xref: /linux/drivers/gpu/drm/i915/display/intel_dpll.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/string_helpers.h>
8 
9 #include "i915_reg.h"
10 #include "intel_atomic.h"
11 #include "intel_crtc.h"
12 #include "intel_cx0_phy.h"
13 #include "intel_de.h"
14 #include "intel_display.h"
15 #include "intel_display_types.h"
16 #include "intel_dpio_phy.h"
17 #include "intel_dpll.h"
18 #include "intel_lvds.h"
19 #include "intel_lvds_regs.h"
20 #include "intel_panel.h"
21 #include "intel_pps.h"
22 #include "intel_snps_phy.h"
23 #include "vlv_dpio_phy_regs.h"
24 #include "vlv_sideband.h"
25 
26 struct intel_dpll_funcs {
27 	int (*crtc_compute_clock)(struct intel_atomic_state *state,
28 				  struct intel_crtc *crtc);
29 	int (*crtc_get_shared_dpll)(struct intel_atomic_state *state,
30 				    struct intel_crtc *crtc);
31 };
32 
33 struct intel_limit {
34 	struct {
35 		int min, max;
36 	} dot, vco, n, m, m1, m2, p, p1;
37 
38 	struct {
39 		int dot_limit;
40 		int p2_slow, p2_fast;
41 	} p2;
42 };
43 static const struct intel_limit intel_limits_i8xx_dac = {
44 	.dot = { .min = 25000, .max = 350000 },
45 	.vco = { .min = 908000, .max = 1512000 },
46 	.n = { .min = 2, .max = 16 },
47 	.m = { .min = 96, .max = 140 },
48 	.m1 = { .min = 18, .max = 26 },
49 	.m2 = { .min = 6, .max = 16 },
50 	.p = { .min = 4, .max = 128 },
51 	.p1 = { .min = 2, .max = 33 },
52 	.p2 = { .dot_limit = 165000,
53 		.p2_slow = 4, .p2_fast = 2 },
54 };
55 
56 static const struct intel_limit intel_limits_i8xx_dvo = {
57 	.dot = { .min = 25000, .max = 350000 },
58 	.vco = { .min = 908000, .max = 1512000 },
59 	.n = { .min = 2, .max = 16 },
60 	.m = { .min = 96, .max = 140 },
61 	.m1 = { .min = 18, .max = 26 },
62 	.m2 = { .min = 6, .max = 16 },
63 	.p = { .min = 4, .max = 128 },
64 	.p1 = { .min = 2, .max = 33 },
65 	.p2 = { .dot_limit = 165000,
66 		.p2_slow = 4, .p2_fast = 4 },
67 };
68 
69 static const struct intel_limit intel_limits_i8xx_lvds = {
70 	.dot = { .min = 25000, .max = 350000 },
71 	.vco = { .min = 908000, .max = 1512000 },
72 	.n = { .min = 2, .max = 16 },
73 	.m = { .min = 96, .max = 140 },
74 	.m1 = { .min = 18, .max = 26 },
75 	.m2 = { .min = 6, .max = 16 },
76 	.p = { .min = 4, .max = 128 },
77 	.p1 = { .min = 1, .max = 6 },
78 	.p2 = { .dot_limit = 165000,
79 		.p2_slow = 14, .p2_fast = 7 },
80 };
81 
82 static const struct intel_limit intel_limits_i9xx_sdvo = {
83 	.dot = { .min = 20000, .max = 400000 },
84 	.vco = { .min = 1400000, .max = 2800000 },
85 	.n = { .min = 1, .max = 6 },
86 	.m = { .min = 70, .max = 120 },
87 	.m1 = { .min = 8, .max = 18 },
88 	.m2 = { .min = 3, .max = 7 },
89 	.p = { .min = 5, .max = 80 },
90 	.p1 = { .min = 1, .max = 8 },
91 	.p2 = { .dot_limit = 200000,
92 		.p2_slow = 10, .p2_fast = 5 },
93 };
94 
95 static const struct intel_limit intel_limits_i9xx_lvds = {
96 	.dot = { .min = 20000, .max = 400000 },
97 	.vco = { .min = 1400000, .max = 2800000 },
98 	.n = { .min = 1, .max = 6 },
99 	.m = { .min = 70, .max = 120 },
100 	.m1 = { .min = 8, .max = 18 },
101 	.m2 = { .min = 3, .max = 7 },
102 	.p = { .min = 7, .max = 98 },
103 	.p1 = { .min = 1, .max = 8 },
104 	.p2 = { .dot_limit = 112000,
105 		.p2_slow = 14, .p2_fast = 7 },
106 };
107 
108 
109 static const struct intel_limit intel_limits_g4x_sdvo = {
110 	.dot = { .min = 25000, .max = 270000 },
111 	.vco = { .min = 1750000, .max = 3500000},
112 	.n = { .min = 1, .max = 4 },
113 	.m = { .min = 104, .max = 138 },
114 	.m1 = { .min = 17, .max = 23 },
115 	.m2 = { .min = 5, .max = 11 },
116 	.p = { .min = 10, .max = 30 },
117 	.p1 = { .min = 1, .max = 3},
118 	.p2 = { .dot_limit = 270000,
119 		.p2_slow = 10,
120 		.p2_fast = 10
121 	},
122 };
123 
124 static const struct intel_limit intel_limits_g4x_hdmi = {
125 	.dot = { .min = 22000, .max = 400000 },
126 	.vco = { .min = 1750000, .max = 3500000},
127 	.n = { .min = 1, .max = 4 },
128 	.m = { .min = 104, .max = 138 },
129 	.m1 = { .min = 16, .max = 23 },
130 	.m2 = { .min = 5, .max = 11 },
131 	.p = { .min = 5, .max = 80 },
132 	.p1 = { .min = 1, .max = 8},
133 	.p2 = { .dot_limit = 165000,
134 		.p2_slow = 10, .p2_fast = 5 },
135 };
136 
137 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
138 	.dot = { .min = 20000, .max = 115000 },
139 	.vco = { .min = 1750000, .max = 3500000 },
140 	.n = { .min = 1, .max = 3 },
141 	.m = { .min = 104, .max = 138 },
142 	.m1 = { .min = 17, .max = 23 },
143 	.m2 = { .min = 5, .max = 11 },
144 	.p = { .min = 28, .max = 112 },
145 	.p1 = { .min = 2, .max = 8 },
146 	.p2 = { .dot_limit = 0,
147 		.p2_slow = 14, .p2_fast = 14
148 	},
149 };
150 
151 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
152 	.dot = { .min = 80000, .max = 224000 },
153 	.vco = { .min = 1750000, .max = 3500000 },
154 	.n = { .min = 1, .max = 3 },
155 	.m = { .min = 104, .max = 138 },
156 	.m1 = { .min = 17, .max = 23 },
157 	.m2 = { .min = 5, .max = 11 },
158 	.p = { .min = 14, .max = 42 },
159 	.p1 = { .min = 2, .max = 6 },
160 	.p2 = { .dot_limit = 0,
161 		.p2_slow = 7, .p2_fast = 7
162 	},
163 };
164 
165 static const struct intel_limit pnv_limits_sdvo = {
166 	.dot = { .min = 20000, .max = 400000},
167 	.vco = { .min = 1700000, .max = 3500000 },
168 	/* Pineview's Ncounter is a ring counter */
169 	.n = { .min = 3, .max = 6 },
170 	.m = { .min = 2, .max = 256 },
171 	/* Pineview only has one combined m divider, which we treat as m2. */
172 	.m1 = { .min = 0, .max = 0 },
173 	.m2 = { .min = 0, .max = 254 },
174 	.p = { .min = 5, .max = 80 },
175 	.p1 = { .min = 1, .max = 8 },
176 	.p2 = { .dot_limit = 200000,
177 		.p2_slow = 10, .p2_fast = 5 },
178 };
179 
180 static const struct intel_limit pnv_limits_lvds = {
181 	.dot = { .min = 20000, .max = 400000 },
182 	.vco = { .min = 1700000, .max = 3500000 },
183 	.n = { .min = 3, .max = 6 },
184 	.m = { .min = 2, .max = 256 },
185 	.m1 = { .min = 0, .max = 0 },
186 	.m2 = { .min = 0, .max = 254 },
187 	.p = { .min = 7, .max = 112 },
188 	.p1 = { .min = 1, .max = 8 },
189 	.p2 = { .dot_limit = 112000,
190 		.p2_slow = 14, .p2_fast = 14 },
191 };
192 
193 /* Ironlake / Sandybridge
194  *
195  * We calculate clock using (register_value + 2) for N/M1/M2, so here
196  * the range value for them is (actual_value - 2).
