intel_is_dual_link_lvds(display)) { 1376 if (refclk == 100000) 1377 limit = &ilk_limits_dual_lvds_100m; 1378 else 1379 limit = &ilk_limits_dual_lvds; 1380 } else { 1381 if (refclk == 100000) 1382 limit = &ilk_limits_single_lvds_100m; 1383 else 1384 limit = &ilk_limits_single_lvds; 1385 } 1386 } else { 1387 limit = &ilk_limits_dac; 1388 } 1389 1390 if (!crtc_state->clock_set && 1391 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1392 refclk, NULL, &crtc_state->dpll)) 1393 return -EINVAL; 1394 1395 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1396 1397 ilk_compute_dpll(crtc_state, &crtc_state->dpll, 1398 &crtc_state->dpll); 1399 1400 ret = intel_compute_shared_dplls(state, crtc, NULL); 1401 if (ret) 1402 return ret; 1403 1404 crtc_state->port_clock = crtc_state->dpll.dot; 1405 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1406 1407 return ret; 1408 } 1409 1410 static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state, 1411 struct intel_crtc *crtc) 1412 { 1413 struct intel_crtc_state *crtc_state = 1414 intel_atomic_get_new_crtc_state(state, crtc); 1415 1416 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 1417 if (!crtc_state->has_pch_encoder) 1418 return 0; 1419 1420 return intel_reserve_shared_dplls(state, crtc, NULL); 1421 } 1422 1423 static u32 vlv_dpll(const struct intel_crtc_state *crtc_state) 1424 { 1425 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1426 u32 dpll; 1427 1428 dpll = DPLL_INTEGRATED_REF_CLK_VLV | 1429 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1430 1431 if (crtc->pipe != PIPE_A) 1432 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 1433 1434 /* DPLL not used with DSI, but still need the rest set up */ 1435 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1436 dpll |= DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV; 1437 1438 return dpll; 1439 } 1440 1441 void vlv_compute_dpll(struct intel_crtc_state *crtc_state) 1442 { 1443 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1444 1445 hw_state->dpll = vlv_dpll(crtc_state); 1446 hw_state->dpll_md = i965_dpll_md(crtc_state); 1447 } 1448 1449 static u32 chv_dpll(const struct intel_crtc_state *crtc_state) 1450 { 1451 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1452 u32 dpll; 1453 1454 dpll = DPLL_SSC_REF_CLK_CHV | 1455 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1456 1457 if (crtc->pipe != PIPE_A) 1458 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 1459 1460 /* DPLL not used with DSI, but still need the rest set up */ 1461 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1462 dpll |= DPLL_VCO_ENABLE; 1463 1464 return dpll; 1465 } 1466 1467 void chv_compute_dpll(struct intel_crtc_state *crtc_state) 1468 { 1469 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1470 1471 hw_state->dpll = chv_dpll(crtc_state); 1472 hw_state->dpll_md = i965_dpll_md(crtc_state); 1473 } 1474 1475 static int chv_crtc_compute_clock(struct intel_atomic_state *state, 1476 struct intel_crtc *crtc) 1477 { 1478 struct intel_crtc_state *crtc_state = 1479 intel_atomic_get_new_crtc_state(state, crtc); 1480 const struct intel_limit *limit = &intel_limits_chv; 1481 int refclk = 100000; 1482 1483 if (!crtc_state->clock_set && 1484 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1485 refclk, NULL, &crtc_state->dpll)) 1486 return -EINVAL; 1487 1488 chv_calc_dpll_params(refclk, &crtc_state->dpll); 1489 1490 chv_compute_dpll(crtc_state); 1491 1492 /* FIXME this is a mess */ 1493 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1494 return 0; 1495 1496 crtc_state->port_clock = crtc_state->dpll.dot; 1497 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1498 1499 return 0; 1500 } 1501 1502 static int vlv_crtc_compute_clock(struct intel_atomic_state *state, 1503 struct intel_crtc *crtc) 1504 { 1505 struct intel_crtc_state *crtc_state = 1506 intel_atomic_get_new_crtc_state(state, crtc); 1507 const struct intel_limit *limit = &intel_limits_vlv; 1508 int refclk = 100000; 1509 