197  */
198 static const struct intel_limit ilk_limits_dac = {
199 	.dot = { .min = 25000, .max = 350000 },
200 	.vco = { .min = 1760000, .max = 3510000 },
201 	.n = { .min = 1, .max = 5 },
202 	.m = { .min = 79, .max = 127 },
203 	.m1 = { .min = 12, .max = 22 },
204 	.m2 = { .min = 5, .max = 9 },
205 	.p = { .min = 5, .max = 80 },
206 	.p1 = { .min = 1, .max = 8 },
207 	.p2 = { .dot_limit = 225000,
208 		.p2_slow = 10, .p2_fast = 5 },
209 };
210 
211 static const struct intel_limit ilk_limits_single_lvds = {
212 	.dot = { .min = 25000, .max = 350000 },
213 	.vco = { .min = 1760000, .max = 3510000 },
214 	.n = { .min = 1, .max = 3 },
215 	.m = { .min = 79, .max = 118 },
216 	.m1 = { .min = 12, .max = 22 },
217 	.m2 = { .min = 5, .max = 9 },
218 	.p = { .min = 28, .max = 112 },
219 	.p1 = { .min = 2, .max = 8 },
220 	.p2 = { .dot_limit = 225000,
221 		.p2_slow = 14, .p2_fast = 14 },
222 };
223 
224 static const struct intel_limit ilk_limits_dual_lvds = {
225 	.dot = { .min = 25000, .max = 350000 },
226 	.vco = { .min = 1760000, .max = 3510000 },
227 	.n = { .min = 1, .max = 3 },
228 	.m = { .min = 79, .max = 127 },
229 	.m1 = { .min = 12, .max = 22 },
230 	.m2 = { .min = 5, .max = 9 },
231 	.p = { .min = 14, .max = 56 },
232 	.p1 = { .min = 2, .max = 8 },
233 	.p2 = { .dot_limit = 225000,
234 		.p2_slow = 7, .p2_fast = 7 },
235 };
236 
237 /* LVDS 100mhz refclk limits. */
238 static const struct intel_limit ilk_limits_single_lvds_100m = {
239 	.dot = { .min = 25000, .max = 350000 },
240 	.vco = { .min = 1760000, .max = 3510000 },
241 	.n = { .min = 1, .max = 2 },
242 	.m = { .min = 79, .max = 126 },
243 	.m1 = { .min = 12, .max = 22 },
244 	.m2 = { .min = 5, .max = 9 },
245 	.p = { .min = 28, .max = 112 },
246 	.p1 = { .min = 2, .max = 8 },
247 	.p2 = { .dot_limit = 225000,
248 		.p2_slow = 14, .p2_fast = 14 },
249 };
250 
251 static const struct intel_limit ilk_limits_dual_lvds_100m = {
252 	.dot = { .min = 25000, .max = 350000 },
253 	.vco = { .min = 1760000, .max = 3510000 },
254 	.n = { .min = 1, .max = 3 },
255 	.m = { .min = 79, .max = 126 },
256 	.m1 = { .min = 12, .max = 22 },
257 	.m2 = { .min = 5, .max = 9 },
258 	.p = { .min = 14, .max = 42 },
259 	.p1 = { .min = 2, .max = 6 },
260 	.p2 = { .dot_limit = 225000,
261 		.p2_slow = 7, .p2_fast = 7 },
262 };
263 
264 static const struct intel_limit intel_limits_vlv = {
265 	 /*
266 	  * These are based on the data rate limits (measured in fast clocks)
267 	  * since those are the strictest limits we have. The fast
268 	  * clock and actual rate limits are more relaxed, so checking
269 	  * them would make no difference.
270 	  */
271 	.dot = { .min = 25000, .max = 270000 },
272 	.vco = { .min = 4000000, .max = 6000000 },
273 	.n = { .min = 1, .max = 7 },
274 	.m1 = { .min = 2, .max = 3 },
275 	.m2 = { .min = 11, .max = 156 },
276 	.p1 = { .min = 2, .max = 3 },
277 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
278 };
279 
280 static const struct intel_limit intel_limits_chv = {
281 	/*
282 	 * These are based on the data rate limits (measured in fast clocks)
283 	 * since those are the strictest limits we have.  The fast
284 	 * clock and actual rate limits are more relaxed, so checking
285 	 * them would make no difference.
286 	 */
287 	.dot = { .min = 25000, .max = 540000 },
288 	.vco = { .min = 4800000, .max = 6480000 },
289 	.n = { .min = 1, .max = 1 },
290 	.m1 = { .min = 2, .max = 2 },
291 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
292 	.p1 = { .min = 2, .max = 4 },
293 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
294 };
295 
296 static const struct intel_limit intel_limits_bxt = {
297 	.dot = { .min = 25000, .max = 594000 },
298 	.vco = { .min = 4800000, .max = 6700000 },
299 	.n = { .min = 1, .max = 1 },
300 	.m1 = { .min = 2, .max = 2 },
301 	/* FIXME: find real m2 limits */
302 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
303 	.p1 = { .min = 2, .max = 4 },
304 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
305 };
306 
307 /*
308  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
309  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
310  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
311  * The helpers' return value is the rate of the clock that is fed to the
312  * display engine's pipe which can be the above fast dot clock rate or a
313  * divided-down version of it.
314  */
315 /* m1 is reserved as 0 in Pineview, n is a ring counter */
316 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
317 {
318 	clock->m = clock->m2 + 2;
319 	clock->p = clock->p1 * clock->p2;
320 
321 	clock->vco = clock->n == 0 ? 0 :
322 		DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
323 	clock->dot = clock->p == 0 ? 0 :
324 		DIV_ROUND_CLOSEST(clock->vco, clock->p);
325 
326 	return clock->dot;
327 }
328 
329 static u32 i9xx_dpll_compute_m(const struct dpll *dpll)
330 {
331 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
332 }
333 
334 int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
335 {
336 	clock->m = i9xx_dpll_compute_m(clock);
337 	clock->p = clock->p1 * clock->p2;
338 
339 	clock->vco = clock->n + 2 == 0 ? 0 :
340 		DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
341 	clock->dot = clock->p == 0 ? 0 :
342 		DIV_ROUND_CLOSEST(clock->vco, clock->p);
343 
344 	return clock->dot;
345 }
346 
347 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
348 {
349 	clock->m = clock->m1 * clock->m2;
350 	clock->p = clock->p1 * clock->p2 * 5;
351 
352 	clock->vco = clock->n == 0 ? 0 :
353 		DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
354 	clock->dot = clock->p == 0 ? 0 :
355 		DIV_ROUND_CLOSEST(clock->vco, clock->p);
356 
357 	return clock->dot;
358 }
359 
360 int chv_calc_dpll_params(int refclk, struct dpll *clock)
361 {
362 	clock->m = clock->m1 * clock->m2;
363 	clock->p = clock->p1 * clock->p2 * 5;
364 
365 	clock->vco = clock->n == 0 ? 0 :
366 		DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22);
367 	clock->dot = clock->p == 0 ? 0 :
368 		DIV_ROUND_CLOSEST(clock->vco, clock->p);
369 
370 	return clock->dot;
371 }
372 
373 static int i9xx_pll_refclk(const struct intel_crtc_state *crtc_state)
374 {
375 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
376 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
377 
378 	if ((hw_state->dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
379 		return i915->display.vbt.lvds_ssc_freq;
380 	else if (HAS_PCH_SPLIT(i915))
381 		return 120000;
382 	else if (DISPLAY_VER(i915) != 2)
383 		return 96000;
384 	else
385 		return 48000;
386 }
387 
388 void i9xx_dpll_get_hw_state(struct intel_crtc *crtc,
389 			    struct intel_dpll_hw_state *dpll_hw_state)
390 {
391 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
392 	struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx;
393 
394 	if (DISPLAY_VER(dev_priv) >= 4) {
395 		u32 tmp;
396 
397 		/* No way to read it out on pipes B and C */
398 		if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
399 			tmp = dev_priv->display.state.chv_dpll_md[crtc->pipe];
400 		else
401 			tmp = intel_de_read(dev_priv,
402 					    DPLL_MD(dev_priv, crtc->pipe));
403 
404 		hw_state->dpll_md = tmp;
405 	}
406 
407 	hw_state->dpll = intel_de_read(dev_priv, DPLL(dev_priv, crtc->pipe));
408 
409 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
410 		hw_state->fp0 = intel_de_read(dev_priv, FP0(crtc->pipe));
411 		hw_state->fp1 = intel_de_read(dev_priv, FP1(crtc->pipe));
412 	} else {
413 		/* Mask out read-only status bits. */
414 		hw_state->dpll &= ~(DPLL_LOCK_VLV |
415 				    DPLL_PORTC_READY_MASK |
416 				    DPLL_PORTB_READY_MASK);
417 	}
418 }
419 
420 /* Returns the clock of the currently programmed mode of the given pipe. */
421 void i9xx_crtc_clock_get(struct intel_crtc_state *crtc_state)
422 {
423 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
424 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
425 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
426 	u32 dpll = hw_state->dpll;
427 	u32 fp;
428 	struct dpll clock;
429 	int port_clock;
430 	int refclk = i9xx_pll_refclk(crtc_state);
431 
432 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
433 		fp = hw_state->fp0;
434 	else
435 		fp = hw_state->fp1;
436 
437 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
438 	if (IS_PINEVIEW(dev_priv)) {
439 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
440 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
441 	} else {
442 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
443 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
444 	}
445 
446 	if (DISPLAY_VER(dev_priv) != 2) {
447 		if (IS_PINEVIEW(dev_priv))
448 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
449 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
450 		else
451 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
452 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
453 
454 		switch (dpll & DPLL_MODE_MASK) {
455 		case DPLLB_MODE_DAC_SERIAL:
456 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
457 				5 : 10;
458 			break;
459 		case DPLLB_MODE_LVDS:
460 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
461 				7 : 14;
462 			break;
463 		default:
464 			drm_dbg_kms(&dev_priv->drm,
465 				    "Unknown DPLL mode %08x in programmed "
466 				    "mode\n", (int)(dpll & DPLL_MODE_MASK));
467 			return;
468 		}
469 
470 		if (IS_PINEVIEW(dev_priv))
471 			port_clock = pnv_calc_dpll_params(refclk, &clock);
472 		else
473 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
474 	} else {
475 		enum pipe lvds_pipe;
476 
477 		if (IS_I85X(dev_priv) &&
478 		    intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) &&
479 		    lvds_pipe == crtc->pipe) {
480 			u32 lvds = intel_de_read(dev_priv, LVDS);
481 
482 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
483 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
484 
485 			if (lvds & LVDS_CLKB_POWER_UP)
486 				clock.p2 = 7;
487 			else
488 				clock.p2 = 14;
489 		} else {
490 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
491 				clock.p1 = 2;
492 			else {
493 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
494 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
495 			}
496 			if (dpll & PLL_P2_DIVIDE_BY_4)
497 				clock.p2 = 4;
498 			else
499 				clock.p2 = 2;
500 		}
501 
502 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
503 	}
504 
505 	/*
506 	 * This value includes pixel_multiplier. We will use
507 	 * port_clock to compute adjusted_mode.crtc_clock in the
508 	 * encoder's get_config() function.