1510 if (!crtc_state->clock_set && 1511 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1512 refclk, NULL, &crtc_state->dpll)) 1513 return -EINVAL; 1514 1515 vlv_calc_dpll_params(refclk, &crtc_state->dpll); 1516 1517 vlv_compute_dpll(crtc_state); 1518 1519 /* FIXME this is a mess */ 1520 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) 1521 return 0; 1522 1523 crtc_state->port_clock = crtc_state->dpll.dot; 1524 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1525 1526 return 0; 1527 } 1528 1529 static int g4x_crtc_compute_clock(struct intel_atomic_state *state, 1530 struct intel_crtc *crtc) 1531 { 1532 struct intel_display *display = to_intel_display(state); 1533 struct intel_crtc_state *crtc_state = 1534 intel_atomic_get_new_crtc_state(state, crtc); 1535 const struct intel_limit *limit; 1536 int refclk = 96000; 1537 1538 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1539 if (intel_panel_use_ssc(display)) { 1540 refclk = display->vbt.lvds_ssc_freq; 1541 drm_dbg_kms(display->drm, 1542 "using SSC reference clock of %d kHz\n", 1543 refclk); 1544 } 1545 1546 if (intel_is_dual_link_lvds(display)) 1547 limit = &intel_limits_g4x_dual_channel_lvds; 1548 else 1549 limit = &intel_limits_g4x_single_channel_lvds; 1550 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || 1551 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { 1552 limit = &intel_limits_g4x_hdmi; 1553 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { 1554 limit = &intel_limits_g4x_sdvo; 1555 } else { 1556 /* The option is for other outputs */ 1557 limit = &intel_limits_i9xx_sdvo; 1558 } 1559 1560 if (!crtc_state->clock_set && 1561 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1562 refclk, NULL, &crtc_state->dpll)) 1563 return -EINVAL; 1564 1565 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1566 1567 i9xx_compute_dpll(crtc_state, &crtc_state->dpll, 1568 &crtc_state->dpll); 1569 1570 crtc_state->port_clock = crtc_state->dpll.dot; 1571 /* FIXME this is a mess */ 1572 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT)) 1573 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1574 1575 return 0; 1576 } 1577 1578 static int pnv_crtc_compute_clock(struct intel_atomic_state *state, 1579 struct intel_crtc *crtc) 1580 { 1581 struct intel_display *display = to_intel_display(state); 1582 struct intel_crtc_state *crtc_state = 1583 intel_atomic_get_new_crtc_state(state, crtc); 1584 const struct intel_limit *limit; 1585 int refclk = 96000; 1586 1587 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1588 if (intel_panel_use_ssc(display)) { 1589 refclk = display->vbt.lvds_ssc_freq; 1590 drm_dbg_kms(display->drm, 1591 "using SSC reference clock of %d kHz\n", 1592 refclk); 1593 } 1594 1595 limit = &pnv_limits_lvds; 1596 } else { 1597 limit = &pnv_limits_sdvo; 1598 } 1599 1600 if (!crtc_state->clock_set && 1601 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1602 refclk, NULL, &crtc_state->dpll)) 1603 return -EINVAL; 1604 1605 pnv_calc_dpll_params(refclk, &crtc_state->dpll); 1606 1607 i9xx_compute_dpll(crtc_state, &crtc_state->dpll, 1608 &crtc_state->dpll); 1609 1610 crtc_state->port_clock = crtc_state->dpll.dot; 1611 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1612 1613 return 0; 1614 } 1615 1616 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state, 1617 struct intel_crtc *crtc) 1618 { 1619 struct intel_display *display = to_intel_display(state); 1620 struct intel_crtc_state *crtc_state = 1621 intel_atomic_get_new_crtc_state(state, crtc); 1622 const struct intel_limit *limit; 1623 int refclk = 96000; 1624 1625 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1626 if (intel_panel_use_ssc(display)) { 1627 refclk = display->vbt.lvds_ssc_freq; 1628 drm_dbg_kms(display->drm, 1629 "using SSC reference clock of %d kHz\n", 1630 refclk); 1631 } 1632 1633 limit = &intel_limits_i9xx_lvds; 1634 } else { 1635 limit = &intel_limits_i9xx_sdvo; 1636 } 1637 1638 if (!crtc_state->clock_set && 1639 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1640 refclk, NULL, &crtc_state->dpll)) 1641 return -EINVAL; 1642 1643 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1644 1645 i9xx_compute_dpll(crtc_state, &crtc_state->dpll, 1646 &crtc_state->dpll); 1647 1648 crtc_state->port_clock = crtc_state->dpll.dot; 1649 /* FIXME this is a mess */ 1650 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT)) 1651 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1652 1653 return 0; 1654 } 1655 1656 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state, 1657 struct intel_crtc *crtc) 1658 { 1659 struct intel_display *display = to_intel_display(state); 1660 struct intel_crtc_state *crtc_state = 1661 intel_atomic_get_new_crtc_state(state, crtc); 1662 const struct intel_limit *limit; 1663 int refclk = 48000; 1664 1665 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { 1666 if (intel_panel_use_ssc(display)) { 1667 refclk = display->vbt.lvds_ssc_freq; 1668 drm_dbg_kms(display->drm, 1669 "using SSC reference clock of %d kHz\n", 1670 refclk); 1671 } 1672 1673 limit = &intel_limits_i8xx_lvds; 1674 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { 1675 limit = &intel_limits_i8xx_dvo; 1676 } else { 1677 limit = &intel_limits_i8xx_dac; 1678 } 1679 1680 if (!crtc_state->clock_set && 1681 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 1682 refclk, NULL, &crtc_state->dpll)) 1683 return -EINVAL; 1684 1685 i9xx_calc_dpll_params(refclk, &crtc_state->dpll); 1686 1687 i8xx_compute_dpll(crtc_state, &crtc_state->dpll, 1688 &crtc_state->dpll); 1689 1690 crtc_state->port_clock = crtc_state->dpll.dot; 1691 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state); 1692 1693 return 0; 1694 } 1695 1696 static const struct intel_dpll_funcs mtl_dpll_funcs = { 1697 .crtc_compute_clock = mtl_crtc_compute_clock, 1698 }; 1699 1700 static const struct intel_dpll_funcs dg2_dpll_funcs = { 1701 .crtc_compute_clock = dg2_crtc_compute_clock, 1702 }; 1703 1704 static const struct intel_dpll_funcs hsw_dpll_funcs = { 1705 .crtc_compute_clock = hsw_crtc_compute_clock, 1706 .crtc_get_shared_dpll = hsw_crtc_get_shared_dpll, 1707 }; 1708 1709 static const struct intel_dpll_funcs ilk_dpll_funcs = { 1710 .crtc_compute_clock = ilk_crtc_compute_clock, 1711 .crtc_get_shared_dpll = ilk_crtc_get_shared_dpll, 1712 }; 1713 1714 static const struct intel_dpll_funcs chv_dpll_funcs = { 1715 .crtc_compute_clock = chv_crtc_compute_clock, 1716 }; 1717 1718 static const struct intel_dpll_funcs vlv_dpll_funcs = { 1719 .crtc_compute_clock = vlv_crtc_compute_clock, 1720 }; 1721 1722 static const struct intel_dpll_funcs g4x_dpll_funcs = { 1723 .crtc_compute_clock = g4x_crtc_compute_clock, 1724 }; 1725 1726 static const struct intel_dpll_funcs pnv_dpll_funcs = { 1727 .crtc_compute_clock = pnv_crtc_compute_clock, 1728 }; 1729 1730 static const struct intel_dpll_funcs i9xx_dpll_funcs = { 1731 .crtc_compute_clock = i9xx_crtc_compute_clock, 1732 }; 1733 1734 static const struct intel_dpll_funcs i8xx_dpll_funcs = { 1735 .crtc_compute_clock = i8xx_crtc_compute_clock, 1736 }; 1737 1738 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state, 1739 struct intel_crtc *crtc) 1740 { 1741 struct intel_display *display = to_intel_display(state); 1742 struct intel_crtc_state *crtc_state = 1743 intel_atomic_get_new_crtc_state(state, crtc); 1744 int ret; 1745 1746 drm_WARN_ON(display->drm, !intel_crtc_needs_modeset(crtc_state)); 1747 1748 memset(&crtc_state->dpll_hw_state, 0, 1749 sizeof(crtc_state->dpll_hw_state)); 1750 1751 if (!crtc_state->hw.enable) 1752 return 0; 1753 1754 ret = display->funcs.dpll->crtc_compute_clock(state, crtc); 1755 if (ret) { 1756 drm_dbg_kms(display->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n", 1757 crtc->base.base.id, crtc->base.name); 1758 return ret; 1759 } 1760 1761 return 0; 1762 } 1763 1764 int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state, 1765 struct intel_crtc *crtc) 1766 { 1767 struct intel_display *display = to_intel_display(state); 1768 struct intel_crtc_state *crtc_state = 1769 intel_atomic_get_new_crtc_state(state, crtc); 1770 int ret; 1771 1772 drm_WARN_ON(display->drm, !intel_crtc_needs_modeset(crtc_state)); 1773 drm_WARN_ON(display->drm, !crtc_state->hw.enable && crtc_state->shared_dpll); 1774 1775 if (!crtc_state->hw.enable || crtc_state->shared_dpll) 1776 return 0; 1777 1778 if (!display->funcs.dpll->crtc_get_shared_dpll) 1779 return 0; 1780 1781 ret = display->funcs.dpll->crtc_get_shared_dpll(state, crtc); 1782 if (ret) { 1783 drm_dbg_kms(display->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n", 1784 crtc->base.base.id, crtc->base.name); 1785 return ret; 1786 } 1787 1788 return 0; 1789 } 1790 1791 void 1792 intel_dpll_init_clock_hook(struct intel_display *display) 1793 { 1794 struct drm_i915_private *dev_priv = to_i915(display->drm); 1795 1796 if (DISPLAY_VER(display) >= 14) 1797 display->funcs.dpll = &mtl_dpll_funcs; 1798 else if (display->platform.dg2) 1799 display->funcs.dpll = &dg2_dpll_funcs; 1800 else if (DISPLAY_VER(display) >= 9 || HAS_DDI(display)) 1801 display->funcs.dpll = &hsw_dpll_funcs; 1802 else if (HAS_PCH_SPLIT(dev_priv)) 1803 display->funcs.dpll = &ilk_dpll_funcs; 1804 else if (display->platform.cherryview) 1805 display->funcs.dpll = &chv_dpll_funcs; 1806 else if (display->platform.valleyview) 1807 display->funcs.dpll = &vlv_dpll_funcs; 1808 else if (display->platform.g4x) 1809 display->funcs.dpll = &g4x_dpll_funcs; 1810 else if (display->platform.pineview) 1811 display->funcs.dpll = &pnv_dpll_funcs; 1812 else if (DISPLAY_VER(display) != 2) 1813 display->funcs.dpll = &i9xx_dpll_funcs; 1814 else 1815 display->funcs.dpll = &i8xx_dpll_funcs; 1816 } 1817 1818 static bool i9xx_has_pps(struct intel_display *display) 1819 { 1820 if (display->platform.i830) 1821 return false; 1822 1823 return display->platform.pineview || display->platform.mobile; 1824 } 1825 1826 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state) 1827 { 1828 struct intel_display *display = to_intel_display(crtc_state); 1829 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1830 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1831 enum pipe pipe = crtc->pipe; 1832 int i; 1833 1834 assert_transcoder_disabled(display, crtc_state->cpu_transcoder); 1835 1836 /* PLL is protected by panel, make sure we can write it */ 1837 if (i9xx_has_pps(display)) 1838 assert_pps_unlocked(display, pipe); 1839 1840 intel_de_write(display, FP0(pipe), hw_state->fp0); 1841 intel_de_write(display, FP1(pipe), hw_state->fp1); 1842 1843 /* 1844 * Apparently we need to have VGA mode enabled prior to changing 1845 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 1846 * dividers, even though the register value does change. 1847 */ 1848 intel_de_write(display, DPLL(display, pipe), 1849 hw_state->dpll & ~DPLL_VGA_MODE_DIS); 1850 intel_de_write(display, DPLL(display, pipe), hw_state->dpll); 1851 1852 /* Wait for the clocks to stabilize. */ 1853 intel_de_posting_read(display, DPLL(display, pipe)); 1854 udelay(150); 1855 1856 if (DISPLAY_VER(display) >= 4) { 1857 intel_de_write(display, DPLL_MD(display, pipe), 1858 hw_state->dpll_md); 1859 } else { 1860 /* The pixel multiplier can only be updated once the 1861 * DPLL is enabled and the clocks are stable. 1862 * 1863 * So write it again. 1864 */ 1865 intel_de_write(display, DPLL(display, pipe), hw_state->dpll); 1866 } 1867 1868 /* We do this three times for luck */ 1869 for (i = 0; i < 3; i++) { 1870 intel_de_write(display, DPLL(display, pipe), hw_state->dpll); 1871 intel_de_posting_read(display, DPLL(display, pipe)); 1872 udelay(150); /* wait for warmup */ 1873 } 1874 } 1875 1876 static void vlv_pllb_recal_opamp(struct intel_display *display, 1877 enum dpio_phy phy, enum dpio_channel ch) 1878 { 1879 struct drm_i915_private *dev_priv = to_i915(display->drm); 1880 u32 tmp; 1881 1882 /* 1883 * PLLB opamp always calibrates to max value of 0x3f, force enable it 1884 * and set it to a reasonable value instead. 