509 	 */
510 	crtc_state->port_clock = port_clock;
511 }
512 
513 void vlv_crtc_clock_get(struct intel_crtc_state *crtc_state)
514 {
515 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
516 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
517 	enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
518 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
519 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
520 	int refclk = 100000;
521 	struct dpll clock;
522 	u32 tmp;
523 
524 	/* In case of DSI, DPLL will not be used */
525 	if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0)
526 		return;
527 
528 	vlv_dpio_get(dev_priv);
529 	tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW3(ch));
530 	vlv_dpio_put(dev_priv);
531 
532 	clock.m1 = REG_FIELD_GET(DPIO_M1_DIV_MASK, tmp);
533 	clock.m2 = REG_FIELD_GET(DPIO_M2_DIV_MASK, tmp);
534 	clock.n = REG_FIELD_GET(DPIO_N_DIV_MASK, tmp);
535 	clock.p1 = REG_FIELD_GET(DPIO_P1_DIV_MASK, tmp);
536 	clock.p2 = REG_FIELD_GET(DPIO_P2_DIV_MASK, tmp);
537 
538 	crtc_state->port_clock = vlv_calc_dpll_params(refclk, &clock);
539 }
540 
541 void chv_crtc_clock_get(struct intel_crtc_state *crtc_state)
542 {
543 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
544 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
545 	enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
546 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
547 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
548 	struct dpll clock;
549 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
550 	int refclk = 100000;
551 
552 	/* In case of DSI, DPLL will not be used */
553 	if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0)
554 		return;
555 
556 	vlv_dpio_get(dev_priv);
557 	cmn_dw13 = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW13(ch));
558 	pll_dw0 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW0(ch));
559 	pll_dw1 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW1(ch));
560 	pll_dw2 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW2(ch));
561 	pll_dw3 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch));
562 	vlv_dpio_put(dev_priv);
563 
564 	clock.m1 = REG_FIELD_GET(DPIO_CHV_M1_DIV_MASK, pll_dw1) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
565 	clock.m2 = REG_FIELD_GET(DPIO_CHV_M2_DIV_MASK, pll_dw0) << 22;
566 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
567 		clock.m2 |= REG_FIELD_GET(DPIO_CHV_M2_FRAC_DIV_MASK, pll_dw2);
568 	clock.n = REG_FIELD_GET(DPIO_CHV_N_DIV_MASK, pll_dw1);
569 	clock.p1 = REG_FIELD_GET(DPIO_CHV_P1_DIV_MASK, cmn_dw13);
570 	clock.p2 = REG_FIELD_GET(DPIO_CHV_P2_DIV_MASK, cmn_dw13);
571 
572 	crtc_state->port_clock = chv_calc_dpll_params(refclk, &clock);
573 }
574 
575 /*
576  * Returns whether the given set of divisors are valid for a given refclk with
577  * the given connectors.
578  */
579 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
580 			       const struct intel_limit *limit,
581 			       const struct dpll *clock)
582 {
583 	if (clock->n < limit->n.min || limit->n.max < clock->n)
584 		return false;
585 	if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
586 		return false;
587 	if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
588 		return false;
589 	if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
590 		return false;
591 
592 	if (!IS_PINEVIEW(dev_priv) &&
593 	    !IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
594 	    !IS_BROXTON(dev_priv) && !IS_GEMINILAKE(dev_priv))
595 		if (clock->m1 <= clock->m2)
596 			return false;
597 
598 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
599 	    !IS_BROXTON(dev_priv) && !IS_GEMINILAKE(dev_priv)) {
600 		if (clock->p < limit->p.min || limit->p.max < clock->p)
601 			return false;
602 		if (clock->m < limit->m.min || limit->m.max < clock->m)
603 			return false;
604 	}
605 
606 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
607 		return false;
608 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
609 	 * connector, etc., rather than just a single range.
610 	 */
611 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
612 		return false;
613 
614 	return true;
615 }
616 
617 static int
618 i9xx_select_p2_div(const struct intel_limit *limit,
619 		   const struct intel_crtc_state *crtc_state,
620 		   int target)
621 {
622 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
623 
624 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
625 		/*
626 		 * For LVDS just rely on its current settings for dual-channel.
627 		 * We haven't figured out how to reliably set up different
628 		 * single/dual channel state, if we even can.
629 		 */
630 		if (intel_is_dual_link_lvds(dev_priv))
631 			return limit->p2.p2_fast;
632 		else
633 			return limit->p2.p2_slow;
634 	} else {
635 		if (target < limit->p2.dot_limit)
636 			return limit->p2.p2_slow;
637 		else
638 			return limit->p2.p2_fast;
639 	}
640 }
641 
642 /*
643  * Returns a set of divisors for the desired target clock with the given
644  * refclk, or FALSE.
645  *
646  * Target and reference clocks are specified in kHz.
647  *
648  * If match_clock is provided, then best_clock P divider must match the P
649  * divider from @match_clock used for LVDS downclocking.
650  */
651 static bool
652 i9xx_find_best_dpll(const struct intel_limit *limit,
653 		    struct intel_crtc_state *crtc_state,
654 		    int target, int refclk,
655 		    const struct dpll *match_clock,
656 		    struct dpll *best_clock)
657 {
658 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
659 	struct dpll clock;
660 	int err = target;
661 
662 	memset(best_clock, 0, sizeof(*best_clock));
663 
664 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
665 
666 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
667 	     clock.m1++) {
668 		for (clock.m2 = limit->m2.min;
669 		     clock.m2 <= limit->m2.max; clock.m2++) {
670 			if (clock.m2 >= clock.m1)
671 				break;
672 			for (clock.n = limit->n.min;
673 			     clock.n <= limit->n.max; clock.n++) {
674 				for (clock.p1 = limit->p1.min;
675 					clock.p1 <= limit->p1.max; clock.p1++) {
676 					int this_err;
677 
678 					i9xx_calc_dpll_params(refclk, &clock);
679 					if (!intel_pll_is_valid(to_i915(dev),
680 								limit,
681 								&clock))
682 						continue;
683 					if (match_clock &&
684 					    clock.p != match_clock->p)
685 						continue;
686 
687 					this_err = abs(clock.dot - target);
688 					if (this_err < err) {
689 						*best_clock = clock;
690 						err = this_err;
691 					}
692 				}
693 			}
694 		}
695 	}
696 
697 	return (err != target);
698 }
699 
700 /*
701  * Returns a set of divisors for the desired target clock with the given
702  * refclk, or FALSE.
703  *
704  * Target and reference clocks are specified in kHz.
705  *
706  * If match_clock is provided, then best_clock P divider must match the P
707  * divider from @match_clock used for LVDS downclocking.
708  */
709 static bool
710 pnv_find_best_dpll(const struct intel_limit *limit,
711 		   struct intel_crtc_state *crtc_state,
712 		   int target, int refclk,
713 		   const struct dpll *match_clock,
714 		   struct dpll *best_clock)
715 {
716 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
717 	struct dpll clock;
718 	int err = target;
719 
720 	memset(best_clock, 0, sizeof(*best_clock));
721 
722 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
723 
724 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
725 	     clock.m1++) {
726 		for (clock.m2 = limit->m2.min;
727 		     clock.m2 <= limit->m2.max; clock.m2++) {
728 			for (clock.n = limit->n.min;
729 			     clock.n <= limit->n.max; clock.n++) {
730 				for (clock.p1 = limit->p1.min;
731 					clock.p1 <= limit->p1.max; clock.p1++) {
732 					int this_err;
733 
734 					pnv_calc_dpll_params(refclk, &clock);
735 					if (!intel_pll_is_valid(to_i915(dev),
736 								limit,
737 								&clock))
738 						continue;
739 					if (match_clock &&
740 					    clock.p != match_clock->p)
741 						continue;
742 
743 					this_err = abs(clock.dot - target);
744 					if (this_err < err) {
745 						*best_clock = clock;
746 						err = this_err;
747 					}
748 				}
749 			}
750 		}
751 	}
752 
753 	return (err != target);
754 }
755 
756 /*
757  * Returns a set of divisors for the desired target clock with the given
758  * refclk, or FALSE.
759  *
760  * Target and reference clocks are specified in kHz.
761  *
762  * If match_clock is provided, then best_clock P divider must match the P
763  * divider from @match_clock used for LVDS downclocking.
764  */
765 static bool
766 g4x_find_best_dpll(const struct intel_limit *limit,
767 		   struct intel_crtc_state *crtc_state,
768 		   int target, int refclk,
769 		   const struct dpll *match_clock,
770 		   struct dpll *best_clock)
771 {
772 	struct drm_device *dev = crtc_state->uapi.crtc->dev;
773 	struct dpll clock;
774 	int max_n;
775 	bool found = false;
776 	/* approximately equals target * 0.00585 */
777 	int err_most = (target >> 8) + (target >> 9);
778 
779 	memset(best_clock, 0, sizeof(*best_clock));
780 
781 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
782 
783 	max_n = limit->n.max;
784 	/* based on hardware requirement, prefer smaller n to precision */
785 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
786 		/* based on hardware requirement, prefer larger m1,m2 */
787 		for (clock.m1 = limit->m1.max;
788 		     clock.m1 >= limit->m1.min; clock.m1--) {
789 			for (clock.m2 = limit->m2.max;
790 			     clock.m2 >= limit->m2.min; clock.m2--) {
791 				for (clock.p1 = limit->p1.max;
792 				     clock.p1 >= limit->p1.min; clock.p1--) {
793 					int this_err;
794 
795 					i9xx_calc_dpll_params(refclk, &clock);
796 					if (!intel_pll_is_valid(to_i915(dev),
797 								limit,
798 								&clock))
799 						continue;
800 
801 					this_err = abs(clock.dot - target);
802 					if (this_err < err_most) {
803 						*best_clock = clock;
804 						err_most = this_err;
805 						max_n = clock.n;
806 						found = true;
807 					}
808 				}
809 			}
810 		}
811 	}
812 	return found;
813 }
814 
815 /*
816  * Check if the calculated PLL configuration is more optimal compared to the
817  * best configuration and error found so far. Return the calculated error.
818  */
819 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
820 			       const struct dpll *calculated_clock,
821 			       const struct dpll *best_clock,
822 			       unsigned int best_error_ppm,
823 			       unsigned int *error_ppm)
824 {
825 	/*
826 	 * For CHV ignore the error and consider only the P value.
827 	 * Prefer a bigger P value based on HW requirements.