1885 */ 1886 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch)); 1887 tmp &= 0xffffff00; 1888 tmp |= 0x00000030; 1889 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp); 1890 1891 tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11); 1892 tmp &= 0x00ffffff; 1893 tmp |= 0x8c000000; 1894 vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp); 1895 1896 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch)); 1897 tmp &= 0xffffff00; 1898 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp); 1899 1900 tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11); 1901 tmp &= 0x00ffffff; 1902 tmp |= 0xb0000000; 1903 vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp); 1904 } 1905 1906 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state) 1907 { 1908 struct intel_display *display = to_intel_display(crtc_state); 1909 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1910 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1911 const struct dpll *clock = &crtc_state->dpll; 1912 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 1913 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 1914 enum pipe pipe = crtc->pipe; 1915 u32 tmp, coreclk; 1916 1917 vlv_dpio_get(dev_priv); 1918 1919 /* See eDP HDMI DPIO driver vbios notes doc */ 1920 1921 /* PLL B needs special handling */ 1922 if (pipe == PIPE_B) 1923 vlv_pllb_recal_opamp(display, phy, ch); 1924 1925 /* Set up Tx target for periodic Rcomp update */ 1926 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW17_BCAST, 0x0100000f); 1927 1928 /* Disable target IRef on PLL */ 1929 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW16(ch)); 1930 tmp &= 0x00ffffff; 1931 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW16(ch), tmp); 1932 1933 /* Disable fast lock */ 1934 vlv_dpio_write(dev_priv, phy, VLV_CMN_DW0, 0x610); 1935 1936 /* Set idtafcrecal before PLL is enabled */ 1937 tmp = DPIO_M1_DIV(clock->m1) | 1938 DPIO_M2_DIV(clock->m2) | 1939 DPIO_P1_DIV(clock->p1) | 1940 DPIO_P2_DIV(clock->p2) | 1941 DPIO_N_DIV(clock->n) | 1942 DPIO_K_DIV(1); 1943 1944 /* 1945 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, 1946 * but we don't support that). 1947 * Note: don't use the DAC post divider as it seems unstable. 1948 */ 1949 tmp |= DPIO_S1_DIV(DPIO_S1_DIV_HDMIDP); 1950 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp); 1951 1952 tmp |= DPIO_ENABLE_CALIBRATION; 1953 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp); 1954 1955 /* Set HBR and RBR LPF coefficients */ 1956 if (crtc_state->port_clock == 162000 || 1957 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) || 1958 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) 1959 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch), 1960 0x009f0003); 1961 else 1962 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch), 1963 0x00d0000f); 1964 1965 if (intel_crtc_has_dp_encoder(crtc_state)) { 1966 /* Use SSC source */ 1967 if (pipe == PIPE_A) 1968 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), 1969 0x0df40000); 1970 else 1971 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), 1972 0x0df70000); 1973 } else { /* HDMI or VGA */ 1974 /* Use bend source */ 1975 if (pipe == PIPE_A) 1976 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), 1977 0x0df70000); 1978 else 1979 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch), 1980 0x0df40000); 1981 } 1982 1983 coreclk = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW7(ch)); 1984 coreclk = (coreclk & 0x0000ff00) | 0x01c00000; 1985 if (intel_crtc_has_dp_encoder(crtc_state)) 1986 coreclk |= 0x01000000; 1987 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW7(ch), coreclk); 1988 1989 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW19(ch), 0x87871000); 1990 1991 vlv_dpio_put(dev_priv); 1992 } 1993 1994 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state) 1995 { 1996 struct intel_display *display = to_intel_display(crtc_state); 1997 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1998 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 1999 enum pipe pipe = crtc->pipe; 2000 2001 intel_de_write(display, DPLL(display, pipe), hw_state->dpll); 2002 intel_de_posting_read(display, DPLL(display, pipe)); 2003 udelay(150); 2004 2005 if (intel_de_wait_for_set(display, DPLL(display, pipe), DPLL_LOCK_VLV, 1)) 2006 drm_err(display->drm, "DPLL %d failed to lock\n", pipe); 2007 } 2008 2009 void vlv_enable_pll(const struct intel_crtc_state *crtc_state) 2010 { 2011 struct intel_display *display = to_intel_display(crtc_state); 2012 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2013 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 2014 enum pipe pipe = crtc->pipe; 2015 2016 assert_transcoder_disabled(display, crtc_state->cpu_transcoder); 2017 2018 /* PLL is protected by panel, make sure we can write it */ 2019 assert_pps_unlocked(display, pipe); 2020 2021 /* Enable Refclk */ 2022 intel_de_write(display, DPLL(display, pipe), 2023 hw_state->dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); 2024 2025 if (hw_state->dpll & DPLL_VCO_ENABLE) { 2026 vlv_prepare_pll(crtc_state); 2027 _vlv_enable_pll(crtc_state); 2028 } 2029 2030 intel_de_write(display, DPLL_MD(display, pipe), hw_state->dpll_md); 2031 intel_de_posting_read(display, DPLL_MD(display, pipe)); 2032 } 2033 2034 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state) 2035 { 2036 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2037 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2038 const struct dpll *clock = &crtc_state->dpll; 2039 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 2040 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 2041 u32 tmp, loopfilter, tribuf_calcntr; 2042 u32 m2_frac; 2043 2044 m2_frac = clock->m2 & 0x3fffff; 2045 2046 vlv_dpio_get(dev_priv); 2047 2048 /* p1 and p2 divider */ 2049 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW13(ch), 2050 DPIO_CHV_S1_DIV(5) | 2051 DPIO_CHV_P1_DIV(clock->p1) | 2052 DPIO_CHV_P2_DIV(clock->p2) | 2053 DPIO_CHV_K_DIV(1)); 2054 2055 /* Feedback post-divider - m2 */ 2056 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW0(ch), 2057 DPIO_CHV_M2_DIV(clock->m2 >> 22)); 2058 2059 /* Feedback refclk divider - n and m1 */ 2060 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW1(ch), 2061 DPIO_CHV_M1_DIV(DPIO_CHV_M1_DIV_BY_2) | 2062 DPIO_CHV_N_DIV(1)); 2063 2064 /* M2 fraction division */ 2065 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW2(ch), 2066 DPIO_CHV_M2_FRAC_DIV(m2_frac)); 2067 2068 /* M2 fraction division enable */ 2069 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch)); 2070 tmp &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); 2071 tmp |= DPIO_CHV_FEEDFWD_GAIN(2); 2072 if (m2_frac) 2073 tmp |= DPIO_CHV_FRAC_DIV_EN; 2074 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW3(ch), tmp); 2075 2076 /* Program digital lock detect threshold */ 2077 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW9(ch)); 2078 tmp &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | 2079 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); 2080 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD(0x5); 2081 if (!m2_frac) 2082 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; 2083 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW9(ch), tmp); 2084 2085 /* Loop filter */ 2086 if (clock->vco == 5400000) { 2087 loopfilter = DPIO_CHV_PROP_COEFF(0x3) | 2088 DPIO_CHV_INT_COEFF(0x8) | 2089 DPIO_CHV_GAIN_CTRL(0x1); 2090 tribuf_calcntr = 0x9; 2091 } else if (clock->vco <= 6200000) { 2092 loopfilter = DPIO_CHV_PROP_COEFF(0x5) | 2093 DPIO_CHV_INT_COEFF(0xB) | 2094 DPIO_CHV_GAIN_CTRL(0x3); 2095 tribuf_calcntr = 0x9; 2096 } else if (clock->vco <= 6480000) { 2097 loopfilter = DPIO_CHV_PROP_COEFF(0x4) | 2098 DPIO_CHV_INT_COEFF(0x9) | 2099 DPIO_CHV_GAIN_CTRL(0x3); 2100 tribuf_calcntr = 0x8; 2101 } else { 2102 /* Not supported. Apply the same limits as in the max case */ 2103 