828 	 */
829 	if (IS_CHERRYVIEW(to_i915(dev))) {
830 		*error_ppm = 0;
831 
832 		return calculated_clock->p > best_clock->p;
833 	}
834 
835 	if (drm_WARN_ON_ONCE(dev, !target_freq))
836 		return false;
837 
838 	*error_ppm = div_u64(1000000ULL *
839 				abs(target_freq - calculated_clock->dot),
840 			     target_freq);
841 	/*
842 	 * Prefer a better P value over a better (smaller) error if the error
843 	 * is small. Ensure this preference for future configurations too by
844 	 * setting the error to 0.
845 	 */
846 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
847 		*error_ppm = 0;
848 
849 		return true;
850 	}
851 
852 	return *error_ppm + 10 < best_error_ppm;
853 }
854 
855 /*
856  * Returns a set of divisors for the desired target clock with the given
857  * refclk, or FALSE.
858  */
859 static bool
860 vlv_find_best_dpll(const struct intel_limit *limit,
861 		   struct intel_crtc_state *crtc_state,
862 		   int target, int refclk,
863 		   const struct dpll *match_clock,
864 		   struct dpll *best_clock)
865 {
866 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
867 	struct drm_device *dev = crtc->base.dev;
868 	struct dpll clock;
869 	unsigned int bestppm = 1000000;
870 	/* min update 19.2 MHz */
871 	int max_n = min(limit->n.max, refclk / 19200);
872 	bool found = false;
873 
874 	memset(best_clock, 0, sizeof(*best_clock));
875 
876 	/* based on hardware requirement, prefer smaller n to precision */
877 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
878 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
879 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
880 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
881 				clock.p = clock.p1 * clock.p2 * 5;
882 				/* based on hardware requirement, prefer bigger m1,m2 values */
883 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
884 					unsigned int ppm;
885 
886 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
887 								     refclk * clock.m1);
888 
889 					vlv_calc_dpll_params(refclk, &clock);
890 
891 					if (!intel_pll_is_valid(to_i915(dev),
892 								limit,
893 								&clock))
894 						continue;
895 
896 					if (!vlv_PLL_is_optimal(dev, target,
897 								&clock,
898 								best_clock,
899 								bestppm, &ppm))
900 						continue;
901 
902 					*best_clock = clock;
903 					bestppm = ppm;
904 					found = true;
905 				}
906 			}
907 		}
908 	}
909 
910 	return found;
911 }
912 
913 /*
914  * Returns a set of divisors for the desired target clock with the given
915  * refclk, or FALSE.
916  */
917 static bool
918 chv_find_best_dpll(const struct intel_limit *limit,
919 		   struct intel_crtc_state *crtc_state,
920 		   int target, int refclk,
921 		   const struct dpll *match_clock,
922 		   struct dpll *best_clock)
923 {
924 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
925 	struct drm_device *dev = crtc->base.dev;
926 	unsigned int best_error_ppm;
927 	struct dpll clock;
928 	u64 m2;
929 	int found = false;
930 
931 	memset(best_clock, 0, sizeof(*best_clock));
932 	best_error_ppm = 1000000;
933 
934 	/*
935 	 * Based on hardware doc, the n always set to 1, and m1 always
936 	 * set to 2.  If requires to support 200Mhz refclk, we need to
937 	 * revisit this because n may not 1 anymore.
938 	 */
939 	clock.n = 1;
940 	clock.m1 = 2;
941 
942 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
943 		for (clock.p2 = limit->p2.p2_fast;
944 				clock.p2 >= limit->p2.p2_slow;
945 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
946 			unsigned int error_ppm;
947 
948 			clock.p = clock.p1 * clock.p2 * 5;
949 
950 			m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
951 						   refclk * clock.m1);
952 
953 			if (m2 > INT_MAX/clock.m1)
954 				continue;
955 
956 			clock.m2 = m2;
957 
958 			chv_calc_dpll_params(refclk, &clock);
959 
960 			if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
961 				continue;
962 
963 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
964 						best_error_ppm, &error_ppm))
965 				continue;
966 
967 			*best_clock = clock;
968 			best_error_ppm = error_ppm;
969 			found = true;
970 		}
971 	}
972 
973 	return found;
974 }
975 
976 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
977 			struct dpll *best_clock)
978 {
979 	const struct intel_limit *limit = &intel_limits_bxt;
980 	int refclk = 100000;
981 
982 	return chv_find_best_dpll(limit, crtc_state,
983 				  crtc_state->port_clock, refclk,
984 				  NULL, best_clock);
985 }
986 
987 u32 i9xx_dpll_compute_fp(const struct dpll *dpll)
988 {
989 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
990 }
991 
992 static u32 pnv_dpll_compute_fp(const struct dpll *dpll)
993 {
994 	return (1 << dpll->n) << 16 | dpll->m2;
995 }
996 
997 static u32 i965_dpll_md(const struct intel_crtc_state *crtc_state)
998 {
999 	return (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1000 }
1001 
1002 static u32 i9xx_dpll(const struct intel_crtc_state *crtc_state,
1003 		     const struct dpll *clock,
1004 		     const struct dpll *reduced_clock)
1005 {
1006 	struct intel_display *display = to_intel_display(crtc_state);
1007 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1008 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1009 	u32 dpll;
1010 
1011 	dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS;
1012 
1013 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1014 		dpll |= DPLLB_MODE_LVDS;
1015 	else
1016 		dpll |= DPLLB_MODE_DAC_SERIAL;
1017 
1018 	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
1019 	    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
1020 		dpll |= (crtc_state->pixel_multiplier - 1)
1021 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
1022 	}
1023 
1024 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1025 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1026 		dpll |= DPLL_SDVO_HIGH_SPEED;
1027 
1028 	if (intel_crtc_has_dp_encoder(crtc_state))
1029 		dpll |= DPLL_SDVO_HIGH_SPEED;
1030 
1031 	/* compute bitmask from p1 value */
1032 	if (IS_G4X(dev_priv)) {
1033 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1034 		dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1035 	} else if (IS_PINEVIEW(dev_priv)) {
1036 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
1037 		WARN_ON(reduced_clock->p1 != clock->p1);
1038 	} else {
1039 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1040 		WARN_ON(reduced_clock->p1 != clock->p1);
1041 	}
1042 
1043 	switch (clock->p2) {
1044 	case 5:
1045 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1046 		break;
1047 	case 7:
1048 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1049 		break;
1050 	case 10:
1051 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1052 		break;
1053 	case 14:
1054 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1055 		break;
1056 	}
1057 	WARN_ON(reduced_clock->p2 != clock->p2);
1058 
1059 	if (DISPLAY_VER(dev_priv) >= 4)
1060 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
1061 
1062 	if (crtc_state->sdvo_tv_clock)
1063 		dpll |= PLL_REF_INPUT_TVCLKINBC;
1064 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1065 		 intel_panel_use_ssc(display))
1066 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1067 	else
1068 		dpll |= PLL_REF_INPUT_DREFCLK;
1069 
1070 	return dpll;
1071 }
1072 
1073 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state,
1074 			      const struct dpll *clock,
1075 			      const struct dpll *reduced_clock)
1076 {
1077 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1078 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1079 	struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1080 
1081 	if (IS_PINEVIEW(dev_priv)) {
1082 		hw_state->fp0 = pnv_dpll_compute_fp(clock);
1083 		hw_state->fp1 = pnv_dpll_compute_fp(reduced_clock);
1084 	} else {
1085 		hw_state->fp0 = i9xx_dpll_compute_fp(clock);
1086 		hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock);
1087 	}
1088 
1089 	hw_state->dpll = i9xx_dpll(crtc_state, clock, reduced_clock);
1090 
1091 	if (DISPLAY_VER(dev_priv) >= 4)
1092 		hw_state->dpll_md = i965_dpll_md(crtc_state);
1093 }
1094 
1095 static u32 i8xx_dpll(const struct intel_crtc_state *crtc_state,
1096 		     const struct dpll *clock,
1097 		     const struct dpll *reduced_clock)
1098 {
1099 	struct intel_display *display = to_intel_display(crtc_state);
1100 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1101 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1102 	u32 dpll;
1103 
1104 	dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS;
1105 
1106 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1107 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1108 	} else {
1109 		if (clock->p1 == 2)
1110 			dpll |= PLL_P1_DIVIDE_BY_TWO;
1111 		else
1112 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1113 		if (clock->p2 == 4)
1114 			dpll |= PLL_P2_DIVIDE_BY_4;
1115 	}
1116 	WARN_ON(reduced_clock->p1 != clock->p1);
1117 	WARN_ON(reduced_clock->p2 != clock->p2);
1118 
1119 	/*
1120 	 * Bspec:
1121 	 * "[Almador Errata}: For the correct operation of the muxed DVO pins
1122 	 *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
1123 	 *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
1124 	 *  Enable) must be set to “1” in both the DPLL A Control Register
1125 	 *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
1126 	 *
1127 	 * For simplicity We simply keep both bits always enabled in
1128 	 * both DPLLS. The spec says we should disable the DVO 2X clock
1129 	 * when not needed, but this seems to work fine in practice.