loopfilter = DPIO_CHV_PROP_COEFF(0x4) | 2104 DPIO_CHV_INT_COEFF(0x9) | 2105 DPIO_CHV_GAIN_CTRL(0x3); 2106 tribuf_calcntr = 0; 2107 } 2108 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW6(ch), loopfilter); 2109 2110 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW8(ch)); 2111 tmp &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; 2112 tmp |= DPIO_CHV_TDC_TARGET_CNT(tribuf_calcntr); 2113 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW8(ch), tmp); 2114 2115 /* AFC Recal */ 2116 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), 2117 vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)) | 2118 DPIO_AFC_RECAL); 2119 2120 vlv_dpio_put(dev_priv); 2121 } 2122 2123 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state) 2124 { 2125 struct intel_display *display = to_intel_display(crtc_state); 2126 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2127 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2128 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 2129 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe); 2130 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe); 2131 enum pipe pipe = crtc->pipe; 2132 u32 tmp; 2133 2134 vlv_dpio_get(dev_priv); 2135 2136 /* Enable back the 10bit clock to display controller */ 2137 tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)); 2138 tmp |= DPIO_DCLKP_EN; 2139 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), tmp); 2140 2141 vlv_dpio_put(dev_priv); 2142 2143 /* 2144 * Need to wait > 100ns between dclkp clock enable bit and PLL enable. 2145 */ 2146 udelay(1); 2147 2148 /* Enable PLL */ 2149 intel_de_write(display, DPLL(display, pipe), hw_state->dpll); 2150 2151 /* Check PLL is locked */ 2152 if (intel_de_wait_for_set(display, DPLL(display, pipe), DPLL_LOCK_VLV, 1)) 2153 drm_err(display->drm, "PLL %d failed to lock\n", pipe); 2154 } 2155 2156 void chv_enable_pll(const struct intel_crtc_state *crtc_state) 2157 { 2158 struct intel_display *display = to_intel_display(crtc_state); 2159 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2160 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx; 2161 enum pipe pipe = crtc->pipe; 2162 2163 assert_transcoder_disabled(display, crtc_state->cpu_transcoder); 2164 2165 /* PLL is protected by panel, make sure we can write it */ 2166 assert_pps_unlocked(display, pipe); 2167 2168 /* Enable Refclk and SSC */ 2169 intel_de_write(display, DPLL(display, pipe), 2170 hw_state->dpll & ~DPLL_VCO_ENABLE); 2171 2172 if (hw_state->dpll & DPLL_VCO_ENABLE) { 2173 chv_prepare_pll(crtc_state); 2174 _chv_enable_pll(crtc_state); 2175 } 2176 2177 if (pipe != PIPE_A) { 2178 /* 2179 * WaPixelRepeatModeFixForC0:chv 2180 * 2181 * DPLLCMD is AWOL. Use chicken bits to propagate 2182 * the value from DPLLBMD to either pipe B or C. 2183 */ 2184 intel_de_write(display, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe)); 2185 intel_de_write(display, DPLL_MD(display, PIPE_B), 2186 hw_state->dpll_md); 2187 intel_de_write(display, CBR4_VLV, 0); 2188 display->state.chv_dpll_md[pipe] = hw_state->dpll_md; 2189 2190 /* 2191 * DPLLB VGA mode also seems to cause problems. 2192 * We should always have it disabled. 2193 */ 2194 drm_WARN_ON(display->drm, 2195 (intel_de_read(display, DPLL(display, PIPE_B)) & 2196 DPLL_VGA_MODE_DIS) == 0); 2197 } else { 2198 intel_de_write(display, DPLL_MD(display, pipe), 2199 hw_state->dpll_md); 2200 intel_de_posting_read(display, DPLL_MD(display, pipe)); 2201 } 2202 } 2203 2204 /** 2205 * vlv_force_pll_on - forcibly enable just the PLL 2206 * @display: display device 2207 * @pipe: pipe PLL to enable 2208 * @dpll: PLL configuration 2209 * 2210 * Enable the PLL for @pipe using the supplied @dpll config. To be used 2211 * in cases where we need the PLL enabled even when @pipe is not going to 2212 * be enabled. 