1130 	 */
1131 	if (IS_I830(dev_priv) ||
1132 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
1133 		dpll |= DPLL_DVO_2X_MODE;
1134 
1135 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1136 	    intel_panel_use_ssc(display))
1137 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1138 	else
1139 		dpll |= PLL_REF_INPUT_DREFCLK;
1140 
1141 	return dpll;
1142 }
1143 
1144 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state,
1145 			      const struct dpll *clock,
1146 			      const struct dpll *reduced_clock)
1147 {
1148 	struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1149 
1150 	hw_state->fp0 = i9xx_dpll_compute_fp(clock);
1151 	hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock);
1152 
1153 	hw_state->dpll = i8xx_dpll(crtc_state, clock, reduced_clock);
1154 }
1155 
1156 static int hsw_crtc_compute_clock(struct intel_atomic_state *state,
1157 				  struct intel_crtc *crtc)
1158 {
1159 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1160 	struct intel_crtc_state *crtc_state =
1161 		intel_atomic_get_new_crtc_state(state, crtc);
1162 	struct intel_encoder *encoder =
1163 		intel_get_crtc_new_encoder(state, crtc_state);
1164 	int ret;
1165 
1166 	if (DISPLAY_VER(dev_priv) < 11 &&
1167 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1168 		return 0;
1169 
1170 	ret = intel_compute_shared_dplls(state, crtc, encoder);
1171 	if (ret)
1172 		return ret;
1173 
1174 	/* FIXME this is a mess */
1175 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1176 		return 0;
1177 
1178 	/* CRT dotclock is determined via other means */
1179 	if (!crtc_state->has_pch_encoder)
1180 		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1181 
1182 	return 0;
1183 }
1184 
1185 static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state,
1186 				    struct intel_crtc *crtc)
1187 {
1188 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1189 	struct intel_crtc_state *crtc_state =
1190 		intel_atomic_get_new_crtc_state(state, crtc);
1191 	struct intel_encoder *encoder =
1192 		intel_get_crtc_new_encoder(state, crtc_state);
1193 
1194 	if (DISPLAY_VER(dev_priv) < 11 &&
1195 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1196 		return 0;
1197 
1198 	return intel_reserve_shared_dplls(state, crtc, encoder);
1199 }
1200 
1201 static int dg2_crtc_compute_clock(struct intel_atomic_state *state,
1202 				  struct intel_crtc *crtc)
1203 {
1204 	struct intel_crtc_state *crtc_state =
1205 		intel_atomic_get_new_crtc_state(state, crtc);
1206 	struct intel_encoder *encoder =
1207 		intel_get_crtc_new_encoder(state, crtc_state);
1208 	int ret;
1209 
1210 	ret = intel_mpllb_calc_state(crtc_state, encoder);
1211 	if (ret)
1212 		return ret;
1213 
1214 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1215 
1216 	return 0;
1217 }
1218 
1219 static int mtl_crtc_compute_clock(struct intel_atomic_state *state,
1220 				  struct intel_crtc *crtc)
1221 {
1222 	struct intel_crtc_state *crtc_state =
1223 		intel_atomic_get_new_crtc_state(state, crtc);
1224 	struct intel_encoder *encoder =
1225 		intel_get_crtc_new_encoder(state, crtc_state);
1226 	int ret;
1227 
1228 	ret = intel_cx0pll_calc_state(crtc_state, encoder);
1229 	if (ret)
1230 		return ret;
1231 
1232 	/* TODO: Do the readback via intel_compute_shared_dplls() */
1233 	crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->dpll_hw_state.cx0pll);
1234 
1235 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1236 
1237 	return 0;
1238 }
1239 
1240 static int ilk_fb_cb_factor(const struct intel_crtc_state *crtc_state)
1241 {
1242 	struct intel_display *display = to_intel_display(crtc_state);
1243 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1244 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1245 
1246 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1247 	    ((intel_panel_use_ssc(display) && i915->display.vbt.lvds_ssc_freq == 100000) ||
1248 	     (HAS_PCH_IBX(i915) && intel_is_dual_link_lvds(i915))))
1249 		return 25;
1250 
1251 	if (crtc_state->sdvo_tv_clock)
1252 		return 20;
1253 
1254 	return 21;
1255 }
1256 
1257 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor)
1258 {
1259 	return dpll->m < factor * dpll->n;
1260 }
1261 
1262 static u32 ilk_dpll_compute_fp(const struct dpll *clock, int factor)
1263 {
1264 	u32 fp;
1265 
1266 	fp = i9xx_dpll_compute_fp(clock);
1267 	if (ilk_needs_fb_cb_tune(clock, factor))
1268 		fp |= FP_CB_TUNE;
1269 
1270 	return fp;
1271 }
1272 
1273 static u32 ilk_dpll(const struct intel_crtc_state *crtc_state,
1274 		    const struct dpll *clock,
1275 		    const struct dpll *reduced_clock)
1276 {
1277 	struct intel_display *display = to_intel_display(crtc_state);
1278 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1279 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1280 	u32 dpll;
1281 
1282 	dpll = DPLL_VCO_ENABLE;
1283 
1284 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1285 		dpll |= DPLLB_MODE_LVDS;
1286 	else
1287 		dpll |= DPLLB_MODE_DAC_SERIAL;
1288 
1289 	dpll |= (crtc_state->pixel_multiplier - 1)
1290 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1291 
1292 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1293 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1294 		dpll |= DPLL_SDVO_HIGH_SPEED;
1295 
1296 	if (intel_crtc_has_dp_encoder(crtc_state))
1297 		dpll |= DPLL_SDVO_HIGH_SPEED;
1298 
1299 	/*
1300 	 * The high speed IO clock is only really required for
1301 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1302 	 * possible to share the DPLL between CRT and HDMI. Enabling
1303 	 * the clock needlessly does no real harm, except use up a
1304 	 * bit of power potentially.
1305 	 *
1306 	 * We'll limit this to IVB with 3 pipes, since it has only two
1307 	 * DPLLs and so DPLL sharing is the only way to get three pipes
1308 	 * driving PCH ports at the same time. On SNB we could do this,
1309 	 * and potentially avoid enabling the second DPLL, but it's not
1310 	 * clear if it''s a win or loss power wise. No point in doing
1311 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1312 	 */
1313 	if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1314 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1315 		dpll |= DPLL_SDVO_HIGH_SPEED;
1316 
1317 	/* compute bitmask from p1 value */
1318 	dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1319 	/* also FPA1 */
1320 	dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1321 
1322 	switch (clock->p2) {
1323 	case 5:
1324 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1325 		break;
1326 	case 7:
1327 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1328 		break;
1329 	case 10:
1330 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1331 		break;
1332 	case 14:
1333 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1334 		break;
1335 	}
1336 	WARN_ON(reduced_clock->p2 != clock->p2);
1337 
1338 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1339 	    intel_panel_use_ssc(display))
1340 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1341 	else
1342 		dpll |= PLL_REF_INPUT_DREFCLK;
1343 
1344 	return dpll;
1345 }
1346 
1347 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state,
1348 			     const struct dpll *clock,
1349 			     const struct dpll *reduced_clock)
1350 {
1351 	struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1352 	int factor = ilk_fb_cb_factor(crtc_state);
1353 
1354 	hw_state->fp0 = ilk_dpll_compute_fp(clock, factor);
1355 	hw_state->fp1 = ilk_dpll_compute_fp(reduced_clock, factor);
1356 
1357 	hw_state->dpll = ilk_dpll(crtc_state, clock, reduced_clock);
1358 }
1359 
1360 static int ilk_crtc_compute_clock(struct intel_atomic_state *state,
1361 				  struct intel_crtc *crtc)
1362 {
1363 	struct intel_display *display = to_intel_display(state);
1364 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1365 	struct intel_crtc_state *crtc_state =
1366 		intel_atomic_get_new_crtc_state(state, crtc);
1367 	const struct intel_limit *limit;
1368 	int refclk = 120000;
1369 	int ret;
1370 
1371 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1372 	if (!crtc_state->has_pch_encoder)
1373 		return 0;
1374 
1375 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1376 		if (intel_panel_use_ssc(display)) {
1377 			drm_dbg_kms(&dev_priv->drm,
1378 				    "using SSC reference clock of %d kHz\n",
1379 				    dev_priv->display.vbt.lvds_ssc_freq);
1380 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1381 		}
1382 
1383 		if (intel_is_dual_link_lvds(dev_priv)) {
1384 			if (refclk == 100000)
1385 				limit = &ilk_limits_dual_lvds_100m;
1386 			else
1387 				limit = &ilk_limits_dual_lvds;
1388 		} else {
1389 			if (refclk == 100000)
1390 				limit = &ilk_limits_single_lvds_100m;
1391 			else
1392 				limit = &ilk_limits_single_lvds;
1393 		}
1394 	} else {
1395 		limit = &ilk_limits_dac;
1396 	}
1397 
1398 	if (!crtc_state->clock_set &&
1399 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1400 				refclk, NULL, &crtc_state->dpll))
1401 		return -EINVAL;
1402 
1403 	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1404 
1405 	ilk_compute_dpll(crtc_state, &crtc_state->dpll,
1406 			 &crtc_state->dpll);
1407 
1408 	ret = intel_compute_shared_dplls(state, crtc, NULL);
1409 	if (ret)
1410 		return ret;
1411 
1412 	crtc_state->port_clock = crtc_state->dpll.dot;
1413 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1414 
1415 	return ret;
1416 }
1417 
1418 static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state,
1419 				    struct intel_crtc *crtc)
1420 {
1421 	struct intel_crtc_state *crtc_state =
1422 		intel_atomic_get_new_crtc_state(state, crtc);
1423 
1424 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1425 	if (!crtc_state->has_pch_encoder)
1426 		return 0;
1427 
1428 	return intel_reserve_shared_dplls(state, crtc, NULL);
1429 }
1430 
1431 static u32 vlv_dpll(const struct intel_crtc_state *crtc_state)
1432 {
1433 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1434 	u32 dpll;
1435 
1436 	dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1437 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1438 
1439 	if (crtc->pipe != PIPE_A)
1440 		dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1441 
1442 	/* DPLL not used with DSI, but still need the rest set up */
1443 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1444 		dpll |= DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV;
1445 
1446 	return dpll;
1447 }
1448 
1449 void vlv_compute_dpll(struct intel_crtc_state *crtc_state)
1450 {
1451 	struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1452 
1453 	hw_state->dpll = vlv_dpll(crtc_state);
1454 	hw_state->dpll_md = i965_dpll_md(crtc_state);
1455 }
1456 
1457 static u32 chv_dpll(const struct intel_crtc_state *crtc_state)
1458 {
1459 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1460 	u32 dpll;
1461 
1462 	dpll = DPLL_SSC_REF_CLK_CHV |
1463 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1464 
1465 	if (crtc->pipe != PIPE_A)
1466 		dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1467 
1468 	/* DPLL not used with DSI, but still need the rest set up */
1469 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1470 		dpll |= DPLL_VCO_ENABLE;
1471 
1472 	return dpll;
1473 }
1474 
1475 void chv_compute_dpll(struct intel_crtc_state *crtc_state)
1476 {
1477 	struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1478 
1479 	hw_state->dpll = chv_dpll(crtc_state);
1480 	hw_state->dpll_md = i965_dpll_md(crtc_state);
1481 }
1482 
1483 static int chv_crtc_compute_clock(struct intel_atomic_state *state,
1484 				  struct intel_crtc *crtc)
1485 {
1486 	struct intel_crtc_state *crtc_state =
1487 		intel_atomic_get_new_crtc_state(state, crtc);
1488 	const struct intel_limit *limit = &intel_limits_chv;
1489 	int refclk = 100000;
1490 
1491 	if (!crtc_state->clock_set &&
1492 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1493 				refclk, NULL, &crtc_state->dpll))
1494 		return -EINVAL;
1495 
1496 	chv_calc_dpll_params(refclk, &crtc_state->dpll);
1497 