2213 */ 2214 int vlv_force_pll_on(struct intel_display *display, enum pipe pipe, 2215 const struct dpll *dpll) 2216 { 2217 struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe); 2218 struct intel_crtc_state *crtc_state; 2219 2220 crtc_state = intel_crtc_state_alloc(crtc); 2221 if (!crtc_state) 2222 return -ENOMEM; 2223 2224 crtc_state->cpu_transcoder = (enum transcoder)pipe; 2225 crtc_state->pixel_multiplier = 1; 2226 crtc_state->dpll = *dpll; 2227 crtc_state->output_types = BIT(INTEL_OUTPUT_EDP); 2228 2229 if (display->platform.cherryview) { 2230 chv_compute_dpll(crtc_state); 2231 chv_enable_pll(crtc_state); 2232 } else { 2233 vlv_compute_dpll(crtc_state); 2234 vlv_enable_pll(crtc_state); 2235 } 2236 2237 intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi); 2238 2239 return 0; 2240 } 2241 2242 void vlv_disable_pll(struct intel_display *display, enum pipe pipe) 2243 { 2244 u32 val; 2245 2246 /* Make sure the pipe isn't still relying on us */ 2247 assert_transcoder_disabled(display, (enum transcoder)pipe); 2248 2249 val = DPLL_INTEGRATED_REF_CLK_VLV | 2250 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 2251 if (pipe != PIPE_A) 2252 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 2253 2254 intel_de_write(display, DPLL(display, pipe), val); 2255 intel_de_posting_read(display, DPLL(display, pipe)); 2256 } 2257 2258 void chv_disable_pll(struct intel_display *display, enum pipe pipe) 2259 { 2260 struct drm_i915_private *dev_priv = to_i915(display->drm); 2261 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 2262 enum dpio_phy phy = vlv_pipe_to_phy(pipe); 2263 u32 val; 2264 2265 /* Make sure the pipe isn't still relying on us */ 2266 assert_transcoder_disabled(display, (enum transcoder)pipe); 2267 2268 val = DPLL_SSC_REF_CLK_CHV | 2269 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 2270 if (pipe != PIPE_A) 2271 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 2272 2273 intel_de_write(display, DPLL(display, pipe), val); 2274 intel_de_posting_read(display, DPLL(display, pipe)); 2275 2276 vlv_dpio_get(dev_priv); 2277 2278 /* Disable 10bit clock to display controller */ 2279 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)); 2280 val &= ~DPIO_DCLKP_EN; 2281 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), val); 2282 2283 vlv_dpio_put(dev_priv); 2284 } 2285 2286 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state) 2287 { 2288 struct intel_display *display = to_intel_display(crtc_state); 2289 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2290 enum pipe pipe = crtc->pipe; 2291 2292 /* Don't disable pipe or pipe PLLs if needed */ 2293 if (display->platform.i830) 2294 return; 2295 2296 /* Make sure the pipe isn't still relying on us */ 2297 assert_transcoder_disabled(display, crtc_state->cpu_transcoder); 2298 2299 intel_de_write(display, DPLL(display, pipe), DPLL_VGA_MODE_DIS); 2300 intel_de_posting_read(display, DPLL(display, pipe)); 2301 } 2302 2303 2304 /** 2305 * vlv_force_pll_off - forcibly disable just the PLL 2306 * @display: display device 2307 * @pipe: pipe PLL to disable 2308 * 2309 * Disable the PLL for @pipe. To be used in cases where we need 2310 * the PLL enabled even when @pipe is not going to be enabled. 2311 */ 2312 void vlv_force_pll_off(struct intel_display *display, enum pipe pipe) 2313 { 2314 if (display->platform.cherryview) 2315 chv_disable_pll(display, pipe); 2316 else 2317 vlv_disable_pll(display, pipe); 2318 } 2319 2320 /* Only for pre-ILK configs */ 2321 static void assert_pll(struct intel_display *display, 2322 enum pipe pipe, bool state) 2323 { 2324 bool cur_state; 2325 2326 cur_state = intel_de_read(display, DPLL(display, pipe)) & DPLL_VCO_ENABLE; 2327 INTEL_DISPLAY_STATE_WARN(display, cur_state != state, 2328 "PLL state assertion failure (expected %s, current %s)\n", 2329 str_on_off(state), str_on_off(cur_state)); 2330 } 2331 2332 void assert_pll_enabled(struct intel_display *display, enum pipe pipe) 2333 { 2334 assert_pll(display, pipe, true); 2335 } 2336 2337 void assert_pll_disabled(struct intel_display *display, enum pipe pipe) 2338 { 2339 assert_pll(display, pipe, false); 2340 } 2341