1498 	chv_compute_dpll(crtc_state);
1499 
1500 	/* FIXME this is a mess */
1501 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1502 		return 0;
1503 
1504 	crtc_state->port_clock = crtc_state->dpll.dot;
1505 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1506 
1507 	return 0;
1508 }
1509 
1510 static int vlv_crtc_compute_clock(struct intel_atomic_state *state,
1511 				  struct intel_crtc *crtc)
1512 {
1513 	struct intel_crtc_state *crtc_state =
1514 		intel_atomic_get_new_crtc_state(state, crtc);
1515 	const struct intel_limit *limit = &intel_limits_vlv;
1516 	int refclk = 100000;
1517 
1518 	if (!crtc_state->clock_set &&
1519 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1520 				refclk, NULL, &crtc_state->dpll))
1521 		return -EINVAL;
1522 
1523 	vlv_calc_dpll_params(refclk, &crtc_state->dpll);
1524 
1525 	vlv_compute_dpll(crtc_state);
1526 
1527 	/* FIXME this is a mess */
1528 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1529 		return 0;
1530 
1531 	crtc_state->port_clock = crtc_state->dpll.dot;
1532 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1533 
1534 	return 0;
1535 }
1536 
1537 static int g4x_crtc_compute_clock(struct intel_atomic_state *state,
1538 				  struct intel_crtc *crtc)
1539 {
1540 	struct intel_display *display = to_intel_display(state);
1541 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1542 	struct intel_crtc_state *crtc_state =
1543 		intel_atomic_get_new_crtc_state(state, crtc);
1544 	const struct intel_limit *limit;
1545 	int refclk = 96000;
1546 
1547 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1548 		if (intel_panel_use_ssc(display)) {
1549 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1550 			drm_dbg_kms(&dev_priv->drm,
1551 				    "using SSC reference clock of %d kHz\n",
1552 				    refclk);
1553 		}
1554 
1555 		if (intel_is_dual_link_lvds(dev_priv))
1556 			limit = &intel_limits_g4x_dual_channel_lvds;
1557 		else
1558 			limit = &intel_limits_g4x_single_channel_lvds;
1559 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1560 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1561 		limit = &intel_limits_g4x_hdmi;
1562 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1563 		limit = &intel_limits_g4x_sdvo;
1564 	} else {
1565 		/* The option is for other outputs */
1566 		limit = &intel_limits_i9xx_sdvo;
1567 	}
1568 
1569 	if (!crtc_state->clock_set &&
1570 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1571 				refclk, NULL, &crtc_state->dpll))
1572 		return -EINVAL;
1573 
1574 	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1575 
1576 	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1577 			  &crtc_state->dpll);
1578 
1579 	crtc_state->port_clock = crtc_state->dpll.dot;
1580 	/* FIXME this is a mess */
1581 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1582 		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1583 
1584 	return 0;
1585 }
1586 
1587 static int pnv_crtc_compute_clock(struct intel_atomic_state *state,
1588 				  struct intel_crtc *crtc)
1589 {
1590 	struct intel_display *display = to_intel_display(state);
1591 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1592 	struct intel_crtc_state *crtc_state =
1593 		intel_atomic_get_new_crtc_state(state, crtc);
1594 	const struct intel_limit *limit;
1595 	int refclk = 96000;
1596 
1597 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1598 		if (intel_panel_use_ssc(display)) {
1599 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1600 			drm_dbg_kms(&dev_priv->drm,
1601 				    "using SSC reference clock of %d kHz\n",
1602 				    refclk);
1603 		}
1604 
1605 		limit = &pnv_limits_lvds;
1606 	} else {
1607 		limit = &pnv_limits_sdvo;
1608 	}
1609 
1610 	if (!crtc_state->clock_set &&
1611 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1612 				refclk, NULL, &crtc_state->dpll))
1613 		return -EINVAL;
1614 
1615 	pnv_calc_dpll_params(refclk, &crtc_state->dpll);
1616 
1617 	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1618 			  &crtc_state->dpll);
1619 
1620 	crtc_state->port_clock = crtc_state->dpll.dot;
1621 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1622 
1623 	return 0;
1624 }
1625 
1626 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state,
1627 				   struct intel_crtc *crtc)
1628 {
1629 	struct intel_display *display = to_intel_display(state);
1630 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1631 	struct intel_crtc_state *crtc_state =
1632 		intel_atomic_get_new_crtc_state(state, crtc);
1633 	const struct intel_limit *limit;
1634 	int refclk = 96000;
1635 
1636 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1637 		if (intel_panel_use_ssc(display)) {
1638 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1639 			drm_dbg_kms(&dev_priv->drm,
1640 				    "using SSC reference clock of %d kHz\n",
1641 				    refclk);
1642 		}
1643 
1644 		limit = &intel_limits_i9xx_lvds;
1645 	} else {
1646 		limit = &intel_limits_i9xx_sdvo;
1647 	}
1648 
1649 	if (!crtc_state->clock_set &&
1650 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1651 				 refclk, NULL, &crtc_state->dpll))
1652 		return -EINVAL;
1653 
1654 	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1655 
1656 	i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1657 			  &crtc_state->dpll);
1658 
1659 	crtc_state->port_clock = crtc_state->dpll.dot;
1660 	/* FIXME this is a mess */
1661 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1662 		crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1663 
1664 	return 0;
1665 }
1666 
1667 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state,
1668 				   struct intel_crtc *crtc)
1669 {
1670 	struct intel_display *display = to_intel_display(state);
1671 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1672 	struct intel_crtc_state *crtc_state =
1673 		intel_atomic_get_new_crtc_state(state, crtc);
1674 	const struct intel_limit *limit;
1675 	int refclk = 48000;
1676 
1677 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1678 		if (intel_panel_use_ssc(display)) {
1679 			refclk = dev_priv->display.vbt.lvds_ssc_freq;
1680 			drm_dbg_kms(&dev_priv->drm,
1681 				    "using SSC reference clock of %d kHz\n",
1682 				    refclk);
1683 		}
1684 
1685 		limit = &intel_limits_i8xx_lvds;
1686 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1687 		limit = &intel_limits_i8xx_dvo;
1688 	} else {
1689 		limit = &intel_limits_i8xx_dac;
1690 	}
1691 
1692 	if (!crtc_state->clock_set &&
1693 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1694 				 refclk, NULL, &crtc_state->dpll))
1695 		return -EINVAL;
1696 
1697 	i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1698 
1699 	i8xx_compute_dpll(crtc_state, &crtc_state->dpll,
1700 			  &crtc_state->dpll);
1701 
1702 	crtc_state->port_clock = crtc_state->dpll.dot;
1703 	crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1704 
1705 	return 0;
1706 }
1707 
1708 static const struct intel_dpll_funcs mtl_dpll_funcs = {
1709 	.crtc_compute_clock = mtl_crtc_compute_clock,
1710 };
1711 
1712 static const struct intel_dpll_funcs dg2_dpll_funcs = {
1713 	.crtc_compute_clock = dg2_crtc_compute_clock,
1714 };
1715 
1716 static const struct intel_dpll_funcs hsw_dpll_funcs = {
1717 	.crtc_compute_clock = hsw_crtc_compute_clock,
1718 	.crtc_get_shared_dpll = hsw_crtc_get_shared_dpll,
1719 };
1720 
1721 static const struct intel_dpll_funcs ilk_dpll_funcs = {
1722 	.crtc_compute_clock = ilk_crtc_compute_clock,
1723 	.crtc_get_shared_dpll = ilk_crtc_get_shared_dpll,
1724 };
1725 
1726 static const struct intel_dpll_funcs chv_dpll_funcs = {
1727 	.crtc_compute_clock = chv_crtc_compute_clock,
1728 };
1729 
1730 static const struct intel_dpll_funcs vlv_dpll_funcs = {
1731 	.crtc_compute_clock = vlv_crtc_compute_clock,
1732 };
1733 
1734 static const struct intel_dpll_funcs g4x_dpll_funcs = {
1735 	.crtc_compute_clock = g4x_crtc_compute_clock,
1736 };
1737 
1738 static const struct intel_dpll_funcs pnv_dpll_funcs = {
1739 	.crtc_compute_clock = pnv_crtc_compute_clock,
1740 };
1741 
1742 static const struct intel_dpll_funcs i9xx_dpll_funcs = {
1743 	.crtc_compute_clock = i9xx_crtc_compute_clock,
1744 };
1745 
1746 static const struct intel_dpll_funcs i8xx_dpll_funcs = {
1747 	.crtc_compute_clock = i8xx_crtc_compute_clock,
1748 };
1749 
1750 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state,
1751 				  struct intel_crtc *crtc)
1752 {
1753 	struct drm_i915_private *i915 = to_i915(state->base.dev);
1754 	struct intel_crtc_state *crtc_state =
1755 		intel_atomic_get_new_crtc_state(state, crtc);
1756 	int ret;
1757 
1758 	drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1759 
1760 	memset(&crtc_state->dpll_hw_state, 0,
1761 	       sizeof(crtc_state->dpll_hw_state));
1762 
1763 	if (!crtc_state->hw.enable)
1764 		return 0;
1765 
1766 	ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc);
1767 	if (ret) {
1768 		drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n",
1769 			    crtc->base.base.id, crtc->base.name);
1770 		return ret;
1771 	}
1772 
1773 	return 0;
1774 }
1775 
1776 int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state,
1777 				    struct intel_crtc *crtc)
1778 {
1779 	struct drm_i915_private *i915 = to_i915(state->base.dev);
1780 	struct intel_crtc_state *crtc_state =
1781 		intel_atomic_get_new_crtc_state(state, crtc);
1782 	int ret;
1783 
1784 	drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1785 	drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll);
1786 
1787 	if (!crtc_state->hw.enable || crtc_state->shared_dpll)
1788 		return 0;
1789 
1790 	if (!i915->display.funcs.dpll->crtc_get_shared_dpll)
1791 		return 0;
1792 
1793 	ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc);
1794 	if (ret) {
1795 		drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n",
1796 			    crtc->base.base.id, crtc->base.name);
1797 		return ret;
1798 	}
1799 
1800 	return 0;
1801 }
1802 
1803 void
1804 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1805 {
1806 	if (DISPLAY_VER(dev_priv) >= 14)
1807 		dev_priv->display.funcs.dpll = &mtl_dpll_funcs;
1808 	else if (IS_DG2(dev_priv))
1809 		dev_priv->display.funcs.dpll = &dg2_dpll_funcs;
1810 	else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1811 		dev_priv->display.funcs.dpll = &hsw_dpll_funcs;
1812 	else if (HAS_PCH_SPLIT(dev_priv))
1813 		dev_priv->display.funcs.dpll = &ilk_dpll_funcs;
1814 	else if (IS_CHERRYVIEW(dev_priv))
1815 		dev_priv->display.funcs.dpll = &chv_dpll_funcs;
1816 	else if (IS_VALLEYVIEW(dev_priv))
1817 		dev_priv->display.funcs.dpll = &vlv_dpll_funcs;
1818 	else if (IS_G4X(dev_priv))
1819 		dev_priv->display.funcs.dpll = &g4x_dpll_funcs;
1820 	else if (IS_PINEVIEW(dev_priv))
1821 		dev_priv->display.funcs.dpll = &pnv_dpll_funcs;
1822 	else if (DISPLAY_VER(dev_priv) != 2)
1823 		dev_priv->display.funcs.dpll = &i9xx_dpll_funcs;
1824 	else
1825 		dev_priv->display.funcs.dpll = &i8xx_dpll_funcs;
1826 }
1827 
1828 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1829 {
1830 	if (IS_I830(dev_priv))
1831 		return false;
1832 
1833 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1834 }
1835 
1836 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state)
1837 {
1838 	struct intel_display *display = to_intel_display(crtc_state);
1839 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1840 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1841 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1842 	enum pipe pipe = crtc->pipe;
1843 	int i;
1844 
1845 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1846 
1847 	/* PLL is protected by panel, make sure we can write it */
1848 	if (i9xx_has_pps(dev_priv))
1849 		assert_pps_unlocked(display, pipe);
1850 
1851 	intel_de_write(dev_priv, FP0(pipe), hw_state->fp0);
1852 	intel_de_write(dev_priv, FP1(pipe), hw_state->fp1);
1853 
1854 	/*
1855 	 * Apparently we need to have VGA mode enabled prior to changing
1856 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1857 	 * dividers, even though the register value does change.
1858 	 */
1859 	intel_de_write(dev_priv, DPLL(dev_priv, pipe),
1860 		       hw_state->dpll & ~DPLL_VGA_MODE_DIS);
1861 	intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
1862 
1863 	/* Wait for the clocks to stabilize. */
1864 	intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
1865 	udelay(150);
1866 
1867 	if (DISPLAY_VER(dev_priv) >= 4) {
1868 		intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe),
1869 			       hw_state->dpll_md);
1870 	} else {
1871 		/* The pixel multiplier can only be updated once the
1872 		 * DPLL is enabled and the clocks are stable.
1873 		 *
1874 		 * So write it again.
1875 		 */
1876 		intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
1877 	}
1878 
1879 	/* We do this three times for luck */
1880 	for (i = 0; i < 3; i++) {
1881 		intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
1882 		intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
1883 		udelay(150); /* wait for warmup */
1884 	}
1885 }
1886 
1887 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1888 				 enum dpio_phy phy, enum dpio_channel ch)
1889 {
1890 	u32 tmp;
1891 
1892 	/*
1893 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1894 	 * and set it to a reasonable value instead.
1895 	 */
1896 	tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch));
1897 	tmp &= 0xffffff00;
1898 	tmp |= 0x00000030;
1899 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp);
1900 
1901 	tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11);
1902 	tmp &= 0x00ffffff;
1903 	tmp |= 0x8c000000;
1904 	vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp);
1905 
1906 	tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch));
1907 	tmp &= 0xffffff00;
1908 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp);
1909 
1910 	tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11);
1911 	tmp &= 0x00ffffff;
1912 	tmp |= 0xb0000000;
1913 	vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp);
1914 }
1915 
1916 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state)
1917 {
1918 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1919 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1920 	const struct dpll *clock = &crtc_state->dpll;
1921 	enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
1922 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1923 	enum pipe pipe = crtc->pipe;
1924 	u32 tmp, coreclk;
1925 
1926 	vlv_dpio_get(dev_priv);
1927 
1928 	/* See eDP HDMI DPIO driver vbios notes doc */
1929 
1930 	/* PLL B needs special handling */
1931 	if (pipe == PIPE_B)
1932 		vlv_pllb_recal_opamp(dev_priv, phy, ch);
1933 
1934 	/* Set up Tx target for periodic Rcomp update */
1935 	vlv_dpio_write(dev_priv, phy, VLV_PCS_DW17_BCAST, 0x0100000f);
1936 
1937 	/* Disable target IRef on PLL */
1938 	tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW16(ch));
1939 	tmp &= 0x00ffffff;
1940 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW16(ch), tmp);
1941 
1942 	/* Disable fast lock */
1943 	vlv_dpio_write(dev_priv, phy, VLV_CMN_DW0, 0x610);
1944 
1945 	/* Set idtafcrecal before PLL is enabled */
1946 	tmp = DPIO_M1_DIV(clock->m1) |
1947 		DPIO_M2_DIV(clock->m2) |
1948 		DPIO_P1_DIV(clock->p1) |
1949 		DPIO_P2_DIV(clock->p2) |
1950 		DPIO_N_DIV(clock->n) |
1951 		DPIO_K_DIV(1);
1952 
1953 	/*
1954 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1955 	 * but we don't support that).
1956 	 * Note: don't use the DAC post divider as it seems unstable.
1957 	 */
1958 	tmp |= DPIO_S1_DIV(DPIO_S1_DIV_HDMIDP);
1959 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp);
1960 
1961 	tmp |= DPIO_ENABLE_CALIBRATION;
1962 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp);
1963 
1964 	/* Set HBR and RBR LPF coefficients */
1965 	if (crtc_state->port_clock == 162000 ||
1966 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) ||
1967 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1968 		vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch),
1969 				 0x009f0003);
1970 	else
1971 		vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch),
1972 				 0x00d0000f);
1973 
1974 	if (intel_crtc_has_dp_encoder(crtc_state)) {
1975 		/* Use SSC source */
1976 		if (pipe == PIPE_A)
1977 			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1978 					 0x0df40000);
1979 		else
1980 			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1981 					 0x0df70000);
1982 	} else { /* HDMI or VGA */
1983 		/* Use bend source */
1984 		if (pipe == PIPE_A)
1985 			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1986 					 0x0df70000);
1987 		else
1988 			vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1989 					 0x0df40000);
1990 	}
1991 
1992 	coreclk = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW7(ch));
1993 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1994 	if (intel_crtc_has_dp_encoder(crtc_state))
1995 		coreclk |= 0x01000000;
1996 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW7(ch), coreclk);
1997 
1998 	vlv_dpio_write(dev_priv, phy, VLV_PLL_DW19(ch), 0x87871000);
1999 
2000 	vlv_dpio_put(dev_priv);
2001 }
2002 
2003 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state)
2004 {
2005 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2006 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2007 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2008 	enum pipe pipe = crtc->pipe;
2009 
2010 	intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
2011 	intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2012 	udelay(150);
2013 
2014 	if (intel_de_wait_for_set(dev_priv, DPLL(dev_priv, pipe), DPLL_LOCK_VLV, 1))
2015 		drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
2016 }
2017 
2018 void vlv_enable_pll(const struct intel_crtc_state *crtc_state)
2019 {
2020 	struct intel_display *display = to_intel_display(crtc_state);
2021 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2022 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2023 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2024 	enum pipe pipe = crtc->pipe;
2025 
2026 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2027 
2028 	/* PLL is protected by panel, make sure we can write it */
2029 	assert_pps_unlocked(display, pipe);
2030 
2031 	/* Enable Refclk */
2032 	intel_de_write(dev_priv, DPLL(dev_priv, pipe),
2033 		       hw_state->dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
2034 
2035 	if (hw_state->dpll & DPLL_VCO_ENABLE) {
2036 		vlv_prepare_pll(crtc_state);
2037 		_vlv_enable_pll(crtc_state);
2038 	}
2039 
2040 	intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe), hw_state->dpll_md);
2041 	intel_de_posting_read(dev_priv, DPLL_MD(dev_priv, pipe));
2042 }
2043 
2044 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state)
2045 {
2046 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2047 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2048 	const struct dpll *clock = &crtc_state->dpll;
2049 	enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
2050 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2051 	u32 tmp, loopfilter, tribuf_calcntr;
2052 	u32 m2_frac;
2053 
2054 	m2_frac = clock->m2 & 0x3fffff;
2055 
2056 	vlv_dpio_get(dev_priv);
2057 
2058 	/* p1 and p2 divider */
2059 	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW13(ch),
2060 		       DPIO_CHV_S1_DIV(5) |
2061 		       DPIO_CHV_P1_DIV(clock->p1) |
2062 		       DPIO_CHV_P2_DIV(clock->p2) |
2063 		       DPIO_CHV_K_DIV(1));
2064 
2065 	/* Feedback post-divider - m2 */
2066 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW0(ch),
2067 		       DPIO_CHV_M2_DIV(clock->m2 >> 22));
2068 
2069 	/* Feedback refclk divider - n and m1 */
2070 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW1(ch),
2071 		       DPIO_CHV_M1_DIV(DPIO_CHV_M1_DIV_BY_2) |
2072 		       DPIO_CHV_N_DIV(1));
2073 
2074 	/* M2 fraction division */
2075 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW2(ch),
2076 		       DPIO_CHV_M2_FRAC_DIV(m2_frac));
2077 
2078 	/* M2 fraction division enable */
2079 	tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch));
2080 	tmp &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
2081 	tmp |= DPIO_CHV_FEEDFWD_GAIN(2);
2082 	if (m2_frac)
2083 		tmp |= DPIO_CHV_FRAC_DIV_EN;
2084 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW3(ch), tmp);
2085 
2086 	/* Program digital lock detect threshold */
2087 	tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW9(ch));
2088 	tmp &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
2089 		      DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
2090 	tmp |= DPIO_CHV_INT_LOCK_THRESHOLD(0x5);
2091 	if (!m2_frac)
2092 		tmp |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
2093 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW9(ch), tmp);
2094 
2095 	/* Loop filter */
2096 	if (clock->vco == 5400000) {
2097 		loopfilter = DPIO_CHV_PROP_COEFF(0x3) |
2098 			DPIO_CHV_INT_COEFF(0x8) |
2099 			DPIO_CHV_GAIN_CTRL(0x1);
2100 		tribuf_calcntr = 0x9;
2101 	} else if (clock->vco <= 6200000) {
2102 		loopfilter = DPIO_CHV_PROP_COEFF(0x5) |
2103 			DPIO_CHV_INT_COEFF(0xB) |
2104 			DPIO_CHV_GAIN_CTRL(0x3);
2105 		tribuf_calcntr = 0x9;
2106 	} else if (clock->vco <= 6480000) {
2107 		loopfilter = DPIO_CHV_PROP_COEFF(0x4) |
2108 			DPIO_CHV_INT_COEFF(0x9) |
2109 			DPIO_CHV_GAIN_CTRL(0x3);
2110 		tribuf_calcntr = 0x8;
2111 	} else {
2112 		/* Not supported. Apply the same limits as in the max case */
2113 		loopfilter = DPIO_CHV_PROP_COEFF(0x4) |
2114 			DPIO_CHV_INT_COEFF(0x9) |
2115 			DPIO_CHV_GAIN_CTRL(0x3);
2116 		tribuf_calcntr = 0;
2117 	}
2118 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW6(ch), loopfilter);
2119 
2120 	tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW8(ch));
2121 	tmp &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
2122 	tmp |= DPIO_CHV_TDC_TARGET_CNT(tribuf_calcntr);
2123 	vlv_dpio_write(dev_priv, phy, CHV_PLL_DW8(ch), tmp);
2124 
2125 	/* AFC Recal */
2126 	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch),
2127 		       vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)) |
2128 		       DPIO_AFC_RECAL);
2129 
2130 	vlv_dpio_put(dev_priv);
2131 }
2132 
2133 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state)
2134 {
2135 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2136 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2137 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2138 	enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
2139 	enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2140 	enum pipe pipe = crtc->pipe;
2141 	u32 tmp;
2142 
2143 	vlv_dpio_get(dev_priv);
2144 
2145 	/* Enable back the 10bit clock to display controller */
2146 	tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch));
2147 	tmp |= DPIO_DCLKP_EN;
2148 	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), tmp);
2149 
2150 	vlv_dpio_put(dev_priv);
2151 
2152 	/*
2153 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
2154 	 */
2155 	udelay(1);
2156 
2157 	/* Enable PLL */
2158 	intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
2159 
2160 	/* Check PLL is locked */
2161 	if (intel_de_wait_for_set(dev_priv, DPLL(dev_priv, pipe), DPLL_LOCK_VLV, 1))
2162 		drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
2163 }
2164 
2165 void chv_enable_pll(const struct intel_crtc_state *crtc_state)
2166 {
2167 	struct intel_display *display = to_intel_display(crtc_state);
2168 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2169 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2170 	const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2171 	enum pipe pipe = crtc->pipe;
2172 
2173 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2174 
2175 	/* PLL is protected by panel, make sure we can write it */
2176 	assert_pps_unlocked(display, pipe);
2177 
2178 	/* Enable Refclk and SSC */
2179 	intel_de_write(dev_priv, DPLL(dev_priv, pipe),
2180 		       hw_state->dpll & ~DPLL_VCO_ENABLE);
2181 
2182 	if (hw_state->dpll & DPLL_VCO_ENABLE) {
2183 		chv_prepare_pll(crtc_state);
2184 		_chv_enable_pll(crtc_state);
2185 	}
2186 
2187 	if (pipe != PIPE_A) {
2188 		/*
2189 		 * WaPixelRepeatModeFixForC0:chv
2190 		 *
2191 		 * DPLLCMD is AWOL. Use chicken bits to propagate
2192 		 * the value from DPLLBMD to either pipe B or C.
2193 		 */
2194 		intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
2195 		intel_de_write(dev_priv, DPLL_MD(dev_priv, PIPE_B),
2196 			       hw_state->dpll_md);
2197 		intel_de_write(dev_priv, CBR4_VLV, 0);
2198 		dev_priv->display.state.chv_dpll_md[pipe] = hw_state->dpll_md;
2199 
2200 		/*
2201 		 * DPLLB VGA mode also seems to cause problems.
2202 		 * We should always have it disabled.
2203 		 */
2204 		drm_WARN_ON(&dev_priv->drm,
2205 			    (intel_de_read(dev_priv, DPLL(dev_priv, PIPE_B)) &
2206 			     DPLL_VGA_MODE_DIS) == 0);
2207 	} else {
2208 		intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe),
2209 			       hw_state->dpll_md);
2210 		intel_de_posting_read(dev_priv, DPLL_MD(dev_priv, pipe));
2211 	}
2212 }
2213 
2214 /**
2215  * vlv_force_pll_on - forcibly enable just the PLL
2216  * @dev_priv: i915 private structure
2217  * @pipe: pipe PLL to enable
2218  * @dpll: PLL configuration
2219  *
2220  * Enable the PLL for @pipe using the supplied @dpll config. To be used
2221  * in cases where we need the PLL enabled even when @pipe is not going to
2222  * be enabled.
2223  */
2224 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
2225 		     const struct dpll *dpll)
2226 {
2227 	struct intel_display *display = &dev_priv->display;
2228 	struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe);
2229 	struct intel_crtc_state *crtc_state;
2230 
2231 	crtc_state = intel_crtc_state_alloc(crtc);
2232 	if (!crtc_state)
2233 		return -ENOMEM;
2234 
2235 	crtc_state->cpu_transcoder = (enum transcoder)pipe;
2236 	crtc_state->pixel_multiplier = 1;
2237 	crtc_state->dpll = *dpll;
2238 	crtc_state->output_types = BIT(INTEL_OUTPUT_EDP);
2239 
2240 	if (IS_CHERRYVIEW(dev_priv)) {
2241 		chv_compute_dpll(crtc_state);
2242 		chv_enable_pll(crtc_state);
2243 	} else {
2244 		vlv_compute_dpll(crtc_state);
2245 		vlv_enable_pll(crtc_state);
2246 	}
2247 
2248 	intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi);
2249 
2250 	return 0;
2251 }
2252 
2253 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2254 {
2255 	u32 val;
2256 
2257 	/* Make sure the pipe isn't still relying on us */
2258 	assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2259 
2260 	val = DPLL_INTEGRATED_REF_CLK_VLV |
2261 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2262 	if (pipe != PIPE_A)
2263 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2264 
2265 	intel_de_write(dev_priv, DPLL(dev_priv, pipe), val);
2266 	intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2267 }
2268 
2269 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2270 {
2271 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
2272 	enum dpio_phy phy = vlv_pipe_to_phy(pipe);
2273 	u32 val;
2274 
2275 	/* Make sure the pipe isn't still relying on us */
2276 	assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2277 
2278 	val = DPLL_SSC_REF_CLK_CHV |
2279 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2280 	if (pipe != PIPE_A)
2281 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2282 
2283 	intel_de_write(dev_priv, DPLL(dev_priv, pipe), val);
2284 	intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2285 
2286 	vlv_dpio_get(dev_priv);
2287 
2288 	/* Disable 10bit clock to display controller */
2289 	val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch));
2290 	val &= ~DPIO_DCLKP_EN;
2291 	vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), val);
2292 
2293 	vlv_dpio_put(dev_priv);
2294 }
2295 
2296 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
2297 {
2298 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2299 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2300 	enum pipe pipe = crtc->pipe;
2301 
2302 	/* Don't disable pipe or pipe PLLs if needed */
2303 	if (IS_I830(dev_priv))
2304 		return;
2305 
2306 	/* Make sure the pipe isn't still relying on us */
2307 	assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2308 
2309 	intel_de_write(dev_priv, DPLL(dev_priv, pipe), DPLL_VGA_MODE_DIS);
2310 	intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2311 }
2312 
2313 
2314 /**
2315  * vlv_force_pll_off - forcibly disable just the PLL
2316  * @dev_priv: i915 private structure
2317  * @pipe: pipe PLL to disable
2318  *
2319  * Disable the PLL for @pipe. To be used in cases where we need
2320  * the PLL enabled even when @pipe is not going to be enabled.
2321  */
2322 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
2323 {
2324 	if (IS_CHERRYVIEW(dev_priv))
2325 		chv_disable_pll(dev_priv, pipe);
2326 	else
2327 		vlv_disable_pll(dev_priv, pipe);
2328 }
2329 
2330 /* Only for pre-ILK configs */
2331 static void assert_pll(struct drm_i915_private *dev_priv,
2332 		       enum pipe pipe, bool state)
2333 {
2334 	struct intel_display *display = &dev_priv->display;
2335 	bool cur_state;
2336 
2337 	cur_state = intel_de_read(display, DPLL(display, pipe)) & DPLL_VCO_ENABLE;
2338 	INTEL_DISPLAY_STATE_WARN(display, cur_state != state,
2339 				 "PLL state assertion failure (expected %s, current %s)\n",
2340 				 str_on_off(state), str_on_off(cur_state));
2341 }
2342 
2343 void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
2344 {
2345 	assert_pll(i915, pipe, true);
2346 }
2347 
2348 void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
2349 {
2350 	assert_pll(i915, pipe, false);
2351 }
2352